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ABSTRACT

We study a worst-case scenario in generalization: Out-of-domain generalization
from a single source. The goal is to learn a robust model from a single source
and expect it to generalize over many unknown distributions. This challenging
problem has been seldom investigated while existing solutions suffer from various
limitations. In this paper, we propose a new solution. The key idea is to augment
the source capacity in both input and label spaces, while the augmentation is guided
by uncertainty assessment. To the best of our knowledge, this is the first work to
(1) access the generalization uncertainty from a single source and (2) leverage it
to guide both input and label augmentation for robust generalization. The model
training and deployment are effectively organized in a Bayesian meta-learning
framework. We conduct extensive comparisons and ablation study to validate our
approach. The results prove our superior performance in a wide scope of tasks
including image classification, text classification, and speech recognition.1

1 INTRODUCTION

Existing machine learning algorithms have achieved remarkable success under the assumption that
training and test data are sampled from similar distributions. When this assumption no longer holds,
even strong models (e.g., deep neural networks) may fail to produce reliable predictions. In this paper,
we study a worst-case scenario in generalization: Out-of-domain generalization from a single source.
A model learned from a single source is expected to generalize over a series of unknown distributions.
This problem is more challenging than domain adaptation (Motiian et al., 2017a; Murez et al., 2018;
Xu et al., 2019; Liu et al., 2019) which usually requires the assessment of target distributions during
training, and domain generalization (Muandet et al., 2013; Ghifary et al., 2015; Li et al., 2018;
Carlucci et al., 2019; Dou et al., 2019) which often assumes the availability of multiple sources. For
example, there exists significant distribution difference in medical images collected across different
hospitals. The intelligent diagnosis system is required to process images unexplored during training
where model update is infeasible due to time or resource limitations.

Recently, Volpi et al. (2018) casts this problem in an ensemble framework. It learns a group of
models each of which tackles an unseen test domain. This is achieved by performing adversarial
training (Goodfellow et al., 2015) on the source to mimic the unseen test distributions. Yet, its
generalization capability is limited due to the proposed semantic constraint, which allows only a
small amount of data augmentation to avoid semantic changes in the label space. To address this
limitation, Qiao et al. (2020) proposes adversarial domain augmentation to relax the constraint. By
maximizing the Wasserstein distance between the source and augmentation, the domain transportation
is significantly enlarged in the input space.

However, existing data (domain) augmentation based methods (Volpi et al., 2018; Qiao et al., 2020;
DeVries & Taylor, 2017; Cubuk et al., 2019; Hendrycks et al., 2020) merely consider to increase
the source capacity by perturbing the input space. Few of them investigate the possibility of label
augmentation. An exception is Mixup (Zhang et al., 2018) which pioneers label augmentation by
randomly interpolating two data examples in both input and label spaces. However, Mixup can
hardly address the out-of-domain generalization problem since it is restricted in creating in-domain
generations due to the linear interpolation assumption. Besides, the interpolations are randomly
sampled from a fixed distribution, which also largely restricts the flexibility of domain mixtures,
yielding sub-optimal performance for unseen domain generalization.

1We provide source codes and pre-trained models in supplementary to reproduce the reported results.
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Another limitation of existing work (Muandet et al., 2013; Ghifary et al., 2015; Li et al., 2018; Carlucci
et al., 2019; Dou et al., 2019) is they usually overlook the potential risk of leveraging augmented
data in tackling out-of-domain generalization. This raises serious safety and security concerns in
mission-critical applications (Finn et al., 2018). For instance, when deploying self-driving cars in
unknown environments, it is crucial to be aware of the predictive uncertainty in risk assessment.

To tackle the aforementioned limitations, we propose uncertain out-of-domain generalization. The
key idea is to increase the source capacity guided by uncertainty estimation in both input and label
spaces. More specifically, in the input space, instead of directly augmenting raw data (Volpi et al.,
2018; Qiao et al., 2020), we apply uncertainty-guided perturbations to latent features, yielding
a domain-knowledge-free solution for various modalities such as image, text, and audio. In the
label space, we leverage the uncertainty associated with feature perturbations to augment labels
via interpolation, improving generalization over unseen domains. Moreover, we explicitly model
the domain uncertainty as a byproduct of feature perturbation and label mixup, guaranteeing fast
risk assessment without repeated sampling. Finally, we organize the training and deployment in
a Bayesian meta-learning framework that is specially tailored for single source generalization. To
summarize, our contribution is multi-fold:

• To the best of our knowledge, we are the first to access the uncertainty from a single source.
We leverage the uncertainty assessment to gradually improve the domain generalization in a
curriculum learning scheme.

• For the first time, we propose learnable label mixup in addition to widely used input
augmentation, further increasing the domain capacity and reinforcing generalization over
unseen domains.

• We propose a Bayesian meta-learning method to effectively organize domain augmentation
and model training. Bayesian inference is crucial in maximizing the posterior of domain
augmentations, such that they can approximate the distribution of unseen domains.

• Extensive comparisons and ablation study prove our superior performance in a wide scope
of tasks including image classification, text classification, and speech recognition.

2 RELATED WORK

Out-of-Domain Generalization. Domain generalization (Ghifary et al., 2015; Li et al., 2017;
Grubinger et al., 2017; Shankar et al., 2018; Carlucci et al., 2019; Dou et al., 2019) has been
intensively studied in recent years. JiGen (Carlucci et al., 2019) proposed to generate jigsaw puzzles
from source domains and leverage them as self-supervised signals. Specially, GUD (Volpi et al.,
2018) proposed adversarial data augmentation to solve single domain generalization, and learned an
ensemble model for stable training. M-ADA (Qiao et al., 2020) extended it to create augmentations
with large domain transportation, and designed an efficient meta-learning scheme within a single
unified model. Both GUD (Volpi et al., 2018) and M-ADA (Qiao et al., 2020) fail to assess the
uncertainty of augmentations and only augment the input, while our method explicitly model the
uncertainty and leverage it to increase the augmentation capacity in both input and label spaces.
Several methods (Madry et al., 2018; Wang et al., 2019; Hendrycks et al., 2019) proposed to leverage
adversarial training (Goodfellow et al., 2015) to learn robust models, which can also be applied in
single source generalization. PAR (Wang et al., 2019) proposed to learn robust global representations
by penalizing the predictive power of local representations. Hendrycks et al. (2019) applied self-
supervised learning to improve the model robustness.

Uncertainty Assessment. Bayesian neural networks (Hinton & Van Camp, 1993; Graves, 2011;
Blundell et al., 2015) have been intensively studied to integrate uncertainty into weights of deep
networks. Instead, we apply Bayesian inference to assess the uncertainty of domain augmentations.
Several Bayesian meta-learning frameworks (Grant et al., 2018; Finn et al., 2018; Yoon et al., 2018;
Lee et al., 2020) have been proposed to model the uncertainty of few-shot tasks. Grant et al. (2018)
proposed the first Bayesian variant of model-agnostic meta-learning (MAML) (Finn et al., 2017)
using the Laplace approximation. Finn et al. (2018) approximated MAP inference of the task-specific
weights while maintain uncertainty only in the global weights. In this paper, instead of modelling
the uncertainty of tasks, we propose a novel Bayesian meta-learning framework to maximize the
posterior distribution of domain augmentations.
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3 METHOD

We first describe our problem setting and overall framework design. The goal is to learn a robust model
from a single domain S and we expect the model to generalize over an unknown domain distribution
{T1, T2, · · · } ∼ p(T ). This problem is more challenging than domain adaptation (assuming p(T ) is
given) and domain generalization (assuming multiple source domains {S1,S2, · · · } are available).
We create a series of domain augmentations {S+1 ,S

+
2 , · · · } ∼ p(S+) to approximate p(T ), from

which the backbone θ can learn to generalize over unseen domains.
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Figure 1: The main and auxiliary models.

Uncertainty-guided domain generalization. We as-
sume that S+ should integrate uncertainty assessment
for efficient domain generalization. To achieve it, we in-
troduce the auxiliary ψ = {φp, φm} to explicitly model
the uncertainty with respect to θ and leverage it to create
S+ by increasing the capacity in both input and label
spaces. In input space, we introduce φp to create feature
augmentations h+ via adding perturbation e sampled
from N (µ,σ). In label space, we integrate the same
uncertainty encoded in (µ,σ) into φm and propose learn-
able mixup to generate y+ (together with h+) through
three variables (a, b, τ), yielding consistent augmentation
in both input and output spaces. To effectively organize
domain augmentation and model training, we propose
a Bayesian meta-learning framework to maximizing a
posterior of p(S+) by jointly optimizing the backbone θ and the auxiliary ψ. The overall framework
is shown in Fig. 1.

Merits of uncertainty assessment. Assessing the uncertainty of S+ plays a key role in our design.
First, it provides consistent guidance to the augmentation in both input and label spaces when
inferencing S+, which has never been studied before. Second, we can gradually enlarge the domain
transportation by increasing the uncertainty of S+ in a curriculum learning scheme (Bengio et al.,
2009). Last, we can easily assess the domain uncertainty by checking the value of σ, which measures
how unsure it is when deploying on unseen domains T (Sec. 3.3).

3.1 UNCERTAINTY-GUIDED INPUT AUGMENTATION

The goal is to create S+ from S such that p(S+) can approximate the out-of-domain distribution of
S. One the one hand, we expect a large domain transportation from S to S+ to best accommodate
the unseen testing distribution p(T ). On the other hand, we prefer the transportation is domain-
knowledge-free with uncertainty guarantee for broad and safe domain generalization. Towards this
goal, we introduce φp to create feature augmentation h+ with large domain transportation through
increasing the uncertainty with respect to θ.

Adversarial Domain Augmentation. To encourage large domain transportation, we cast the problem
in a worst-case scenario (Sinha et al., 2018) and propose to learn the auxiliary mapping φp via
adversarial domain augmentation:

maximize
φp

L(θ;S+)︸ ︷︷ ︸
Main task

−β
∥∥z− z+

∥∥2
2︸ ︷︷ ︸

Constraint

. (1)

Here, L denotes empirical loss such as cross-entropy loss for classification. The second term is the
worst-case constraint, bounding the largest domain discrepancy between S and S+ in embedding
space. z denotes the FC-layer output right before the activation layer, which is distinguished from h
that denotes the Conv-layer outputs. One merit of the proposed uncertainty-guided augmentation is
that we can effectively relax the constraint to encourage large domain transportation in a curriculum
learning scheme, which is significantly more efficient than Qiao et al. (2020) that has to train an
extra WAE-GAN (Tolstikhin et al., 2018) to achieve this goal.

Variational feature perturbation. To achieve domain-knowledge-free augmentation, we apply
uncertainty-guided perturbations to latent features instead of directly augmenting raw data. We
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propose to learn layer-wise feature perturbations e that transport latent features h→ h+ for efficient
domain augmentation S → S+. Instead of a direct generation e = fφp

(x,h) widely used in previous
work (Volpi et al., 2018; Qiao et al., 2020), we assume e follows a multivariate Gaussian distribution
N (µ,σ), which can be used to easily access the uncertainty. The Gaussian parameters are learnable
via variational inference (µ,σ) = fφp

(S, θ), such that:

h+ ← h+ Softplus(e), where e ∼ N (µ,σ), (2)

where Softplus(·) is applied to stabilize the training. φp can create a series of feature augmentations
{h+

1 ,h
+
2 , · · · } in different training iterations. In Sec. 4.4, we empirically show that {h+

1 ,h
+
2 , · · · }

gradually enlarge the transportation through increasing the uncertainty of augmentations in a curricu-
lum learning scheme and enable the model to learn from “easy” to “hard” domains.

3.2 UNCERTAINTY-GUIDED LABEL MIXUP

Feature perturbations not only augment the input but also yield label uncertainty. To explicitly model
the label uncertainty, we leverage the input uncertainty, encoded in (µ,σ), to inference the label
uncertainty encoded in (a, b, τ) through φm as shown in Fig. 1. We leverage the label uncertainty to
propose learnable label mixup, yielding consistent augmentation in both input and output spaces and
further reinforcing generalization over unseen domains.

Random Mixup. We start by introducing random mixup (Zhang et al., 2018) for robust learning.
The key idea is to regularize the training to favor simple linear behavior in-between examples. More
specifically, mixup performs training on convex interpolations of pairs of examples (xi,xj) and their
labels (yi,yj):

x+ = λxi + (1− λ)xj , y+ = λyi + (1− λ)yj , λ ∼ Beta(α, α), (3)

where the mixup hyper-parameter α ∈ (0,+∞) controls the interpolation strength.

Learnable Label Mixup. We cast mixup in a learnable framework which is specially tailored for
single source generalization. First, instead of mixing up pairs of examples, we mix up S and S+ to
achieve in-between domain interpolations. Second, we leverage the uncertainty encoded in (µ,σ) to
predict learnable parameters (a, b), which controls the direction and strength of domain interpolations:

h+ = λh+ (1− λ)h+, y+ = λy + (1− λ)ỹ, λ ∼ Beta(a, b), (4)

where ỹ denotes a label-smoothing (Szegedy et al., 2016) version of y. More specifically, we perform
label smoothing by a chance of τ , such that we assign ρ ∈ (0, 1) to the true category and equally
distribute 1−ρ

c−1 to the others, where c counts categories. The Beta distribution (a, b) and the lottery τ
are jointly inferred by (a, b, τ) = fφm

(µ,σ) to integrate the uncertainty of domain augmentation.

3.3 BAYESIAN META-LEARNING

We propose to model all variables {µ,σ, a, b, τ} via Bayesian inference sharing the same auxiliary
model ψ = {φp, φm} for efficient domain augmentation and model training. Bayesian inference is
crucial in maximizing a posterior of p(S+) such that it can approximates p(T ) which is unknown
during training. More importantly, we can solve such MAP problem efficiently by utilizing a modified
model-agnostic meta-learning (MAML) (Finn et al., 2017) framework to distill and transfer meta-
knowledge sourcing from the prior S. Then, we can meta-learn the initial backbone θ to generalize
over the approximated populations p(S+), such that generalization errors are bounded in a worst-case
scenario when deploying {θ, ψ} on unseen populations p(T ). The gradient computation is:

g+ = ∇θ,ψEp(S+)[L(θ∗;S+)], where θ∗ ≡ θ − α∇θL(θ;S). (5)

Here, α denotes the learning rate.

Bayesian Meta-learning. The goal is to maximize the conditional likelihood of the augmented
domain S+: log p (y+|x,h+; θ∗). However, solving it involves the true posterior p (h+|x; θ∗, ψ),
which is intractable (Lee et al., 2020). Thus, we resort to amortized variational inference with a
tractable form of approximate posterior q (h+|x; θ∗, ψ). The approximated lower bound is as follows:

Lθ,ψ = Eq(h+|x;θ∗,ψ)[log
p (y+|x,h+; θ∗)

q (h+|x; θ∗, ψ)
] ≤ log p

(
y+|x,h+; θ∗

)
(6)
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We leverage Monte-Carlo (MC) sampling to maximize the lower bound Lθ,ψ by:

min
θ,ψ

1

K

K∑
k=1

[
− log p

(
y+
k |x,h

+
k ; θ

∗)]+KL
[
q
(
h+|x; θ∗, ψ

)
‖p
(
h+|x; θ∗, ψ

)]
, (7)

where h+
k ∼ q (h+|x; θ∗, ψ) and K is the number of MC samples. Instead of setting p (h+|x; θ∗, ψ)

to N (0, I) in (Kingma & Welling, 2014), we assume that q (h+|x; θ∗, ψ) can approximate
p (h+|x; θ∗, ψ) through the adversarial training on φp in Eq. 1.

Uncertainty Estimation. At testing time, given a novel domain T , we propose a normalized domain
uncertainty score, |σ(T )−σ(S)

σ(S) |, to estimate its uncertainty with respect to learned θ. Considering ψ
is usually much smaller than θ, this score can be calculated efficiently by one-pass data forwarding
through ψ. In Fig. 2, we empirically prove that our estimation is consistent with conventional
Bayesian methods (Blundell et al., 2015), while the time consumption is significantly reduced by an
order of magnitude.

4 EXPERIMENTS

To best validate the performance, we conduct a series of experiments to compare our approach
with existing methods that can be roughly grouped in four categories: 1) Adversarial training:
PAR (Wang et al., 2019), Self-super (Hendrycks et al., 2019), and PGD (Madry et al., 2018). 2)
Data augmentation: Mixup (Zhang et al., 2018), JiGen (Carlucci et al., 2019), Cutout (DeVries
& Taylor, 2017), and AutoAug (Cubuk et al., 2019). 3) Domain adaptation: DIRT-T (Shu et al.,
2018), SE (French et al., 2018), SBADA (Russo et al., 2018), FADA (Motiian et al., 2017a), and
CCSA (Motiian et al., 2017b). 4) Domain generalization: ERM (Koltchinskii, 2011), GUD (Volpi
et al., 2018), and M-ADA (Qiao et al., 2020). The experimental results prove that our method
achieves superior performance on a wide scope of tasks, including image classification (Hendrycks
& Dietterich, 2019), text classification (Chen et al., 2012), and speech recognition (Warden, 2018).
Please refer to Appendix B for more details about experiment setup.

4.1 IMAGE CLASSIFICATION

Table 1: Image classification accuracy (%) on Digits (Volpi et al., 2018) (top) and CIFAR-10-
C (Hendrycks & Dietterich, 2019) (bottom). We compare with robust training (Columns 1-4) and
domain generalization (Columns 5-7). For Digits, all models are trained on MNIST (LeCun et al.,
1998). For CIFAR-10-C, two widely employed backbones are evaluated. Our method outperforms
M-ADA (Qiao et al., 2020) (previous SOTA) consistently in all settings.

Domain Mixup PAR Self-super JiGen ERM GUD M-ADA Ours
SVHN 28.5 30.5 30.0 33.8 27.8 35.8 42.1 43.3
MNIST-M 54.0 58.4 58.1 57.8 52.8 60.7 66.8 67.4
SYN 41.2 44.1 41.9 43.8 39.9 45.0 50.4 57.1
USPS 76.6 76.9 77.1 77.2 76.5 77.3 77.1 77.4
Avg. 50.1 52.5 51.8 53.1 49.3 54.7 59.1 61.3

Model Mixup Cutout AutoAug PGD ERM GUD M-ADA Ours
AllConv 75.4 67.1 70.8 71.9 69.2 73.6 75.9 79.6
WRN 77.7 73.2 76.1 73.8 73.1 75.3 80.2 83.4

Datasets. We validate our method on the following two benchmark datasets for image classification.
(1) Digits is used for digit classification and consists of five sub-datasets: MNIST (LeCun et al., 1998),
MNIST-M (Ganin & Lempitsky, 2015), SVHN (Netzer et al., 2011), SYN (Ganin & Lempitsky,
2015), and USPS (Denker et al., 1989). Each sub-dataset can be viewed as a different domain.
Each image in these datasets contains one single digit with different styles and backgrounds. (2)
CIFAR-10-C (Hendrycks & Dietterich, 2019) is a robustness benchmark consisting of 19 corruptions
types with five levels of severity applied to the test set of CIFAR-10 (Krizhevsky et al., 2009).

Setup. Digits: following the experimental setup in Volpi et al. (2018), we use 10,000 samples in the
training set of MNIST for training, and evaluate models on the other four sub-datasets. We use a
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Figure 2: Uncertainty estimation on Digits (left) and CIFAR-
10-C (right). Our prediction of domain uncertainty is consis-
tent with Bayesian uncertainty, while our method is an order
of magnitude faster since we forward data only once.

Method |T | M → S Avg.
DIRT-T

All
54.5 -

SE 14.0 70.4
SBADA 61.1 78.3
FADA 7 47.0 75.2
CCSA 10 37.6 76.0

Ours 7 58.1 80.1
10 59.8 81.5

Table 2: Few-shot domain
adaptation accuracy (%) on
MNIST(M), USPS(U), and
SVHN(S). |T | denotes the num-
ber of target samples (per class)
used during model training.

ConvNet (LeCun et al., 1989) with architecture conv-pool-conv-pool-fc-fc-softmax as the backbone.
All images are resized to 32×32, and the channels of MNIST and USPS are duplicated to make them
as RGB images. CIFAR-10-C: we train models on CIFAR-10 and evaluate them on CIFAR-10-C.
Following the setting of Hendrycks et al. (2020), we evaluate the model on 15 corruptions. We
train models on AllConvNet (AllConv) (Salimans & Kingma, 2016) and Wide Residual Network
(WRN) (Zagoruyko & Komodakis, 2016) with 40 layers and the width of 2.

Results. 1) Classification accuracy. Tab. 1 shows the classification results of Digits and CIFAR-10-
C. On the experiment of Digits, GUD (Volpi et al., 2018), M-ADA (Qiao et al., 2020), and our method
outperform all baselines of the second block. And our method outperforms M-ADA (Qiao et al.,
2020) on SYN and the average accuracy by 6.7% and 2.2%, respectively. On the experiment of CIFAR-
10-C, our method consistently outperforms all baselines on two different backbones, suggesting its
strong generalization on various image corruptions. 2) Uncertainty estimation. We compare the
proposed domain uncertainty score (Sec.3.3) with a more time-consuming one based on Bayesian
models (Blundell et al., 2015). The former computes the uncertainty through one-pass forwarding,
while the latter computes the variance of the output through repeated sampling of 30 times. Fig. 2
show the results of uncertainty estimation on Digits and CIFAR-10-C. As seen, our estimation shows
consistent results with Bayesian uncertainty estimation on both Digits and CIFAR-10-C, suggesting
its high efficiency. 3) Few-shot domain adaptation. Although our method is designed for single
domain generalization, we also show that our method can be easily applied for few-shot domain
adaptation (Motiian et al., 2017a) due to the meta-learning training scheme. Following the setup
in Qiao et al. (2020), the model is first pre-trained on the source domain S and then fine-tuned on
the target domain T . We conduct three few-shot domain adaption tasks: USPS(U)→MNIST(M),
MNIST(M)→SVHN(S), and SVHN(S)→MNIST(M). Results of the three tasks are shown in Tab. 2.
Our method achieves the best performance on the average of three tasks. The result on the hardest
task (M→S) is even competitive to that of SBADA (Russo et al., 2018) which takes advantage of all
images of the target domain for training. Full results are provided in Tab. 8 (Appendix C).

4.2 TEXT CLASSIFICATION

Datasets. Amazon Reviews (Chen et al., 2012) contains reviews of products belonging to four
categories - books(b), DVD(d), electronics(e) and kitchen appliances(k). The difference in textual
description of the four product categories manifests as domain shift. Following Ganin & Lempitsky
(2015), we use unigrams and bigrams as features resulting in 5000 dimensional vector representations.

Setup. We train the models on one source domain (books or dvd), and evaluate them on the other
three domains. Similar to Ganin & Lempitsky (2015), we use a neural network with two hidden
layers (both with 50 neurons) as the backbone.

Results. Tab. 9 shows the results of text classification on Amazon Reviews (Chen et al., 2012) . It
appears that our method outperform previous ones on all the three unseen domains when the source
domain is “books”. We note that there is a little drop in performance on “electronics” when the source
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domain is “dvd”. One possible reason is that “electronics” and “dvd” may share a similar distribution.
And our method creates large distribution shift, degrading the performance on “electronics”.

4.3 SPEECH RECOGNITION

Datasets. Google Commands (Warden, 2018) contains 65000 utterances (one second long) from
thousands of people. The goal is to classify them to 30 command words. There are 56196, 7477, and
6835 examples for training, validation, and test. To simulate domain shift in real-world scenario, we
apply five common corruptions in both time and frequency domains. This creates five test sets that
are “harder” than training sets, namely amplitude change (Amp.), pitch change (Pit.), background
noise (Noise), stretch (Stretch), and time shift (Shift).

Setup. We train the models on the clean train set, and evaluate them on the corrupted test sets. We
encode each audio into a mel-spectrogram with the size of 1x32x32 and feed them to LeNet (Lecun
et al., 1998) as one-channel input.

Results. Tab. 4 shows the results of speech recognition on Google Commands (Warden, 2018). Our
method outperforms the other three methods on all the five corrupted test sets, indicating its strong
generalization ability in both time and frequency domain.

Table 3: Text classification accuracy (%) on Ama-
zon Reviews. Models are trained on one text do-
main and evaluated on unseen text domains. Our
method outperforms others in all settings except
“dvd→ electronics”.

books dvd

Method d k e b k e
ERM 78.7 74.6 63.6 78.5 82.1 75.2
GUD 79.1 75.6 64.7 78.1 82.0 74.6
M-ADA 79.4 76.1 65.3 78.8 82.6 74.3
Ours 80.2 76.8 67.1 80.1 83.5 75.0

Table 4: Speech recognition accuracy (%) on
Google Commands. Models are trained on clean
set and evaluated on five corrupted sets. Results
validate our strong generalization on corruptions
in both time and frequency domains.

Time Frequency

Method Amp. Pit. Noise Stretch Shift
ERM 63.8 71.6 73.9 72.9 70.5
GUD 64.1 72.1 74.8 73.1 70.9
M-ADA 64.5 71.9 75.4 73.8 71.4
Ours 65.3 73.5 75.8 75.0 72.5

4.4 ABLATION STUDY

In this section, we perform ablation study to investigate key components of our method. For
Digits (Volpi et al., 2018), we report the average performance of all unseen domains. For CIFAR-10-
C (Hendrycks & Dietterich, 2019), we report the average performance of all types of corruptions at
the highest level of severity.

Uncertainty assessment. We visualize feature perturbation |e| = |h+ − h| and the embedding of
domains at different training iterations T on MNIST (LeCun et al., 1998). We use t-SNE (Maaten
& Hinton, 2008) to visualize the source and augmented domains without and with uncertainty
assessment in the embedding space. Results are shown in Fig. 3. In the model without uncertainty
(left), the feature perturbation e is sampled from N (0, I) without learnable parameters. In the model
with uncertainty (right), we observe that most perturbations are located in the background area
which increases the variation of S+ while keeping the category unchanged. As a result, models with
uncertainty can create large domain transportation in a curriculum learning scheme, yielding safe
augmentation and improved accuracy on unseen domains. We visualize the density of y+ in Fig. 4.
As seen, models with uncertainty can significantly augment the label space.

Table 5: Ablation study of feature perturbation.

Digits CIFAR-10-C
Full Model 61.3±0.73 70.2±0.62
Random Gaussian 51.0±0.36 64.0±0.18
Determ. perturb. 59.7±0.70 67.0±0.57
Random µ 60.5±0.75 69.1±0.61
Random σ 60.7±0.65 69.5±0.60

Variational feature perturbation. We investigate
different designs of feature perturbation: 1) Ran-
dom Gaussian: the feature perturbation e is sam-
pled from N (0, I) without learnable parameters.
2) Deterministic perturbation: we directly add the
learned µ to h without sampling, yielding h+ ←
h+ Softplus(µ). 3) Random µ: the feature pertur-
bation e is sampled from N (0,σ), where µ = 0.
4) Random σ: e is sampled from N (µ, I), where
σ = I. Results on these different choices are shown
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Figure 3: Visualization of feature perturbation |e| = |h+ − h|
(Top) and embedding of domains (Bottom) at different training
iterations T on MNIST. Left: Models w/o uncertainty; Right:
Models w/ uncertainty. Most perturbations are located in the back-
ground area and models w/ uncertainty can create large domain
transportation in a curriculum learning scheme.

0.90 0.92 0.94 0.96 0.98 1.00
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
ns

ity

with uncertainty
without uncertainty
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the capacity of label space.

in Tab. 5. As seen, Random Gaussian yields the lowest accuracy on both datasets, indicating the
necessity of learnable perturbations. Deterministic perturbation is inferior to Random µ and Random
σ, suggesting that sampling-based perturbation can effectively increase the domain capacity. Finally,
either Random µ or Random σ is slightly worse than the full model. We conclude that both learnable
µ and σ contribute to the final performance.

Table 6: Ablation study of label mixup.

Digits CIFAR-10-C
Full Model 61.3±0.73 70.2±0.62
w/o mixup 60.6±0.76 67.4±0.64
Random mixup 60.9±1.10 69.4±0.58

Learnable label mixup. We implement two vari-
ants of label mixup: 1) Without mixup: the model
is trained without label augmentation. 2) Random
mixup: the mixup coefficient λ is sampled from a
fixed distribution Beta(1, 1). Results on the two
variants are reported in Tab. 6. We notice that Ran-
dom mixup achieves better performance than with-
out mixup. The results support our claim that label
augmentation can further improve the model perfor-
mance. The learnable mixup (full model) achieves the best results, suggesting that the proposed
learning label mixup can create informative domain interpolations for robust learning.

Table 7: Ablation study of training strategy.

Digits CIFAR-10-C
Full Model 61.3±0.73 70.2±0.62
w/o adv. training 51.8±0.71 60.0±0.55
w/o minimizing φp 60.6±0.91 69.6±0.75

Training strategy. At last, we compare different
training strategies. 1) Without adversarial train-
ing: models are learned without adversarial training
(Eq. 1). 2) Without minimizing φp: φp is not opti-
mized in Eq. 7. Results are reported in Tab. 7. The
adversarial training contributes most to the improve-
ments: 9.5% on Digits and 10.2% on CIFAR-10-C.
We notice that the accuracy is slightly dropped with-
out minimization of φp, possibly due to the excessive
accumulation of perturbations.

5 CONCLUSION

In this work, we introduced uncertain out-of-domain generalization to tackle the problem of single
source generalization. Our method explicitly model the uncertainty of domain augmentations in
both input and label spaces. In input space, the proposed uncertainty-guided feature perturbation
resolves the limitation of raw data augmentation, yielding a domain-knowledge-free solution for
various modalities. In label space, the proposed uncertainty-guided label mixup further increases
the domain capacity. Finally, the proposed Bayesian meta-learning framework can maximize the
posterior distribution of domain augmentations, such that the learned model can generalize well on
unseen domains. The experimental results prove that our method achieves superior performance on a
wide scope of tasks, including image classification, text classification, and speech recognition.
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APPENDIX

A SOURCE CODE

We provide the source code in the folder of “code”. To reproduce our results on Digits dataset (Volpi
et al., 2018), please run:

sh main.sh

Details of other files and folders are as follow:

• data: Training set MNIST (LeCun et al., 1998) and test sets of SVHN (Netzer et al., 2011),
MNIST-M (Ganin & Lempitsky, 2015), SYN (Ganin & Lempitsky, 2015), and USPS (Denker
et al., 1989).

• models: definition of the backbone and auxiliary models and pre-trained models.

• utils: loss functions and other supportive functions.

• train.py: the source code to train our model.

• test.py: the source code to deploy the trained model.

The code is built on Pytorch 1.1.0 with CUDA 10.0. MetaNN 0.1.5 is used to implement meta-
learning and Scipy 1.2.1 is used to process images. We use one GeForce RTX 2080 Ti GPU with
12G memory on Ubuntu 18.04.
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Figure 5: Architectures of main and auxiliary models. From left to right: (a) Digits (Volpi et al.,
2018); (b) CIFAR-10-C (Hendrycks & Dietterich, 2019); (c) Google Commands (Warden, 2018), and
(d) Amazon Reviews (Chen et al., 2012).

B ARCHITECTURE DESIGN AND SETUP

We provide more experimental details on the four datasets: Digits (Volpi et al., 2018), CIFAR-10-
C (Hendrycks & Dietterich, 2019), Amazon Reviews (Chen et al., 2012), and Google Commands (War-
den, 2018). In learnable label mixup (Sec. 3.2), we use Gaussian parameters of feature perturbations
from the first layer. We choose specific backbone models, and design different auxiliary models as
well as training strategies according to characteristics of each dataset.

In Digits (Volpi et al., 2018), the backbone model is conv-pool-conv-pool-fc-fc-softmax. There are
two 5 × 5 convolutional layers with 64 and 128 channels respectively. Each convolutional layer
is followed by a max pooling layer with the size of 2 × 2. The size of the two Fully-Connected
(FC) layers is 1024 and the size of the softmax layer is 10. We inject perturbations to latent features
of the two convolutional layers. The detailed architecture is presented in Fig. 5 (a). We employ
Adam (Kingma & Ba, 2014) for optimization with batch size of 32. We train for total 10K iterations
with learning rate of 10−4.

In CIFAR-10-C (Hendrycks & Dietterich, 2019), we evaluate our method on two backbones: All-
ConvNet (AllConv) (Salimans & Kingma, 2016) and Wide Residual Network (WRN) (Zagoruyko &
Komodakis, 2016) with 40 layers and the width of 2. In AllConv (Salimans & Kingma, 2016), the
model starts with three 3 × 3 convolutional layers with 96 channels. Each layer is followed by batch
normalization (BN) (Ioffe & Szegedy, 2015) and GELU. They convert the original image with three
channels to feature maps of 96 channels. Then, the features go though three 3 × 3 convolutional
layers with 192 channels. After that, the features are fed into two 1 × 1 convolutional layers with
192 channels and an average pooling layer with the size of 8 × 8. Finally, a softmax layer with the
size of 10 is used for classification. In WRN (Zagoruyko & Komodakis, 2016). The first layer is a
3×3 convolutional layer. It converts the original image with three channels to feature maps of 16
channels. Then the features go through three blocks of 3×3 convolutional layers. Each block consists
of six basic blocks and each basic block is composed of two convolutional layers with the same
number of channels. And their channels are {32, 64, 128} respectively. Each layer is followed by
batch normalization (BN) (Ioffe & Szegedy, 2015). An average pooling layer with the size of 8 ×
8 is appended to the output of the third block. Finally, a softmax layer with the size of 10 is used
for prediction. In both AllConv (Salimans & Kingma, 2016) and WRN (Zagoruyko & Komodakis,
2016), we only inject perturbations to the latent features of the first convolutional layer. We also tried
to inject perturbations in the next few layers or blocks, however, we found the performance degraded
severely mainly due to its large effect on the semantic feature, i.e., outputs before the activation
layer. The detailed architecture with backbone of WRN is shown in Fig. 5 (b). Following the training
procedure in Zagoruyko & Komodakis (2016), we use SGD with Nesterov momentum and set the
batch size to 128. The initial learning rate is 0.1 with a linear decay and the number of epochs is 200.

In Amazon Reviews (Chen et al., 2012), reviews are assigned binary labels - 0 if the rating of the
product is up to 3 stars, and 1 if the rating is 4 or 5 stars. The extracted features are fed into
two FC layers with the size of 50. A softmax layer with the size of two is used to classify the
sentiment of reviews into “positive” or “negative”. All models are trained using Adam (Kingma &
Ba, 2014) optimizer with learning rate of 10−4 and batch size of 32 for 1000 iterations. In Google
Commands (Warden, 2018), the mel-spectrogram features are fed into LeNet (Lecun et al., 1998) as
one-channel input. The original image is fed into two 5 × 5 convolutional layers with the channels
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Figure 6: Classification accuracy on fifteen corruptions of
CIFAR-10-C using the backbone of WRN (40-2). Following
Fig. 7, the accuracy of each corruption with the highest
level of severity is presented. Our method achieves 20%
improvements on corruptions of noise.
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Figure 7: Classification accuracy
(%) on five levels of corruption
severity. Our method has the small-
est degradation under the highest
level of corruption severity.

of 6 and 16, respectively. Next, the features go through two FC layers with the size of 120 and
84, respectively. Finally, a softmax layer with the size of 30 is leveraged to predict the spoken
word. Models are trained using Adam (Kingma & Ba, 2014) with learning rate 10−4 and batch
size of 128 for 30 epoches. For the corrupted test sets, the range of “amplitude change” is (0.7,1.1).
The maximum scales of “pitch change”, “background noise”, and “stretch” are 0.2, 0.45, and 0.2,
respectively. The maximum shift of “time shift” is 8. In the experiments of Amazon Reviews (Chen
et al., 2012) and Google Commands (Warden, 2018), feature perturbations are appended to the
first layer. The detailed architectures used for Google Commands (Warden, 2018) and Amazon
Reviews (Chen et al., 2012) are presented in Fig. 5 (c) and (d), respectively.

C ADDITIONAL RESULTS

C.1 IMAGE CLASSIFICATION

1) Classification accuracy on CIFAR-10-C (Hendrycks & Dietterich, 2019). We train all models
on clean data, i.e., CIFAR-10, and test them on corruption data, i.e., CIFAR-10-C. In this case, there
are totally 15 unseen testing domains. We compare our method with the other three methods for
domain generalization: ERM (Koltchinskii, 2011), GUD (Volpi et al., 2018), and M-ADA (Qiao
et al., 2020). The classification results on corruptions across five levels of severity are shown in Fig. 7.
As seen, our method outperforms other methods across all levels of corruption severity. Specifically,
the gap between M-ADA (Qiao et al., 2020) (previous SOTA) and our method gets larger with the
level of severity increasing. Fig. 6 shows more detailed comparisons of all corruptions at the highest
level of severity. As seen, our method achieves substantial gains across a wide variety of corruptions,
with a small drop of performance in only two corruption types: brightness and contrast. Especially,
accuracies are significantly improved by 20% on corruptions of noise. The results demonstrate its
strong generalization capability on severe corruptions.

Table 8: Few-shot domain adaptation accuracy (%)
on MNIST(M), USPS(U), and SVHN(S). |T | de-
notes the number of target samples (per class) used
during model training.

Method |T | U →M M → S S →M Avg.
DIRT-T

All
- 54.50 99.40 -

SE 98.07 13.96 99.18 70.40
SBADA 97.60 61.08 76.14 78.27
FADA 7 91.50 47.00 87.20 75.23
CCSA 10 95.71 37.63 94.57 75.97

Ours 7 92.97 58.12 89.30 80.13
10 93.16 59.77 91.67 81.53

2) Few-shot domain adaptation. We con-
duct three few-shot domain adaption tasks:
USPS(U)→MNIST(M), MNIST(M)→SVHN(S),
and SVHN(S)→MNIST(M). Results of the three
tasks are shown in Tab. 8. As seen, the result
on the hardest task (M→S) is even competitive
to that of SBADA (Russo et al., 2018) which
requires all images of the target domain dur-
ing training. Specifically, our method achieves
the best performance on the average of the
three tasks. Note that, when the target domain
changes, our method only needs to fine-tune the
pre-trained model with a few samples within a
small number of iterations, while other methods
have to train entirely new models.
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Table 9: Text classification accuracy (%) on Amazon Reviews (Chen et al., 2012). Models are trained
on one text domain and evaluated on unseen text domains. Our method outperforms others in all
settings except “dvd→ electronics” and “electronics→ dvd”. The possible reason is that “dvd”
and “electronics” may share a similar distribution while our method creates large distribution shift.

books dvd kitchen electronics

Method d k e b k e b d e b d k
ERM 78.7 74.6 63.6 78.5 82.1 75.2 75.4 76.0 81.2 69.4 74.8 83.9
GUD 79.1 75.6 64.7 78.1 82.0 74.6 74.9 76.7 81.6 68.9 74.2 84.4
M-ADA 79.4 76.1 65.3 78.8 82.6 74.3 75.2 77.3 82.3 69.0 73.7 84.8
Ours 80.2 76.8 67.1 80.1 83.5 75.0 76.1 78.2 83.5 70.2 74.5 85.7

C.2 TEXT CLASSIFICATION

We train the models on one source domain, and evaluate them on the other three domains. Tab. 9
shows the results of text classification on Amazon Reviews (Chen et al., 2012) . We found that our
method outperform previous ones on all the three unseen domains when the source domain is “books”
or “kitchen”. Specially, our method outperforms ERM (Koltchinskii, 2011) by 3.5% on “books→
electronics”. We observe that there is a little drop in accuracy on “dvd→ electronics” and “electronics
→ dvd”. One possible reason is that “electronics” and “dvd” may share a similar distribution. And
our method creates large distribution shift, degrading the performance on them.

C.3 ABLATION STUDY

We study the effect of two important hyper-parameters of our model: the number of Monte-Carlo
(MC) samples (K) and the coefficient of constraint (β). We report the average accuracy on the four
unseen domains (MNIST-M Ganin & Lempitsky (2015), SVHN Netzer et al. (2011), SYN Ganin
& Lempitsky (2015), and USPS Denker et al. (1989)). We present the classification results under
different hyper-parameters in Fig. 8.
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Figure 8: Ablation study on hyper-parameters K and β. The average accuracy on the four unseen
domains (MNIST-M (Ganin & Lempitsky, 2015), SVHN (Netzer et al., 2011), SYN (Ganin & Lempit-
sky, 2015), and USPS (Denker et al., 1989)) is presented. We set K = 15 and β = 1 according to the
best classification accuracy.

1) Number of MC samples (K). The classification accuracy on Digits (Volpi et al., 2018) with
different K is shown in Fig. 8 (a). We notice that the average accuracy gradually increases from
K = 1 to K = 15 and remains stable when K = 20.

2) Coefficient of constraint (β). The constraint is used to make adversarial domain augmentation
satisfy the worst-case constraint. Results on Digits (Volpi et al., 2018) with different β is presented in
Fig. 8 (b). As seen, the accuracy falls dramatically when β = 10, because large β may severely limit
the domain transportation and create domain augmentations similar to the source.
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