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Abstract

Low-Rank Adaptation (LoRA) has emerged as a widely adopted parameter-efficient
fine-tuning (PEFT) approach for language models. By restricting weight updates to
a low-rank subspace, LoRA achieves cost-effective finetuning of large, generalist
models to more specialized target domains. While LoRA achieves impressive
results for a variety of individual downstream tasks, it struggles to capture the
diverse expertise needed when presented with a more heterogeneous finetuning
corpus. To address this, we propose Expert Weighted Low-Rank Adaptation
(EWoRA), a novel LoRA variant that partitions a rank-r adapter into n independent
adapters of rank r/n. A lightweight “routing” matrix Wr ∈ Rr×n aggregates
the outputs of these adapters by learning specialized weights for each context.
Experiments show EWoRA improves performance over LoRA when finetuning on
heterogeneous data while generally matching or exceeding LoRA performance on
individual finetuning tasks under the same low-rank parameter budget.

1 Introduction

Large Language Models (LLMs) deployed in real-world applications are typically pretrained on broad
corpora and then fine-tuned for specialized domains. This process can be prohibitively expensive,
especially as model sizes scale to billions of parameters, PEFT methods like LoRA Hu et al. [2021]
have emerged as a more accessible solution by introducing a small number of trainable parameters
while keeping the base model frozen.

Besides supervised finetuning, LoRA has been studied across various adaptation settings such
as continual pretraining [Jiang et al., 2024, Pezeshkpour and Hruschka, 2025, Mao et al., 2024].
However, most existing formulations assume homogeneous task data or focus on a single target
domain. In contrast, data encountered in practical applications may often exhibit heterogeneity, and
require multiple domains of expertise. For instance, a deployed model may be required to tackle tasks
involving natural language understanding, mathematical reasoning, code generation, and general
knowledge, all in a single workflow. To emulate such scenarios, we evaluate LoRA on a diverse mix
of finetuning datasets of varying complexity. Our experiments reveal a substantial performance drop
of LoRA when finetuning on the same set of diverse tasks collectively compared to training on each
task separately.

To address these challenges, we propose EWoRA: Expert-Weighted Low Rank Adaptation, a novel
LoRA variant tailored for heterogeneous data. As illustrated in Figure 1, EWoRA decomposes a
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Figure 1: An overview of EWoRA with 2 experts
(n = 2). Representations from two rank-r/2
experts are concatenated and routed with learned
weights; E1 gets higher weight (darker).

rank-r LoRA adapter into n independent rank-r/n
experts. A minimal routing matrix Wr ∈ Rr×n,
processes the concatenated intermediate represen-
tations from the lower projection matrix (A), gen-
erating a set of weights to dynamically attend to
the outputs of the individual experts. Operating
within the low-rank subspace, the router incurs
negligible overhead in terms of parameters. In
EWoRA, individual experts specialize in different
tasks or domains, while the router learns to weight
the experts appropriately based on context. We
also posit that this leads to a more efficient uti-
lization of the parameters of (A) through indirect
supervision of intermediate low-rank representa-
tions. Thus, our approach may also help alleviate
the asymmetry impact observed when finetuning
the LoRA projection matrices [Zhu et al.].

Empirical results show that EWoRA matches stan-
dard LoRA on single-task benchmarks and sig-
nificantly outperforms it when jointly finetuning on multiple tasks. We further compare against
AdaLoRA [Zhang et al., 2023b], an adaptive-rank extension of LoRA, observing consistent gains in
both single-task and mixed-task settings. Although EWoRA differs in both motivation and structure
from model merging approaches, we also include model merging baselines in our work. Finally,
we analyze the router’s behavior under mixed-task finetuning, demonstrating how expert weighting
evolves across layers and varies by target module.

2 Related Work

Low-rank Adaptation Methods. While LoRA has become the de facto standard for efficient
finetuning of LLMs, numerous variants have emerged that improve LoRA performance in certain
settings. DoRA [yang Liu et al., 2024], decomposes the pretrained weight into magnitude and
direction components, utilizing LoRA specifically for directional updates to enhance learning capacity
and training stability. VeRA [Kopiczko et al., 2024] improves efficiency further by sharing low-
rank projection matrices across layers and only learning two additional scaling vectors per layer.
Delta-LoRA [Zi et al., 2023] proposes a method to update the pretrained weight matrix (W) without
explicitly computing its gradients. Several approaches have proposed efficiency or performance
improvements by leveraging the asymmetry in the low-rank matrices of the adapters through freezing
of the down-matrix (A) or separate learning rates for the two projection matrices [Zhu et al., Zhang
et al., 2023a, Hayou et al., 2024]. Other methods have sought to improve performance through
adaptive rank utilization across layers [Zhang et al., 2023b], dynamic rank selection at inference
[Valipour et al., 2023] or high-rank adaptation through a single, square trainable matrix [Jiang et al.,
2024].

Model-merging Methods. TIES [Yadav et al., 2023] and DARE [Yu et al.] are popular approaches
to combine abilities from multiple homologous models while reducing interference and eliminating
redundant parameters. Such methods are static in nature - using a linear or SVD combination of task
vectors. More recently, MoErging methods [Yadav et al., 2024] have been proposed for dynamic
routing among specialized models or adaptive combination on a per-task or per-query basis. Among
these, MoLE [Wu et al., 2024] and X-LoRA [Buehler and Buehler, 2024] are most reminiscent of
EWoRA and learn a dense or sparse routing among experts. However, this approach typically requires
a priori knowledge of the different domains in the finetuning corpus, as well as careful segregation
of the data. EWoRA, on the other hand, does not require explicit domain partitioning or multiple
separate finetuning runs. Also, as noted previously, our router takes as input the low-rank intermediate
representation and utilizes only a fraction of the parameters of other routing methods that typically
act on full-rank input or output representations. We further elaborate on differences between EWoRA
and related MoErging methods in Appendix A.
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3 Method

EWoRA splits the standard down (A) and up (B) projection matrices of LoRA into multiple lower-
ranked “experts”, and introduces a trainable router to weight each expert. We detail our method
below:

Base Module. Let x ∈ Rd be the input to a transformer module with a frozen pretrained weight
matrix W ∈ Rd×d, producing the base representation:

hb = Wx ∈ Rd.

Expert Decomposition. While LoRA employs rank-r matrices A (down-projection) and B (up-
projection), EWoRA partitions them into n experts, each of rank r/n. For expert i ∈ {1, . . . , n} -
Ai ∈ Rd×( r

n ), Bi ∈ R( r
n )×d. We initialize Ai with the kaiming_uniform distribution [He et al.,

2015] while Bi is zero-initialized. Each expert produces intermediate representations:

zi = Aix ∈ Rr/n.

We then concatenate all zi to form:

z = [z1; . . . ; zn] ∈ Rr.

Routing. A trainable router Wr ∈ Rn×r , initialized from a small uniform distribution in the
interval [−10−2, 10−2], attends to each expert:

α = Wrz ∈ Rn.

Expert Aggregation. Bi from each expert projects zi back to d-dimensions. These representations
are combined through a weighted sum:

ei = Bizi ∈ Rd.

e =

n∑
i=1

αiei ∈ Rd.

Final Output. We sum the base and experts outputs to get the final representation (h):

h = hb + e = Wx+

n∑
i=1

αiBi(Aix).

Parameter Efficiency. EWoRA has a trainable parameter count comparable to LoRA (2dr) with
only a small additional overhead from the router (nr) which is negligible for large d. We illustrate,
let us consider a single linear layer with d = 4096, LoRA rank r = 32, and number of experts n = 4.

1. Standard LoRA (rank r = 32) adds

2× d× r = 2× 4096× 32 = 262,144

2. EWoRA (rank r = 32, with n = 4) adds the same 262,144 plus a router overhead of

n× r = 4× 32 = 128

Thus, EWoRA adds 262,144 + 128 = 262,272 parameters in total for this layer.

The difference of 128 parameters is negligible relative to d× d = 40962 = 16,777,216 parameters
in the frozen weight W or 262,144 parameters in the LoRA projection matrices.

Concretely, when finetuning on the Mistral 7B base model with adapters on all target modules
[Q_PROJ, K_PROJ, V_PROJ, O_PROJ, GATE_PROJ, UP_PROJ, DOWN_PROJ], EWoRA has a total
of 83915648 trainable parameters compared to LoRA 83886080 for n = 4 and r = 32. This is a
difference of 29568 additional parameters representing an increase of ≈ 0.03% trainable parameters
and ≈ 0.0004% overall parameters due to the EWoRA routing matrices.
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Code Math General Mixed

HumanEval GSM8K HellaSwag Winogrande HumanEval GSM8K HellaSwag Winogrande

Base 28.74/41.66 39.35/38.97 61.25/81.09 74.27 28.74/41.66 39.35/38.97 61.25/81.09 74.27
LoRA 31.35/46.22 73.84/73.09 66.58/84.23 71.82 21.09/35.02 37.83/22.44 62.69/82.31 74.35
LoRA+TIES - - - - 28.59/42.22 37.76/37.60 61.26/81.14 73.88
X-LoRA - - - - 21.38/26.71 47.31/47.28 62.26/81.86 67.32
AdaLoRA 29.07/43.04 71.04/70.20 62.63/82.34 76.24 28.96/44.60 48.37/47.84 61.09/80.74 75.22
EWoRA 35.41/49.36 69.90/69.52 64.64/83.94 79.24 34.61/49.45 55.42/55.27 62.92/82.60 77.58

Table 1: Accuracy of base (Mistral 7B) and finetuned models using different adaptation methods.
]

4 Experiments & Results

Setup. Following recent studies [Biderman et al., 2024, Zhang et al., 2024, Gu et al., 2025], we
evaluate EWoRA on three representative tasks: code generation, mathematical reasoning, and general
reasoning. For code generation, we train on Magicoder-Evol-Instruct-110K [Wei et al., 2023] and
evaluate on HumanEval [Chen et al., 2021]. For math, we train on MetaMathQA [Yu et al., 2024]
and evaluate on GSM8K [Cobbe et al., 2021]. For general reasoning, we use HellaSwag [Zellers
et al., 2019] and Winogrande [Sakaguchi et al., 2020], training and evaluating on their combined
trains and test splits respectively. To assess multi-domain adaptation, we create a mixed-task setup
by training on all three datasets together and evaluating across their respective test sets. Mixing is
performed using simple concatenation (with shuffling at train time). While we acknowledge that
careful data curation methods such as weighted sampling might improve performance further, we
hope to replicate data in real-world applications which can be noisy and require multiple, diverse
skillsets (their distribution or even presence may not be known apriori). Mistral 7B [Jiang et al., 2023]
is used as the base model in our experiments, with rank r = 32 for all methods and n = 4 experts in
EWoRA. For the model merging and MoErging baselines, we use TIES and X-LoRA respectively to
combine outputs from single-task LoRA adapters. We report multiple metrics: Pass@1/Pass@10 for
code, strict/flexible match for math, and standard/normalized accuracy for HellaSwag. Further details
are provided in (§B).

Results. Table 1 summarizes our findings. In single-task settings, EWoRA is the best performing
variant on code and Winogrande, whereas LoRA does better on math and HellaSwag. EWoRA also
surpasses AdaLoRA on all tasks except math. In the mixed-task setup, EWoRA consistently beats
all baselines across all test splits, demonstrating its effectiveness in heterogeneous finetuning.

5 Analysis

To understand how EWoRA routes between experts for different tasks, we analyze the weights
assigned to each expert by the routers (the α vectors in Section 3). In our setup, there are n = 4

experts, so the router produces a 4-dimensional vector α(ℓ,m)
(task_type) at layer ℓ and module m, for a given

input. Here, m spans all the target modules of Mistral 7B. We sample over inputs of each task type
and compute the expert weight average per task type:

α
(ℓ,m)
task_type =

1

Ntask_type

Ntask_type∑
i=1

α
(ℓ,m)
(task_type),i

We then measure how distinctly each adapter routes between task types. We compute the average
pairwise distance between the three averaged expert weight vectors α(ℓ,m)

code ,α
(ℓ,m)
math ,α

(ℓ,m)
general. Given

the L1 distance (d(·, ·)), we define:

Dist(ℓ,m) =
d(αcode,αmath) + d(αmath,αgen) + d(αgen,αcode)

3

Higher Dist(ℓ,m) indicates greater divergence of expert weights across domains. Figure 2 visualizes
these distances across layers (columns 1–32) and target modules (rows), revealing two key trends:

1. Layer-wise Specialization: Early layers exhibit lower L1 distances, suggesting that domain
specialization occurs primarily in later layers. This aligns with prior observations that lower
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Figure 2: Average Pairwise L1 Distance Dist(ℓ,m) between mean expert weight vectors

layers capture general representations, while deeper layers encode task-specific information
[Zhang et al., 2023b].

2. Module-Specific Specialization: Feed-forward projection modules, particularly
GATE_PROJ and UP_PROJ, show the highest L1 distances. This suggests that domain-
specific knowledge is concentrated in these components, whereas attention projections
(Q_PROJ, K_PROJ, V_PROJ, O_PROJ) exhibit more uniform expert weightings across tasks.

Both these findings align with prior work on adaptive rank allocation [Zhang et al., 2023b]. We
extend this analysis into tasks within general reasoning, comparing routing between HellaSwag and
Winogrande. LoRA fine-tuning degrades performance on Winogrande relative to the base model,
while EWoRA improves it. We hypothesis the degradation from LoRA is likely due to data imbalance.
In significant imbalanced mixed training setups, large datasets (e.g., HellaSwag) can dominate smaller
ones (e.g., Winogrande), leading to LoRA overfitting to the majority domain. This results in stronger
performance on the larger dataset but weaker generalization to the minority domain. In contrast,
EWoRA can dynamically allocate its low-rank adapters to underrepresented tasks. Appendix C
further analyzes the pairwise routing distances between HellaSwag and Winogrande, showing distinct
expert weighting for different input types.

Recent studies suggest LoRA-finetuned models may outperform full fine-tuning on source domains
not seen during finetuning [Biderman et al., 2024]. In (§D), we carry out similar experiments to
assess "forgetting" when finetuning with EWoRA relative to other baselines. EWoRA demonstrates a
slight advantage due to improved retention of unseen tasks, leading to a better learning-forgetting
tradeoff even in the single-task setting.

6 Conclusion & Future Work

We introduce EWoRA, an extension of LoRA for fine-tuning LLMs on heterogeneous data. By
partitioning low-rank adapters into experts and dynamically weighting them via a lightweight router,
EWoRA enables more effective adaptation to diverse target domains while maintaining parameter
efficiency. Our experiments show that EWoRA outperforms baselines in mixed-task setups, while
remaining competitive in single-task settings.

Analysis of expert routing patterns reveals that domain specialization primarily occurs in later layers
and feed-forward projection modules, suggesting opportunities for further optimization. Future work
could explore integrating adaptive rank allocation or expert pruning to further improve performance.
Adaptive allocation could be extended to individual experts, potentially assigning asymmetric ranks
to each expert within a target module. This strategy might benefit cases where one target domain is
significantly more complex than another in a mixed setup (e.g. code and general reasoning).
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7 Limitations

EWoRA enables improved finetuning of LLMs on heterogeneous data and is evaluated across three
domains (general reasoning, code generation, and arithmetic reasoning) using a modern LLM. This
mix helps us assess our methods across a spectrum of complexity levels - tasks that are difficult for
the base model and remain difficult for the fine-tuned model (coding), tasks that are difficult for the
base model but are relatively easily learnt during fine-tuning (math), and tasks that the base model is
already competent in (commonsense reasoning). However, due to computational constraints, we do
not explore additional model families (e.g., LLaMA [Dubey et al., 2024]), larger models (13B, 30B,
70B), or alternative training paradigms (e.g., continual pretraining). Our current setup is in line with
several recent studies that have demonstrated results on the same mix of tasks and datasets [Biderman
et al., 2024, Zhang et al., 2024, Gu et al., 2025] using a single, modern LLM. We acknowledge that
exploring models of varying sizes, as well as other training setups such as continual pre-training
would offer interesting insights. We leave this to future work and also invite the broader community
to investigate this further.

Unlike standard LoRA, which allows adapters to be merged back into the base model post-training
— eliminating inference overhead — EWoRA’s expert-weighting is input-dependent and must run
at inference time. This prevents direct merging and introduces a small increase in inference cost.
While running adapters in parallel is advantageous for multi-adapter deployments (avoiding multiple
large-base instances), merging remains more efficient when only a single adapter is needed.

Finally, LoRA is quite sensitive to hyperparameters such as learning rate [Biderman et al., 2024]. Our
experiments follow a fixed hyperparameter selection process: we conduct pilot runs on code and math
datasets using LoRA to tune learning rate, rank, and epochs, and then apply the best settings across
AdaLoRA and EWoRA. Consequently, we do not investigate EWoRA’s sensitivity to hyperparameters
in this work.
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A Comparison with MoErging Approaches

MoLE/X-LoRA: Both of these methods take pretrained adapters on distinct tasks and then finetune
a mechanism to route between them. However, this method assumes segregated data for the distinct
tasks on which the adapters were initially trained. Our method is more applicable to real-world
data which may be noisy and require multiple, diverse skillsets (their distribution or even presence
may not be known a priori). We utilize the intermediate representation as input to the router adding
minimal overhead in terms of the number of parameters (described in (§3)). This is not true for
MoLE/X-LORA as they take full-rank representations as input, resulting in a much larger overhead.
Moreover, MoLE/X-LoRA require a separate finetuning set to train the routing mechanism which,
in our case, will be a mix of the same individual training sets. EWoRA is able to implicitly learn
from a mix of datasets and we demonstrate our method on a simple concatenation of tasks of varying
difficulty as well as dataset size. EWoRA shows better generalization to tasks underrepresented in
the final mix of our training data (described in Section 5). Our method has potential for cross-task
learning as all the matrices or experts are exposed to the entire mix of training data as opposed to
methods like MoLE/X-LoRA where each expert is trained on one task split in isolation.

FLix: In the featurized low-rank mixtures approach [Lin et al., 2024], separate adapters are learnt
for each language-task pair in a mixture. While the adapters are learnt simultaneously, this method
also relies on segregation of the train data as inputs are routed based on fi(x) = 1 where fi is a sparse
vector and fi(x) = 1 indicates that input x has feature i. In this setting, for an input to a language-task
pair, the language as well as task is known a priori and there is some learning across tasks in the
same language as well as across languages involving the same tasks. However, EWoRA implicitly
learns this routing behavior without distinguishing between inputs. FLix assumes knowledge of
language and task for a new test input whereas EWoRA does not and can route amongst experts
dynamically based on a new input. Moreover, the soft weighting mechanism potentially allows for
better cross-task learning such as for code and math where skills might be complementary than a
hard routing similar to FLix.

MoLORA: This method [Zadouri et al., 2024] is perhaps the most comparable to EWoRA in terms
of architectural similarity as well as training methodology - simultaneous training of the router and
adapter matrices, soft routing, and no label supervision or segregation of data at train or inference
time. However, routing occurs with full-rank inputs which makes each individual routing operation
considerably more expensive whereas EWoRA uses intermediate low-rank representations for the
routing operation. This lightweight operation is what allows EWoRA to route amongst experts at
an individual matrix or adapter level as opposed to MoLoRA which routes at a token level (though
ablations at a sentence-level have also been carried out). This allows more flexible routing and the
later layers are able to learn task-level features with greater distinction and more aggressive routing
between experts. This is highlighted in the analysis in Sections 5 and (§C), and the related heatmaps
(Figures 2 & 3).

MoELoRA: While MoELoRA [Luo et al., 2024] performs a similar routing between experts, the
routing decision is deferred to the intermediate representations in EWoRA leading to significantly
lower parameter utilization relative to MoELoRA for the same rank R. We employ a soft-routing
mechanism in EWoRA vs hard-routing in MoELoRA. Instead of a sparse-gating mechanism in
MoELoRA, we use router weights to attend to each expert allowing a flexible composition of any
number of experts depending on the task. This allows for better cross-task generalization where
multiple experts can be combined for contexts where multiple skills might be required simultaneously.
The soft-weighting mechanism also helps overcome the load-imbalance problem inherent to MoE
models that is also mentioned in MoELoRA. Unlike MoELoRA, we do not introduce auxiliary losses
in order to introduce load-balancing or explicitly enforce expert specialization. However, as we see
in our analysis in Section 5 - our method implicitly achieves expert specialization and there is more
distinct routing in later layers and in the projection matrices. Finally, we also feel that the motivation
for sparse Mixture of Experts models, which is increasing model capacity without increasing the
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number of active parameters at inference time, does not translate well in this case as the number of
active parameters is dominated by the base model. On the other hand, our approach is able to flexibly
utilize all parameters through the soft-weighting mechanism.

B Additional Experimental Details

For all out evaluations, we use the lm-evaluation-harness [Gao et al., 2024] for math and
general tasks, and bigcode-evaluation-harness [Ben Allal et al., 2022] for code. For the X-
LoRA baseline, we choose dense-routing with a single 512-dimensional hidden layer. The following
hyperparameters are used in all our training experiments:

• Sequence length: 1024
• Rank (r): 32
• LoRA Scaling Parameter (α): 32
• Num Training Epochs): 4
• Num EWoRA Experts (n): 4
• Optimizer: AdamW
• Learning rate: 5e-5 for Code, 1e-4 for Math/General/Mixed
• LR Scheduler: Cosine Annealing
• Min_lr rate: 0.1
• Warmup ratio: 0.1
• Precision: bf16
• Warmup ratio: 0.1
• Weight Decay: 0

For all our evaluations using the lm-evaluation harness (gsm8k, hellaswag, winogrande) we use the
default parameters:

• Temperature: 0
• Metric: pass@1
• Few-shot: 5
• Precision: bf16

For code evaluation on the HumanEval benchmark using the bigcode-evaluation-harness, we use the
following parameters:

• Temperature: 0.2
• Metric: pass@1/pass@10
• Few-shot: 0
• Top_p: 0.95
• N_samples: 50
• Precision: bf16

C Routing in the General Model

In all our results, we report both the flexible and strict-match scores as reported by the lm-evaluation-
harness for math (gsm8k), and standard and normalized accuracy for both hellaswag and ARC.
Similarly, for code (HumanEval), we report the pass@1 and pass@10 results as reported by the
bigcode-evaluation-harness. Similar to the mixed model analysis in Section 5, we analyze the routing
behavior of EWoRA for different task types (Hellaswag, Winogrande) in the general reasoning model.
Since we have two different task types, we take the L1 difference d(α

(ℓ,m)
hellaswag −α

(ℓ,m)
winogrande). As seen

in Figure 3, the general model shows a similar routing behavior to the mixed model which helps
EWoRA better adapt to the under-represented set (Winogrande).
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Figure 3: Routing in the general reasoning model.

D Evaluating on the Source Domain

Similar to Biderman et al. [2024], we use the models finetuned on the code and math target domains
and evaluate on HellaSwag, Winogrande, and the ARC-Challenge [Clark et al., 2018] benchmarks.
The evaluation tasks are termed "source-domain" tasks as the base pretrained model already exhibits
good competency on them as evidenced by its performance metrics. Thus, they provide a good — to
evaluate potential degradation in model performance when finetuned to a specialized target domain
(such as code or math).

Results, as shown in Table 2, indicate that EWoRA is competitive with baselines - LoRA and
AdaLoRA - when evaluated on the forgetting tasks (performing better than both in 4 out of 6 cases).
This suggests that EWoRA retains at least as much source-domain knowledge as LoRA, leading
to significantly less forgetting than full-finetuning as shown by Biderman et al. [2024]. Given the
generally-better performance on the target-domain in our experiments, we can say that EWoRA also
leads to a better learning-forgetting tradeoff than conventional LoRA.

HellaSwag Winogrande ARC

Mistral 7B (Base) 61.25/81.09 74.27 50.0/54.10

Code-Finetuned

LoRA 61.22/80.90 75.06 50.26/54.01
AdaLoRA 61.21/80.96 74.03 50.0/53.75
EWoRA 61.84/81.12 73.09 48.04/52.05

Math-Finetuned

LoRA 58.37/74.06 60.69 41.38/44.62
AdaLoRA 61.19/78.14 68.43 41.64/45.82
EWoRA 61.64/79.72 72.22 45.31/49.83

Table 2: Accuracy on source-domain tasks.
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