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Abstract

Neural networks trained by gradient descent (GD) have exhibited a number of sur-
prising generalization behaviors. First, they can achieve a perfect fit to noisy train-
ing data and still generalize near-optimally, showing that overfitting can sometimes
be benign. Second, they can undergo a period of classical, harmful overfitting—
achieving a perfect fit to training data with near-random performance on test
data—before transitioning (“‘grokking”) to near-optimal generalization later in
training. In this work, we show that both of these phenomena provably occur in
two-layer ReLLU networks trained by GD on XOR cluster data where a constant
fraction of the training labels are flipped. In this setting, we show that after the
first step of GD, the network achieves 100% training accuracy, perfectly fitting
the noisy labels in the training data, but achieves near-random test accuracy. At
a later training step, the network achieves near-optimal test accuracy while still
fitting the random labels in the training data, exhibiting a “grokking” phenomenon.
This provides the first theoretical result of benign overfitting in neural network
classification when the data distribution is not linearly separable. Our proofs rely
on analyzing the feature learning process under GD, which reveals that the network
implements a non-generalizable linear classifier after one step and gradually learns
generalizable features in later steps.

1 Introduction

Classical wisdom in machine learning regards overfitting to noisy training data as harmful for
generalization, and regularization techniques such as early stopping have been developed to prevent
overfitting. However, modern neural networks can exhibit a number of counterintuitive phenomena
that contravene this classical wisdom. Two intriguing phenomena that have attracted significant
attention in recent years are benign overfitting (Bartlett et al., 2020) and grokking (Power et al., 2022):

* Benign overfitting: A model perfectly fits noisily labeled training data, but still achieves
near-optimal test error.

* Grokking: A model initially achieves perfect training accuracy but no generalization (i.e.
no better than a random predictor), and upon further training, transitions to almost perfect
generalization.

Recent theoretical work has established benign overfitting in a variety of settings, including linear
regression (Hastie et al., 2019; Bartlett et al., 2020), linear classification (Chatterji & Long, 2021a;
Wang & Thrampoulidis, 2021), kernel methods (Belkin et al., 2019; Liang & Rakhlin, 2020), and
neural network classification (Frei et al., 2022b; Kou et al., 2023). However, existing results of
benign overfitting in neural network classification settings are restricted to linearly separable data
distributions, leaving open the question of how benign overfitting can occur in fully non-linear
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Figure 1: Comparing train and test accuracies of a two-layer neural network (2.1) trained on noisily
labeled XOR data over 100 independent runs. Left/right panel shows benign overfitting and grokking
when the step size is larger/smaller compared to the weight initialization scale. For plotting the x-axis,
we add 1 to time so that the initialization ¢ = 0 can be shown in log scale. See Appendix A.7 for
details of the experimental setup.
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Figure 2: Left four panels: 2-dimensional projection of the noisily labeled XOR cluster data (Defini-
tion 2.1) and the decision boundary of the neural network (2.1) classifier restricted to the subspace

spanned by the cluster means at times ¢ = 0, 1 and 15. Right two panels: 2-dimensional projection of
the neuron weights plotted at times ¢ = 1 and 15.

settings. For grokking, several recent papers (Nanda et al., 2023; Gromov, 2023; Varma et al., 2023)
have proposed explanations, but to the best of our knowledge, no prior work has established a rigorous
proof of grokking in a neural network setting.

In this work, we characterize a setting in which both benign overfitting and grokking provably occur.
We consider a two-layer ReLU network trained by gradient descent on a binary classification task
defined by an XOR cluster data distribution (Figure 2). Specifically, datapoints from the positive class
are drawn from a mixture of two high-dimensional Gaussian distributions $ N (11, 1) + N (—p1, I),

and datapoints from the negative class are drawn from %N (o, I) + %N (—ps, I), where pq and po
are orthogonal vectors. We then allow a constant fraction of the labels to be flipped. In this setting,
we rigorously prove the following results: (i) One-step catastrophic overfitting: After one gradient
descent step, the network perfectly fits every single training datapoint (no matter if it has a clean or
flipped label), but has test accuracy close to 50%, performing no better than random guessing. (ii)
Grokking and benign overfitting: After training for more steps, the network undergoes a “grokking”
period from catastrophic to benign overfitting—it eventually reaches near 100% test accuracy, while
maintaining 100% training accuracy the whole time. This behavior can be seen in Figure 1, where
we also see that with a smaller step size the same grokking phenomenon occurs but with a delayed
time for both overfitting and generalization.

Our results provide the first theoretical characterization of benign overfitting in a truly non-linear
setting involving training a neural network on a non-linearly separable distribution. Interestingly,
prior work on benign overfitting in neural networks for linearly separable distributions (Frei et al.,
2022b; Cao et al., 2022; Xu & Gu, 2023; Kou et al., 2023) have not shown a time separation between
catastrophic overfitting and generalization, which suggests that the XOR cluster data setting is
fundamentally different.

2 Preliminaries

2.1 Notation

For a vector x, denote its Euclidean norm by ||x||. Denote the sign of a scalar = by sgn(z). Denote
by >, a;N(ps,¥;) a mixture of Gaussian distributions, namely, with probability ¢;, the sample

is generated from N (p;,%;). For a finite set A = {a;}}_,, denote the uniform distribution on A
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by UnifA. For an integer d > 1, denote the set {1,--- ,d} by [d]. For a finite set A, let |.A| be its
cardinality. We use {+u} to represent the set {+p, —u}. For two positive sequences {z,}, {yn},
we say x, = O(y,) (respectively z:,, = Q(y,)), if there exists a universal constant C' > 0 such that
pn < Cyy (respectively x,, > Cy,,) for all n. We say x,, = O(y,,) if x,, = O(y,) and y,, = O(x,).

2.2 Data Generation Setting

Let ju1, 12 € RP be two orthogonal vectors, i.e. uu{ 2 = 0." Let n € [0,1/2) be the label flipping
probability.

Definition 2.1 (XOR cluster data). Define P, as the distribution over the space RP x {£1} of
labelled data such that a datapoint (x,3) ~ Pejean is generated according to the following procedure:
First, sample the label ¥ ~ Unif{£1}. Second, generate x as follows: if ¥ = 1, then = ~
N (+p1, 1) + N (—pa, Ly); if § = —1, then @ ~ £ N (+p2, 1) + §N(—p2, I,). Define P to be
the distribution over R? x {£1} which is the n-noise-corrupted version of P, namely: to generate
a sample (x,y) ~ P, first generate (x,y) ~ Piean, and then let y = § with probability 1 — 7, and
y = —y with probability 7.

We consider n training datapoints {(x;, y;)}7_; generated i.i.d from the distribution P. We assume

the sample size n to be sufficiently large (i.e., larger than any universal constant appearing in this
paper). For simplicity, we assume ||pi1 ]| = || 2], omit the subscripts and denote them by || |

2.3 Neural Network, Loss Function, and Training Procedure

We consider a two-layer neural network of width m of the form

flz; W) = Zaj¢(<wj,m))7 2.1

j=1
where w1, ..., w,, € RP are the first-layer weights, a1, ..., a,, € R are the second-layer weights,
and the activation ¢(z) := max{0, z} is the ReLU function. We denote W = [wy, ..., w,,] € RP*™
and @ = [a1,...,a,,]7 € R™. We assume the second-layer weights are sampled according to

a; S Unif{i\/%} and are fixed during the training process.
We define the empirical risk using the logistic loss function £(z) = log(1 + exp(—2)):

EOV) = 3" Ui W)

=1

We use gradient descent (GD) W+ = W) — VL (W®) to update the first-layer weight
matrix W, where « is the step size. Specifically, at time ¢ = 0 we randomly initialize the weights

by W i N(0,w? 1), j € [m], where w?

J init init

t=0,1,2,..., the GD update can be calculated as

WD ) = o ILIVY)
J J dw;

is the initialization variance; at each time step

=4 200w mw Gelml, @2
where gl(t) =l (y; f(w; WD),

3 Main Results

Given a large enough universal constant C', we make the following assumptions:

(A1) The norm of the mean satisfies ||u||? > Cn®5t,/p.
(A2) The dimension of the feature space satisfies p > Cn?||u||?.

'Our results hold when p; and 2 are near-orthogonal. We assume exact orthogonality for ease of presenta-
tion.
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(A3) The noise rate satisfiesn < 1/C.
(A4) The step size satisfies o« < 1/(Cnp).

(A5) The initialization variance satisfies wini; nm?/2p < o pl|?.

(A6) The number of neurons satisfies m > Cn%92,

Assumption (A1) concerns the signal-to-noise ratio (SNR) in the distribution, where the order 0.51
can be extended to any constant strictly larger than % The assumption of high-dimensionality (A2) is
important for enabling benign overfitting, and implies that the training datapoints are near-orthogonal.
For a given n, these two assumptions are simultaneously satisfied if ||u|| = ©(p”) where 8 € (3, 1)
and p is a sufficiently large polynomial in n. Assumption (A3) ensures that the label noise rate is at
most a constant. While Assumption (A4) ensures the step size is small enough to allow for a variant
of smoothness between different steps, Assumption (AS5) ensures that the step size is large relative to
the initialization scale so that the behavior of the network after a single step of GD is significantly
different from that at random initialization. Assumption (A6) ensures the number of neurons is large
enough to allow for concentration arguments at random initialization.

With these assumptions in place, we can state our main theorem which characterizes the training
error and test error of the neural network at different times during the training trajectory.

Theorem 3.1. Suppose that Assumptions (Al)-(A6) hold. With probability at least 1 — n~=?(1) —
O(1/+/m) over the random data generation and initialization of the weights, we have:

* The classifier sgn( f(x; W®))) can correctly classify all training datapoints for 1 < t < \/n:
yi = sgu(f(x; W®)), Vi€ [n].
* The classifier sgn(f (x; W) has near-random test error at t = 1:

3(1=n7) <Py p,, (y # sen(f(z: W) < 5(1+n20).

* The classifier sgn(f(z; W) generalizes when Cn%%" <t < \/n:
P )~ P (y 7 s20(f (25 W D)) < exp(=Qn"*||u][* /p)) = exp(~Q(n*)).

Theorem 3.1 shows that at time ¢ = 1, the network achieves 100% training accuracy despite the
constant fraction of flipped labels in the training data. The second part of the theorem shows that this
overfitting is catastrophic as the test error is close to that of a random guess. On the other hand, by the
first and third parts of the theorem, as long as the time step ¢ satisfies Cn%9' <t < /n, the network
continues to overfit to the training data while simultaneously achieving test error exp(—Q(n2-01)),
which guarantees a near-zero test error for large n. In particular, the network exhibits benign
overfitting, and it achieves this by grokking. Notably, Theorem 3.1 is the first guarantee for benign
overfitting in neural network classification for a nonlinear data distribution, in contrast to prior works
which required linearly separable distributions (Frei et al., 2022b, 2023a; Cao et al., 2022; Xu & Gu,
2023; Kou et al., 2023; Kornowski et al., 2023). In Appendix A.1, we provide an overview of the key
ingredients to the proof of Theorem 3.1.

4 Discussion

We have shown that two-layer neural networks trained on XOR cluster data with random label noise
by GD reveal both benign overfitting and grokking. There are a few natural questions for future
research. First, our analysis requires an upper bound on the number of training steps due to technical
reasons; it is intriguing to understand the generalization behavior as time grows to infinity. Second,
our proof crucially relies upon the assumption that the training data are nearly-orthogonal which
requires that the ambient dimension is large relative to the number of samples. Prior work has shown
with experiments that overfitting is less benign in this setting when the dimension is small relative
to the number of samples (Frei et al., 2022a, Fig. 2); a precise characterization of the effect of
high-dimensional data on generalization remains open.
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A.1 Proof Sketch

A.1.1 Additional Notations

We first introduce some additional notation. For a matrix X, denote its Frobenius norm by || X ||
and its spectral norm by || X||. Denote the indicator function by I(-). Denote the cosine similarity

of two vectors u, v by cossim(u, v) := HSJH*\II)ZH For a random variable X, denote its expectation by

E[X]. Denote the c.d.f of standard normal distribution by ®(-) and the p.d.f. of standard normal
distribution by ®’(+). Denote ®(-) = 1 — ®(-). Denote the Bernoulli distribution which takes 1 with
probability p € (0, 1) by Bern(p). Denote the Binomial distribution with size n and probability p
by B(n, p). For a random variable X, denote its variance by Var(X); and its absolute third central
moment by p(X). Fori € [n], let T; € centers = {7, £ua} be the mean of the Gaussian from
which the sample (x;, y;) is drawn from. For each v € centers, define Z, = {i € [n] : Z; = v}, i.e.,
the set of indices ¢ such that z; belongs to the cluster centered at v. Thus, {Z,, }, ccenters 1S @ partition
of [n]. Moreover, define C = {i € [n] : y; = ¥;} and N = {i € [n] : y; # ¥;} to be the set of clean
and noisy samples, respectively. Further we define for each v € centers the following sets:

C,:=CNZ, and N, :=NNZI,.
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Let ¢, = |C,| and n, = |N,|. Define the training input data matrix X = [z1,...,2,] . Let
e € (0,1073/4) be a universal constant.
In Appendix A.1.2, we present several properties satisfied with high probability by the training data

and random initialization, which are crucial in our proof. In Appendix A.1.3, we outline the major
steps in the proof of Theorem 3.1.

A.1.2 Properties of the Training Data and Random Initialization

Lemma A.1 (Properties of training data). Suppose Assumptions (Al) and (A2) hold. Let the training
data {(x;,y;)}1_, be sampled i.i.d from P as in Definition 2.1. With probability at least 1 — O(n~¢)
the training data satisfy properties (E1)-(E4) defined below.

(El) Forall k € [n], max (x — Zg,v) < 10\/logn||u| and |||zx||* — p — [|u]|?| < 10/plogn,

vecenters
(E2) For each i, k € [n] such that i # k, we have |(x;, x) — (Z;, Tr)| < 104/plogn,

(E3) For v € centers, we have |c, + n, — n/4] < \/enlogn and |n, — nn| < ny/enlogn.

(E4) For v € centers, we have |c, +n, —c_, —n_,| >n'?7%and |n, —n_,| > nn'/?~=.

Denote by Gyuq the set of training data satisfying conditions (E1)-(E4). Thus, the result can be stated
succinctly as P(X € Gyu) > 1 — O(n™°).

The proof of Lemma A.1 can be found in Appendix A.2.1. Conditions (E1) and (E2) are essentially
the same as Frei et al. (2022b, Lemma 4.3) or Chatterji & Long (2021b, Lemma 10). Conditions
(E3) and (E4) concern the number of clean and noisy examples in each cluster, and can be proved by
concentration and anti-concentration arguments, respectively.

Lemma A.1 has an important corollary.

Corollary A.2 (Near-orthogonality of training data). Suppose Assumptions (Al), (A2), and Condi-
tions (E1), (E2) from Lemma A.1 all hold. Then
2
|cossim(x;, zx)| < Yor'e}
foralll <i#k<n.

This near-orthogonality comes from the high dimensionality of the feature space (i.e., Assump-
tion (A2)) and will be crucially used throughout the proofs on optimization and generalization of the
network. The proof of Corollary A.2 can be found in Appendix A.2.1.

Next, we divide the neuron indices into two sets according to the sign of the corresponding second-
layer weight:

Tros :={j€[m]:a; >0}; Tneg :={j € [m]:a; <0}
We will conveniently call them positive and negative neurons. Our next lemma shows that some

properties of the random initialization hold with a large probability. The proof details can be found in
Appendix A.3.1.

Lemma A.3 (Properties of the random weight initialization). Suppose Assumptions (A2) and (A6)
hold. The followings hold with probability at least 1 — O(n~%) over the random initialization:

(D) [|[W© || < 3wi,mp, and (D2)|Teos| > m/3 and |Tueg| > m/3.

— 2Winit

Denote the set of W O satisfying condition (D1) by Gyy. Denote the set of a = (aj)m satisfying
condition (D2) by G. Then P(a € G4, W©®) € Gy) > 1 — O(n=¢).

We say that the sample 7 activates neuron j at time ¢ if < :131> > 0. Now, for each neuron j € [m],
time ¢t > 0 and v € centers, define the set of indices ¢ 0f7 samples x; with clean (resp. noisy) labels
from the cluster centered at v that activates neuron j at time ¢:

(t) ={ieC :(w (t),zi> >0} (resp. ./\/,Etj) ={ieN,: (wj(t),zﬁ > 0}). (A1)
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Moreover, we define

d = e~ IV and DY = ) — d")

-

For k € [0,1/2) and v € centers, a neuron j is said to be (v, k)-aligned if

© 40

DY) > nl/?2x, )i d Y < minfey,coy} = 2(nygy +nsy) — Vo (A2)

and max{d>
The first condition ensures that at initialization, there are at least n'/2~* many more samples from
cluster v activating the j-th neuron than from cluster —v after accounting for cancellations from the
noisy labels. The second is a technical condition necessary for trajectory analysis. A neuron j is said
to be (£v, k)-aligned if it is either (v, )-aligned or (—v, k)-aligned.

Lemma A.4 (Properties of the interaction between training data and initial weights). Suppose
Assumptions (Al)-(A3) and (A6) hold. Given a € G4, X € Guua, the followings hold with probability
at least 1 — O(n™¢) over the random initialization W

(Bl) For all i € [n], the sample x; activates a large proportion of positive and negative neurons, i.e.,
1{j € Tros : (W', 23) > 0} = m/7 and |{j € Tneg : (w ", z;) > 0} > m/7 both hold.

(B2) For all v € centers and € [0, 3), both |{j € Jpos : j is (v, k)-aligned}| > mn~1°%, and
[{j € Jneg : j is (v, k)-aligned}| > mn~10¢.

(B3) For all v € centers, we have |{j € Jpos : j is (£, 20¢)-aligned}| > (1 — 10n720%)| Fpos|.
Moreover, the same statement holds if “Jpos” is replaced with “Jyeg” everywhere.

(B4) For all v € centers and € [0,3), let Jpos = {j € Jpos : jis (v, k)-aligned}. Then

ZjGJ;ﬁpos (ch —ny — d(i), ) = 161Tpos |- Moreover, the same statement holds if “Jpos” is replaced

with “Jyeg” everywhere.

Condition (B1) makes sure that the neurons spread uniformly at initialization so that each datapoint
activates at least a constant fraction of positive and negative neurons. Condition (B2) guarantees that
for each v € centers, there are a fraction of neurons aligning with v more than —v. Condition (B3)
shows that most neurons will somewhat align with either v or —v. Condition (B4) is a technical
concentration result. For proof details, see Appendix A.3.2.

Define the set Gyo0q as
Gaood := {(a, WO X) 1 a € Ga, X € Guaa, W € Gy and conditions (B1)-(B4) hold},

whose probability is lower bounded by P((a, W(®), X) € Goood) > 1 — O(n™°). This is a conse-
quence of Lemmas A.1, A.3 and A.4 (see Appendix A.3.3).

Definition A.5. If the training data X and the initialization a, w ) belong to Ggood, We define this
circumstance as a “good run.”

A.1.3 Proof Sketch for Theorem 3.1

In order for the network to learn a generalizable solution for the XOR cluster distribution, we would
like positive neurons’ (i.e., those with a; > 0) weights w; to align with £, and negative neurons’
weights to align with £/5; we prove that this is satisfied for t € [Cn°-%L, \/n]. However, for t = 1,
we show that the network only approximates a linear classifier, which can fit the training data in high
dimension but has trivial test error. Figure 3 plots the evolution of the distribution of positive neurons’
projections onto both p1 and w2, confirming that these neurons are much more aligned with -1 at a
later training time, while they cannot distinguish 41 and +ps att = 1.

Below we give a sketch of the proofs, and details are in Appendix A.5.

One-Step Catastrophic Overfitting: Under a good run, we have the following approximation for
each neuron after the first iteration:

aa, ‘
w§1) —2 Z]I (0) ) > 0)yxz;, j € [m].
i=1
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Figure 3: Histograms of inner products between positive neurons and j; or pe pooled over 100
independent runs under the same setting as in Figure 1. Top (resp. bottom) row: Inner products
between positive neurons and p; (resp. o). While the distributions of the projections of positive
neurons w'” onto the w1 and o directions are nearly the same at times ¢ = 0, 1, they become
signiﬁcantfy more aligned with 4, over time. See Appendix A.7 for details of the experimental

setup.

For details of this approximation, see Appendix A.4.

Let s;; 1= H((wﬁ-o)
outputatt =1 as

> agl(wl @) ~ 5= > a;6(ay (Y sy @)
j=1 j=1 i=1

a.s. QO - o 2
- @<ZE[SU‘]%$¢7$> = 871(;%3%,33)-

i=1

,x;) > 0). Then, for sufficiently large m, we can approximate the neural network

(A.3)

The convergence above follows from Lemma A.6 below and that the first-layer weights and second-
layer weights are independent at initialization. This implies that the neural network classifier
sgn(f(-; W) behaves similarly to the linear classifier sgn((>;_, y;z;,-)). It can be shown
that this linear classifier achieves 100% training accuracy whenever the training data are near
orthogonal (Frei et al., 2023b, Appendix D), but because each class has two clusters with opposing
means, linear classifiers only achieve 50% test error for the XOR cluster distribution. Thus at time
t = 1, the network is able to fit the training data but is not capable of generalizing.

Lemma A.6. Let {a;} and {b;} be two independent sequences of random variables with a; vrd
Unif{i\/%}, and E[b;] = b, E[|b;|] < co. Then 377", a;¢(a;b;) — b/2 almost surely as m — oo.

Proof. Note that the ReLU function satisfies = ¢(z) — ¢(—=), and E[a;¢(a;b;)] = E[p(b;) —
#(—b;)]/2m = E[b;]/2m. Then the result follows from the strong law of large number. O

Multi-Step Generalization: Next, we show that positive (resp. negative) neurons gradually align
with one of 411 (resp. £u2), and forget both of 45 (resp. £11), making the network generalizable.
Taking the direction + 1 as an example, we define sets of neurons

T =1{J € Tros : jis (+u1,20¢)-aligned}; Jo = {j € Jneg : J is (£p1,20¢)-aligned}.
We have by conditions (B2)-(B3) of Lemma A.4 that under a good run,
|71 = mn 1%, | Jol > (1= 10072%)| Jhegl,

which implies that [J; contains a certain proportion of Jpos and J> covers most of Jyeg. The next
lemma shows that neurons in J; will keep aligning with 41, but neurons in J» will gradually forget

+H-

10
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Lemma A.7. Suppose that Assumptions (Al)-(A6) hold. Under a good run, we have that for

1<t < /n,
cossim( Z wj(-t)7 +py) = Q(M
J€n VP

~ (t) vl 1 log n
cossim ( Z w;”, 1) = O( (= + ).
JET2 \/;5 t "
(

We can see that when ¢ is large, cossim(}_;. 7, w](-t), +h1) = ofcossim(Y_ ;¢ 7, wjt), +41)), thus
for © ~ N(+pu1,I,), neurons with j € J; will dominate the output of f(z; W(®). For the other
three clusters centered at — 1, +u2, —o We have similar results, which then lead the model to
generalization. Formally, we have the following theorem on generalization.

Theorem A.8. Suppose that Assumptions (Al)-(A6) hold. Under a good run, for Cn'% <t < \/n,
the generalization error of classifier sgn(f(xz, W ")) has an upper bound

);

i 1

P o)~ P (U # sg0(f (2 W) < exp (= Q(

))-

p

A.2 Properties of the training data
A.2.1 Proof of Lemma A.1

Lemma A.1 (Properties of training data). Suppose Assumptions (Al) and (A2) hold. Let the training
data {(x;,y;)}7_, be sampled i.i.d from P as in Definition 2.1. With probability at least 1 — O(n~¢)
the training data satisfy properties (E1)-(E4) defined below.

(El) Forall k € [n], max (v} — %k, v) < 10y/logn|pu| and ||zk||* — p — ||pl|?| < 10v/plogn,

vecenters
(E2) For each i, k € [n] such that i # k, we have |(x;, x) — (Z;, Tr)| < 10+/plogn,

(E3) For v € centers, we have |c, + n, — n/4] < \/enlogn and |n, — nn| < ny/enlogn.

(E4) For v € centers, we have |c, +n, —c_, —n_,| > nt/2=¢ and [n, —n_,| > nnt/2¢,

Denote by Ggu, the set of training data satisfying conditions (E1)-(E4). Thus, the result can be stated
succinetly as P(X € Guug) > 1 — O(n™°).

Proof. Before proceeding with the proof, we recall that centers = {+pu1, +puo}. We first show that
(E1) holds with large probability. To this end, fix k € [n]. We have by the construction of zj, in
Section 2.2 that ), ~ N (T, I,) for some Ty, € {1, tus}. Let & = z, — Ty By Lemma A.26,
we have

P(l€el > Vet + 1)) < P([lI&k]1° — p| > pt) < 2exp(—pt?/8), Vt e (0,1). (A4)

Note that for any fixed non-zero vector v € RP, we have (v, &) ~ N(0, ||v||?). Therefore, again by
Lemma A.26, we have

P(|(v,&)| > tl|v]]) < exp(—t2/2), Vt>1 (A.5)

where the parameter ¢ in both inequality will be chosen later. To show that the first inequality of
(E1) holds w.h.p, we show the complement event F, := {max, ccenters({k, V) > t||p||} has low
probability. Applying the union bound,

P(Fe)< > P({& ) >tul) . Union bound
VE{:E;L1,:EH2}
<dexp(—t?/2) . Inequality (A.5).

Let § := n~°. Picking t = /2log(16n/§) in inequality (A.5) and applying the union bound again,
we have
P(UZ:1 Fr) < dnexp(—t2/2) < §/4. (A.6)
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Next, fix t; € (0,1) and t5 > 1 arbitrary. To show that the second inequality of (E1) holds w.h.p, we
first prove an intermediate step: the complement event &, := {|||zx||> —p — ||| > pt1 + 2| pl|t2}
has low probability. Towards this, first note that since

lzkll? = 1zl + 1€xll* + 22k, &) = [lull® + 166 11% + 2(zx, &)
we have the alternative characterization of & as
& = {II&|* —p +2(zx, &) > pta + 2||pllt2}.
Next, recall the fact: if X,Y € R are random variables and a, b € R are constants, then
P(|IX +Y|>a+b) <P(|X]|>a)+P(Y]| >b). (A7)

To see this, first note that | X + Y| < | X| + |Y| by the triangle inequality. From this we deduce that
P(X +Y|>a+b) <P(|X]|+|Y]| > a+b). Now, by the union bound, we have

POX]+1Y]>a+b) <P{|X]| > a} U{[Y]>0}) <P(IX] >a) +P([Y] > D)
which proves (A.7). Now, to upper bound P(&}), note that

P(Ex) = P([I€x]|* — p + 2(@k, &) > ptr + 2| p]lt2)
< ]P’(H|§k||2 —p| > ptl) + P(|(ZTk, &k)| > t2|lp]]) . Inequality (A.7)
< 2exp(—pt?/8) + exp(—t3/2). . Inequalities (A.4) and (A.5) (A.8)

Inequality (A.8) is the crucial intermediate step to proving the second inequality of (E1). It will be
convenient to complete the proof of the second inequality of (E1) simultaneously with that of (E2).
To this end, we next prove an analogous intermediate step to (E2).

Fix 51,52 > 1to be chosen later. Define the event &;; := {|(x;, x;) — (T, T;)| > s1,/P+2t2||p||} for
each pair i, j € [n]suchthat1 < % j < n. We upper bound P(&;;) in similar fashion as in (A.8). To
this end, fix 4, j € [n] such that i # j. Note that the identity (z;, z;) = £ &+ 2, + & 75 Jr{ij,;
implies that | (z;, 2;) — (i, Z;)| = £ & + &' 7 + & ;] Now, we claim that
P(E;) =P & + & T + & 2] > s1/p + 2ta | )
< P& &5 > s1v/p) + P 751 > talull) + P(IE] @] > ta|ul)
< exp(—s7/2s2) + 2exp(—p(s2 — 1)*/8) + 2exp(—t3/2), (A9)

The first inequality simply follows from applying (A.7) twice. Moreover, P(|¢,” 7| > ta||u||) and
P(|¢] 2] > tof|ull) < exp(—t3/2) follows from (A.5). To prove the claim, it remains to prove

P([{&i, &)1 > s1v/P)
< P&, &) > s1vp | 1611 < V/s2p) + P(||&]] > v/s2p) .- law of total expectation
< exp(—s7/2s2) + 2exp(—p(sy — 1)2/8). (A.10)

To prove the inequality at (A.10), first we get P(||¢;]| > /s2p) < 2exp(—p(s2 —1)?/8) by applying
(A.4) to upper bounds the second summand of the left-hand side of (A.10). For upper bounding the
first summand, first let P(|(&;,&;)| > s1/p | &) be the conditional probability conditioned on a
realization of £; (while &; remains random). Then by definition

P([(&, &) > s1vp | 161 < V/52p) = Eg, [P(I{€:, &) > s1v/p | &) | 1651 < v/s2p]- (A1D)
For fixed &; such that [|£;]| < ,/52p, we have by (A.5) that
P(I(&, ) > s1vp | &) = P16, &)1 > €11 (s1v/p/ 1€ 1) | &) < exp(=(s1v/D/1I&;11)?/2)-
Continue to assume fixed &; such that [|§; || < /52p, note that s1,/p/[|$;|| > s14/D/\/52D0 = s1/+/52
implies
exp(—(s1v/p/11;11)%/2) < exp(—(s1/v/52)*/2).

Hence, P(|(&, &) > s1/D | &) < exp(—s3/2s2). Applying E¢, [ - | [|€;]| < \/52p] to both side
of the preceding inequality, we get P(|(&;, &) > s1/P | €] < /52p) < exp(—s?/2s2) which

12
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upper bounds the first summand of the left-hand side of (A.10). We now choose the values for t; =

\/8log(16n/6)/p, ta = 1/2log(16n?/6), s1 = 24/log(8n?/6), and s; = 1 + /8log(16n2/d)/p

Recall that = n~¢ and n is sufficiently large, then we have

Viog(16n2/6) /p = /log(16n%+<) /p < \/3log(16n)/p < 1
by Assumptions (A1) and (A2). Combining (A.8) and (A.9) then applying the union bound, we have

P(( Z:lgk) ( 2]€[n] z;éj )) < Zk 1 (gk) + Zije i3 P(gij)
< 2nexp(—2 ) +n [2exp(f—) + exp(— ) + 2exp(— (52771)2)] <é

(A.12)

Moreover, plugging the above values of £1, t3 and s; into the definition of &}, and &;;, we see that
(E1) and (E2) are satisfied since they contain the complement of the event in (A.12).

Next, show that (E3) holds with large probability. We prove the inequality involving |c, + n, — n/4]
portion of (E3). Proofs for the rest of the inequalities in (E3) follow analogously using the same
technique below. Recall from the data generation model, for each k € [n], Zj, is sampled i.i.d ~
Unif{=£py, £ s }. Define the following indicator random variable:

1 ifz,=v
I,(k) = {O otherwise, foreach k € [n], and v € {1, tua}

Then we have )" 1,(k) = 1 for each k, and E[I, (k)] = n/4 for each v. Applying Hoeffding’s
inequality, we obtain
P Y5, L (k) — n/4] > ty/n) < 2exp(—262).
Applying the union bound, we have
P(max, | 32— I (k) — n/4| > ty/n) < 8exp(—2t?). (A.13)
Thus we can bound the above tail probability by O(4) by letting ¢ = \/W, and the upper

bound t/n < \/nlog(1/8) = /nelog(n).

Next, show that (E4) holds with large probability. We prove the inequality involving |¢, + n, —
¢_, — n_,| portion of (E4). Proofs for the rest of the inequalities in (E4) follow analogously using
the same technique below. Note that for each k,

B (F) ~ 1 ()] = 0; E{L(K) ~ 1, (k)] = | foranyi > 1.

It yields that
p(L, (k) —1_,(k))/Var(IL, (k) — I_,(k))*? = 2.
Applying the Berry-Esseen theorem (Lemma A.28), we have

- - 12
P(ley +my — ey = ny| > tv/n) =P(| Y (I (k) =1, (k)| > tv/n) > 28(2t) — —.
= vn
Lett =n~°. By ®(t) < 1/2 + &’(0)¢, we have
|i Vo) >ty > 1— —— — 12 o). (A.14)
k=1 V 2mne \/ﬁ

Combining (A.6), (A.12)-(A.14), we prove that conditions (E1)-(E4) hold with probability at least
1 — O(9) over the randomness of the training data. O
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A.2.2 Proof of Corollary A.2
Corollary A.2 (Near-orthogonality of training data). Suppose Assumptions (Al), (A2), and Condi-
tions (E1), (E2) from Lemma A.1 all hold. Then
2
|cossim(x;, x| < ot
foralll <i#k <n.

Proof. By Lemma A.1, we have that under (E1) and (E2), when ¢ # j,
ozl elP+CayB 2l _ 2
il Nzl — p+ el =Cuyp = p — Cn?’

for sufficiently large p. Here the second inequality comes from Assumption (Al); and the last
inequality comes from Assumption (A2). O

A.3 Properties of the initial weights and activation patterns

We begin with additional notations that is used for the proofs of Lemmas A.3 and A.4. Following the
notations in Xu & Gu (2023), we simplify the notation of Jpos and Jyeg defined in Section A.1 as

Tp = Tpos ={j € [m]:a; >0} Ty:i= Theg = {Jj € [m] : a; <0}.
We denote the set of pairs (, j) such that the neuron j is active with respect to the sample x; at time ¢

by A®), i.e., define
AW = {(i,§) € [n] x [m] : <w§t)7$i> > 0}.

Define subsets .A*(*) and A;t) of A®) where i (resp. j) is a sample (resp. neuron) index:
AN = {j € [m] : (Wi, z;) > 0},
Ag.t) ={ien]: (w](t),arﬁ > 0}.

Define
C,Stg =C, N Aﬁ-t); letj) =N, N A§-t), for j € [m], v € centers.

Note that the above definition is equivalent to (A.1) from the main text.

Letny, :=n, + n_,. For v € centers, we denote the sets of indices j of (v, k)-aligned neurons
(see (A.2) in the main text for the definition of (v, x)-aligned-ness) with parameter « € [0, %)

Jr={jem]: Dz(/(,); > nl/27% and d(,o,lj < min{c,,c_,} — 2n4, — V/n}.
Thus, we have by definition that
J. ={j € Jp : neuron j is (v, x)-aligned}

Further we denote

T = Fon A0 70O = 70 AR, (A.15)
Finally, we denote
T = NI Tiy=hNJTy. (A.16)
A.3.1 Proof of Lemma A.3

Lemma A.3 (Properties of the random weight initialization). Suppose Assumptions (A2) and (A6)
hold. The followings hold with probability at least 1 — O(n™%) over the random initialization:

(D1) |[WO2, < 302, mp,  and  (D2) |Toos| > m/3 and | Fueg| > m/3.

—= o%init
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Denote the set of W O satisfying condition (D1) by Gy Denote the set of a = (aj);"z1 satisfying
condition (D2) by G4. Then P(a € G4, W©®) € Gy) > 1 - O(n~¢).

Proof. Recall earlier for simplicity, we defined for simplicity Jp = Jpos and Jy = Jneg. Let
d = n~¢. Then (D1) is proved to hold with probability 1 — O() in the Lemma 4.2 of Frei et al.
(2022b). For (D2), since | 75| and | Jy| both follow distribution B(m, 1/2), it suffices to show that
P(|Jp| > m/3) > 1 — 4. Applying Hoeffding’s inequality, we have

P(|7e| <m/3) = P(|Tp| —m/2 < —m/6) < exp(—m/18) <6,

where the last inequality comes from Assumption (A6). O

A.3.2 Proof of Lemma A.4

Lemma A.4 (Properties of the interaction between training data and initial weights). Suppose
Assumptions (Al)-(A3) and (A6) hold. Given a € Ga, X € Guua, the followings hold with probability
at least 1 — O(n™%) over the random initialization W©);

(BI) For all i € [n), the sample x; activates a large proportion of positive and negative neurons, Le.,
1) € Tros = (", 2;) > 0} > m/T and |{j € Tneg : (w”, ;) > 0} > m/T both hold.

(B2) For all v € centers and k € [0, 3), both |{j € Jpos : j is (v, k)-aligned}| > mn~1%, and

)
[{j € Tneg : j is (v, k)-aligned}| > mn~10¢.

(B3) For all v € centers, we have |{j € Jpos : j is (£v,20¢)-aligned}| > (1 — 10n720%)| Jpos -

Moreover, the same statement holds if “Jpos” is replaced with “Jyeg” everywhere.

(B4) For all v € centers and r € [0,3), let Tfpos = {j € Jpos : j is (v, k)-aligned}. Then
Zjejmp (v —ny — d(_og}j) > 15|T ) pos |- Moreover; the same statement holds if “Jeos” is replaced

with “Jyeg” everywhere.

Before we proceed with the proof of Lemma A.4, we consider the following restatements of (B1)
through (B4):

(B’1) For each i € [n], x; activates a constant fraction of neurons initially, i.e. for each i € [n] the
sets 72 and 7% defined at (A.15) satisfy
1TEO) > my7 and |0 = my7.

(B’2) For v € centers and « € [0,1/2), we have min{| 75|, | Ty|} > mn~10%.

(B’3) For v € centers, we have |729° U J20%| > (1 — 10n72%)|%| and |72 U J2%5| >
(1 — 10n=2%%)| 7yl

(B’4)For v € centersand k € [0, 1), we have Zjej(cufd(_ol,j) > 15|T|, where T € {T /%, Ty }-

Unwinding the definitions, we note that the (B’ 1) through (B’4) are equivalent to the (B1) through
(B4) of Lemma A.4

Proof. Let 6 = n~°. Throughout this proof, we implicitly condition on the fixed {a;} € Ga
and {x;} € Gyaw, i.e., when writing a probability and expectation we write P( - [{a;}, {x;}) and
E[-|{a;},{z;}] to denote P( - ) and E[ - | respectively.

Proof of condition (B1): Define the following events for each i € [n]:
Pr= {1 2 m/7y Ni= {15 2 m/7).
We first show that N7, (P; N N;) occurs with large probability. To this end, applying the union

bound, we have

P(Ny (P;NN;)) =1 —P(UL, (PfUNY)) > 1—f:(P(Pf) +P(NY)).

i=1
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Note that P; and N; are defined completely analogously corresponding to when a; > 0 and a; < 0,
respectively. Thus, to prove (B1), it suffices to show that P(P?) < ¢/(4n) for each 4, or equivalently,

JETp
holds for each ¢ € [n], where U, := H(<w§0), x;) > 0). Note that given x; and Jp, {U, } jc 7, are i.i.d
Bernoulli random variables with mean 1/2, thus we have

m 1 11 1 1, )
P(J;., Uj < %) < P(gpwj —5) < (5= gIm) Sexp(=2m(z - ) < -,

where the first inequality uses | Jp| > m/3; the second inequality comes from Hoeffding’s inequality;
and the third inequality uses Assumption (A6). Now we have proved that (B1) holds with probability
atleast 1 — §/2.

Proof of condition (B2): Without loss of generality, we only prove the results for 7’,. Note that
jlff, - jlfg for k1 < k9. Thus we only consider the case x = 0. It suffices to show that for each

J € [m],

IF’(DI(,?J). >/n) >8n71%  and ]P’(dgg > min{c,,c_,} — 2ny, —/n) <n "0 e {+v}.
(A.17)
Suppose (A.17) holds for any v € {£pu1, £pus}. Applying the inequality P(AN B) > 1 — P(A°) —
P(B¢), we have

]P’(Dl(,?j) >/, dio’} <min{c,,c_,} —2n4, — Vn,pu € {£v}) > 8n 10 — 27108 = g 10=,

Then we have 5
_ m
E[|Jvpl] = 607" 5| > ST

where the last inequality uses min{| 7|, | Jy|} > m/3, which comes from the definition of G 4. Note
that given {a;} and {x;}, |7, p| is the summation of i.i.d Bernoulli random variables. Applying
Hoeffding’s inequality, we obtain

2

m m 2m e
) <n”F,
n

B(|Tvel < J102) < B(1Tupl — EllTurl) < = 50) < exp(— g5

10e
where the last inequality uses | Jp| = m — |Jy| < 2m/3, 20e < 0.01, and Assumption (A6).
Applying the union bound, we have

P(ﬁue{:tm,:tuz}{|jl/,l’| > m/nIOa}) >1—dn"".

Thus it remains to show (A.17). Without loss of generality, we will only prove (A.17) for v = +puq,
which can be easily extended to other 1’s. Recall that X = [zy,...,2,] ' is the given training data.

LetV = ij(_o)’ then V.~ N(0,XXT). Let Z = [z1,--- ,zn] ", 2 = vi/||zi|,i € [n]. Denote
¥ =Cov(Z). Then Z ~ N(0,X). By Corollary A.2, we have

2
Yi=1 8] < onZ

for 1 < i # j < n. Denote
.Al = C+M1 UN_HI; .AQ = C—Ml UN_H“.
By the definition of Gg,, and (E3) in Lemma A.1, we have
| A1 = [A2l| < Jeppy — c—pn | + Ingps — nepy | < (14 n)/nelog(n); (A.18)

n n
| + [Az] = copy + ngpy +0opy +1py > 5 2y/nelog(n) = 5 o(n) (A.19)
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488
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490
491
492

493
494

495

497

498

500

for sufficiently large n. Note that equivalently, we can rewrite DY

+pn,g @8
> I(zi>0) = > I(z >0). (A.20)
€A €Ay
Since we want to give a lower bound for Di ;)L _j» below we only consider the case when |A;| < |Asz|.
With the new expression of DES/)“ o we have
© LA —v/7]
SCONEVOEED SED DR DI I | (RTINS | (O]
k=0 BQgAQ B1 §A1 1€BLUBy iE(.Al \Bl)U(AQ\BQ)
|B2|=k |B1|>k+v/n
(A.21)
By Lemma A.25, we have
El I] 1G>0 [I 1 <o) >yl (A22)

1€B1UB2 1€(A1\B1)U(A2\B2)
where v = 1/2 — 4/(Cn). Let Z' = [2},--- ,2/]T ~ N(0,1,). Denote A; := Yiea, 1z >
0) — ZiEAz I(z} > 0), and na = | A1| + |A2|. Then we have A; ~ B(|.A4],1/2) — B(]Az2|,1/2),
E[A;] = (JA1] — [A2])/2, and

E[Aj 1—|—7} /nelog(n
—y/nel A.23
Nk /2 —o(n) e log(n (A29

by (A.18) and (A.19). Here the last inequality comes from Assumption (A3). Combining (A.21) and
(A.22), we have

LA —v7]
0 1
CERECED YD D W

k=0  ByCAy BiCAy
|B2|=k |B1[>k+vn

AL =vn]

= (2l 3 5y (%)IAHHM (A24)

k=0  ByCAs; BiCA
|Ba|=k |B1|>k+v/n
- (27)|A1|+\A2|]P>(Aj > \/n)
8

>(1——=—)"P(A, > 1—=)P(A;

> (1- 2 )"B(8; > Vi) > (1 - 2)B(8; > V),
where the second equation uses the decomposition of P(A; > /n); the second inequality uses
|A1| + | A2| < n; and the last inequality uses f(n) = (1 — 8/(C'n))™ is a monotonically increasing
function for n > 1. Note that

A, ~E[A)  J/R-E[A)
(A >\/>) ( ﬁ/nA/Q 1/nA/2 )

> (V) _o(L) > 623 + vElogm)) — O(—=)
- Via/2? vn' vn'

where the first inequality uses Berry-Esseen theorem (Lemma A.28), and the second inequality is

from (A.19) and (A.23). If \/zlog(n) < /3, then ®(2(v/3 + /e log(n O(1/y/n) = Q(1),
which gives a constant lower bound for ]P’(Aj > /n). If \/elog(n) > \f , we have

2(v3 + v/elog(n elog(n)) > 827:10g(n)exp(—8510g(n))

B 1 17
8+1/2me log(n)nss — ni0e’

17
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for sufficiently large n. Here the second inequality uses ®(z) > ®’(z)/(2z) for z > 1. Combining
both situations, we have

CsE 16
P(A; > /n) > OE > &
for sufficiently large n. Combining (A.24) and (A.25), we have
8. 16 8
IP)( +#1 2J > \F) =z ( C)nlos = n10e

for C' > 16. It remains to prove

(A.25)

1
0 .
B(dyyy = minfeq, e} = 2na, = Vi) < o € (£
Without loss of generality, below we prove it for ;1 = +p71. According to condition (E3) in Lemma
A.1, we have
5
min{c,,, oy} — 204, — VN> (f —5n)n — 6+/nelog(n) —v/n > (= — 5) 5 " (A26)

for C' > 150 and sufficiently large n. Here the second inequality is from Assumptlon (A3). Thus it
suffices to prove P(d\”) > n/6) < n=1%. Note that

+H1,g
0
A9 = 3 Izm>0- Y Iz >0).
1€C 1€EN Gy
Denote
A= 3" I(z>0)— > I(z>0).
1€CH i€N+u1
Following the same proof procedure for the anti-concentration result of Df;)u, ;» we have
(0) Chpy+Nap s
]P(d-l-ul \J 2 6) (272) Fra T IP(A 6)7

where v2 = 1/2 4+ 4/(Cn). According to condition (E3) in Lemma A.1, we have ¢4, — nqp, <

(1/4 — 2n)n + 24/nelog(n). It yields that

E[A]] = w < (1/8 —=m)n + y/nelog(n) < n/7.

Applying Hoeffding’s inequality, we have
P(A} > n/6) < P(A} — E[A]] > n/42) < exp(—Q(n)).
Combining the inequalities above, we have

1
nl0e’

(0)
P(d+u1 2J

8 .
>n/6) < (1+ C—)°+m+"+mP(A;. > n/6) = exp(—Q(n)) < (A.27)
n
where the equation uses (1 + 8/(Cn))¢+m T+ < (1 +8/(Cn))"™ < exp(8/C). Now we have
completed the proof for (B2).

Proof of condition (B3): Without loss of generality, we only prove the results for 727 , U J2)¢

—p1,P
By Berry-Essen theorem, we have ;
A; —ElA;] __ ElAy] 2 E[A] 2

\/E/Q m/27n20577m/2+n205})
< 20() — PO +O(7=) < dn >

P(A| < n'/2720%) = B(

where the first inequality uses ®(b) — ®(a) < 2(®((b—a)/2) — ®(0)), b > a; the second inequality
uses ¢(z) — @(0) < &’'(0)z,z > 0 and 20e < 1/2. It yields that

P(| D"

+y,1g| <n 1/2— 205) < QP(‘A | < nl/Q 205) < 8n~

18
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where the first inequality is from Lemma A.24. Combined with (A.26) and (A.27), we have
(|D(O)| > /220 d < min{c,,c_,} — 2n4, —vVn,v € {£u1})
(0 0)
> (DY) > nt/?- QOE,dl(,’j <n/6,v e {£tm})
1—8n72° — 2exp(—Q(n)) > 1 — 9n 2%,
where the second inequality uses D(j) = D(O)j and P(N?_,4;) = 1 - P(UL,A5) > 1 —
i P(AS). Note that given {a;} and {z;}, _,p| is the summation of i.i.d Bernoulli

random variables with expectation larger than 1 — 971_20E Applying Hoeffding’s inequality, we
obtain

PTG p U T2 5l < |l (1 = 10072))

< P(TE0 p UITZ0 ol = ElIT2G » U T2 pl] < —|TFeln %)

< exp(—2|Jp|n~"%) <n”%,
where the first inequality uses E[| 729 U T, p|] > |J5°°|(1 — 9n72°%) and the last inequality is
from Assumption (A6) and 40e < 0. 01.

Proof of condition (B4): Lastly we show that (B4) also holds with probability at least 1 — O(n~¢).
Without loss of generality, we only prove it for J,, | ». Referring back to the deﬁnition of Jf,, »in

equation (A.16), it is crucial to note that it solely imposes upper bounds on a® Consequently,

fu J°
the average of d(—p)u J in JF Fup is no more than the average of d(i);l g in Jp, which imposes no
constraints on d( l)L i Armed with this understanding, when |J ¥ T 1,p| > 0, we have that with

probability 1,

1 0) 0
T ] Z (Ctpn = Ny — dﬂlm |j| Z Ctpr = P — dill,ﬂ-
H1

VISR JETp

Thus it suffices to show that

0 n
7 J | D (e = —dS, ) 2 15 (A28)
P JETp
with probability at least 1 — O(d). Note that given the training data X, {df; ,j ity areii.d random
variables with E[d( Zu = (e—uy —n—y,)/2, which comes from the symmetry of the distribution of

wj(-o). Then we have

1 n
E[C-‘rul TN T d(flil,j] = Ctpn — Ny (C—Hl - n_Hl)/2 2 (g - 57])” —dy/ne log(n) 2 §
(A.29)
Here the first inequality uses (E3) in Lemma A.1 and the second inequality uses Assumption (A3).
Applying Hoeffding’s inequality, we obtain

1 (0) n
P(m Z (Crpr = Mgy —dZ, ;) < TO)

= IP( Z d(_ol),1 g (_(J/)Ll,j]) > (C+m Ny — E - E[d(—oﬂl J])|jp|>

JjE€ETp
<P 49 _g[g© n 1%l <6
< (Z( Zpng — Bl D) > |jf’|) exp( 4050(c_ ., +n_m)2) -

JETr

where the first inequality uses (A.29), the second inequality uses Hoeffding’s inequality and the

bounds of d(_ol)“’j, ie. —n_,, < d(—;)u g

< c_,,» and the last inequality uses Assumption (A6). It
proves (A.28). L]
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Remark A.9. In the proof of (B2), note that when X = I,,, z; are independent with each other. Then
(A.17) can be proved by applying Hoeffding’s inequality. In our setting, 3. is close to the identity
matrix, which means that {z;} are weakly dependent and inspires us to prove similar results.

A.3.3 Proof of the Probability bound of the ‘“Good run'' event
Combining the probability lower bound parts of Lemma A.1,A.3 and A.4, we have
P((a, W, X) € Ggooa)
> P(a € Ga, X € Guaw, (B1)-(B4) are satisfied) — P(W©) ¢ Gy)
> P((B1)-(B4) are satisfied | a € G4, X € Gaaa)P(a € Ga, X € Gaara) — O(n™°)
>2(1-0(n7)A-0(n"7)-0n")=1-0(n""),

as desired.
A.4 Trajectory Analysis of the Neurons

Let ¢ > 0 be an arbitrary step. Denote 22@ =y f(xs; W®), and hl(-t) = ggt) — 1/2. Then we can
decompose (2.2) as

w](-tﬂ) — w§t) = % " <Z>’((w§t), T ))YiTi + % Dy hgt)¢’(<w§-t), i) YiTi. (A.30)

Remark A.10. When |zi(t)| is sufficiently small, we can use 1/2 as an approximation for the negative
derivative of the logistic loss by first-order Taylor’s expansion and we will show that the training
dynamics is nearly the same in the first O(p) steps.
Lemma A.11. Suppose that Assumptions (Al)-(A6) hold. Under a good run, for 0 < t <
1/(v/npa) — 2, we have max;e, |h )| < 2/n3/2,

Lemma A.12. Suppose that Assumptions (Al)-(A6) hold. Under a good run, for 0 < t <
1/(y/npa) — 2, we have that for each k € [n),

[l =) = S [ (w0l 20))p + s D))
< %ﬁ [0/ (w24 ))p + %] and (A31)
’(w§t+1) ,w§t)7y> 2 (t)llull ’ < 3/2\/»HM||2 (A32)
where C,, := 10@, Ty, € centers is defined as the cluster mean for sample (xy,yx), and y,
is defined as the clean label for cluster centered at v (i.e. y, = 1 forv € {£u1}, y, = —1 for

v e {Lus}).

Taking a closer look at (A.31), we see thatif a;y; > 0, and x}, activates neuron w; at time s, then xy,

will activate neuron w( ) for any t € [s,1/(y/npa) — 2]. Moreover, if a;y, < 0, and zj, activates

neuron wj; at time s, then xy, will not activate neuron w; at time s + 1, which implies that there is an

()

upper bound for the inner product (w < x). These observations are stated as the corollary below:

Corollary A.13. Suppose that Assumpnons (Al)-(A6) hold. Under a good run, for any pair (j,k) €
[m] x [n], the following is true:

(F1) When a;yy, > 0, if there exists some 0 < s < 1/(\/npa) — 2 such that < (6) xg) > 0, then for
any s <t < 1/(y/npa) — 2, we have (w 5)7 k) > 0.

(F2) When a;jyi, < 0, forany 0 <t < 1/(y/npa) — 2 we have that (w§t),xk) < ﬁ“u”z

(F3) When ajyx < 0, for any 0 < t < 1/(y/npa) — 3 we have that (w; (®) ,x) > 0 implies
<w§t+1),xk> < 0.
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574 A.4.1 Proof of Lemma A.11

s75 Lemma A.11. Suppose that Assumpttons (Al)-(A6) hold. Under a good run, for 0 < t <
576 1/(y/npa) — 2, we have max;¢y, |h )| < 2/n3/2,

577 Proof. Tt suffices to show that for 0 < ¢ < 1/(y/npa) — 2,

max |h(t)| <

2a p(
i€[n] n

t+2).

576 We prove the result by an induction on ¢. Denote

N2
P@t): max|h{”| < 2Lt +2), vr<t
n

i€[n]
579 When ¢t = 0, we have

h%| <

7

PwinitV3m, < V3a pl? < dap

2 -~ 4dnm T n
ss0 by Lemma A.18, Assumption (A2) and (A5). Thus P(0) holds. Suppose P(t) holds and ¢t <
ss1  1/(y/npa) — 3, then we have

g7 < vr <t,

[\')\»—A

(7) 2 L2
"] < f( T+2) < f v

ss2 which yields that max;c [, gl@ < 1. Further we have that for each pair (j, k) € [m] x [n],

N | =
|
%\w

T+l . QA (r ,

=1

4o
< mang )(2p + 2n||p)|?) < —L

sss  where the first inequality uses ||z;]|? < 2p, |(x;, ;)| < 2u?, which comes from Lemma A.1, and the
ss+ second inequality uses Assumption (A2). It yields that for each pair (j, k) € [m] x [n],

nJ*

585 where the last inequality uses Lemma A.3 and Assumption (A5). Then we have that for each &k € [n],

T T 4a
(Wi o |<Z| D ) [+ (w0l )| € e (141) 4/ 2p] ||| < f<t+2>

3

4o
s W) < 3 gt < Vi max )| < SR +2),

jE€[m]

sss By |1/(1+ exp(z)) —1/2| < |z|/2,Vz, we have for each i € [n],
1 1 2
RO < 1Y) = @ W) < ZE(E 4+ 2).
2 2 n
se7  Thus P(¢ + 1) is proved. O
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ss8 A.4.2 Proof of Lemma A.12

ss9  Lemma A.12. Suppose that Assumptions (Al)-(A6) hold. Under a good run, for 0 < t <
se0  1/(v/npa) — 2, we have that for each k € [n],

t+1 t Qa; t t
[l — 0, ax) = S [y (w0, o0 + s, DL 10l

2n
Ao (1) Cn 2| ?
< mw ((w;”, og))p + T]a and (A.31)
t+1) _ (1) o\ Qi () 2’ 5a 2
(@ =) = Sy, DY) < — el (A.32)

sot  where C,, := 10+/log(n), Ty, € centers is defined as the cluster mean for sample (xy,yx), and y,
se2 is defined as the clean label for cluster centered at v (i.e. y, = 1 forv € {+u}, y, = —1 for
5.3 v € {fua})

s94 Proof. First we have

Q&
‘TJZhgt)¢/(<w;t)a$i>)yi<$i7$k ‘7 5/2\/—Z¢ Nz, zi)|
i=1
2a (t) 2
< =0/ ()" ) ael* + D (i, 2a)[] (A33)
n/ \/7 i#£k
da

< el () m)p+ nlul?],

s95 where the first inequality uses max; h( ) < 2n73/2, which is from Lemma A.11; the third inequality

s96  uses ||zx]|?2 < 2p, (i, 71)| < 2||MH2 which is induced by Lemma A.1. Next we have the following
597 decomposition:

Z¢ (t) yzxzvxk>

=y’ (", 2)) (ol = p = [l®) + 3 ¢ (WS 20))ys (s, ) — (T, 7))

ik
+ et (W o)) (o + ull?) + 3 o (Wl 2:) )y (25, 71) (A34)
itk
=yt (S, o)) (ol = p = [1ll?) + D ¢ (W, @) )y (@i, wx) — (36, 30))
i#k
+ it (WS e ))p + e, DY Ml + 3 ¢ (w0l )i, 7,
0T, ¢{LT }

se8  where the second equation uses the definition of Dl(,t; Recall that C,, = 104/log(n). Combining
s99 with results in Lemma A.1, (A.34) yields that '

\Z¢ D i, @)= [yed () 2))p+s, DY 1l12]| < nCoy/B2nlla] < 2nCop,
(A.35)

600 where the first inequality uses (E1) and (E2) in Lemma A.1 and the second inequality uses Assumption
601 (A2). Recall the decomposition (A.30) of the gradient descent update, we have

aa; aa; -
<w§t+1) _ w§t) _ 2% qu (t) Y yizs, ) Tj Zhgt)¢/(<w§t),ﬂci>)<yiwi7xk}
i=1 i=1
(A.36)
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619

620

Then combining (A.33), (A.35), and (A.36), we have

1 aa;
(@D — 0, a0) = S [ (0, 1)) + s, DL 10l

da 0] 21, @Cny/P
< n5/2f[ "((w;” we))p + nllull*] + Jm
4o (t) 2 Cun® 0 |ul?
< o [0 ol + S
da (1) Crn®” 00| ||
S'I’L5/2\/7[ (< 'rk>)p+T )
where the second inequality uses Assumption (A1) and the last inequality holds for large enough n.
Now we turn to prove (A.32). Similar to (A.36), we have a decomposition for <w§t+1) — wEt), v):
aa aa;j &
(wi™ —wi vy = JZ¢ wi i) yiwi, v) + =2 2h§%'<<w§-“,x,->><ymu>.

Similar to (A.33), we have
Qi (0 g () da >
| 0 (ol )| <

by Lemma A.11 and |(z;, v)| < 2, which induced by (E1) in Lemma A.1. Similar to (A.35), we

have

| (i wimi, v) — v DOIIR| = | D26 (ol @i)ystw: — i, v)| < ol
i=1

i=1
(A.37)
by (E1) in Lemma A.1. Combining the inequalities above, we have

2 < ==l + Cn ]l < i s
n3/2/m 2ym n3/2y/m
for large enough n. Here the last inequality uses

“#||2 > Cn0.51\/23 > 03/277,1'51”/1,”7
which comes from Assumptions (A1)-(A2). L]

(t+1) (t) aa;
[l 0,0y — 2,

A.4.3 Proof of Corollary A.13

Corollary A.13. Suppose that Assumptions (Al)-(A6) hold. Under a good run, for any pair (j, k) €
[m] x [n], the following is true:

(F1) When a;yy; > 0, if there exists some 0 < s < 1/(y/npa) — 2 such that (w; (®) x) > 0, then for
any s <t < 1/(y/npa) — 2, we have (w (-t) k) > 0.

(F2) When ajyy, <0, forany 0 <t < 1/(fpoz) — 2 we have that (w; @) xp) < ﬁH/LHQ

(F3) When ajy, < 0, for any 0 < ¢t < 1/(y/npa) — 3 we have that (wét),zk> > 0 implies
<w§-t+1)7xk> < 0.

Proof. (F1): It suffices to show the result holds for ¢ = s + 1, then by induction we can prove it for
all s <t < 1/(y/npa) — 2. Note that a;y, = 1//m and (w; (=) ,xk) > 0, by (A.31), we have

(D () o 2 da

Car Py ap

Pt =12 fum

>0, (A.38)

3
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where the second inequality uses Assumption (A2).
(F2): We prove (F2) by induction. Denote

. ® « 2
QW): - {wfan) < ol
When ¢ = 0, by the definition of a good run, we have
(ol ail < Js al < WOl /2 < wnpVBm < ool (A39)

where the second inequality uses Lemma A.1; the third inequality uses Lemma A.3; and the last
inequality is from Assumption (A5). Thus Q(0) holds. Suppose Q(t) holds and ¢ < 1/(y/npa) — 3.

If <w§-t), x) < 0, we have

(t+1) (t+1) . (t) a4;Yz, 2 4aCy 2 @ 2
<wj ,J?k> < <wj —w; ,J)k> < T l’k,]HMH 30n 051\/‘“/’(‘” \/EHIJ’” 3

where the second inequality uses (A.31) and ¢’ ((wj(-t), xr)) = 0; and the third inequality uses

Dl(,tz < n and n is large enough. If <w§t)7 xg) > 0, we have

(t+1) (1) a o Cn | ul?
(w; w;’, wg) < Qn\/ﬁ(p | )+n5/2m[p+ e ]
o 9 8ap
< —2nm(p—”||ﬂ|| )+ TP

where the first inequality uses (A.31) and ¢'((w; (&) ,xr)) = 1; and the second inequality uses
Assumption (A2). Combined with the inductive hypothes1s, we have

D oy (t+1) (0 o 2y, _ Sop
) = ()4 () —l? ) < ol g )+ g <0
by Assumption (A2). Thus Q(t + 1) holds. And (F3) is also proved by the last inequality. O

A.4.4 Proof of Lemma A.14

Since the analysis on one cluster can be similarly replicated on other clusters, below we will focus

(0)
+u1,j

lays an important role in determining the direction that wj(-t),t >1

(¢ ) xy). For Z, € {£p1}, yz, = 1. Then for each

on analyzing the cluster centered at + 1. Given the training set, D is a function of the random

0. DY, b

aligns with and the sign of the inner product (w (
t < 1/(yv/npa) — 2, (A.31) is simplified to

initialization w;

(t+1) _ 0 Qa;Ykp dap o ®) :
‘(wj —w; ) — o < T + 2\/%”#” , when (w;”,z) > 0;  (A.40)
t+1 t aa; t
‘<w]( ) —w; )7xk> m D ’Ek] H ‘ = 30n 001F||M‘| when <w§ )’xk> <0. (A4D)
Here C,, = 104/log(n) is defined in Lemma A.12. We will elaborate on the outcomes for neurons
with a; > 0 and a; < O separately in the following lemmas.

Lemma A.14. Suppose that Assumptions (Al)-(A6) hold. Under a good run, we have that for any
jf_?fl p (or equivalently, for any neuron j € Joos that is (u1,20¢€)-aligned) ), the followings hold

forl <t <1/(y/npa) —2:
(GI)

® . it  _ p00) | (t) (t) (0)
Cﬂn,j = Cipms C*m,j - C*ul,j’ N*m J=%9 D+u1 § 7 Crun T M — d*um"
(G2)

(w —wi ™ ) =

471f +M1,J|| ”
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Proof. Given j € J7% 5, whent = 0, for z;, € ¢'®  we have a;y > 0. Thus by Corollary A.13,

+u 2J°

we have

zpecl) . 0<t<1/(Vipa) 2. (A.42)
Similarly we have that for x; € C ©) hpPR

zpec) . 0<t<1/(Vapa) -2 (A.43)
and for x, € J\/(M1 STk ¢ Nflgl’j since a;yy, < 0.
Next for z, € C+M\C+m j» we have

1 0 aa; 0 4oy
(wy? —wi® ay) > TIDE Sl - g FW

to (A.44)

2 2> 2
277,206\/7”/1” 3Cn 001\/7””” — 4n 205\/7”:”“

where the first inequality is from (A.41); the second inequality uses DEF ;)L ;> /27202 which is

from j € J77 p; and the last inequality uses 40e < 0.01. It yields that

1 1 0 0
(Wi k) > (Wl — w2 — w®] - lul® >0, (A45)

laell = el = ==
Rl = gn20e Jmn W Cny/m
where the second inequality uses (A.39). Thus we have
(1)
C‘Wl\cﬂu 3 S Chig

Combined with (A.42), we obtain ¢

Yhij = = C4p, . Then by Corollary A.13, we have

) =Chun 0<t<1/(Vapa) —2.

For x;, € (C,M\C_#1 j) ( ,MI\NE%J), Following similar analysis of (A.45), we have

1 1 0 0
(WM, zy) < (@ w0l z) [l || |2kl < —(

o 5 o 5
T — . (A4
4n205\/mn”'uH Cm/m”u” ) <0. (A46)

Thus we have C_HI\C ¢ CLM1 joand N, WO ¢ A Combined with (A.43) and

—H1,J H11,J B1,3°
NE(L)I ;¢ Nilu) j» we obtain
(1) _ p(0) (1)
C—m Jo C—/n,j’ N—/tm

It yields that

1 0
DEH)MJ = Ctpr — |N( +p1 J| - |C—H1 J| > Chpy = Mgy — d(—/)il 2J \/ﬁ’

where the last inequality uses df;)“,j < min{c4py, €—py } — 2n4,, —/nand

(0) (0)
Coppy = Mgy — d —pi1,j >\/7+d+/-/fl.7—d7;uflj > /1.

Thus (G1) holds for ¢ = 1. Then (G1) is proved by replicating the same analysis and employing
induction.

For the inner product with the cluster mean +¢1, by (A.32) we have

5C.
<w§t+1) (t) > « (t | nQ H ||2 > « (t)

2 2
Wi =50 \/‘ Dl pl” = 3/2\/5 HIE = dny/m +um”“”

(t)
+p1,d > 0. D

where the last inequality uses D
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A.4.5 Proof of Lemma A.15

Lemma A.15. Suppose that Assumptions (Al)-(A6) hold. Under a good run, for any j € jfffl Y

j_QM v (or equivalently, for any neuron j € Jyeg that is (£11, 20¢)-aligned), the followings hold for
2 <t <1/(Vipa) -2

N i = Nowr, NG, = Ny (A47)
—n— Ay, (t—2) <ZD(5 <n+ A, (t—2), ve{tm} (A.48)

where Ay, = |ny,, —n_,, |+ V.

Proof. Foragiven v € {£p1}, suppose j € J%¢. Then we have

a; <0; DY) >n1/272% g < minfe,,c_,, — 2n4, — Vi) (A.49)

according to the definition (A.16). Note that we study the same data as in Lemma A.14 and only

sgn(a,) is flipped in the trajectory analysis compared to the setting in Lemma A.14, our analysis in
(0)

the first two iterations follows similar procedures in Lemma A.14. For x;, € C ©) U Cﬂ, o @Yk <0,
by Corollary A.13, we have

(Wi, 2 <0. (A.50)
For x, € N(O) U N_Oy)], a;yr > 0, by Corollary A.13, we have

(W', zy) >0 (A.51)

for any t < 1/(y/npa) — 2. For z}, € (CV\CV’j) U (/\/',,\N,Eg)), similar to (A.44), we have

(W =) < ~(GED0 Wl = g IR < ~ el <0,
then similar to (A.45), we have
(P 2) < = —wl® ) +Hw | an]) < mnunﬂcfmuun? <0. (A52)
For z;, € (C_V\C(_Olz J) ( _V\NSB’]-), similar to (A.46), we have
(g o) 2 () =) = Nl 2 el = =l > 0. (A53)
Combining (A.50)-(A.53), we have
cl=o; ¢ =c \c; ND=ND N =N, (A.54)
Thus by the definition of Dl(,lj)- , we have
= N2 =y +1CO0 N+ ny < N~ ey +d9)  +2n,. (A.55)
It further yields that
(1) + D(0 |N(0 | —c_y +2n_, + d( < —c_p+2n_, + d(O < —+/n,

where the first inequality uses (A.55) and the definition of D). and the third inequality uses (A.49).

v,3°
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After the second iteration, for 2, € N, \N") (w; © 2 <0, (w; (D) 21,) < 0. Then we have

V]’

2 0 @ D) da
<w]( ) _ wj( ),a:k> > _W(D +D( )||M||2 300 01\/7HMH2
4o

S TP B = NS
2/ mn 3Cn0-01, /mn

where the first inequality uses (A.41), and the second inequality uses D,(jl) D(O) < —+/n. It further
yields that

2 2 0 0
(w®, 21 > (W =0 2y~ |- k] >

2 2 2
o e ey

For x), € ./\/,flj) U N_,, note that ajyk > 0. Then by Corollary A.13, we have (w]@), xg) > 0.
Combined with (A.56), we obtain NV( = N,,N¥ = N_,. Again by Corollary A.13, we have

o
that for 2 < ¢t < 1/(v/npa) — 2,
NI =N, N =N, (A.57)

i.e. for t > 2, neurons with j € J2%¢ U J205, are active for all noisy points in s, , which proves
(A.47).

For x;, € C_V], note that a;y, < 0 and <w§1),mk> > 0. Then by Corollary A.13, we have
w2y < 0. For y, € C_,\CU) .. by (A.54) we have (w ", z3,) > 0, (!, z,) < 0. It yields
that

G T e R . Y P -
2nym w52 m 2ym M T 30n0 0 i M = T

where the first inequality uses (A.40) and (A.41), and the second inequality uses Assumption (A2). It
further yields that

(P~ a) < —

2 2 0
(W 2) < (WP — w0 ap) + [0l - ] <

2
J J il <0 (AS8)

Cdn \/> Cnf
by Assumption (A2). Thus we have C(f) L= 0.
1)

—vJ°

For z;, € C(O) (w (0),xk> > 0, (w; ) ,xr) < 0, which is similar to the setting of C_,\C
Repeating the analys1s above, we have
<w(2),xk) < 0.

For z;, € C, \C(O) ©

V_]’

xg) < 0,( j(l),xw < 0, then we have

4aC), 9
3em00t e Il

= l|* >0,

note that (w;

(w® —wl®, ay) > -

;W (DY) + D[ alf? —

2n\/>
> (R
2\/mn H 3Cn 001\/

where the first inequality uses (A.41) and the second inequality uses (A.55). Combining the inequali-
ties above, we obtain

C,E?;:C \C(o) C(2) - o N(z) No: N N (A.59)

v,j) —v,J
Combining (A.54) and (A.59), we have

2
ZDSJ) =Cy, —C_py — Ny + 3”*1’ - 2|Nl§0)"
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and it yields that

Cyp—C_py—3n, +3n_, <ZD <c,—c_, +3n_, —n,.
s=0

It remains to prove (A.48). It suffices to prove

t
cy—2¢_,—4n,+3n_,— Z < (2c,—c_p+4An_,—ny)+A,, (t=2),v € {£u },
5=0

since 2¢, —c—, +4n_, —n, <nandc, —2c_, —4n, + 3n_, > —n by Lemma A.1. Without

loss of generality, below we only show the proof of the right-hand side. Denote T = {t € [T],¢ >

3, D(t) > A, L ={ti}E 1 <ta <--- < tg. To prove the right-hand side of (A.48), it suffices
to show that the followings hold

> D% <o tnoy + A (s —t); (A.60)
t=t;

tip1—1

Z DY) < Ay, (tin —t) (A.61)

forany i € [K]and all s € [t;, i1 — 2]. (A.60) directly follows from the definition of the set 7 and
the fact that Dl(,tz < ¢, +n_, forany j,t. For a given t;,t; € T, we have D,(jt;) > A, >+/n. By
(A.41), we have that for any x), € CV\C,Sti) (9)s

(t:+1) (b1 (8 daCy, 2
<wj ,.’Ek> < <wj - w; u$k> < - 27’1\/7 Cno()lm”p’”
@ (f 14,112
< — D, <0, A.62
< =Dl el (A62)
(ti+1) .

which implies that w is still inactive for those x;. that didn’t activate w( i) . For any zj, € CV i
since a;yr < 0, by dorol]ary A.13, we have

allull?

R

<w]('ti)a .Tk> S

Combined with (A.40), we have

(w ), zy) = (wl Y - w§“%xk> o "), )

ap dap ap (A.63)
5/2 + ||:u||2 < - <0
Qm/ n vm 2«/m 4n/m

where the second inequality uses Assumption (A2). Combining (A.62) and (A.63), we have CS}-H) =
@, and

(ti+1) o (f ) 2 2
for all zj, € C,. It yields that
ti+1 (ti+1 ti+1) (tit+1
DY =1l = 1e Y sy =y = —[C D sy = ny < g, =,

where the first equation uses (A.47). It implies that t;41 —¢; > 1. Let ¢ = min{t e N: t; + 1 <
t < ti+1,C( (j) # @}. We claim that ¢} is well-defined for each i, because et ’“)( ) #£ 2.
Otherwise we have D,(j’;-“) < |nigp, —n—_p, | < A,,, which contradicts to the definition of the set

T. Thus ¢} always exists. Choose one point from the set Cl(,tj) and denote it as x},. Note that for any
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€ [ti + 1,7 — 1], we have C{ (j) = @, D) < |nyp, — 1y, |, and by (A41),

(t+1) _ (@) NG 4aCy 2
(w; " —w; ) < _2n\/aDz/,j||:uH +m“u” :
Combined with (A.64), it yields that
tr—1
0< (g at) = D7 (™Y — i) + (Y, a)
t=t;+1
al|pl® () _4ynCy
< — D D tr—1t;)).
<oty 3 ot~ 2 -0
It further yields that
tr—1
44/nC,,
ZDVJ*?,C’ oot (ti —ti) < Vnl(ty — ti).
t=t;

If t7 = t;11, then we’ve proved (A.61). If 7 < ¢;44, then we have

tiy1—1 tr—1 tiy1—1
t t t
E D;}:E D()JF E D,(,3<\/>( *t)+A#1(1+1*t)<Am(z+1 t)
t=t; t=t; t=t*

which proves the right side. For the left side, similarly we denote 7 = {t € [T],t > 3, Dl(,t; <

Ayt = {3, t1 <ty < -+ < tg. Following the same analysis, we can prove that the
followings hold

s tiy1—1
Z D(fg Z — Ny — Ap,l (S - tz); Z D,(j; 2 _Ap,l (ti-‘rl - tz)
t=t; t=t;
forany i € [K] and all s € [¢t;,t;+1 — 2]. It proves the left-hand side of (A.48). O

A.5 Proof of the Main Theorem

We rigorously prove Theorem 3.1 in this section. The upper bound of ¢ in the theorems below is
1/(y/npa) — 2, which by Assumption (A4), is larger than /n, the upper bound of ¢ in Theorem 3.1.

A.5.1 Proof of Theorem A.16: 1-step Overfitting

Theorem A.16. Suppose that Assumptions (Al)-(A6) hold. Under a good run, the classifier
sgn(f(z, W) can correctly classify all training datapoints for 1 <t < 1/(y/npa) — 2.

Proof. Without loss of generality, we only consider datapoints in the cluster C ., UN ., . According

to (B1) in Lemma A.4, we have that under a good run, |jpi’(0)| > m/7, |jhf’(0)| > m/7 for each
i € [n]. For z), € C4,,, by Corollary A.13, we have

(w](.‘q),xk) >0
forall j € jk © and 0 < s < 1/(y/npa) — 2; and
(S)7$k>

<wj

< |lu)?
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forall j € Jyand 0 < s < 1/(v/npa) — 2. Then for 1 < ¢ < 1/(y/npa)) — 2, we have

Zw Oz 3 o) - 3 o)

jéjk ,(0) j:a; <0
+1 @

>y z R L R D 11

EJ’C ,(0) s= O J:a;<0

apt 0 a\jN|
> | = =

apt 9
> 5o —allul® >0,

~ 28n

where the first inequality uses ¢(x) > 0, Vz; the second inequality uses the definition of 7, F(0) 5

(F2) in Corollary A.13; the third inequality uses (A.38) in Corollary A.13; and the last 1nequal1ty 1s
from Assumption (A2). For z, € Ny, , similarly we have

Zw P X e+ 3 =)

jGJk ,(0) j:a; >0
1 «
<= > Z (i =™+ 37 Tl
ejk ,(0) s=1 j:a; >0

apt 9
< (£
< ~(5g —allul?) <0

Thus our classifier can correctly classify all training datapoints for 1 < ¢ < 1/(y/npa) — 2. O

A.5.2 Proof of Theorem A.8: Generalization

Before proceeding with the proof of Theorem A.8, we first state a technical lemma:

Lemma A.17. Suppose that ||W|| > 0. Then there exists a constant ¢ > 0 such that

EvmN(ur SN2
Blo.gyru (7 # sgn(f(@ W) < max_2exp (( Nt ”) )

vEcenters

Proof. 1t suffices to prove that for each v € centers,

(A.65)

BN (w1, Lf (@ W)\ ®
Ponn(w,ry) (Yo f(2: W) < 0) < 2exp (‘C ( - ”{/V)HFx ) ) .

Then applying the law of total expectation, we have

D Pan(us,)(un # sen(f(z; W)))

Plag)~ Paca (Y 7 sg0(f (2 W)))

vecenters
1 EynN (w1 )[f(l“;W)]>2
< = exp | —c ( k<
R W
EINN(VI )[f(wi)])Q
< max 2exp | —c Lz .
~ vEcenters p < ( ”WHF

Since for each v, N (v, ) is 1-strongly log-concave, we plug in A = 1 in the proof of Lemma 4.1 in
Frei et al. (2022b). Then (A.65) is obtained.

O
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Our next theorem shows that the generalization risk is small for large ¢. Recall the definition of [J;
and J>, we equivalently write them as

T = ‘74%281 p = {] c [m] ;> 0, D(O) 1/2—20¢e d(o)

Ty = j22€1NU~72;¢1N_{j6[ ] : aJ<OD() pl/2-20e
d(o) <min{c,,c_,} — 2ng,, — V/n,v € {£u1}}.

Here J79° 5, T2 w» and J297  are defined in (A.16). By Lemma A.4, we know that under a good
run,

10
2 s 17l 2 (1= )|l (A.66)
Theorem A.8. Suppose that Assumptions (Al)-(A6) hold. Under a good run, for Cn'% <t < \/n,
the generalization error of classifier sgn(f(z, W(t))) has an upper bound

(t) nt20¢ |||
P(2,y)~ P (U 7# sg0(f (2 W) < exp ( — Q(—————

))-

p

Proof. Without loss of generality, we consider x follows N (41, I,). Then we have

E.lyf(z, W®)] Zanz wi z))]

> L ((w' E[z])) — E.[6((w”, z)) .
\F [J ;0 ) jv;o } (o7
7= 2 4 (", 1)) — 7 2 B wi®, )],
316.71 ]aJ<O

where the first inequality uses Jensen’s inequality. By Lemma A.14, we have that for j € J1,

<wj('t)v /~L1> = Z<w]('s+l) - ’LU§-S), :U/1> + <wj('0)v /~L1>

s=0
2
> 4n\F Z -Hu Slell® = winien/3mp/2|| |
> allpl® 1/2-20¢ _ C) — D] = wiirn/3mn/2
> [n + (C+'ul N1y —n J)(t ] Winit mp/ ||/1‘||
dn/m
allpull? 0
> 477,\/7( +pr T Npn — d(—;)“ ])(tﬁ 1)7

where the first inequality is from Lemma A.14 and Lemma A.3; the second inequality uses the

property that for j € 71, ﬂ)n > Cqpy — Ny — d O)l(j) s > 1, which is also from Lemma

A.14; and the third inequality uses Assumption (A5). It yields that

allull (t-1) (0) af[plt - 1)
S () 2 WD 5 (o) )y 2 WD,
JIET dnym Jjen A0v/m

(A.68)
where the last inequality uses (B4) in Lemma A.4. For the second term in (A.67), note that we have
d(Ax) = Ap(x),VA > 0, and by Jensen’s inequality, ¢(x1 + z2) < ¢(x1) + ¢(x2), V1,20 € R.
Then we have

Ex[¢(<w7x>)} < ¢(<w7/~141>) + Eaﬁ[¢(<w7$ - ,U'1>)] = ¢(<’LU, ,u1>) + \/g”wv (A69)
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where the last equation uses the expectation of half-normal distribution. By Lemma A.11, we have
()
g;” <1,and

||U}](-t+1) _ ’LU§t)|| _ H% Zgz(t)qs/(<w§7')’xz>)ylxzu

i=1

2c
< « maxgl(t) E |$||2+E (s, ;)] _\/mif’ 0<t<1/(v/npa)—2,
e i#£]

where the last inequality uses ||z;||> < 2p, [(z;,x;)| < 2u?, which comes from Lemma A.1, and
Assumption (A2). It yields that for each j € [m],

t—1
2a,/pt 3o /pt
t T7+1 T 0 0
0 < 3 1™ = o+l < S+ o) < S a0

where the last inequality uses Lemma A.3. Then we consider the decomposition of

oy <0 0w, 1))
ST 0@l ) = S o(@l )+ Y e(wl”, ).

j:a; <0 JET> JEI,IET2

For the first term, we have

Z(b ]7/1/1

JjET2
-1
s+1 s
< 30 [ el = ol ) + o )]
jET2 s=0
e allull? b ]|
< huind 100 | IS -
—j; _5:0(2n\ﬁD+mJ + n\/ﬁ) +wmm/3mp/2l\ull} (A71)
ol 5a||ﬂ|| t
Sg; _2n\ﬁ(n+Au1(t*2)) 2B+ o/ 3mp 2l

< g;z %[Wr 1+ (AL +D(t-2)] < %[Wr L+ (A, +1)(E—2)]|,

where the second inequality uses (A.32) in Lemma A.12; the third inequality uses Lemma A.15; and
the fourth inequality uses Assumptions (A1) and (AS). For the second term, we have

S sl )

JEI,jET>

< ¥ Qﬁ P wl ) + o )]

JE,jET> s=0

t—1
allpll? s Salp?
< X [ G D o B ) 4 wn/Bmp2] ul
jeonieg =0 2Vm " (A.72)
< Z at(cqy, +n_y, +1)||pl?
JEM,JET2 n\/{rin
ot(c_p, 4+ ngp, +1)||p)?
- Ay
v (153 172U )
10t
< n20 /m VAR
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776 where the second inequality uses (A.32) in Lemma A.12; the third inequality uses D( ) <c,+n_y
777 and Assumption (A5); and the last inequality uses (A.66) and c_,,, +ny,, +1 < n Combining
778 (A.69), (A.70), (A.71), and (A.72), we have

> Eulo((w” el < D7 ofwy” ) \f > N

j:a;<0 j:a;<0 j:a;<0
t
=Y o )+ D e(w”, ) \/ Sl
JE€ET2 JET,jET2 J a;<0
al|lpllPty/m n+1 20n  3y2np
< A 1 —_+ —.
A ARAR™ R E]

779 It follows that

Eth(+/L1 [yf(x W )]
AP0 oty 200 ST

T 40m t Vlul?
- 0¢HM||2t{ 1 (1- 1) 2 A, +10 20 6yp } (A.73)
- 2 201,10 t n n20e /27T7’L||M||2

t
- aHqut{ 1 % 1) 2 2py/nelog(n)+1 20 6 } - al|pl?t

- 2 20n10c ¢ t n C n20e  oromd T 80nloe

780 for t > Cn'% when C is large enough. Here the second inequality uses | 71| > mn 192 the third
781 inequality uses (E3) in Lemma A.1 and Assumption (A1); and the last inequality uses € < 0.01. By

782 (A.70), it follows that |W ||z < 3at+/p/n. Thus we have

Benpna 0 WOl
WOl = 240/’

783 This lower bound for the normalized margin can be easily extended to the other »’s. Applying Lemma
784 A.17, we have

Cn1720€ 4 n17206 4
Py ) Pan (Y 7 sg0(f (23 WH))) < 2exp <—2402|]|0M) =exp (- Q(p”””))-

785 O

786 Lemma A.7. Suppose that Assumptions (Al)-(A6) hold. Under a good run, we have that for
w7 1<t</n,

: () Al
cossun(z w;, ) = Q(————);
JET \/‘5
788
) _ o Yolul 1 [logn
cossim( _ w;”, +pu) = O VAR el

JE€ET2

789 Proof. This lemma is essentially implied by the proof of Lemma A.8. By (A.70), we have

3a/pt
IS < 3 ) < |4 Ff
Jjijed VR ISNE

7

©

o By (A.68), we have

aflul(t - 1)
(> wi ) > SE S 7.
JijeIL 40\/5
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Combining the inequalities above, we obtain

cossim( Z u,(t) M fQ(M)_

ien - 120,/pt VP
Again by (A.70), we have
t t) a./pt
1Y w3 g ”<'7‘F
j:j€T2 J:ijeT>2

By (A.71), we have

j;zwj ) _;lef/j[n+1+(ﬁ + 1)(t = 2)]| 72|

Combining the inequalities above, we obtain

NG ] VAT

cossim w ;
Z J 7+’u1 \/]3 t \/ﬁ

JET2 6‘ t

where the last inequality uses A, = o(y/nlog(n)), which comes from Lemma A.1. O

A.5.3 Proof of Theorem A.21: 1-step Test Accuracy

Before stating the proof, we begin with the necessary definitions and a preliminary result. Recall that
hz(-t) = ggt) — 1/2 and the decomposition (A.30). When ¢ = 0, we denote

wiy = JZqﬁ wl” w)yirs, € m] (A74)

and WT(U = [wﬂ, x ,w(l) ]T. Next lemma shows that W( Jisa good approximation of (1)
with a large probability.
Lemma A.18. Suppose Assumptions (Al) and (A2) hold. Given {x;} € Guuq and WO e Gy, we

have 0
|h§ )| < PwinieV3m/2;

4 aw: 0323
1 1 1 initD m
H”lg ) W (1)||F = E ,ng(,T) —w§ )||2 < —t\/ﬁ .

Proof. Let zlgt) =y, f(zi; W®). Note that £'(z) = —1/(1 + exp(2)), we have | — ¢/(z) — 1/2| <
|z|/2. Tt yields that

. L 1 . 1 m m o
7 < 51201 < 5D lag @)l < 5, | Do a2 Y w2 )2
= =1 =1 (A75)

1 1
= SIW el < §pwmm/%,

where the first inequality uses hz(-t) —1/2 and g( - ( ) the second inequality uses
triangle inequality; the third inequality uses Cauchy Schwarz 1nequahty, and the last inequality uses
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o8 (E1) in Lemma A.1 and (D1) in Lemma A.3. Denote hmax = MaX;e[n] |h2(-0) |. Then we have

1 1 @ ~ (0 0
ooy =l = T S h e (|
1=1

ahmax
< § 2 -1
< = 2 1||931H +n(n )max|x |
< Oéhmux / < \fawlmtp /2

O

oo where the second inequality uses ||z; ||2 < 2pand p > Cn?| p||?, which come from (E1) and (E2) in
sto  Lemma A.1 and Assumption (A2) respectively, and the third inequality uses (A.75). Further we have

W. . 3/2\/37
! |14 E : 1 1 QWipitP m
H lg : (1)”F ij(J? —w§ )||2 < m“T

811 O

si2  Lemma A.19. Suppose that Assumptions (Al)-(A6) hold. Given X € Gyuy, for each j € [m], we
813 have

n/24 < Var(D(O)

el ]) <n/2;

814

E[|D), ;) —EDE), '] < n®>.

+p1 J +H1,]

815 Proof. Recall that Ay =Cy,, UN_,, Ay = C_,, UN,,, . According to equation (A.20), we have
DY =31z >0)— > 1z > 0). (A.76)
i€ Ay €A,

st6 According to Lemma A.24, we have
1
0

Var(Dilil j) = EB[fl(blv"' 7bn)] = i]EB/[fl( ,7"' 7b/ )]

1 ’ / ‘All + |-A2‘ n

= — ’ - - @ = >

2Var3(_Zb Zb 2 o0

€Ay i€ Az

817 where fi(b1, - ,0n) i= (3ic4, bi = Diea, bi — (AL — |A2\)/2) > 0, and b/, are i.i.d Bernoulli
g8 random variables defined in Lemma A.24, and the last inequality is from (A.19). On the other side,
819 similarly we have

Var(D), ) < 2Ep[fa(b, -+ b)) = (A + | A2]) /2 < /2, (A77)
s20  where the last inequality is from (E3) in Lemma A.1. Denote fa(b1, -+ ,bn) = (D ;c4, bi —

821 D i, bi — (|A1] — [A2])/2)* > 0, then we have

E[| DY)

O —EDY) N =Eslfabr, - ,ba)] < 2Epe[fo(b], - b))

= 2E5 ([ 30— 5) - 30— )]

i€A; . i€ Az 1 (A.78)
SEHIDICESIRIPNCESIN
i€A; 1€A2

<A(JALPP + | Ag?) <,
s22  where the first inequality uses Lemma A.24; the second inequality uses (a + b)* < 8(a* + b*);

g23 the third inequality uses the formula of the fourth central moment of a binomial distribution with
s24 parameter equal to 1/2,i.e. 4(B(n,1/2)) = n(1+ (3n — 6)/4)/4 < n?/4; and the last inequality
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is from (E3) in Lemma A.1. Combining (A.77) and (A.78), we have

(0) (0) (0) (0) 3/2
E[|D+u1 ]) _E[ +u11 \/Var D-&-mj |D+u1] E[D-&-m,j]m =n /
by applying the Cauchy-Schwarz 1nequahty.
O
Lemma A.20. Suppose that Assumptions (Al)-(A6) hold. Given X = [xq,--- ,:En}T € Gaatar we
have
m B t\/—
(| D asota 0, ) - 3B > 0 <20t +
2 xR

(0) _ . ty/m C
‘ Za;la;Dﬂ“ jI’ >1) < 2¢(m) v

Proof. In this proof, by convention all P(-), E[-], Var(+), p(-) are implicitly conditioned on a fixed X.
Denote the expectation of Df}n j by €4, Note that conditioning on X, {a;¢(a; Df,)“’ j)}j>1 are

i.i.d, and the expectation of Di’il it

et = (Chpy = Ny — Copyy + 102y, ) /2 < 200 /me, (A.79)
where the inequality uses (E3) in Lemma A.1. By Lemma A.19, we have

(0) . (0) 3/2
ﬂ < Var(Der J) = 57 p(Der,j) =n / : (A.80)

Denote © ©
U+u1 - Var(ma]¢(aJD+M J)) Ptpa = p(maj¢(ajD+m’j)).
Combining (A.80) and results in Lemma A.23, we have

2 2
e n € n €
E[maqu(aJDS?l)Ll J)] +2M1 ) max{@’ i } S U<2H¢1 S max{§7 - } p+H1 S 32 max{n3/2, |6+M1 |3}
(A.81)
Applying Berry-Esseen theorem, we have
1 = t\/ﬁ CBEP+ = t\/ﬁ C
<29 <29 —
i ZW @ Dhg) ~geem| > 0 < 2CED + o7 U < 2 (e ) U

for some universal constant C' > 0. Here the second inequality uses o3 < (v + |e4p, )%, which
comes from (A.81), and the last inequality uses (A.79). By the symmetry of a;, we have

0 0
E[ma,|a;D\), 1] = 0;  Var(ma,la;D, 1) =E[(DS) )% p(magla;D) 1) = E[IDY) ).
By (A.80), we have
n 0 0
ot SE(DD), )2 < S+l EIDE, P < 8D, )Her ') < 80 +er,, ).
(A.82)
Similarly, applying Berry-Esseen theorem, we have
- ty/m C
P ‘ |a; D) ‘ t) <2
(jz::la]wﬂ +;L1j| > — (\/*_FQC r) \/*
where the inequality uses Var(ma;|a; D +u1 1) < (Vn A leq,, |)? and (A.79). Then the results of
this lemma are proved by noting that C,,+/ > 1 for large enough n. O

Theorem A.21. Suppose that Assumptions (Al)-(A6) hold. With probability at least 1 — 3C'//m —

2n7°% over the initialization of the weights and the generation of training data, after one iteration, the
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sas  classifier sgn(f(x, W) exhibits a generalization risk with the following bounds:
L1 = 1) < Playympn (0 # 500/ (2 W) < 3(1 +179),

847 Proof. For any given training data X € Gg,,, denote the expectation of D,(j?j). by e,, i.e.

e == EDY)|X] = (¢ —my — oy +1120)/2, v € {1, £p2}, (A.83)

g4s  and a set of parameters Gx:

Gx a, W) |Za —e,,/2|<30 v ne/mlog(m

‘ZaﬂaJD(O || <3Cny/ne/mlog(m),a € Ga, WO ¢ Gw}.

849 Applying the union bound, we have
2 2C .
P(gX‘X S gdata) >1- eXp(—Q(lOg (m))) — ﬁ —n

gso0 by Lemma A.20 and A.3. Further we have
P((a, W(O)) S gX7X S gdala) Z ]P’(QX|X S gdata)P(X S gdata)

2C
> 1 —exp(—log?(m)/2) — — —2n~¢
vm
3C
>1- 22 _ope,
1 Jm 2n

85t Define events Fiey ,, for test data:

Feswr = {2 €RP 2] = p - [[4]*] < Cur/Fy
|(z,2;) — (v, Z;)| < Cpy/pforalli € [n|}, ve{fu,£tus}.

sz Treat {x} U {z;}!" , as a new ‘training’ set with n + 1 datapoints. Following the proof procedure
g3 in Lemma A.1, we can show that P, n(,7,) (7 € Fiea| X € Gaa) > 1 — 0%, where Fieg :=
854 Uycftp,,tus}Ftest,v- And Fieg is a symmetric set for z, i.e., if € F, then —x also belongs to Feg.
855 In the remaining proof, by convention all probabilities and expectations are implicitly conditioned
gs6  on fixed X € Gguu and a, W(® e Gx. Therefore, to simplify notation, we write P(-)and E[-] to
gs7 denote P(- |a, W {z;}) and E[-|a, W {2;}], respectively. In other words, the randomness is
gss  over the test data (x, y), conditioned on a fixed initialization and training data. We first look at the
859 clusters centered at £41q, i.e. & ~ N(£p,1,),y = 1. Then we have

Psz(:ﬁ:p«l, (y 7& Sgn(f(l‘, W(l)))) = PINN(:tul,Ip)(f(x7 W(l)) < 0)
1 (1) 1 ) (4.8
= §P1~N(H1,Ip)(f(ma w ) < O) + §P1~N(M1,Ip)(f(_xa w ) < O)

gso  Note that given W(©) and X, we have with probability 1 that

s WD) = f (s W W(O)I—‘Za] w,2) = () —w®, @)

m

m m
0 0
< a o) < 1D a S (w2 - )2
j=1

j=1  j=1

= WO p - ||z| < winiey/3mp/2||z]),

st where the first inequality comes from the 1-Lipschitz continuity of ¢(-); the second inequality uses
ss2 Cauchy-Schwarz inequality; and the last inequality uses Lemma A.3. Next, recall that Wr is defined

(A.85)
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869

870
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876

as in (A.74). By the same argument above, we have

W = W) — fazwy? —wO)
—\Zay ) —wl®,2)) = o((wd — wl®,2)))

1 1 1 1 1
<3 agwl? —w ) < |3 a2 wl — w2 falf2 = (WO - WV |
j=1

j=1  j=1

< awinigp/ 3mp/n||z|| < winic/3mp/nl|x||, (A.86)

where the first inequality comes from the 1-Lipschitz continuity of ¢(-); the second inequality uses
Cauchy-Schwarz inequality; the third inequality uses Lemma A.18; and the last inequality uses
Assumption (A3). Using (A.85) and (A.86), we have by the triangle inequality that

|fla; WD) = f(a WT(U — WO < 2uwiniy/mpllz|| =: €, thatforany z € R?.  (A.87)
Recall that
(wff —wf®,2) =52 Z &' (" z:)) i, o).
Then under a good run, for x € Fiy, we have that w1th probability 1,

1 0 aa; (0
[l = . ) = SEDL lll’| < Z=Cup,

where the inequality uses the definition of Fi. It yields that

aa;
7 W =W 0) = 3 2% 40,00 ) ul?] < aCov. (A.88)
Jj=1

According to the definition of Gx, we have

aa; DO o oful 3aCpy/elog(m) o
‘Z dla; Dy, Dull — T Etm < WHN” . (A.89)
Combining (A.87)-(A.89), we have
allull? 3aC,y/E log(m)
[Faw®) =T, | < e +aCuyp+ N G
The above inequality immediately implies that
2
ol 3aCpy/clog(m
P W) < 0F) 2 P ey, < 6, - aCyp - 2O 8 7,
(A91)

Similar to (A.90), for —x ~ N(—pu1, I,), we have

a|? 3aCny/elog(m)
fl=a; W) — o, €| S €t aCpy/p + ZTH 2.
Note that by definition, e_,,, = —e,,, the above inequality immediately implies that
o | 3aC,,+/clog(m
P (W) < 017) 2 B s, 2 o 4 aCupt 205 2B 2 7,
(A.92)

According to the definition of Gy, we have €, < 4winit\/mp3/ 2. According to the definition of Gyaa,
we have

‘Cu —Ny —C—p + n—u‘ Z |CV - C—lll - |nV - n—u| Z |Cu + Ny —C—py — n—l/| - 2|nu - n—lll
2 (1 _ 277)”1/2—8 Z n1/2—8/2.
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g77 Thus we have |e.,,, | > n'/27¢ /4. Tt yields that

3aCp /e log(m)

allul?

om lep| — €2 —aCny/p - T odmn___ %HMHQ
a”:u’HQ 1 3/9  Winit np 3Cn\/§log(m)
> — 4y/mnp®/ -G, — (A.93)
vn <8n5 al|pl|? [l al]* 2ym )
< a||,uH2( 12 G, 30, ) 0
— V/n \8nf my/n  3Cn%01  92,/Cno.01 '

g78  where the first inequality uses |ey,,| > n'/?27%/4 and €, < 4winiy/mp>/?; the second inequality
879 uses Assumption (AS), (A1) and (A6); and the last inequality uses n is large enough. Combining
880 (A.91)-(A.93), we have

]P(f( 'W(l)) < 0|]:tesl) + P(f(—l‘; W(l)) < 0‘-Eest)
a|pl|? 3aCpy/clog(m (A94)
o] B0 OB 2 ) = 1,

g8t where the inequality uses €; > 0. Following a similar procedure, for the other side, we have

P(f(2; WD) < 0| Fest) + P(f(—2; W) < 0] Freq)

>IP( €4 | 2 €z +aCny/p +

) A.95)
allp 3aCp+/elog(m (
<IP( ”2nH leqp,| > —€x — aChy/p — 2\§n71m()|#||2|]:te“) =1L

gg2  Combining (A.94) and (A.95), we have
P(f(2; W) < 01 Fies) + P(f (—2: WD) < 0| Fiext) =
sss  Following the same procedure, we have that for any v € {£puq, s},
Poren(0,1,) (0F (@ W) <0 Few) + Pao1,) (0f (-2 W) <0/ Fies) = 1

gss Then for (x,y) ~ Pelean, We have

Pl )P U (@3 W) < 0) > Py f(2; WD) < 0| Fe) P(Frest) > = (1 —n75);

N =

885
P ) P W] (15 WD) < 0) S Py f(a; W) < 01 Fies) P(Fies) + B(Fiog) < 5(1+n77).

886 ]

DN | =

ss7  Lemma A.22. Suppose that Assumptions (Al)-(A6) hold. With probability at least 1 — 3C /\/m —
888 2n~° over the initialization of the weights and the generation of training data, we have

aa; _
oot ([ @ WO) = 32 %560, 00, Dlnl?] < 20C,y5) = 1- 0.
j=1

j=

889 Proof. We have

W(l) Z T D(+M1 J)HMH | < 4W1n1tp\/7+ aCy, f <2aC, \f
so0 Here the first inequality uses (A.87), (A.88) and |z|| < \/2p, and the second inequality is from

891 Assumption (AS).
892 O
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A.6 Probability Lemmas

Lemma A.23. Suppose we have a random variable g that has finite L3 norm and a Rademacher
variable a that is independent with g. Then we have

max{3Var(g), § (Elg)?} < Var(as(ag)) < max{Var(9), 5 (Elg)*};  (A.96)
E[|ag(ag) — Elag(ag))]|"] < 32max{E[lg — E[g]*], [E[g]*}. (A.97)

Proof. The expectation of the random variable a¢(ag) is
Ela(ag)] = 3El0(s) — 6(~9)] = 3Elo], (A.98)

where the first equation uses the law of expectation, and the second equation uses ¢(z) — ¢(—z) = x.
The second moment of a¢(ag) is

1 1
E[(ad(ag))?] = E[¢(ag)®] = SE[6(9)* + 6(~9)*] = SElg”], (A.99)
where the last equation uses ¢(x)? + ¢(—z)? = 2. Combining (A.98) and (A.99), we have

Var(ag(ag)) = LE[g%] - (Elg))? = LVar(g) + + (Elg])”.

which implies (A.96). Moreover, for a random variable X that has finite L3 norm, we have
[X —E[X]|[s < I X5 + [|E[X][[s < I X5 + E[|X]] < 2] X]s,

where the second inequality is due to ||E[X]||3 = [E[X]| and the last inequality is due to || X||; <
|| X||3- Thus we have

E[|ad(ag) - 3Elg)"] < 8Elladlag)’] = 4El6(0)® + 6(~g)*) = 1E[gf"],

where the last equation is due to ¢(z)% + ¢(—x)3 = |z|>. Then by ||gl5 < |lg — Elg]ls + |E[g]],
have

weE

E(|ad(ag) — 3E|°) < 4(llg ~ Elgllls + E[g])° < 32 max{E{lg  Elg]] [Elo]*}.
O

Lemma A.24. Suppose Z = [z1,--+ ,z,]" ~ N(0,%), where ¥;; = 1, and |S;;] < 1/(Cn?),1 <
iAj<nAndZ' =2, - ,2)]T ~ N(0,1,). Let b; = I(z; > 0) and b, = (2} > 0),i € [n] be

7 n

Bernoulli random variables. Let B = [by,--- ,b,|" and B' = [by,--- ,b.,]T. Then we have that for
any non-negative function f : R™ — R* U {0},
1

§EB’[f< ,17 ,b;)] < EB[f(bl,"' abn)] < QEB’[f( /15 ’b/n)]

Proof. Note that for any fixed value (by,--- ,b,) € {0,1}", Pg/(b],--,b]) = (1/2)™. Then we
have

Eplf(br,-+ b))l = Y f(br,+ ba)Pp(b1, -, by)
b1, ,bn
> (271)71 Z f(bla o 7bn)H:DB’ (bla T 7b’n) (AlOO)
b1, by

= (271)7LEB’ [f(bla e 7bn)]7
where the inequality comes from Lemma A.25. On the other side, similarly we have

Eplf(b1;---,0n)] < (292)"Ep[f (b1, -, bn)]. (A.101)
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By C > 8, wehave (271)" = (1—4/(Cn))" > 1—-4/(Cn) > 1/2and (27y2)" = (1+4/(Cn))" <
exp(4/C) < exp(1/2) < 2. Combining these results with (A.100) and (A.101), we have

SE 0, 0] < Enlf (b b)) < ZEm £, b))
O
Lemma A.25. Suppose Z = [z1,-++ ,z,]" ~ N(0,%), where ¥;; = 1, and |S;;] < 1/(Cn?),1
1 # j < n. Then we have that for any subsetA C [n],
W <E[[[1z >0)- ] Izi <0)] <73
i€ A i€[n]\A
foryn =1/2—-2/(Cn) and v2 =1/2+2/(Cn).
Proof. We first prove the result for A = [n]. Note that
P(z1 >0, 2, > 0) =P(z1 > 0) [ P2k > 0lz—1 > 0,-++ ,z1 > 0). (A.102)
k=2
Let Zy_1 = [21,-++ ,2,_1) " and denote the covariance matrix of [z, - , 2;] as

Yk-1 €k
e;— 1’
where ¥j,_1 = Cov(Z_1) and €5 = Cov(Zy_1, z1). Then |ey;| < 1/(Cn?) for j € [k — 1], and
the conditional distribution of z;,|Z_1 is N(e] ;. Zk—1,1 — €] ;. ex). By Gershgorin circle

theorem, we have

1 1
1——= <)\min Yk §>\max Y- Sl -
on S (Zk-1) (Zk-1) + e

Denote fx_1(-) as the density function of Z;_;. Then we have

S 2
]P(Zk >O|Zk_1 >0, ,21 >O / / fk 1 Zk 1 (13( )d21-~-dzk_1
,/1—62—2,611%

—EkE]; 14k-1

Z/ 12 fk—l(Zk—l)(i)(—
127202 Zr-all<2vm V91—l St e

S e -2
(1 15,2 el - 2¢/n )IP(HZ 1/2Zk < 2vi)
\/27r (1—el St en)

)d21 coedzp—q

>

> (é—nsz) (IS5 2| < 2/m)
> (% - nzc‘%)(l —exp(—n)) = % %

(A.103)
for sufficiently large n. Here the second inequality uses |®(x) — ®(0)| < ®’(0)|x| and Cauchy-
Schwarz inequality; the third inequality uses omin(Zk—1) = Amin(Zk—1) > 1/2 and HE_l{QGk” <

V2|ex|| < v/2n73/2/C; and the fourth inequality uses the concentration inequality for chi-square
random variables in Lemma A.26. Then the result is proved by combining (A.102) and (A.103). On
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930 the other side, we have

—1
—ekE,%le_l

£/1—= engz_llek

P(z; > 0|zk—1 > 0,--- ,21 > 0) < / fk,l(Zk,l)Ci)(
15,22 Zu—alI<2v/m

(|2 Zyo|| > 2v/n)
1/2

1 b)) ex|l - 24/n
(L el oy
\/27r 1-— 6;2;_11616)

1 2V2

< _Zve _
<5+ novE Hee(n)

P(||S 2 Zy-a || > 2v/n)

931 Note that our proof does not use any information related to A, thus we can extend the result for any
932 subset A C [n]. O

933 Lemma A.26. For X i.i.d ~ N(0,0%),1 <k <n, we have

[

' (t)/t < P(|X,| > to) < exp(—t?/2), Vt>1;

934

1 n
]P’({W S OXE 1| > t) < 2exp(—nt?/8), Vte (0,1).
k=1

935 Proof. For the first inequality, we note that

d(t) = t+o<> ﬁexp(—%x%d‘x < /;OO N exp(—%xQ)dx2 _ (I’/t(t).
936 It yields that for any ¢ > 1,
P(|X1| > to) = 2d(t) < 2®(t)/t < exp(—t?/2).
937 On the other side, we have
too 1+x 2 _z? oo
o) = | 7iEE exp(—%:f)d:c = jﬂlitg (- eXp(m 2 )) ;t - #fb’(t).

938 When t > 1, it further yields that ®(¢) > ®'(¢)/(2t). Thus we have

P(|X1| > to) = 2®(t) > ®'(t) /1.
939 The second inequality is Example 2.11 in Wainwright (2019) O

940 Lemma A.27 (Hoeffding’s inequality, Equation (2.11) in Wainwright (2019)). Let X, 1 <k <n
941 be a series of independent random variables with Xy, € [a,b]. Then

- 2t

P> (X, — E[X >t)<exp< 72) vt > 0.

— n(b—a)
942 Lemma A.28. [Berry-Esseen Theorem, Theorem 3.4.17 in Durrett (2019)] Let X1,--- , X, are
943 ii.d. random variables with E[X;] = 0, Var(X;) = 02, and E[|X;|3] = p < oo. If F,(z) is the
oas  distribution of Y, X;/(o\/n), then

3p
Fala) = B(o)] < 0.

945  A.7 Experimental details

946 In our experiments, dimension p = 40000, number of train/test samples n = 200 u = 2.54/p/n,

947 number of neurons m = 1000, label noise rate = 0.05, and initial weight scale wip; = 10~15. For
948 Figure 3, 2, and 1-left, the step size o = 10712, For Figure 4 and 1-right, o = 10716
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Figure 4: Histograms of inner products between positive neurons and p’s pooled over 100 independent

runs under the same setting as in Figure 1 but with a smaller step size. Top (resp. bottom) row: Inner
products between positive neurons and j; (resp. p2). While the projections of positive neurons wj(-t)
onto the p; and uo directions have nearly the same distribution when the network cannot generalize,

they become much more aligned with 4411 when the network can generalize.
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