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Abstract

Neural networks trained by gradient descent (GD) have exhibited a number of sur-1

prising generalization behaviors. First, they can achieve a perfect fit to noisy train-2

ing data and still generalize near-optimally, showing that overfitting can sometimes3

be benign. Second, they can undergo a period of classical, harmful overfitting—4

achieving a perfect fit to training data with near-random performance on test5

data—before transitioning (“grokking”) to near-optimal generalization later in6

training. In this work, we show that both of these phenomena provably occur in7

two-layer ReLU networks trained by GD on XOR cluster data where a constant8

fraction of the training labels are flipped. In this setting, we show that after the9

first step of GD, the network achieves 100% training accuracy, perfectly fitting10

the noisy labels in the training data, but achieves near-random test accuracy. At11

a later training step, the network achieves near-optimal test accuracy while still12

fitting the random labels in the training data, exhibiting a “grokking” phenomenon.13

This provides the first theoretical result of benign overfitting in neural network14

classification when the data distribution is not linearly separable. Our proofs rely15

on analyzing the feature learning process under GD, which reveals that the network16

implements a non-generalizable linear classifier after one step and gradually learns17

generalizable features in later steps.18

1 Introduction19

Classical wisdom in machine learning regards overfitting to noisy training data as harmful for20

generalization, and regularization techniques such as early stopping have been developed to prevent21

overfitting. However, modern neural networks can exhibit a number of counterintuitive phenomena22

that contravene this classical wisdom. Two intriguing phenomena that have attracted significant23

attention in recent years are benign overfitting (Bartlett et al., 2020) and grokking (Power et al., 2022):24

• Benign overfitting: A model perfectly fits noisily labeled training data, but still achieves25

near-optimal test error.26

• Grokking: A model initially achieves perfect training accuracy but no generalization (i.e.27

no better than a random predictor), and upon further training, transitions to almost perfect28

generalization.29

Recent theoretical work has established benign overfitting in a variety of settings, including linear30

regression (Hastie et al., 2019; Bartlett et al., 2020), linear classification (Chatterji & Long, 2021a;31

Wang & Thrampoulidis, 2021), kernel methods (Belkin et al., 2019; Liang & Rakhlin, 2020), and32

neural network classification (Frei et al., 2022b; Kou et al., 2023). However, existing results of33

benign overfitting in neural network classification settings are restricted to linearly separable data34

distributions, leaving open the question of how benign overfitting can occur in fully non-linear35
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Figure 1: Comparing train and test accuracies of a two-layer neural network (2.1) trained on noisily
labeled XOR data over 100 independent runs. Left/right panel shows benign overfitting and grokking
when the step size is larger/smaller compared to the weight initialization scale. For plotting the x-axis,
we add 1 to time so that the initialization t = 0 can be shown in log scale. See Appendix A.7 for
details of the experimental setup.
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Figure 2: Left four panels: 2-dimensional projection of the noisily labeled XOR cluster data (Defini-
tion 2.1) and the decision boundary of the neural network (2.1) classifier restricted to the subspace
spanned by the cluster means at times t = 0, 1 and 15. Right two panels: 2-dimensional projection of
the neuron weights plotted at times t = 1 and 15.

settings. For grokking, several recent papers (Nanda et al., 2023; Gromov, 2023; Varma et al., 2023)36

have proposed explanations, but to the best of our knowledge, no prior work has established a rigorous37

proof of grokking in a neural network setting.38

In this work, we characterize a setting in which both benign overfitting and grokking provably occur.39

We consider a two-layer ReLU network trained by gradient descent on a binary classification task40

defined by an XOR cluster data distribution (Figure 2). Specifically, datapoints from the positive class41

are drawn from a mixture of two high-dimensional Gaussian distributions 1
2N(µ1, I) +

1
2N(−µ1, I),42

and datapoints from the negative class are drawn from 1
2N(µ2, I) +

1
2N(−µ2, I), where µ1 and µ243

are orthogonal vectors. We then allow a constant fraction of the labels to be flipped. In this setting,44

we rigorously prove the following results: (i) One-step catastrophic overfitting: After one gradient45

descent step, the network perfectly fits every single training datapoint (no matter if it has a clean or46

flipped label), but has test accuracy close to 50%, performing no better than random guessing. (ii)47

Grokking and benign overfitting: After training for more steps, the network undergoes a “grokking”48

period from catastrophic to benign overfitting—it eventually reaches near 100% test accuracy, while49

maintaining 100% training accuracy the whole time. This behavior can be seen in Figure 1, where50

we also see that with a smaller step size the same grokking phenomenon occurs but with a delayed51

time for both overfitting and generalization.52

Our results provide the first theoretical characterization of benign overfitting in a truly non-linear53

setting involving training a neural network on a non-linearly separable distribution. Interestingly,54

prior work on benign overfitting in neural networks for linearly separable distributions (Frei et al.,55

2022b; Cao et al., 2022; Xu & Gu, 2023; Kou et al., 2023) have not shown a time separation between56

catastrophic overfitting and generalization, which suggests that the XOR cluster data setting is57

fundamentally different.58

2 Preliminaries59

2.1 Notation60

For a vector x, denote its Euclidean norm by ∥x∥. Denote the sign of a scalar x by sgn(x). Denote61

by
∑

j qjN(µj ,Σj) a mixture of Gaussian distributions, namely, with probability qj , the sample62

is generated from N(µj ,Σj). For a finite set A = {ai}ni=1, denote the uniform distribution on A63
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by UnifA. For an integer d ≥ 1, denote the set {1, · · · , d} by [d]. For a finite set A, let |A| be its64

cardinality. We use {±µ} to represent the set {+µ,−µ}. For two positive sequences {xn}, {yn},65

we say xn = O(yn) (respectively xn = Ω(yn)), if there exists a universal constant C > 0 such that66

xn ≤ Cyn (respectively xn ≥ Cyn) for all n. We say xn = Θ(yn) if xn = O(yn) and yn = O(xn).67

2.2 Data Generation Setting68

Let µ1, µ2 ∈ Rp be two orthogonal vectors, i.e. µ⊤
1 µ2 = 0.1 Let η ∈ [0, 1/2) be the label flipping69

probability.70

Definition 2.1 (XOR cluster data). Define Pclean as the distribution over the space Rp × {±1} of71

labelled data such that a datapoint (x, ỹ) ∼ Pclean is generated according to the following procedure:72

First, sample the label ỹ ∼ Unif{±1}. Second, generate x as follows: if ỹ = 1, then x ∼73
1
2N(+µ1, Ip) +

1
2N(−µ1, Ip); if ỹ = −1, then x ∼ 1

2N(+µ2, Ip) +
1
2N(−µ2, Ip). Define P to be74

the distribution over Rp ×{±1} which is the η-noise-corrupted version of Pclean, namely: to generate75

a sample (x, y) ∼ P , first generate (x, ỹ) ∼ Pclean, and then let y = ỹ with probability 1 − η, and76

y = −ỹ with probability η.77

We consider n training datapoints {(xi, yi)}ni=1 generated i.i.d from the distribution P . We assume78

the sample size n to be sufficiently large (i.e., larger than any universal constant appearing in this79

paper). For simplicity, we assume ∥µ1∥ = ∥µ2∥, omit the subscripts and denote them by ∥µ∥.80

2.3 Neural Network, Loss Function, and Training Procedure81

We consider a two-layer neural network of width m of the form82

f(x;W ) :=

m∑
j=1

ajϕ(⟨wj , x⟩), (2.1)

where w1, . . . , wm ∈ Rp are the first-layer weights, a1, . . . , am ∈ R are the second-layer weights,83

and the activation ϕ(z) := max{0, z} is the ReLU function. We denote W = [w1, . . . , wm] ∈ Rp×m84

and a = [a1, . . . , am]⊤ ∈ Rm. We assume the second-layer weights are sampled according to85

aj
i.i.d.∼ Unif{± 1√

m
} and are fixed during the training process.86

We define the empirical risk using the logistic loss function ℓ(z) = log(1 + exp(−z)):

L̂(W ) :=
1

n

n∑
i=1

ℓ(yif(xi;W )).

We use gradient descent (GD) W (t+1) = W (t) − α∇L̂
(
W (t)

)
to update the first-layer weight87

matrix W , where α is the step size. Specifically, at time t = 0 we randomly initialize the weights88

by w
(0)
j

i.i.d.∼ N
(
0, ω2

init Ip
)
, j ∈ [m], where ω2

init is the initialization variance; at each time step89

t = 0, 1, 2, . . ., the GD update can be calculated as90

w
(t+1)
j − w

(t)
j = −α

∂L̂(W (t))

∂wj
=

αaj
n

n∑
i=1

g
(t)
i ϕ′(⟨w(t)

j , xi⟩)yixi, j ∈ [m], (2.2)

where g
(t)
i := −ℓ′(yif(xi;W

(t))).91

3 Main Results92

Given a large enough universal constant C, we make the following assumptions:93

(A1) The norm of the mean satisfies ∥µ∥2 ≥ Cn0.51√p.94

(A2) The dimension of the feature space satisfies p ≥ Cn2∥µ∥2.95

1Our results hold when µ1 and µ2 are near-orthogonal. We assume exact orthogonality for ease of presenta-
tion.
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(A3) The noise rate satisfies η ≤ 1/C.96

(A4) The step size satisfies α ≤ 1/(Cnp).97

(A5) The initialization variance satisfies ωinit nm
3/2p ≤ α∥µ∥2.98

(A6) The number of neurons satisfies m ≥ Cn0.02.99

Assumption (A1) concerns the signal-to-noise ratio (SNR) in the distribution, where the order 0.51100

can be extended to any constant strictly larger than 1
2 . The assumption of high-dimensionality (A2) is101

important for enabling benign overfitting, and implies that the training datapoints are near-orthogonal.102

For a given n, these two assumptions are simultaneously satisfied if ∥µ∥ = Θ(pβ) where β ∈ ( 14 ,
1
2 )103

and p is a sufficiently large polynomial in n. Assumption (A3) ensures that the label noise rate is at104

most a constant. While Assumption (A4) ensures the step size is small enough to allow for a variant105

of smoothness between different steps, Assumption (A5) ensures that the step size is large relative to106

the initialization scale so that the behavior of the network after a single step of GD is significantly107

different from that at random initialization. Assumption (A6) ensures the number of neurons is large108

enough to allow for concentration arguments at random initialization.109

With these assumptions in place, we can state our main theorem which characterizes the training110

error and test error of the neural network at different times during the training trajectory.111

Theorem 3.1. Suppose that Assumptions (A1)-(A6) hold. With probability at least 1 − n−Ω(1) −112

O(1/
√
m) over the random data generation and initialization of the weights, we have:113

• The classifier sgn(f(x;W (t))) can correctly classify all training datapoints for 1 ≤ t ≤
√
n:114

yi = sgn(f(xi;W
(t))), ∀i ∈ [n].

• The classifier sgn(f(x;W (t))) has near-random test error at t = 1:115

1
2 (1− n−Ω(1)) ≤ P(x,y)∼Pclean(y ̸= sgn(f(x;W (1)))) ≤ 1

2 (1 + n−Ω(1)).

• The classifier sgn(f(x;W (t))) generalizes when Cn0.01 ≤ t ≤
√
n:116

P(x,y)∼Pclean(y ̸= sgn(f(x;W (t)))) ≤ exp(−Ω(n0.99∥µ∥4/p)) = exp(−Ω(n2.01)).

Theorem 3.1 shows that at time t = 1, the network achieves 100% training accuracy despite the117

constant fraction of flipped labels in the training data. The second part of the theorem shows that this118

overfitting is catastrophic as the test error is close to that of a random guess. On the other hand, by the119

first and third parts of the theorem, as long as the time step t satisfies Cn0.01 ≤ t ≤
√
n, the network120

continues to overfit to the training data while simultaneously achieving test error exp(−Ω(n2.01)),121

which guarantees a near-zero test error for large n. In particular, the network exhibits benign122

overfitting, and it achieves this by grokking. Notably, Theorem 3.1 is the first guarantee for benign123

overfitting in neural network classification for a nonlinear data distribution, in contrast to prior works124

which required linearly separable distributions (Frei et al., 2022b, 2023a; Cao et al., 2022; Xu & Gu,125

2023; Kou et al., 2023; Kornowski et al., 2023). In Appendix A.1, we provide an overview of the key126

ingredients to the proof of Theorem 3.1.127

4 Discussion128

We have shown that two-layer neural networks trained on XOR cluster data with random label noise129

by GD reveal both benign overfitting and grokking. There are a few natural questions for future130

research. First, our analysis requires an upper bound on the number of training steps due to technical131

reasons; it is intriguing to understand the generalization behavior as time grows to infinity. Second,132

our proof crucially relies upon the assumption that the training data are nearly-orthogonal which133

requires that the ambient dimension is large relative to the number of samples. Prior work has shown134

with experiments that overfitting is less benign in this setting when the dimension is small relative135

to the number of samples (Frei et al., 2022a, Fig. 2); a precise characterization of the effect of136

high-dimensional data on generalization remains open.137
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A.1 Proof Sketch214

A.1.1 Additional Notations215

We first introduce some additional notation. For a matrix X , denote its Frobenius norm by ∥X∥F216

and its spectral norm by ∥X∥. Denote the indicator function by I(·). Denote the cosine similarity217

of two vectors u, v by cossim(u, v) := ⟨u,v⟩
∥u∥∥v∥ . For a random variable X , denote its expectation by218

E[X]. Denote the c.d.f of standard normal distribution by Φ(·) and the p.d.f. of standard normal219

distribution by Φ′(·). Denote Φ̄(·) = 1− Φ(·). Denote the Bernoulli distribution which takes 1 with220

probability p ∈ (0, 1) by Bern(p). Denote the Binomial distribution with size n and probability p221

by B(n, p). For a random variable X , denote its variance by Var(X); and its absolute third central222

moment by ρ(X). For i ∈ [n], let x̄i ∈ centers = {±µ1,±µ2} be the mean of the Gaussian from223

which the sample (xi, yi) is drawn from. For each ν ∈ centers, define Iν = {i ∈ [n] : x̄i = ν}, i.e.,224

the set of indices i such that xi belongs to the cluster centered at ν. Thus, {Iν}ν∈centers is a partition225

of [n]. Moreover, define C = {i ∈ [n] : yi = ỹi} and N = {i ∈ [n] : yi ̸= ỹi} to be the set of clean226

and noisy samples, respectively. Further we define for each ν ∈ centers the following sets:227

Cν := C ∩ Iν and Nν := N ∩ Iν .
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Let cν = |Cν | and nν = |Nν |. Define the training input data matrix X = [x1, . . . , xn]
⊤. Let228

ε ∈ (0, 10−3/4) be a universal constant.229

In Appendix A.1.2, we present several properties satisfied with high probability by the training data230

and random initialization, which are crucial in our proof. In Appendix A.1.3, we outline the major231

steps in the proof of Theorem 3.1.232

A.1.2 Properties of the Training Data and Random Initialization233

Lemma A.1 (Properties of training data). Suppose Assumptions (A1) and (A2) hold. Let the training234

data {(xi, yi)}ni=1 be sampled i.i.d from P as in Definition 2.1. With probability at least 1−O(n−ε)235

the training data satisfy properties (E1)-(E4) defined below.236

(E1) For all k ∈ [n], max
ν∈centers

⟨xk − x̄k, ν⟩ ≤ 10
√
log n∥µ∥ and |∥xk∥2 − p− ∥µ∥2| ≤ 10

√
p log n,237

(E2) For each i, k ∈ [n] such that i ̸= k, we have |⟨xi, xk⟩ − ⟨x̄i, x̄k⟩| ≤ 10
√
p log n,238

(E3) For ν ∈ centers, we have |cν + nν − n/4| ≤
√
εn log n and |nν − ηn| ≤ η

√
εn log n.239

(E4) For ν ∈ centers, we have |cν + nν − c−ν − n−ν | ≥ n1/2−ε and |nν − n−ν | ≥ ηn1/2−ε.240

Denote by Gdata the set of training data satisfying conditions (E1)-(E4). Thus, the result can be stated241

succinctly as P(X ∈ Gdata) ≥ 1−O(n−ε).242

The proof of Lemma A.1 can be found in Appendix A.2.1. Conditions (E1) and (E2) are essentially243

the same as Frei et al. (2022b, Lemma 4.3) or Chatterji & Long (2021b, Lemma 10). Conditions244

(E3) and (E4) concern the number of clean and noisy examples in each cluster, and can be proved by245

concentration and anti-concentration arguments, respectively.246

Lemma A.1 has an important corollary.247

Corollary A.2 (Near-orthogonality of training data). Suppose Assumptions (A1), (A2), and Condi-248

tions (E1), (E2) from Lemma A.1 all hold. Then249

|cossim(xi, xk)| ≤
2

Cn2

for all 1 ≤ i ̸= k ≤ n.250

This near-orthogonality comes from the high dimensionality of the feature space (i.e., Assump-251

tion (A2)) and will be crucially used throughout the proofs on optimization and generalization of the252

network. The proof of Corollary A.2 can be found in Appendix A.2.1.253

Next, we divide the neuron indices into two sets according to the sign of the corresponding second-254

layer weight:255

JPos := {j ∈ [m] : aj > 0}; JNeg := {j ∈ [m] : aj < 0}.
We will conveniently call them positive and negative neurons. Our next lemma shows that some256

properties of the random initialization hold with a large probability. The proof details can be found in257

Appendix A.3.1.258

Lemma A.3 (Properties of the random weight initialization). Suppose Assumptions (A2) and (A6)259

hold. The followings hold with probability at least 1−O(n−ε) over the random initialization:260

(D1)
∥∥W (0)

∥∥2
F
≤ 3

2ω
2
init mp, and (D2) |JPos| ≥ m/3 and |JNeg| ≥ m/3.261

Denote the set of W (0) satisfying condition (D1) by GW . Denote the set of a = (aj)
m
j=1 satisfying262

condition (D2) by GA. Then P(a ∈ GA,W
(0) ∈ GW ) ≥ 1−O(n−ε).263

We say that the sample i activates neuron j at time t if ⟨w(t)
j , xi⟩ > 0. Now, for each neuron j ∈ [m],264

time t ≥ 0 and ν ∈ centers, define the set of indices i of samples xi with clean (resp. noisy) labels265

from the cluster centered at ν that activates neuron j at time t:266

C(t)
ν,j := {i ∈ Cν : ⟨w(t)

j , xi⟩ > 0} (resp. N (t)
ν,j := {i ∈ Nν : ⟨w(t)

j , xi⟩ > 0}). (A.1)
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Moreover, we define267

d
(t)
ν,j := |C(t)

ν,j | − |N (t)
ν,j |, and D

(t)
ν,j := d

(t)
ν,j − d

(t)
−ν,j .

For κ ∈ [0, 1/2) and ν ∈ centers, a neuron j is said to be (ν, κ)-aligned if268

D
(0)
ν,j > n1/2−κ, and max{d(0)−ν,j , d

(0)
ν,j} < min{cν , c−ν} − 2(n+ν + n−ν)−

√
n (A.2)

The first condition ensures that at initialization, there are at least n1/2−κ many more samples from269

cluster ν activating the j-th neuron than from cluster −ν after accounting for cancellations from the270

noisy labels. The second is a technical condition necessary for trajectory analysis. A neuron j is said271

to be (±ν, κ)-aligned if it is either (ν, κ)-aligned or (−ν, κ)-aligned.272

Lemma A.4 (Properties of the interaction between training data and initial weights). Suppose273

Assumptions (A1)-(A3) and (A6) hold. Given a ∈ GA, X ∈ Gdata, the followings hold with probability274

at least 1−O(n−ε) over the random initialization W (0):275

(B1) For all i ∈ [n], the sample xi activates a large proportion of positive and negative neurons, i.e.,276

|{j ∈ JPos : ⟨w(0)
j , xi⟩ > 0}| ≥ m/7 and |{j ∈ JNeg : ⟨w(0)

j , xi⟩ > 0}| ≥ m/7 both hold.277

(B2) For all ν ∈ centers and κ ∈ [0, 1
2 ), both |{j ∈ JPos : j is (ν, κ)-aligned}| ≥ mn−10ε, and278

|{j ∈ JNeg : j is (ν, κ)-aligned}| ≥ mn−10ε.279

(B3) For all ν ∈ centers, we have
∣∣{j ∈ JPos : j is (±ν, 20ε)-aligned}

∣∣ ≥ (1 − 10n−20ε)|JPos|.280

Moreover, the same statement holds if “JPos” is replaced with “JNeg” everywhere.281

(B4) For all ν ∈ centers and κ ∈ [0, 1
2 ), let J κ

ν,Pos := {j ∈ JPos : j is (ν, κ)-aligned}. Then282 ∑
j∈J κ

ν,Pos
(cν − nν − d

(0)
−ν,j) ≥ n

10 |J
κ
ν,Pos|. Moreover, the same statement holds if “JPos” is replaced283

with “JNeg” everywhere.284

Condition (B1) makes sure that the neurons spread uniformly at initialization so that each datapoint285

activates at least a constant fraction of positive and negative neurons. Condition (B2) guarantees that286

for each ν ∈ centers, there are a fraction of neurons aligning with ν more than −ν. Condition (B3)287

shows that most neurons will somewhat align with either ν or −ν. Condition (B4) is a technical288

concentration result. For proof details, see Appendix A.3.2.289

Define the set Ggood as290

Ggood := {(a,W (0), X) : a ∈ GA, X ∈ Gdata,W
(0) ∈ GW and conditions (B1)-(B4) hold},

whose probability is lower bounded by P((a,W (0), X) ∈ Ggood) ≥ 1 − O(n−ε). This is a conse-291

quence of Lemmas A.1, A.3 and A.4 (see Appendix A.3.3).292

Definition A.5. If the training data X and the initialization a,W (0) belong to Ggood, we define this293

circumstance as a “good run.”294

A.1.3 Proof Sketch for Theorem 3.1295

In order for the network to learn a generalizable solution for the XOR cluster distribution, we would296

like positive neurons’ (i.e., those with aj > 0) weights wj to align with ±µ1, and negative neurons’297

weights to align with ±µ2; we prove that this is satisfied for t ∈ [Cn0.01,
√
n]. However, for t = 1,298

we show that the network only approximates a linear classifier, which can fit the training data in high299

dimension but has trivial test error. Figure 3 plots the evolution of the distribution of positive neurons’300

projections onto both µ1 and µ2, confirming that these neurons are much more aligned with ±µ1 at a301

later training time, while they cannot distinguish ±µ1 and ±µ2 at t = 1.302

Below we give a sketch of the proofs, and details are in Appendix A.5.303

One-Step Catastrophic Overfitting: Under a good run, we have the following approximation for304

each neuron after the first iteration:305

w
(1)
j ≈ αaj

2n

n∑
i=1

I(⟨w(0)
j , xi⟩ > 0)yixi, j ∈ [m].
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Figure 3: Histograms of inner products between positive neurons and µ1 or µ2 pooled over 100
independent runs under the same setting as in Figure 1. Top (resp. bottom) row: Inner products
between positive neurons and µ1 (resp. µ2). While the distributions of the projections of positive
neurons w

(t)
j onto the µ1 and µ2 directions are nearly the same at times t = 0, 1, they become

significantly more aligned with ±µ1 over time. See Appendix A.7 for details of the experimental
setup.

For details of this approximation, see Appendix A.4.306

Let sij := I(⟨w(0)
j , xi⟩ > 0). Then, for sufficiently large m, we can approximate the neural network307

output at t = 1 as308

m∑
j=1

ajϕ(⟨w(1)
j , x⟩) ≈ α

2n

m∑
j=1

ajϕ(aj⟨
n∑

i=1

sijyixi, x⟩)

a.s.→ α

4n
⟨

n∑
i=1

E[sij ]yixi, x⟩ =
α

8n
⟨

n∑
i=1

yixi, x⟩.
(A.3)

The convergence above follows from Lemma A.6 below and that the first-layer weights and second-309

layer weights are independent at initialization. This implies that the neural network classifier310

sgn(f(·;W (1))) behaves similarly to the linear classifier sgn(⟨
∑n

i=1 yixi, ·⟩). It can be shown311

that this linear classifier achieves 100% training accuracy whenever the training data are near312

orthogonal (Frei et al., 2023b, Appendix D), but because each class has two clusters with opposing313

means, linear classifiers only achieve 50% test error for the XOR cluster distribution. Thus at time314

t = 1, the network is able to fit the training data but is not capable of generalizing.315

Lemma A.6. Let {aj} and {bj} be two independent sequences of random variables with aj
i.i.d.∼316

Unif{± 1√
m
}, and E[bj ] = b,E[|bj |] < ∞. Then

∑m
j=1 ajϕ(ajbj) → b/2 almost surely as m → ∞.317

Proof. Note that the ReLU function satisfies x = ϕ(x) − ϕ(−x), and E[ajϕ(ajbj)] = E[ϕ(bj) −318

ϕ(−bj)]/2m = E[bj ]/2m. Then the result follows from the strong law of large number.319

Multi-Step Generalization: Next, we show that positive (resp. negative) neurons gradually align320

with one of ±µ1 (resp. ±µ2), and forget both of ±µ2 (resp. ±µ1), making the network generalizable.321

Taking the direction +µ1 as an example, we define sets of neurons322

J1 = {j ∈ JPos : j is (+µ1, 20ε)-aligned}; J2 = {j ∈ JNeg : j is (±µ1, 20ε)-aligned}.

We have by conditions (B2)-(B3) of Lemma A.4 that under a good run,323

|J1| ≥ mn−10ε, |J2| ≥ (1− 10n−20ε)|JNeg|,

which implies that J1 contains a certain proportion of JPos and J2 covers most of JNeg. The next324

lemma shows that neurons in J1 will keep aligning with +µ1, but neurons in J2 will gradually forget325

+µ1.326
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Lemma A.7. Suppose that Assumptions (A1)-(A6) hold. Under a good run, we have that for327

1 ≤ t ≤
√
n,328

cossim(
∑
j∈J1

w
(t)
j ,+µ1) = Ω(

√
n∥µ∥
√
p

);

329

cossim(
∑
j∈J2

w
(t)
j ,+µ1) = O(

√
n∥µ∥
√
p

(
1

t
+

√
log n

n
)).

We can see that when t is large, cossim(
∑

j∈J2
w

(t)
j ,+µ1) = o(cossim(

∑
j∈J1

w
(t)
j ,+µ1)), thus330

for x ∼ N(+µ1, Ip), neurons with j ∈ J1 will dominate the output of f(x;W (t)). For the other331

three clusters centered at −µ1,+µ2,−µ2 we have similar results, which then lead the model to332

generalization. Formally, we have the following theorem on generalization.333

Theorem A.8. Suppose that Assumptions (A1)-(A6) hold. Under a good run, for Cn10ε ≤ t ≤
√
n,334

the generalization error of classifier sgn(f(x,W (t))) has an upper bound335

P(x,y)∼Pclean(y ̸= sgn(f(x;W (t)))) ≤ exp
(
− Ω(

n1−20ε∥µ∥4

p
)
)
.

A.2 Properties of the training data336

A.2.1 Proof of Lemma A.1337

Lemma A.1 (Properties of training data). Suppose Assumptions (A1) and (A2) hold. Let the training338

data {(xi, yi)}ni=1 be sampled i.i.d from P as in Definition 2.1. With probability at least 1−O(n−ε)339

the training data satisfy properties (E1)-(E4) defined below.340

(E1) For all k ∈ [n], max
ν∈centers

⟨xk − x̄k, ν⟩ ≤ 10
√
log n∥µ∥ and |∥xk∥2 − p− ∥µ∥2| ≤ 10

√
p log n,341

(E2) For each i, k ∈ [n] such that i ̸= k, we have |⟨xi, xk⟩ − ⟨x̄i, x̄k⟩| ≤ 10
√
p log n,342

(E3) For ν ∈ centers, we have |cν + nν − n/4| ≤
√
εn log n and |nν − ηn| ≤ η

√
εn log n.343

(E4) For ν ∈ centers, we have |cν + nν − c−ν − n−ν | ≥ n1/2−ε and |nν − n−ν | ≥ ηn1/2−ε.344

Denote by Gdata the set of training data satisfying conditions (E1)-(E4). Thus, the result can be stated345

succinctly as P(X ∈ Gdata) ≥ 1−O(n−ε).346

Proof. Before proceeding with the proof, we recall that centers = {±µ1,±µ2}. We first show that347

(E1) holds with large probability. To this end, fix k ∈ [n]. We have by the construction of xk in348

Section 2.2 that xk ∼ N(x̄k, Ip) for some x̄k ∈ {±µ1,±µ2}. Let ξk = xk − x̄k. By Lemma A.26,349

we have350

P
(
∥ξk∥ >

√
p(t+ 1)

)
≤ P

(∣∣∥ξk∥2 − p
∣∣ > pt

)
≤ 2 exp(−pt2/8), ∀t ∈ (0, 1). (A.4)

Note that for any fixed non-zero vector ν ∈ Rp, we have ⟨ν, ξk⟩ ∼ N(0, ∥ν∥2). Therefore, again by351

Lemma A.26, we have352

P(|⟨ν, ξk⟩| > t∥ν∥) ≤ exp(−t2/2), ∀t ≥ 1 (A.5)

where the parameter t in both inequality will be chosen later. To show that the first inequality of353

(E1) holds w.h.p, we show the complement event Fk := {maxν∈centers⟨ξk, ν⟩ > t∥µ∥} has low354

probability. Applying the union bound,355

P(Fk) ≤
∑

ν∈{±µ1,±µ2}

P(|⟨ξk, ν⟩| > t∥µ∥) ∵ Union bound

≤ 4 exp(−t2/2) ∵ Inequality (A.5).

Let δ := n−ε. Picking t =
√
2 log(16n/δ) in inequality (A.5) and applying the union bound again,356

we have357

P(
⋃n

k=1 Fk) ≤ 4n exp(−t2/2) ≤ δ/4. (A.6)
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Next, fix t1 ∈ (0, 1) and t2 ≥ 1 arbitrary. To show that the second inequality of (E1) holds w.h.p, we358

first prove an intermediate step: the complement event Ek := {|∥xk∥2 − p−∥µ∥2| > pt1 +2∥µ∥t2}359

has low probability. Towards this, first note that since360

∥xk∥2 = ∥x̄k∥2 + ∥ξk∥2 + 2⟨x̄k, ξk⟩ = ∥µ∥2 + ∥ξk∥2 + 2⟨x̄k, ξk⟩

we have the alternative characterization of Ek as361

Ek = {|∥ξk∥2 − p+ 2⟨x̄k, ξk⟩| > pt1 + 2∥µ∥t2}.

Next, recall the fact: if X,Y ∈ R are random variables and a, b ∈ R are constants, then362

P(|X + Y | > a+ b) ≤ P(|X| > a) + P(|Y | > b). (A.7)

To see this, first note that |X + Y | ≤ |X|+ |Y | by the triangle inequality. From this we deduce that363

P(|X + Y | > a+ b) ≤ P(|X|+ |Y | > a+ b). Now, by the union bound, we have364

P(|X|+ |Y | > a+ b) ≤ P({|X| > a} ∪ {|Y | > b}) ≤ P(|X| > a) + P(|Y | > b)

which proves (A.7). Now, to upper bound P(Ek), note that365

P(Ek) = P(|∥ξk∥2 − p+ 2⟨x̄k, ξk⟩| > pt1 + 2∥µ∥t2)
≤ P

(∣∣∥ξk∥2 − p
∣∣ > pt1

)
+ P(|⟨x̄k, ξk⟩| > t2∥µ∥) ∵ Inequality (A.7)

≤ 2 exp(−pt21/8) + exp(−t22/2). ∵ Inequalities (A.4) and (A.5) (A.8)

Inequality (A.8) is the crucial intermediate step to proving the second inequality of (E1). It will be366

convenient to complete the proof of the second inequality of (E1) simultaneously with that of (E2).367

To this end, we next prove an analogous intermediate step to (E2).368

Fix s1, s2 ≥ 1 to be chosen later. Define the event Eij := {|⟨xi, xj⟩−⟨x̄i, x̄j⟩| > s1
√
p+2t2∥µ∥} for369

each pair i, j ∈ [n] such that 1 ≤ i ̸= j ≤ n. We upper bound P(Eij) in similar fashion as in (A.8). To370

this end, fix i, j ∈ [n] such that i ̸= j. Note that the identity ⟨xi, xj⟩ = ξ⊤i ξj + x̄⊤
i x̄j + ξ⊤i x̄j + ξ⊤j x̄i371

implies that |⟨xi, xj⟩ − ⟨x̄i, x̄j⟩| = |ξ⊤i ξj + ξ⊤i x̄j + ξ⊤j x̄i|. Now, we claim that372

P(Eij) = P(|ξ⊤i ξj + ξ⊤i x̄j + ξ⊤j x̄i| ≥ s1
√
p+ 2t2∥µ∥)

≤ P(|ξ⊤i ξj | > s1
√
p) + P(|ξ⊤i x̄j | > t2∥µ∥) + P(|ξ⊤j x̄i| > t2∥µ∥)

≤ exp(−s21/2s2) + 2 exp(−p(s2 − 1)2/8) + 2 exp(−t22/2), (A.9)

The first inequality simply follows from applying (A.7) twice. Moreover, P(|ξ⊤i x̄j | > t2∥µ∥) and373

P(|ξ⊤j x̄i| > t2∥µ∥) ≤ exp(−t22/2) follows from (A.5). To prove the claim, it remains to prove374

P(|⟨ξi, ξj⟩| > s1
√
p)

≤ P
(
|⟨ξi, ξj⟩| > s1

√
p
∣∣ ∥ξj∥ ≤ √

s2p
)
+ P(∥ξj∥ >

√
s2p) ∵ law of total expectation

≤ exp(−s21/2s2) + 2 exp(−p(s2 − 1)2/8). (A.10)

To prove the inequality at (A.10), first we get P(∥ξj∥ >
√
s2p) ≤ 2 exp(−p(s2−1)2/8) by applying375

(A.4) to upper bounds the second summand of the left-hand side of (A.10). For upper bounding the376

first summand, first let P
(
|⟨ξi, ξj⟩| > s1

√
p
∣∣ ξj) be the conditional probability conditioned on a377

realization of ξj (while ξi remains random). Then by definition378

P
(
|⟨ξi, ξj⟩| > s1

√
p
∣∣ ∥ξj∥ ≤ √

s2p
)
= Eξj [P

(
|⟨ξi, ξj⟩| > s1

√
p
∣∣ ξj) ∣∣ ∥ξj∥ ≤ √

s2p ]. (A.11)

For fixed ξj such that ∥ξj∥ ≤ √
s2p, we have by (A.5) that379

P
(
|⟨ξi, ξj⟩| > s1

√
p
∣∣ ξj) = P

(
|⟨ξi, ξj⟩| > ∥ξj∥(s1

√
p/∥ξj∥)

∣∣ ξj) ≤ exp(−(s1
√
p/∥ξj∥)2/2).

Continue to assume fixed ξj such that ∥ξj∥ ≤ √
s2p, note that s1

√
p/∥ξj∥ ≥ s1

√
p/

√
s2p = s1/

√
s2380

implies381

exp(−(s1
√
p/∥ξj∥)2/2) ≤ exp(−(s1/

√
s2)

2/2).

Hence, P
(
|⟨ξi, ξj⟩| > s1

√
p
∣∣ ξj) ≤ exp(−s21/2s2). Applying Eξj [ ·

∣∣ ∥ξj∥ ≤ √
s2p ] to both side

of the preceding inequality, we get P
(
|⟨ξi, ξj⟩| > s1

√
p
∣∣ ∥ξj∥ ≤ √

s2p
)
≤ exp(−s21/2s2) which
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upper bounds the first summand of the left-hand side of (A.10). We now choose the values for t1 =√
8 log(16n/δ)/p, t2 =

√
2 log(16n2/δ), s1 = 2

√
log(8n2/δ), and s2 = 1 +

√
8 log(16n2/δ)/p.

Recall that δ = n−ε and n is sufficiently large, then we have√
log(16n2/δ)/p =

√
log(16n2+ε)/p ≤

√
3 log(16n)/p ≤ 1

by Assumptions (A1) and (A2). Combining (A.8) and (A.9) then applying the union bound, we have382

P((∪n
k=1Ek) ∪ (∪i,j∈[n]:i̸=jEij)) ≤

∑n
k=1 P(Ek) +

∑
i,j∈[n]:i ̸=j P(Eij)

≤ 2n exp(−pt21
8 ) + n2[2 exp(− t22

2 ) + exp(− s21
2s2

) + 2 exp(−p(s2−1)2

8 )] ≤ δ.
(A.12)

Moreover, plugging the above values of t1, t2 and s1 into the definition of Ek and Eij , we see that383

(E1) and (E2) are satisfied since they contain the complement of the event in (A.12).384

Next, show that (E3) holds with large probability. We prove the inequality involving |cν + nν − n/4|385

portion of (E3). Proofs for the rest of the inequalities in (E3) follow analogously using the same386

technique below. Recall from the data generation model, for each k ∈ [n], x̄k is sampled i.i.d ∼387

Unif{±µ1,±µ2}. Define the following indicator random variable:388

Iν(k) =
{
1 if x̄k = ν

0 otherwise,
for each k ∈ [n], and ν ∈ {±µ1,±µ2}

Then we have
∑

ν Iµ(k) = 1 for each k, and E[Iν(k)] = n/4 for each ν. Applying Hoeffding’s389

inequality, we obtain390

P(|
∑n

k=1 Iν(k)− n/4| > t
√
n) ≤ 2 exp(−2t2).

Applying the union bound, we have391

P(maxν |
∑n

k=1 Iν(k)− n/4| > t
√
n) ≤ 8 exp(−2t2). (A.13)

Thus we can bound the above tail probability by O(δ) by letting t =
√
log(1/δ)/2, and the upper392

bound t
√
n ≤

√
n log(1/δ) =

√
nε log(n).393

Next, show that (E4) holds with large probability. We prove the inequality involving |cν + nν −394

c−ν − n−ν | portion of (E4). Proofs for the rest of the inequalities in (E4) follow analogously using395

the same technique below. Note that for each k,396

E[Iν(k)− I−ν(k)] = 0; E[|Iν(k)− I−ν(k)|l] =
1

4
for any l ≥ 1.

It yields that397

ρ(Iν(k)− I−ν(k))/Var(Iν(k)− I−ν(k))
3/2 = 2.

Applying the Berry-Esseen theorem (Lemma A.28), we have398

P(|cν + nν − c−ν − n−ν | > t
√
n) = P(|

n∑
k=1

(Iν(k)− I−ν(k))| > t
√
n) ≥ 2Φ̄(2t)− 12√

n
.

Let t = n−ε. By Φ(t) ≤ 1/2 + Φ′(0)t, we have399

P(|
n∑

k=1

(Iν(k)− I−ν(k))| > t
√
n) ≥ 1− 4√

2πnε
− 12√

n
= 1−O(δ). (A.14)

Combining (A.6), (A.12)-(A.14), we prove that conditions (E1)-(E4) hold with probability at least400

1−O(δ) over the randomness of the training data.401
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A.2.2 Proof of Corollary A.2402

Corollary A.2 (Near-orthogonality of training data). Suppose Assumptions (A1), (A2), and Condi-403

tions (E1), (E2) from Lemma A.1 all hold. Then404

|cossim(xi, xk)| ≤
2

Cn2

for all 1 ≤ i ̸= k ≤ n.405

Proof. By Lemma A.1, we have that under (E1) and (E2), when i ̸= j,406

|⟨xi, xj⟩|
∥xi∥ · ∥xj∥

≤
∥µ∥2 + Cn

√
p

p+ ∥µ∥2 − Cn
√
p
≤ 2∥µ∥2

p
≤ 2

Cn2
,

for sufficiently large p. Here the second inequality comes from Assumption (A1); and the last407

inequality comes from Assumption (A2).408

A.3 Properties of the initial weights and activation patterns409

We begin with additional notations that is used for the proofs of Lemmas A.3 and A.4. Following the410

notations in Xu & Gu (2023), we simplify the notation of JPos and JNeg defined in Section A.1 as411

JP := JPos = {j ∈ [m] : aj > 0}; JN := JNeg = {j ∈ [m] : aj < 0}.

We denote the set of pairs (i, j) such that the neuron j is active with respect to the sample xi at time t412

by A(t), i.e., define413

A(t) := {(i, j) ∈ [n]× [m] : ⟨w(t)
j , xi⟩ > 0}.

Define subsets Ai,(t) and A(t)
j of A(t) where i (resp. j) is a sample (resp. neuron) index:414

Ai,(t) := {j ∈ [m] : ⟨w(t)
j , xi⟩ > 0},

415

A(t)
j := {i ∈ [n] : ⟨w(t)

j , xi⟩ > 0}.

Define416

C(t)
ν,j = Cν ∩ A(t)

j ; N (t)
ν,j = Nν ∩ A(t)

j , for j ∈ [m], ν ∈ centers.

Note that the above definition is equivalent to (A.1) from the main text.417

Let n±ν := nν + n−ν . For ν ∈ centers, we denote the sets of indices j of (ν, κ)-aligned neurons418

(see (A.2) in the main text for the definition of (ν, κ)-aligned-ness) with parameter κ ∈ [0, 1
2 ):419

J κ
ν := {j ∈ [m] : D

(0)
ν,j > n1/2−κ, and d

(0)
−ν,j < min{cν , c−ν} − 2n±ν −

√
n}.

Thus, we have by definition that420

J κ
ν = {j ∈ JP : neuron j is (ν, κ)-aligned}

Further we denote421

J i,(t)
P = JP ∩ Ai,(t); J i,(t)

N = JN ∩ Ai,(t). (A.15)

Finally, we denote422

J κ
ν,P = JP ∩ J κ

ν ; J κ
ν,N = JN ∩ J κ

ν . (A.16)

A.3.1 Proof of Lemma A.3423

Lemma A.3 (Properties of the random weight initialization). Suppose Assumptions (A2) and (A6)424

hold. The followings hold with probability at least 1−O(n−ε) over the random initialization:425

(D1)
∥∥W (0)

∥∥2
F
≤ 3

2ω
2
init mp, and (D2) |JPos| ≥ m/3 and |JNeg| ≥ m/3.426
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Denote the set of W (0) satisfying condition (D1) by GW . Denote the set of a = (aj)
m
j=1 satisfying427

condition (D2) by GA. Then P(a ∈ GA,W
(0) ∈ GW ) ≥ 1−O(n−ε).428

Proof. Recall earlier for simplicity, we defined for simplicity JP = JPos and JN = JNeg. Let429

δ = n−ε. Then (D1) is proved to hold with probability 1 − O(δ) in the Lemma 4.2 of Frei et al.430

(2022b). For (D2), since |JP| and |JN| both follow distribution B(m, 1/2), it suffices to show that431

P(|JP| ≥ m/3) ≥ 1− δ. Applying Hoeffding’s inequality, we have432

P(|JP| ≤ m/3) = P(|JP| −m/2 ≤ −m/6) ≤ exp(−m/18) ≤ δ,

where the last inequality comes from Assumption (A6).433

A.3.2 Proof of Lemma A.4434

Lemma A.4 (Properties of the interaction between training data and initial weights). Suppose435

Assumptions (A1)-(A3) and (A6) hold. Given a ∈ GA, X ∈ Gdata, the followings hold with probability436

at least 1−O(n−ε) over the random initialization W (0):437

(B1) For all i ∈ [n], the sample xi activates a large proportion of positive and negative neurons, i.e.,438

|{j ∈ JPos : ⟨w(0)
j , xi⟩ > 0}| ≥ m/7 and |{j ∈ JNeg : ⟨w(0)

j , xi⟩ > 0}| ≥ m/7 both hold.439

(B2) For all ν ∈ centers and κ ∈ [0, 1
2 ), both |{j ∈ JPos : j is (ν, κ)-aligned}| ≥ mn−10ε, and440

|{j ∈ JNeg : j is (ν, κ)-aligned}| ≥ mn−10ε.441

(B3) For all ν ∈ centers, we have
∣∣{j ∈ JPos : j is (±ν, 20ε)-aligned}

∣∣ ≥ (1 − 10n−20ε)|JPos|.442

Moreover, the same statement holds if “JPos” is replaced with “JNeg” everywhere.443

(B4) For all ν ∈ centers and κ ∈ [0, 1
2 ), let J κ

ν,Pos := {j ∈ JPos : j is (ν, κ)-aligned}. Then444 ∑
j∈J κ

ν,Pos
(cν − nν − d

(0)
−ν,j) ≥ n

10 |J
κ
ν,Pos|. Moreover, the same statement holds if “JPos” is replaced445

with “JNeg” everywhere.446

Before we proceed with the proof of Lemma A.4, we consider the following restatements of (B1)447

through (B4):448

(B’1) For each i ∈ [n], xi activates a constant fraction of neurons initially, i.e. for each i ∈ [n] the
sets J i,(0)

P and J i,(0)
N defined at (A.15) satisfy

|J i,(0)
P | ≥ m/7 and |J i,(0)

N | ≥ m/7.

(B’2) For ν ∈ centers and κ ∈ [0, 1/2), we have min{|J κ
ν,P|, |J κ

ν,N|} ≥ mn−10ε.449

(B’3) For ν ∈ centers, we have
∣∣J 20ε

ν,P ∪ J 20ε
−ν,P

∣∣ ≥ (1 − 10n−20ε)|JP| and
∣∣J 20ε

ν,N ∪ J 20ε
−ν,N

∣∣ ≥450

(1− 10n−20ε)|JN|.451

(B’4) For ν ∈ centers and κ ∈ [0, 1
2 ), we have

∑
j∈J (cν−d

(0)
−ν,j) ≥ n

10 |J |, where J ∈ {J κ
ν,P,J κ

ν,N}.452

Unwinding the definitions, we note that the (B’1) through (B’4) are equivalent to the (B1) through453

(B4) of Lemma A.4454

Proof. Let δ = n−ε. Throughout this proof, we implicitly condition on the fixed {aj} ∈ GA455

and {xi} ∈ Gdata, i.e., when writing a probability and expectation we write P( · |{aj}, {xi}) and456

E[ · |{aj}, {xi}] to denote P( · ) and E[ · ] respectively.457

Proof of condition (B1): Define the following events for each i ∈ [n]:458

Pi := {|J i,(0)
P | ≥ m/7}; Ni := {|J i,(0)

N | ≥ m/7}.

We first show that ∩n
i=1(Pi ∩ Ni) occurs with large probability. To this end, applying the union459

bound, we have460

P
(
∩n
i=1 (Pi ∩Ni)

)
= 1− P

(
∪n
i=1 (Pc

i ∪N c
i )
)
≥ 1−

n∑
i=1

(
P
(
Pc
i

)
+ P

(
N c

i

))
.
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Note that Pi and Ni are defined completely analogously corresponding to when aj > 0 and aj < 0,461

respectively. Thus, to prove (B1), it suffices to show that P(Pc
i ) ≤ δ/(4n) for each i, or equivalently,462

P
( ∑
j∈JP

Uj ≤
m

7

)
≤ δ

4n

holds for each i ∈ [n], where Uj := I(⟨w(0)
j , xi⟩ > 0). Note that given xi and JP, {Uj}j∈JP

are i.i.d463

Bernoulli random variables with mean 1/2, thus we have464

P
( ∑
j∈JP

Uj ≤
m

7

)
≤ P

( ∑
j∈JP

(Uj −
1

2
) ≤ (

1

7
− 1

6
)m
)
≤ exp(−2m(

1

6
− 1

7
)2) ≤ δ

4n
,

where the first inequality uses |JP| ≥ m/3; the second inequality comes from Hoeffding’s inequality;465

and the third inequality uses Assumption (A6). Now we have proved that (B1) holds with probability466

at least 1− δ/2.467

Proof of condition (B2): Without loss of generality, we only prove the results for J κ
ν,P. Note that468

J κ1
ν,P ⊆ J κ2

ν,P for κ1 < κ2. Thus we only consider the case κ = 0. It suffices to show that for each469

j ∈ [m],470

P(D(0)
ν,j >

√
n) ≥ 8n−10ε and P(d(0)µ,j ≥ min{cν , c−ν} − 2n±ν −

√
n) ≤ n−10ε, µ ∈ {±ν}.

(A.17)
Suppose (A.17) holds for any ν ∈ {±µ1,±µ2}. Applying the inequality P (A ∩B) ≥ 1− P (Ac)−471

P (Bc), we have472

P(D(0)
ν,j >

√
n, d

(0)
µ,j < min{cν , c−ν} − 2n±ν −

√
n, µ ∈ {±ν}) ≥ 8n−10ε − 2n−10ε = 6n−10ε.

Then we have473

E[|Jν,P|] ≥ 6n−10ε|JP| ≥
2m

n10ε
,

where the last inequality uses min{|JP|, |JN|} ≥ m/3, which comes from the definition of GA. Note474

that given {aj} and {xi}, |Jν,P| is the summation of i.i.d Bernoulli random variables. Applying475

Hoeffding’s inequality, we obtain476

P(|Jν,P| ≤
m

n10ε
) ≤ P(|Jν,P| − E[|Jν,P|] ≤ − m

n10ε
) ≤ exp(− 2m2

n20ε|JP|
) ≤ n−ε,

where the last inequality uses |JP| = m − |JN| ≤ 2m/3, 20ε ≤ 0.01, and Assumption (A6).477

Applying the union bound, we have478

P(∩ν∈{±µ1,±µ2}{|Jν,P| > m/n10ε}) ≥ 1− 4n−ε.

Thus it remains to show (A.17). Without loss of generality, we will only prove (A.17) for ν = +µ1,479

which can be easily extended to other ν’s. Recall that X = [x1, . . . , xn]
⊤ is the given training data.480

Let V = Xw
(0)
j , then V ∼ N(0, XX⊤). Let Z = [z1, · · · , zn]⊤, zi = vi/∥xi∥, i ∈ [n]. Denote481

Σ = Cov(Z). Then Z ∼ N(0,Σ). By Corollary A.2, we have482

Σii = 1; |Σij | ≤
2

Cn2

for 1 ≤ i ̸= j ≤ n. Denote483

A1 = C+µ1 ∪N−µ1 ; A2 = C−µ1 ∪N+µ1 .

By the definition of Gdata and (E3) in Lemma A.1, we have484

||A1| − |A2|| ≤ |c+µ1
− c−µ1

|+ |n+µ1
− n−µ1

| ≤ (1 + η)
√
nε log(n); (A.18)

485

|A1|+ |A2| = c+µ1
+ n+µ1

+ c−µ1
+ n−µ1

≥ n

2
− 2
√
nε log(n) =

n

2
− o(n) (A.19)
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for sufficiently large n. Note that equivalently, we can rewrite D
(0)
+µ1,j

as486 ∑
i∈A1

I(zi > 0)−
∑
i∈A2

I(zi > 0). (A.20)

Since we want to give a lower bound for D(0)
+µ1,j

, below we only consider the case when |A1| < |A2|.487

With the new expression of D(0)
+µ1,j

, we have488

P(D(0)
+µ1,j

>
√
n) =

⌊|A1|−
√
n⌋∑

k=0

∑
B2⊆A2

|B2|=k

∑
B1⊆A1

|B1|>k+
√
n

E
[ ∏
i∈B1∪B2

I(zi > 0)·
∏

i∈(A1\B1)∪(A2\B2)

I(zi ≤ 0)
]
.

(A.21)
By Lemma A.25, we have489

E
[ ∏
i∈B1∪B2

I(zi > 0) ·
∏

i∈(A1\B1)∪(A2\B2)

I(zi ≤ 0)
]
≥ γ|A1|+|A2|, (A.22)

where γ = 1/2 − 4/(Cn). Let Z ′ = [z′1, · · · , z′n]⊤ ∼ N(0, In). Denote ∆j :=
∑

i∈A1
I(z′i >490

0)−
∑

i∈A2
I(z′i > 0), and n∆ = |A1|+ |A2|. Then we have ∆j ∼ B(|A1|, 1/2)−B(|A2|, 1/2),491

E[∆j ] = (|A1| − |A2|)/2, and492

E[∆j ]√
n∆

≥
−(1 + η)

√
nε log(n)

2
√

n/2− o(n)
≥ −

√
nε log(n) (A.23)

by (A.18) and (A.19). Here the last inequality comes from Assumption (A3). Combining (A.21) and493

(A.22), we have494

P(D(0)
+µ1,j

>
√
n) ≥

⌊|A1|−
√
n⌋∑

k=0

∑
B2⊆A2

|B2|=k

∑
B1⊆A1

|B1|>k+
√
n

γ|A1|+|A2|

= (2γ)|A1|+|A2|
⌊|A1|−

√
n⌋∑

k=0

∑
B2⊆A2

|B2|=k

∑
B1⊆A1

|B1|>k+
√
n

(
1

2
)|A1|+|A2|

= (2γ)|A1|+|A2|P(∆j >
√
n)

≥ (1− 8

Cn
)nP(∆j >

√
n) ≥ (1− 8

C
)P(∆j >

√
n),

(A.24)

where the second equation uses the decomposition of P(∆j >
√
n); the second inequality uses495

|A1|+ |A2| ≤ n; and the last inequality uses f(n) = (1− 8/(Cn))n is a monotonically increasing496

function for n ≥ 1. Note that497

P(∆j >
√
n) = P

(∆j − E[∆j ]√
n∆/2

>

√
n− E[∆j ]√
n∆/2

)
≥ Φ̄

(√n− E[∆j ]√
n∆/2

)
−O(

1√
n
) ≥ Φ̄(2(

√
3 +

√
ε log(n)))−O(

1√
n
),

where the first inequality uses Berry-Esseen theorem (Lemma A.28), and the second inequality is498

from (A.19) and (A.23). If
√
ε log(n) ≤

√
3, then Φ̄(2(

√
3 +

√
ε log(n))) − O(1/

√
n) = Ω(1),499

which gives a constant lower bound for P(∆j >
√
n). If

√
ε log(n) >

√
3, we have500

Φ̄(2(
√
3 +

√
ε log(n))) ≥ Φ̄(4

√
ε log(n)) ≥ 1

8
√

2πε log(n)
exp(−8ε log(n))

=
1

8
√
2πε log(n)n8ε

≥ 17

n10ε
,
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for sufficiently large n. Here the second inequality uses Φ̄(x) ≥ Φ′(x)/(2x) for x ≥ 1. Combining501

both situations, we have502

P(∆j >
√
n) ≥ 17

n10ε
− CBE√

n/3
≥ 16

n10ε
(A.25)

for sufficiently large n. Combining (A.24) and (A.25), we have503

P(D(0)
+µ1,j

>
√
n) ≥ (1− 8

C
)
16

n10ε
≥ 8

n10ε

for C ≥ 16. It remains to prove504

P(d(0)µ,j ≥ min{c+µ1
, c−µ1

} − 2n±µ1
−
√
n) ≤ 1

n10ε
, µ ∈ {±µ1}.

Without loss of generality, below we prove it for µ = +µ1. According to condition (E3) in Lemma505

A.1, we have506

min{c+µ1
, c−µ1

} − 2n±µ1
−
√
n ≥ (

1

4
− 5η)n− 6

√
nε log(n)−

√
n ≥ (

1

5
− 5

C
)n ≥ n

6
(A.26)

for C ≥ 150 and sufficiently large n. Here the second inequality is from Assumption (A3). Thus it507

suffices to prove P(d(0)+µ1,j
≥ n/6) ≤ n−10ε. Note that508

d
(0)
+µ1,j

=
∑

i∈C+µ1

I(zi > 0)−
∑

i∈N+µ1

I(zi > 0).

Denote509

∆′
j :=

∑
i∈C+µ1

I(z′i > 0)−
∑

i∈N+µ1

I(z′i > 0).

Following the same proof procedure for the anti-concentration result of D(0)
+µ1,j

, we have510

P(d(0)+µ1,j
≥ n

6
) ≤ (2γ2)

c+µ1+n+µ1P(∆′
j ≥

n

6
),

where γ2 = 1/2 + 4/(Cn). According to condition (E3) in Lemma A.1, we have c+µ1
− n+µ1

≤511

(1/4− 2η)n+ 2
√
nε log(n). It yields that512

E[∆′
j ] =

c+µ1
− n+µ1

2
≤ (1/8− η)n+

√
nε log(n) ≤ n/7.

Applying Hoeffding’s inequality, we have513

P(∆′
j ≥ n/6) ≤ P(∆′

j − E[∆′
j ] ≥ n/42) ≤ exp(−Ω(n)).

Combining the inequalities above, we have514

P(d(0)+µ1,j
≥ n/6) ≤ (1 +

8

Cn
)c+µ1

+n+µ1P(∆′
j ≥ n/6) = exp(−Ω(n)) ≤ 1

n10ε
, (A.27)

where the equation uses (1 + 8/(Cn))c+µ1+n+µ1 ≤ (1 + 8/(Cn))n ≤ exp(8/C). Now we have515

completed the proof for (B2).516

Proof of condition (B3): Without loss of generality, we only prove the results for J 20ε
+µ1,P ∪ J 20ε

−µ1,P.517

By Berry-Essen theorem, we have518

P(|∆j | ≤ n1/2−20ε) = P
(∆j − E[∆j ]√

n∆/2
∈ [− E[∆j ]√

n∆/2
− 2

n20ε
,− E[∆j ]√

n∆/2
+

2

n20ε
]
)

≤ 2[Φ(
2

n20ε
)− Φ(0)] +O(

1√
n
) ≤ 4n−20ε,

where the first inequality uses Φ(b)−Φ(a) ≤ 2(Φ((b− a)/2)−Φ(0)), b ≥ a; the second inequality519

uses Φ(x)− Φ(0) ≤ Φ′(0)x, x ≥ 0 and 20ε < 1/2. It yields that520

P(|D(0)
+µ1,j

| ≤ n1/2−20ε) ≤ 2P(|∆j | ≤ n1/2−20ε) ≤ 8n−20ε,
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where the first inequality is from Lemma A.24. Combined with (A.26) and (A.27), we have521

P(|D(0)
ν,j | > n1/2−20ε, d

(0)
ν,j < min{cν , c−ν} − 2n±ν −

√
n, ν ∈ {±µ1})

≥ P(|D(0)
ν,j | > n1/2−20ε, d

(0)
ν,j < n/6, ν ∈ {±µ1})

≥ 1− 8n−20ε − 2 exp(−Ω(n)) ≥ 1− 9n−20ε,

where the second inequality uses D
(0)
ν,j = −D

(0)
−ν,j and P(∩n

i=1Ai) = 1 − P(∪n
i=1A

c
i ) ≥ 1 −522 ∑n

i=1 P(Ac
i ). Note that given {aj} and {xi}, |Jν,P ∪ J−ν,P| is the summation of i.i.d Bernoulli523

random variables with expectation larger than 1 − 9n−20ε. Applying Hoeffding’s inequality, we524

obtain525

P(|J 20ε
+µ1,P ∪ J 20ε

−µ1,P| < |JP|(1− 10n−20ε))

≤ P(|J 20ε
+µ1,P ∪ J 20ε

−µ1,P| − E[|J 20ε
+µ1,P ∪ J 20ε

−µ1,P|] < −|JP|n−20ε)

≤ exp(−2|JP|n−40ε) ≤ n−ε,

where the first inequality uses E[|J 20ε
+µ1,P ∪ J−µ1,P|] ≥ |J 20ε

P |(1− 9n−20ε) and the last inequality is526

from Assumption (A6) and 40ε < 0.01.527

Proof of condition (B4): Lastly we show that (B4) also holds with probability at least 1−O(n−ε).528

Without loss of generality, we only prove it for J κ
+µ1,P. Referring back to the definition of J κ

+µ1,P in529

equation (A.16), it is crucial to note that it solely imposes upper bounds on d
(0)
−µ1,j

. Consequently,530

the average of d(0)−µ1,j
in J κ

+µ1,P is no more than the average of d(0)−µ1,j
in JP, which imposes no531

constraints on d
(0)
−µ1,j

. Armed with this understanding, when |J κ
+µ1,P| > 0, we have that with532

probability 1,533

1

|J κ
+µ1,P|

∑
j∈J κ

+µ1,P

(c+µ1 − n+µ1 − d
(0)
−µ1,j

) ≥ 1

|JP|
∑
j∈JP

(c+µ1 − n+µ1 − d
(0)
−µ1,j

).

Thus it suffices to show that534

1

|JP|
∑
j∈JP

(c+µ1
− n+µ1

− d
(0)
−µ1,j

) ≥ n

10
(A.28)

with probability at least 1−O(δ). Note that given the training data X , {d(0)−µ1,j
}mj=1 are i.i.d random535

variables with E[d(0)−µ1,j
] = (c−µ1 − n−µ1)/2, which comes from the symmetry of the distribution of536

w
(0)
j . Then we have537

E[c+µ1 − n+µ1 − d
(0)
−µ1,j

] = c+µ1 − n+µ1(c−µ1 − n−µ1)/2 ≥ (
1

8
− 5η)n− 5

√
nε log(n) ≥ n

9
.

(A.29)
Here the first inequality uses (E3) in Lemma A.1 and the second inequality uses Assumption (A3).538

Applying Hoeffding’s inequality, we obtain539

P
( 1

|JP|
∑
j∈JP

(c+µ1 − n+µ1 − d
(0)
−µ1,j

) <
n

10

)
= P

( ∑
j∈JP

(d
(0)
−µ1,j

− E[d(0)−µ1,j
]) >

(
c+µ1 − n+µ1 −

n

10
− E[d(0)−µ1,j

]
)
|JP|

)
≤ P

( ∑
j∈JP

(d
(0)
−µ1,j

− E[d(0)−µ1,j
]) >

n

90
|JP|

)
≤ exp

(
− n2|JP|

4050(c−µ1 + n−µ1)
2

)
≤ δ,

where the first inequality uses (A.29), the second inequality uses Hoeffding’s inequality and the540

bounds of d(0)−µ1,j
, i.e. −n−µ1 ≤ d

(0)
−µ1,j

≤ c−µ1 , and the last inequality uses Assumption (A6). It541

proves (A.28).542
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Remark A.9. In the proof of (B2), note that when Σ = In, zi are independent with each other. Then543

(A.17) can be proved by applying Hoeffding’s inequality. In our setting, Σ is close to the identity544

matrix, which means that {zi} are weakly dependent and inspires us to prove similar results.545

A.3.3 Proof of the Probability bound of the “Good run" event546

Combining the probability lower bound parts of Lemma A.1,A.3 and A.4, we have547

P((a,W (0), X) ∈ Ggood)

≥ P(a ∈ GA, X ∈ Gdata, (B1)-(B4) are satisfied)− P(W (0) /∈ GW )

≥ P((B1)-(B4) are satisfied | a ∈ GA, X ∈ Gdata)P(a ∈ GA, X ∈ Gdata)−O(n−ε)

≥ (1−O(n−ε))(1−O(n−ε))−O(n−ε) = 1−O(n−ε),

as desired.548

A.4 Trajectory Analysis of the Neurons549

Let t ≥ 0 be an arbitrary step. Denote z
(t)
i := yif(xi;W

(t)), and h
(t)
i := g

(t)
i − 1/2. Then we can550

decompose (2.2) as551

w
(t+1)
j − w

(t)
j =

αaj

2n

∑n
i=1 ϕ

′(⟨w(t)
j , xi⟩)yixi +

αaj

n

∑n
i=1 h

(t)
i ϕ′(⟨w(t)

j , xi⟩)yixi. (A.30)

552

Remark A.10. When |z(t)i | is sufficiently small, we can use 1/2 as an approximation for the negative553

derivative of the logistic loss by first-order Taylor’s expansion and we will show that the training554

dynamics is nearly the same in the first O(p) steps.555

Lemma A.11. Suppose that Assumptions (A1)-(A6) hold. Under a good run, for 0 ≤ t ≤556

1/(
√
npα)− 2, we have maxi∈[n] |h

(t)
i | ≤ 2/n3/2.557

Lemma A.12. Suppose that Assumptions (A1)-(A6) hold. Under a good run, for 0 ≤ t ≤558

1/(
√
npα)− 2, we have that for each k ∈ [n],559 ∣∣∣⟨w(t+1)

j − w
(t)
j , xk⟩ −

αaj
2n

[
ykϕ

′(⟨w(t)
j , xk⟩)p+ yx̄k
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]
, and (A.31)∣∣∣⟨w(t+1)

j − w
(t)
j , ν⟩ − αaj
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yνD

(t)
ν,j∥µ∥

2
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n3/2
√
m
∥µ∥2. (A.32)

where Cn := 10
√
log(n), x̄k ∈ centers is defined as the cluster mean for sample (xk, yk), and yν560

is defined as the clean label for cluster centered at ν (i.e. yν = 1 for ν ∈ {±µ1}, yν = −1 for561

ν ∈ {±µ2}).562

Taking a closer look at (A.31), we see that if ajyk > 0, and xk activates neuron wj at time s, then xk563

will activate neuron w
(t)
j for any t ∈ [s, 1/(

√
npα) − 2]. Moreover, if ajyk < 0, and xk activates564

neuron wj at time s, then xk will not activate neuron wj at time s+ 1, which implies that there is an565

upper bound for the inner product ⟨w(t)
j , xk⟩. These observations are stated as the corollary below:566

Corollary A.13. Suppose that Assumptions (A1)-(A6) hold. Under a good run, for any pair (j, k) ∈567

[m]× [n], the following is true:568

(F1) When ajyk > 0, if there exists some 0 ≤ s < 1/(
√
npα)− 2 such that ⟨w(s)

j , xk⟩ > 0, then for569

any s ≤ t ≤ 1/(
√
npα)− 2, we have ⟨w(t)

j , xk⟩ > 0.570

(F2) When ajyk < 0, for any 0 ≤ t ≤ 1/(
√
npα)− 2 we have that ⟨w(t)

j , xk⟩ ≤ α√
m
∥µ∥2.571

(F3) When ajyk < 0, for any 0 ≤ t ≤ 1/(
√
npα) − 3 we have that ⟨w(t)

j , xk⟩ > 0 implies572

⟨w(t+1)
j , xk⟩ < 0.573
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A.4.1 Proof of Lemma A.11574

Lemma A.11. Suppose that Assumptions (A1)-(A6) hold. Under a good run, for 0 ≤ t ≤575

1/(
√
npα)− 2, we have maxi∈[n] |h

(t)
i | ≤ 2/n3/2.576

Proof. It suffices to show that for 0 ≤ t ≤ 1/(
√
npα)− 2,577

max
i∈[n]

|h(t)
i | ≤ 2αp

n
(t+ 2).

We prove the result by an induction on t. Denote578

P (t) : max
i∈[n]

|h(τ)
i | ≤ 2αp

n
(t+ 2), ∀τ ≤ t.

When t = 0, we have579

|h(0)
i | ≤ pωinit

√
3m

2
≤

√
3α∥µ∥2

4nm
≤ 4αp

n
by Lemma A.18, Assumption (A2) and (A5). Thus P (0) holds. Suppose P (t) holds and t ≤580

1/(
√
npα)− 3, then we have581

|h(τ)
i | ≤ 2αp√

n
(τ + 2) ≤ 2√

n
;

1

2
− 2√

n
≤ g

(τ)
i ≤ 1

2
+

2√
n
, ∀τ ≤ t,

which yields that maxi∈[n] g
(τ)
i ≤ 1. Further we have that for each pair (j, k) ∈ [m]× [n],582

|⟨w(τ+1)
j − w

(τ)
j , xk⟩| =

∣∣αaj
n

n∑
i=1

g
(τ)
i ϕ′(⟨w(τ)

j , xi⟩)yi⟨xi, xk⟩
∣∣

≤ α

n
√
m

max
i∈[n]

g
(τ)
i (2p+ 2n∥µ∥2) ≤ 4αp

n
√
m
,

where the first inequality uses ∥xi∥2 ≤ 2p, |⟨xi, xj⟩| ≤ 2µ2, which comes from Lemma A.1, and the583

second inequality uses Assumption (A2). It yields that for each pair (j, k) ∈ [m]× [n],584

|⟨w(t+1)
j , xk⟩| ≤

t∑
τ=0

|⟨w(τ+1)
j −w

(τ)
j , xk⟩|+|⟨w(0)

j , xk⟩| ≤
4αp

n
√
m
(t+1)+

√
2p∥w(0)

j ∥ ≤ 4αp

n
√
m
(t+2),

where the last inequality uses Lemma A.3 and Assumption (A5). Then we have that for each k ∈ [n],585

|f(xk;W
(t+1))| ≤

m∑
j=1

|aj⟨w(t+1)
j , xk⟩| ≤

√
m max

j∈[m]
|⟨w(t+1)

j , xk⟩| ≤
4αp

n
(t+ 2).

By |1/(1 + exp(z))− 1/2| ≤ |z|/2,∀z, we have for each i ∈ [n],586

|h(t+1)
i | ≤ 1

2
|z(t+1)

i | = 1

2
|f(xi;W

(t+1))| ≤ 2αp

n
(t+ 2).

Thus P (t+ 1) is proved.587
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A.4.2 Proof of Lemma A.12588

Lemma A.12. Suppose that Assumptions (A1)-(A6) hold. Under a good run, for 0 ≤ t ≤589

1/(
√
npα)− 2, we have that for each k ∈ [n],590 ∣∣∣⟨w(t+1)

j − w
(t)
j , xk⟩ −

αaj
2n

[
ykϕ

′(⟨w(t)
j , xk⟩)p+ yx̄k

D
(t)
x̄k,j

∥µ∥2
]∣∣∣

≤ 4α
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√
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[
ϕ′(⟨w(t)

j , xk⟩)p+
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]
, and (A.31)∣∣∣⟨w(t+1)

j − w
(t)
j , ν⟩ − αaj

2n
yνD

(t)
ν,j∥µ∥

2
∣∣∣ ≤ 5α

n3/2
√
m
∥µ∥2. (A.32)

where Cn := 10
√
log(n), x̄k ∈ centers is defined as the cluster mean for sample (xk, yk), and yν591

is defined as the clean label for cluster centered at ν (i.e. yν = 1 for ν ∈ {±µ1}, yν = −1 for592

ν ∈ {±µ2}).593

Proof. First we have594 ∣∣∣αaj
n

n∑
i=1

h
(t)
i ϕ′(⟨w(t)

j , xi⟩)yi⟨xi, xk⟩
∣∣∣ ≤ 2α

n5/2
√
m

n∑
i=1

ϕ′(⟨w(t)
j , xi⟩)|⟨xi, xk⟩|

≤ 2α

n5/2
√
m

[
ϕ′(⟨w(t)

j , xk⟩)∥xk∥2 +
∑
i ̸=k

|⟨xi, xk⟩|
]

≤ 4α

n5/2
√
m

[
ϕ′(⟨w(t)

j , xk⟩)p+ n∥µ∥2
]
,

(A.33)

where the first inequality uses maxi h
(t)
i ≤ 2n−3/2, which is from Lemma A.11; the third inequality595

uses ∥xk∥2 ≤ 2p, |⟨xi, xk⟩| ≤ 2∥µ∥2, which is induced by Lemma A.1. Next we have the following596

decomposition:597

n∑
i=1

ϕ′(⟨w(t)
j , xi⟩)⟨yixi, xk⟩

=ykϕ
′(⟨w(t)

j , xk⟩)(∥xk∥2 − p− ∥µ∥2) +
∑
i ̸=k

ϕ′(⟨w(t)
j , xi⟩)yi(⟨xi, xk⟩ − ⟨x̄i, x̄k⟩)

+ ykϕ
′(⟨w(t)

j , xk⟩)(p+ ∥µ∥2) +
∑
i̸=k

ϕ′(⟨w(t)
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D
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ϕ′(⟨w(t)
j , xi⟩)yi⟨x̄i, x̄k⟩,

(A.34)

where the second equation uses the definition of D(t)
ν,j . Recall that Cn = 10

√
log(n). Combining598

with results in Lemma A.1, (A.34) yields that599 ∣∣∣ n∑
i=1

ϕ′(⟨w(t)
j , xi⟩)⟨yixi, xk⟩−

[
ykϕ

′(⟨w(t)
j , xk⟩)p+yx̄k

D
(t)
x̄k,j

∥µ∥2
]∣∣∣ ≤ nCn

√
p+2n∥µ∥ ≤ 2nCn

√
p,

(A.35)
where the first inequality uses (E1) and (E2) in Lemma A.1 and the second inequality uses Assumption600

(A2). Recall the decomposition (A.30) of the gradient descent update, we have601

⟨w(t+1)
j − w

(t)
j , xk⟩ =

αaj
2n

n∑
i=1

ϕ′(⟨w(t)
j , xi⟩)⟨yixi, xk⟩+

αaj
n

n∑
i=1

h
(t)
i ϕ′(⟨w(t)

j , xi⟩)⟨yixi, xk⟩

(A.36)
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Then combining (A.33), (A.35), and (A.36), we have602 ∣∣∣⟨w(t+1)
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αaj
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]
,

where the second inequality uses Assumption (A1) and the last inequality holds for large enough n.603

Now we turn to prove (A.32). Similar to (A.36), we have a decomposition for ⟨w(t+1)
j − w

(t)
j , ν⟩:604

⟨w(t+1)
j − w

(t)
j , ν⟩ = αaj

2n

n∑
i=1

ϕ′(⟨w(t)
j , xi⟩)⟨yixi, ν⟩+

αaj
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n∑
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h
(t)
i ϕ′(⟨w(t)

j , xi⟩)⟨yixi, ν⟩.

Similar to (A.33), we have605 ∣∣∣αaj
n
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i ϕ′(⟨w(t)

j , xi⟩)yi⟨xi, ν⟩
∣∣∣ ≤ 4α
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∥µ∥2

by Lemma A.11 and |⟨xi, ν⟩| ≤ 2∥µ∥2, which induced by (E1) in Lemma A.1. Similar to (A.35), we606

have607 ∣∣∣ n∑
i=1

ϕ′(⟨w(t)
j , xi⟩)⟨yixi, ν⟩ − yνD
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(A.37)
by (E1) in Lemma A.1. Combining the inequalities above, we have608 ∣∣∣⟨w(t+1)

j − w
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j , ν⟩ − αaj
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(t)
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∥µ∥2 + αCn
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√
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for large enough n. Here the last inequality uses609

∥µ∥2 ≥ Cn0.51√p ≥ C3/2n1.51∥µ∥,

which comes from Assumptions (A1)-(A2).610

A.4.3 Proof of Corollary A.13611

Corollary A.13. Suppose that Assumptions (A1)-(A6) hold. Under a good run, for any pair (j, k) ∈612

[m]× [n], the following is true:613

(F1) When ajyk > 0, if there exists some 0 ≤ s < 1/(
√
npα)− 2 such that ⟨w(s)

j , xk⟩ > 0, then for614

any s ≤ t ≤ 1/(
√
npα)− 2, we have ⟨w(t)

j , xk⟩ > 0.615

(F2) When ajyk < 0, for any 0 ≤ t ≤ 1/(
√
npα)− 2 we have that ⟨w(t)

j , xk⟩ ≤ α√
m
∥µ∥2.616

(F3) When ajyk < 0, for any 0 ≤ t ≤ 1/(
√
npα) − 3 we have that ⟨w(t)

j , xk⟩ > 0 implies617

⟨w(t+1)
j , xk⟩ < 0.618

Proof. (F1): It suffices to show the result holds for t = s+ 1, then by induction we can prove it for619

all s ≤ t ≤ 1/(
√
npα)− 2. Note that ajyk = 1/

√
m and ⟨w(s)

j , xk⟩ > 0, by (A.31), we have620
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> 0, (A.38)
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where the second inequality uses Assumption (A2).621

(F2): We prove (F2) by induction. Denote622

Q(t) : ⟨w(t)
j , xk⟩ ≤

α√
m
∥µ∥2.

When t = 0, by the definition of a good run, we have623

|⟨w(0)
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j ∥ · ∥xk∥ ≤ ∥W (0)∥F ·
√
2p ≤ ωinitp

√
3m ≤ α

Cn
√
m
∥µ∥2, (A.39)

where the second inequality uses Lemma A.1; the third inequality uses Lemma A.3; and the last624

inequality is from Assumption (A5). Thus Q(0) holds. Suppose Q(t) holds and t ≤ 1/(
√
npα)− 3.625

If ⟨w(t)
j , xk⟩ < 0, we have626
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where the second inequality uses (A.31) and ϕ′(⟨w(t)
j , xk⟩) = 0; and the third inequality uses627

D
(t)
ν,j ≤ n and n is large enough. If ⟨w(t)

j , xk⟩ > 0, we have628
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where the first inequality uses (A.31) and ϕ′(⟨w(t)
j , xk⟩) = 1; and the second inequality uses629

Assumption (A2). Combined with the inductive hypothesis, we have630
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< 0

by Assumption (A2). Thus Q(t+ 1) holds. And (F3) is also proved by the last inequality.631

A.4.4 Proof of Lemma A.14632

Since the analysis on one cluster can be similarly replicated on other clusters, below we will focus633

on analyzing the cluster centered at +µ1. Given the training set, D(0)
+µ1,j

is a function of the random634

initialization w
(0)
j . D

(0)
+µ1,j

plays an important role in determining the direction that w(t)
j , t ≥ 1635

aligns with and the sign of the inner product ⟨w(t)
j , xk⟩. For x̄k ∈ {±µ1}, yx̄k

= 1. Then for each636

t ≤ 1/(
√
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j , xk⟩ ≤ 0. (A.41)

Here Cn = 10
√

log(n) is defined in Lemma A.12. We will elaborate on the outcomes for neurons639

with aj > 0 and aj < 0 separately in the following lemmas.640

Lemma A.14. Suppose that Assumptions (A1)-(A6) hold. Under a good run, we have that for any641

j ∈ J 20ε
+µ1,P (or equivalently, for any neuron j ∈ JPos that is (µ1, 20ε)-aligned) ), the followings hold642

for 1 ≤ t ≤ 1/(
√
npα)− 2:643

(G1)644
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Proof. Given j ∈ J 20ε
+µ1,P, when t = 0, for xk ∈ C(0)

+µ1,j
, we have ajyk > 0. Thus by Corollary A.13,646

we have647
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, 0 ≤ t ≤ 1/(
√
npα)− 2. (A.42)

Similarly we have that for xk ∈ C(0)
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,648
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, 0 ≤ t ≤ 1/(
√
npα)− 2; (A.43)
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(A.44)

where the first inequality is from (A.41); the second inequality uses D(0)
+µ1,j

> n1/2−20ε, which is651

from j ∈ J 20ε
+µ1,P; and the last inequality uses 40ε < 0.01. It yields that652
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where the second inequality uses (A.39). Thus we have653
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Combined with (A.42), we obtain C(1)
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= C+µ1 . Then by Corollary A.13, we have654
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Thus we have C−µ1\C
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, and N−µ1\N
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. Combined with (A.43) and656
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Thus (G1) holds for t = 1. Then (G1) is proved by replicating the same analysis and employing660

induction.661

For the inner product with the cluster mean +µ1, by (A.32) we have662
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where the last inequality uses D(t)
+µ1,j

> 0.663
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A.4.5 Proof of Lemma A.15664

Lemma A.15. Suppose that Assumptions (A1)-(A6) hold. Under a good run, for any j ∈ J 20ε
+µ1,N ∪665

J 20ε
−µ1,N (or equivalently, for any neuron j ∈ JNeg that is (±µ1, 20ε)-aligned), the followings hold for666

2 ≤ t ≤ 1/(
√
npα)− 2.667

N (t)
+µ1,j

= N+µ1 ,N
(t)
−µ1,j

= N−µ1 ; (A.47)
668

−n−∆µ1
(t− 2) ≤

t∑
s=0

D
(s)
ν,j ≤ n+∆µ1

(t− 2), ν ∈ {±µ1}, (A.48)

where ∆µ1 := |n+µ1 − n−µ1 |+
√
n.669

Proof. For a given ν ∈ {±µ1}, suppose j ∈ J 20ε
ν,N . Then we have670

aj < 0; D
(0)
ν,j > n1/2−20ε; d

(0)
ν,j ≤ min{cν , c−ν − 2n±ν −

√
n} (A.49)

according to the definition (A.16). Note that we study the same data as in Lemma A.14 and only671

sgn(aj) is flipped in the trajectory analysis compared to the setting in Lemma A.14, our analysis in672

the first two iterations follows similar procedures in Lemma A.14. For xk ∈ C(0)
ν,j ∪ C(0)

−ν,j , ajyk < 0,673

by Corollary A.13, we have674

⟨w(1)
j , xk⟩ < 0. (A.50)

For xk ∈ N (0)
ν,j ∪N (0)

−ν,j , ajyk > 0, by Corollary A.13, we have675

⟨w(t)
j , xk⟩ > 0 (A.51)

for any t ≤ 1/(
√
npα)− 2. For xk ∈

(
Cν\C(0)

ν,j

)
∪
(
Nν\N (0)

ν,j

)
, similar to (A.44), we have676

⟨w(1)
j − w

(0)
j , xk⟩ ≤ −

(αaj
2n

D
(0)
+µ1,j

∥µ∥2 − 4αCn

3Cn0.01
√
mn

∥µ∥2
)
≤ − α

4n20ε
√
mn

∥µ∥2 < 0,

then similar to (A.45), we have677

⟨w(1)
j , xk⟩ ≤ −⟨w(1)

j −w
(0)
j , xk⟩+∥w(0)

j ∥·∥xk∥ ≤ − α

4n20ε
√
mn

∥µ∥2+ α

Cn
√
m
∥µ∥2 < 0. (A.52)

For xk ∈
(
C−ν\C(0)

−ν,j

)
∪
(
N−ν\N (0)

−ν,j

)
, similar to (A.46), we have678

⟨w(1)
j , xk⟩ ≥ ⟨w(1)

j −w
(0)
j , xk⟩ − ∥w(0)

j ∥ · ∥xk∥ ≥ α

4n20ε
√
mn

∥µ∥2 − α

Cn
√
m
∥µ∥2 > 0. (A.53)

Combining (A.50)-(A.53), we have679

C(1)
ν,j = ∅; C(1)

−ν,j = C−ν\C(0)
−ν,j ; N (1)

ν,j = N (0)
ν,j ; N (1)

−ν,j = N−ν . (A.54)

Thus by the definition of D(1)
ν,j , we have680

D
(1)
ν,j = −|N (0)

ν,j | − c−ν + |C(0)
−ν,j |+ n−ν ≤ −|N (0)

ν,j | − c−ν + d
(0)
−ν,j + 2n−ν . (A.55)

It further yields that681

D
(1)
ν,j +D

(0)
ν,j ≤ −|N (0)

ν,j | − c−ν + 2n−ν + d
(0)
ν,j ≤ −c−ν + 2n−ν + d

(0)
ν,j < −

√
n,

where the first inequality uses (A.55) and the definition of D(0)
ν,j , and the third inequality uses (A.49).682
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After the second iteration, for xk ∈ Nν\N (1)
ν,j , ⟨w(0)

j , xk⟩ < 0, ⟨w(1)
j , xk⟩ < 0. Then we have683

⟨w(2)
j − w

(0)
j , xk⟩ ≥ − α

2n
√
m
(D

(0)
ν,j +D

(1)
ν,j )∥µ∥

2 − 4αCn

3Cn0.01
√
mn

∥µ∥2

>
α

2
√
mn

∥µ∥2 − 4αCn

3Cn0.01
√
mn

∥µ∥2,

where the first inequality uses (A.41), and the second inequality uses D(1)
ν,j +D

(0)
ν,j < −

√
n. It further684

yields that685

⟨w(2)
j , xk⟩ ≥ ⟨w(2)

j −w
(0)
j , xk⟩−∥w(0)

j ∥·∥xk∥ ≥ α

2
√
mn

∥µ∥2− 4αCn

3Cn0.01
√
mn

∥µ∥2− α

Cn
√
m
∥µ∥2 > 0.

(A.56)
For xk ∈ N (1)

ν,j ∪ N−ν , note that ajyk > 0. Then by Corollary A.13, we have ⟨w(2)
j , xk⟩ > 0.686

Combined with (A.56), we obtain N (2)
ν,j = Nν ,N (2)

−ν,j = N−ν . Again by Corollary A.13, we have687

that for 2 ≤ t ≤ 1/(
√
npα)− 2,688

N (t)
ν,j = Nν , N (t)

−ν,j = N−ν , (A.57)

i.e. for t ≥ 2, neurons with j ∈ J 20ε
ν,N ∪ J 20ε

−ν,N are active for all noisy points in N±µ1 , which proves689

(A.47).690

For xk ∈ C(1)
−ν,j , note that ajyk < 0 and ⟨w(1)

j , xk⟩ > 0. Then by Corollary A.13, we have691

⟨w(2)
j , xk⟩ < 0. For xk ∈ C−ν\C(1)

−ν,j , by (A.54) we have ⟨w(0)
j , xk⟩ > 0, ⟨w(1)

j , xk⟩ < 0. It yields692

that693

⟨w(2)
j −w

(0)
j , xk⟩ ≤ − α

2n
√
m
(p+D

(1)
ν,j∥µ∥

2)+
4αp

n5/2
√
m
+

α

2
√
m
∥µ∥2+ 4αCn

3Cn0.01
√
mn

∥µ∥2 ≤ − αp

4n
√
m
,

where the first inequality uses (A.40) and (A.41), and the second inequality uses Assumption (A2). It694

further yields that695

⟨w(2)
j , xk⟩ < ⟨w(2)

j − w
(0)
j , xk⟩+ ∥w(0)

j ∥ · ∥xk∥ ≤ − αp

4n
√
m

+
α

Cn
√
m
∥µ∥2 < 0 (A.58)

by Assumption (A2). Thus we have C(2)
−ν,j = ∅.696

For xk ∈ C(0)
ν,j , ⟨w(0)

j , xk⟩ > 0, ⟨w(1)
j , xk⟩ < 0, which is similar to the setting of C−ν\C(1)

−ν,j .697

Repeating the analysis above, we have698

⟨w(2)
j , xk⟩ < 0.

For xk ∈ Cν\C(0)
ν,j , note that ⟨w(0)

j , xk⟩ < 0, ⟨w(1)
j , xk⟩ < 0, then we have699

⟨w(2)
j − w

(0)
j , xk⟩ ≥ − α

2n
√
m
(D

(0)
ν,j +D

(1)
ν,j )∥µ∥

2 − 4αCn

3Cn0.01
√
mn

∥µ∥2

>
α

2
√
mn

∥µ∥2 − 4αCn

3Cn0.01
√
mn

∥µ∥2 > 0,

where the first inequality uses (A.41) and the second inequality uses (A.55). Combining the inequali-700

ties above, we obtain701

C(2)
ν,j = Cν\C(0)

ν,j ; C(2)
−ν,j = ∅; N (2)

ν,j = Nν ; N (2)
−ν,j = N−ν . (A.59)

Combining (A.54) and (A.59), we have702

2∑
s=0

D
(s)
ν,j = cν − c−ν − nν + 3n−ν − 2|N (0)

ν |,

27



and it yields that703

cν − c−ν − 3nν + 3n−ν ≤
2∑

s=0

D
(s)
ν,j ≤ cν − c−ν + 3n−ν − nν .

It remains to prove (A.48). It suffices to prove704

cν−2c−ν−4nν+3n−ν−∆µ1(t−2) ≤
t∑

s=0

D
(s)
ν,j ≤ (2cν−c−ν+4n−ν−nν)+∆µ1(t−2), ν ∈ {±µ1},

since 2cν − c−ν + 4n−ν − nν ≤ n and cν − 2c−ν − 4nν + 3n−ν ≥ −n by Lemma A.1. Without705

loss of generality, below we only show the proof of the right-hand side. Denote T = {t ∈ [T ], t ≥706

3, D
(t)
ν,j > ∆µ1

} = {ti}Ki=1, t1 < t2 < · · · < tK . To prove the right-hand side of (A.48), it suffices707

to show that the followings hold708

s∑
t=ti

D
(t)
ν,j ≤ cν + n−ν +∆µ1

(s− ti); (A.60)

709
ti+1−1∑
t=ti

D
(t)
ν,j ≤ ∆µ1

(ti+1 − ti) (A.61)

for any i ∈ [K] and all s ∈ [ti, ti+1 − 2]. (A.60) directly follows from the definition of the set T and710

the fact that D(t)
ν,j ≤ cν + n−ν for any j, t. For a given ti, ti ∈ T , we have D

(ti)
ν,j > ∆µ1

≥
√
n. By711

(A.41), we have that for any xk ∈ Cν\C(ti)
ν (j),712

⟨w(ti+1)
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ν,j ∥µ∥

2 < 0, (A.62)

which implies that w(ti+1)
j is still inactive for those xk that didn’t activate w

(ti)
j . For any xk ∈ C(ti)

ν,j ,713

since ajyk < 0, by Corollary A.13, we have714

⟨w(ti)
j , xk⟩ ≤

α∥µ∥2√
m

.

Combined with (A.40), we have715

⟨w(ti+1)
j , xk⟩ = ⟨w(ti+1)

j − w
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j , xk⟩+ ⟨w(ti)
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+
4αp
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2
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∥µ∥2 ≤ − αp

4n
√
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< 0
(A.63)

where the second inequality uses Assumption (A2). Combining (A.62) and (A.63), we have C(ti+1)
ν,j =716

∅, and717

⟨w(ti+1)
j , xk⟩ ≤ − α

2n
√
m
D

(ti)
ν,j ∥µ∥

2 +
4αCn

3Cn0.01
√
mn

∥µ∥2 (A.64)

for all xk ∈ Cν . It yields that718

D
(ti+1)
ν,j = |C(ti+1)

ν,j | − |C(ti+1)
−ν,j |+ n−ν − nν = −|C(ti+1)

−ν,j |+ n−ν − nν ≤ |n+µ1 − n−µ1 |,

where the first equation uses (A.47). It implies that ti+1 − ti > 1. Let t⋆i = min{t ∈ N : ti + 1 <719

t ≤ ti+1, C(t)
ν (j) ̸= ∅}. We claim that t⋆i is well-defined for each i, because C(ti+1)

ν (j) ̸= ∅.720

Otherwise we have D
(ti+1)
ν,j ≤ |n+µ1 − n−µ1 | < ∆µ1 , which contradicts to the definition of the set721

T . Thus t⋆i always exists. Choose one point from the set C(t⋆i )
ν,j and denote it as x⋆

k. Note that for any722
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t ∈ [ti + 1, t⋆i − 1], we have C(t)
ν (j) = ∅, D(t)

ν,j ≤ |n+µ1
− n−µ1

|, and by (A.41),723

⟨w(t+1)
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D
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3Cn0.01
√
mn
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Combined with (A.64), it yields that724

0 ≤ ⟨w(t⋆i )
j , x⋆

k⟩ =
t⋆i −1∑

t=ti+1

⟨w(t+1)
j − w

(t)
j , x⋆
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t⋆i −1∑
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D
(t)
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4
√
nCn

3Cn0.01
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)
.

It further yields that725

t⋆i −1∑
t=ti

D
(t)
ν,j ≤

4
√
nCn

3Cn0.01
(t⋆i − ti) ≤

√
n(t⋆i − ti).

If t⋆i = ti+1, then we’ve proved (A.61). If t⋆i < ti+1, then we have726

ti+1−1∑
t=ti

D
(t)
ν,j =

t⋆i −1∑
t=ti

D
(t)
ν,j +

ti+1−1∑
t=t⋆

D
(t)
ν,j ≤

√
n(t⋆ − ti) + ∆µ1(ti+1 − t⋆) ≤ ∆µ1(ti+1 − ti),

which proves the right side. For the left side, similarly we denote T− = {t ∈ [T ], t ≥ 3, D
(t)
ν,j <727

−∆µ1
} = {ti}Ki=1, t1 < t2 < · · · < tK . Following the same analysis, we can prove that the728

followings hold729

s∑
t=ti

D
(t)
ν,j ≥ −c−ν − nν −∆µ1(s− ti);

ti+1−1∑
t=ti

D
(t)
ν,j ≥ −∆µ1(ti+1 − ti)

for any i ∈ [K] and all s ∈ [ti, ti+1 − 2]. It proves the left-hand side of (A.48).730

A.5 Proof of the Main Theorem731

We rigorously prove Theorem 3.1 in this section. The upper bound of t in the theorems below is732

1/(
√
npα)− 2, which by Assumption (A4), is larger than

√
n, the upper bound of t in Theorem 3.1.733

A.5.1 Proof of Theorem A.16: 1-step Overfitting734

Theorem A.16. Suppose that Assumptions (A1)-(A6) hold. Under a good run, the classifier735

sgn(f(x,W (t))) can correctly classify all training datapoints for 1 ≤ t ≤ 1/(
√
npα)− 2.736

Proof. Without loss of generality, we only consider datapoints in the cluster C+µ1 ∪N+µ1 . According737

to (B1) in Lemma A.4, we have that under a good run, |J i,(0)
P | ≥ m/7, |J i,(0)

N | ≥ m/7 for each738

i ∈ [n]. For xk ∈ C+µ1 , by Corollary A.13, we have739

⟨w(s)
j , xk⟩ > 0

for all j ∈ J k,(0)
P and 0 ≤ s ≤ 1/(

√
npα)− 2; and740

⟨w(s)
j , xk⟩ ≤

α√
m
∥µ∥2

29



for all j ∈ JN and 0 ≤ s ≤ 1/(
√
npα)− 2. Then for 1 ≤ t ≤ 1/(

√
npα)− 2, we have741

m∑
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ajϕ(⟨w(t)
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m
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∥µ∥2

≥ αpt

4nm
|J k,(0)

P | − α|JN|
m

∥µ∥2

≥ αpt

28n
− α∥µ∥2 > 0,

where the first inequality uses ϕ(x) ≥ 0,∀x; the second inequality uses the definition of J k,(0)
P and742

(F2) in Corollary A.13; the third inequality uses (A.38) in Corollary A.13; and the last inequality is743

from Assumption (A2). For xk ∈ N+µ1 , similarly we have744

m∑
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ajϕ(⟨w(t)
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∑
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N
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α√
m
∥µ∥2

≤ −(
αpt

28n
− α∥µ∥2) < 0.

Thus our classifier can correctly classify all training datapoints for 1 ≤ t ≤ 1/(
√
npα)− 2.745

A.5.2 Proof of Theorem A.8: Generalization746

Before proceeding with the proof of Theorem A.8, we first state a technical lemma:747

Lemma A.17. Suppose that ∥W∥ > 0. Then there exists a constant c > 0 such that

P(x,ỹ)∼Pclean(ỹ ̸= sgn(f(x;W ))) ≤ max
ν∈centers

2 exp

(
−c

(Ex∼N(ν,Ip)[f(x;W )]

∥W∥F

)2
)
.

Proof. It suffices to prove that for each ν ∈ centers,748

Px∼N(ν,Ip)(yνf(x;W ) < 0) ≤ 2 exp

(
−c

(Ex∼N(ν,Ip)[f(x;W )]

∥W∥F

)2
)
. (A.65)

Then applying the law of total expectation, we have749

P(x,ỹ)∼Pclean(ỹ ̸= sgn(f(x;W ))) =
1

4

∑
ν∈centers

Px∼N(ν,Ip)(yν ̸= sgn(f(x;W )))

≤ 1

2

∑
ν∈centers

exp

(
−c

(Ex∼N(ν,Ip)[f(x;W )]

∥W∥F

)2
)

≤ max
ν∈centers

2 exp

(
−c

(Ex∼N(ν,Ip)[f(x;W )]

∥W∥F

)2
)
.

Since for each ν, N(ν, Ip) is 1-strongly log-concave, we plug in λ = 1 in the proof of Lemma 4.1 in750

Frei et al. (2022b). Then (A.65) is obtained.751

752
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Our next theorem shows that the generalization risk is small for large t. Recall the definition of J1753

and J2, we equivalently write them as754

J1 = J 20ε
+µ1,P = {j ∈ [m] : aj > 0, D

(0)
+µ1,j

> n1/2−20ε, d
(0)
+µ1,j

< min{c+µ1
, c−µ1

} − 2n±µ1
−

√
n};

J2 = J 20ε
+µ1,N ∪ J 20ε

−µ1,N = {j ∈ [m] : aj < 0, D
(0)
ν,j > n1/2−20ε,

d
(0)
ν,j < min{cν , c−ν} − 2n±µ1

−
√
n, ν ∈ {±µ1}}.

Here J 20ε
+µ1,P,J

20ε
+µ1,N, and J 20ε

−µ1,N are defined in (A.16). By Lemma A.4, we know that under a good755

run,756

|J1| ≥
m

n10ε
, |J2| ≥ (1− 10

n20ε
)|JN|. (A.66)

Theorem A.8. Suppose that Assumptions (A1)-(A6) hold. Under a good run, for Cn10ε ≤ t ≤
√
n,757

the generalization error of classifier sgn(f(x,W (t))) has an upper bound758

P(x,y)∼Pclean(y ̸= sgn(f(x;W (t)))) ≤ exp
(
− Ω(

n1−20ε∥µ∥4

p
)
)
.

Proof. Without loss of generality, we consider x follows N(+µ1, Ip). Then we have759
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(A.67)

where the first inequality uses Jensen’s inequality. By Lemma A.14, we have that for j ∈ J1,760

⟨w(t)
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)(t− 1),

where the first inequality is from Lemma A.14 and Lemma A.3; the second inequality uses the761

property that for j ∈ J1, D(s)
+µ1,j

≥ c+µ1
− n+µ1

− d
(0)
−µ1

(j), s ≥ 1, which is also from Lemma762

A.14; and the third inequality uses Assumption (A5). It yields that763 ∑
j:j∈J1

ϕ
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40
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|J1|,

(A.68)
where the last inequality uses (B4) in Lemma A.4. For the second term in (A.67), note that we have764

ϕ(λx) = λϕ(x),∀λ > 0, and by Jensen’s inequality, ϕ(x1 + x2) ≤ ϕ(x1) + ϕ(x2),∀x1, x2 ∈ R.765

Then we have766

Ex[ϕ(⟨w, x⟩)] ≤ ϕ(⟨w, µ1⟩) + Ex[ϕ(⟨w, x− µ1⟩)] = ϕ(⟨w, µ1⟩) +
√

1

2π
∥w∥, (A.69)
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where the last equation uses the expectation of half-normal distribution. By Lemma A.11, we have767
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where the last inequality uses ∥xi∥2 ≤ 2p, |⟨xi, xj⟩| ≤ 2µ2, which comes from Lemma A.1, and769

Assumption (A2). It yields that for each j ∈ [m],770
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where the last inequality uses Lemma A.3. Then we consider the decomposition of771 ∑
j:aj<0 ϕ(⟨w

(t)
j , µ1⟩):772 ∑
j:aj<0

ϕ(⟨w(t)
j , µ1⟩) =

∑
j∈J2

ϕ(⟨w(t)
j , µ1⟩) +

∑
j∈JN,j /∈J2

ϕ(⟨w(t)
j , µ1⟩).

For the first term, we have773 ∑
j∈J2

ϕ(⟨w(t)
j , µ1⟩)

≤
∑
j∈J2

[ t−1∑
s=0

ϕ(⟨w(s+1)
j − w

(s)
j , µ1⟩) + ϕ(⟨w(0)

j , µ1⟩)
]

≤
∑
j∈J2

[ t−1∑
s=0

(α∥µ∥2
2n

√
m
D

(s)
+µ1,j

+
5α∥µ∥2

n
√
mn

)
+ ωinit

√
3mp/2∥µ∥

]
≤
∑
j∈J2

[α∥µ∥2
2n

√
m
(n+∆µ1(t− 2)) +

5α∥µ∥2t
n
√
mn

+ ωinit
√
3mp/2∥µ∥

]
≤
∑
j∈J2

α∥µ∥2

2n
√
m
[n+ 1 + (∆µ1 + 1)(t− 2)] ≤ α∥µ∥2

2n
√
m
[n+ 1 + (∆µ1 + 1)(t− 2)]|JN|,

(A.71)

where the second inequality uses (A.32) in Lemma A.12; the third inequality uses Lemma A.15; and774

the fourth inequality uses Assumptions (A1) and (A5). For the second term, we have775 ∑
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(A.72)
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where the second inequality uses (A.32) in Lemma A.12; the third inequality uses D(t)
ν,j ≤ cν + n−ν776

and Assumption (A5); and the last inequality uses (A.66) and c−µ1
+ n+µ1

+ 1 ≤ n. Combining777

(A.69), (A.70), (A.71), and (A.72), we have778 ∑
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It follows that779
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(A.73)

for t ≥ Cn10ε when C is large enough. Here the second inequality uses |J1| ≥ mn−10ε; the third780

inequality uses (E3) in Lemma A.1 and Assumption (A1); and the last inequality uses ε < 0.01. By781

(A.70), it follows that ∥W (t)∥F ≤ 3αt
√
p/n. Thus we have782
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.

This lower bound for the normalized margin can be easily extended to the other ν’s. Applying Lemma783

A.17, we have784

P(x,y)∼Pclean(y ̸= sgn(f(x;W (t)))) ≤ 2 exp
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−cn1−20ε∥µ∥4

2402p

)
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.

785

Lemma A.7. Suppose that Assumptions (A1)-(A6) hold. Under a good run, we have that for786
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√
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Proof. This lemma is essentially implied by the proof of Lemma A.8. By (A.70), we have789
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By (A.68), we have790
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Combining the inequalities above, we obtain791
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Again by (A.70), we have792
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By (A.71), we have793
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Combining the inequalities above, we obtain794
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where the last inequality uses ∆µ1
= o(

√
n log(n)), which comes from Lemma A.1.795

A.5.3 Proof of Theorem A.21: 1-step Test Accuracy796

Before stating the proof, we begin with the necessary definitions and a preliminary result. Recall that797

h
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i − 1/2 and the decomposition (A.30). When t = 0, we denote798
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and W
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1,T , · · · , w

(1)
m,T]

⊤. Next lemma shows that W (1)
T is a good approximation of W (1)799

with a large probability.800

Lemma A.18. Suppose Assumptions (A1) and (A2) hold. Given {xi} ∈ Gdata and W (0) ∈ GW , we801
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Proof. Let z(t)i = yif(xi;W
(t)). Note that ℓ′(z) = −1/(1 + exp(z)), we have | − ℓ′(z)− 1/2| ≤804
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(A.75)

where the first inequality uses h(t)
i = g

(t)
i − 1/2 and g

(t)
i := −ℓ′(z

(t)
i ); the second inequality uses806

triangle inequality; the third inequality uses Cauchy-Schwarz inequality; and the last inequality uses807
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(E1) in Lemma A.1 and (D1) in Lemma A.3. Denote hmax = maxi∈[n] |h
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i |. Then we have808
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where the second inequality uses ∥xi∥2 ≤ 2p and p ≥ Cn2∥µ∥2, which come from (E1) and (E2) in809

Lemma A.1 and Assumption (A2) respectively, and the third inequality uses (A.75). Further we have810
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811

Lemma A.19. Suppose that Assumptions (A1)-(A6) hold. Given X ∈ Gdata, for each j ∈ [m], we812

have813

n/24 ≤ Var(D(0)
+µ1,j

) ≤ n/2;
814

E
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Proof. Recall that A1 = C+µ1
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, A2 = C−µ1
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. According to equation (A.20), we have815
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According to Lemma A.24, we have816

Var(D(0)
+µ1,j

) = EB [f1(b1, · · · , bn)] ≥
1

2
EB′ [f1(b

′
1, · · · , b′n)]

=
1

2
VarB′(

∑
i∈A1

b′i −
∑
i∈A2

b′i) =
|A1|+ |A2|

8
≥ n

24
,

where f1(b1, · · · , bn) := (
∑

i∈A1
bi −

∑
i∈A2

bi − (|A1| − |A2|)/2)2 ≥ 0, and b′i are i.i.d Bernoulli817
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where the last inequality is from (E3) in Lemma A.1. Denote f2(b1, · · · , bn) := (
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bi −820 ∑

i∈A2
bi − (|A1| − |A2|)/2)4 ≥ 0, then we have821

E[|D(0)
+µ1,j

− E[D(0)
+µ1,j

]|4] = EB [f2(b1, · · · , bn)] ≤ 2EB′ [f2(b
′
1, · · · , b′n)]

= 2EB′
[[ ∑

i∈A1

(b′i −
1

2
)−

∑
i∈A2

(b′i −
1

2
)
]4]

≤ 16EB′
[[ ∑

i∈A1

(b′i −
1

2
)
]4

+
[ ∑
i∈A2

(b′i −
1

2
)
]4]

≤ 4(|A1|2 + |A2|2) ≤ n2,

(A.78)

where the first inequality uses Lemma A.24; the second inequality uses (a + b)4 ≤ 8(a4 + b4);822

the third inequality uses the formula of the fourth central moment of a binomial distribution with823

parameter equal to 1/2, i.e. µ4(B(n, 1/2)) = n(1 + (3n− 6)/4)/4 ≤ n2/4; and the last inequality824

35



is from (E3) in Lemma A.1. Combining (A.77) and (A.78), we have825
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by applying the Cauchy-Schwarz inequality.826
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Lemma A.20. Suppose that Assumptions (A1)-(A6) hold. Given X = [x1, · · · , xn]
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Proof. In this proof, by convention all P(·),E[·],Var(·), ρ(·) are implicitly conditioned on a fixed X .831

Denote the expectation of D(0)
+µ1,j

by e+µ1
. Note that conditioning on X , {ajϕ(ajD(0)
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)}j≥1 are832
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where the inequality uses (E3) in Lemma A.1. By Lemma A.19, we have834
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Applying Berry-Esseen theorem, we have837
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for some universal constant C > 0. Here the second inequality uses σ2
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≤ (
√
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comes from (A.81), and the last inequality uses (A.79). By the symmetry of aj , we have839
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Similarly, applying Berry-Esseen theorem, we have841
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where the inequality uses Var(maj |ajD(0)
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√
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|)2 and (A.79). Then the results of842

this lemma are proved by noting that Cn
√
ε ≥ 1 for large enough n.843

Theorem A.21. Suppose that Assumptions (A1)-(A6) hold. With probability at least 1− 3C/
√
m−844

2n−ε over the initialization of the weights and the generation of training data, after one iteration, the845
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classifier sgn(f(x,W (1))) exhibits a generalization risk with the following bounds:846

1
2 (1− n−ε) ≤ P(x,y)∼Pclean(y ̸= sgn(f(x;W (1)))) ≤ 1

2 (1 + n−ε).

Proof. For any given training data X ∈ Gdata, denote the expectation of D(0)
ν,j by eν , i.e.847

eν := E[D(0)
ν,j |X] = (cν − nν − c−ν + n−ν)/2, ν ∈ {±µ1,±µ2}, (A.83)

and a set of parameters GX :848
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Applying the union bound, we have849
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Define events Ftest,ν for test data:851
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|⟨x, xi⟩ − ⟨ν, x̄i⟩| ≤ Cn
√
p for all i ∈ [n]}, ν ∈ {±µ1,±µ2}.

Treat {x} ∪ {xi}ni=1 as a new ‘training’ set with n+ 1 datapoints. Following the proof procedure852

in Lemma A.1, we can show that Px∼N(ν,Ip)(x ∈ Ftest|X ∈ Gdata) ≥ 1 − n−ε, where Ftest :=853

∪ν∈{±µ1,±µ2}Ftest,ν . And Ftest is a symmetric set for x, i.e., if x ∈ F , then −x also belongs to Ftest.854

In the remaining proof, by convention all probabilities and expectations are implicitly conditioned855
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(A.84)

Note that given W (0) and X , we have with probability 1 that860
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j , x⟩)− ϕ(⟨w(1)

j − w
(0)
j , x⟩)]

∣∣∣
≤

m∑
j=1

|aj⟨w(0)
j , x⟩| ≤

√√√√ m∑
j=1

a2j

m∑
j=1

∥w(0)
j ∥2 · ∥x∥2

= ∥W (0)∥F · ∥x∥ ≤ ωinit
√

3mp/2∥x∥,

(A.85)

where the first inequality comes from the 1-Lipschitz continuity of ϕ(·); the second inequality uses861

Cauchy-Schwarz inequality; and the last inequality uses Lemma A.3. Next, recall that WT is defined862
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as in (A.74). By the same argument above, we have863

|f(x;W (1) −W (0))− f(x;W
(1)
T −W (0))|

=
∣∣∣ m∑
j=1

aj [ϕ(⟨w(1)
j − w

(0)
j , x⟩)− ϕ(⟨w(1)

j,T − w
(0)
j , x⟩)]

∣∣∣
≤

m∑
j=1

|aj⟨w(1)
j − w

(1)
j,T , x⟩| ≤

√√√√ m∑
j=1

a2j

m∑
j=1

∥w(1)
j − w

(1)
j,T ∥2 · ∥x∥2 = ∥W (1) −W

(1)
T ∥F · ∥x∥

≤ αωinitp
√

3mp/n∥x∥ ≤ ωinit
√
3mp/n∥x∥, (A.86)

where the first inequality comes from the 1-Lipschitz continuity of ϕ(·); the second inequality uses864

Cauchy-Schwarz inequality; the third inequality uses Lemma A.18; and the last inequality uses865

Assumption (A3). Using (A.85) and (A.86), we have by the triangle inequality that866

|f(x;W (1))− f(x;W
(1)
T −W (0))| ≤ 2ωinit

√
mp∥x∥ =: ϵx, that for any x ∈ Rp. (A.87)

Recall that867

⟨w(1)
j,T − w

(0)
j , x⟩ = αaj

2n

n∑
i=1

ϕ′(⟨w(0)
j , xi⟩)⟨yixi, x⟩.

Then under a good run, for x ∈ Ftest, we have that with probability 1,868 ∣∣∣⟨w(1)
j,T − w

(0)
j , x⟩ − αaj

2n
D

(0)
+µ1,j

∥µ∥2
∣∣∣ ≤ α√

m
Cn

√
p,

where the inequality uses the definition of Ftest. It yields that869 ∣∣∣f(x;W (1)
T −W (0))−

m∑
j=1

αaj
2n

ϕ(ajD
(0)
+µ1,j

)∥µ∥2
∣∣∣ ≤ αCn

√
p. (A.88)

According to the definition of GX , we have870 ∣∣∣ m∑
j=1

αaj
2n

ϕ(ajD
(0)
+µ1,j

)∥µ∥2 − α∥µ∥2

4n
e+µ1

∣∣∣ ≤ 3αCn
√
ε log(m)

2
√
mn

∥µ∥2. (A.89)

Combining (A.87)-(A.89), we have871 ∣∣∣f(x;W (1))− α∥µ∥2

4n
e+µ1

∣∣∣ ≤ ϵx + αCn
√
p+

3αCn
√
ε log(m)

2
√
mn

∥µ∥2. (A.90)

The above inequality immediately implies that872

P(f(x;W (1)) ≤ 0|Ftest) ≥ P(
α∥µ∥2

2n
e+µ1

≤ −ϵx − αCn
√
p− 3αCn

√
ε log(m)

2
√
mn

∥µ∥2|Ftest).

(A.91)
Similar to (A.90), for −x ∼ N(−µ1, Ip), we have873 ∣∣∣f(−x;W (1))− α∥µ∥2

2n
e−µ1

∣∣∣ ≤ ϵx + αCn
√
p+

3αCn
√
ε log(m)

2
√
mn

∥µ∥2.

Note that by definition, e−µ1
= −e+µ1

, the above inequality immediately implies that874

P(f(−x;W (1)) ≤ 0|Ftest) ≥ P(
α∥µ∥2

2n
e+µ1

≥ ϵx + αCn
√
p+

3αCn
√
ε log(m)

2
√
mn

∥µ∥2|Ftest).

(A.92)
According to the definition of Gtest, we have ϵx ≤ 4ωinit

√
mp3/2. According to the definition of Gdata,875

we have876

|cν − nν − c−ν + n−ν | ≥ |cν − c−ν | − |nν − n−ν | ≥ |cν + nν − c−ν − n−ν | − 2|nν − n−ν |
≥ (1− 2η)n1/2−ε ≥ n1/2−ε/2.
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Thus we have |e+µ1 | ≥ n1/2−ε/4. It yields that877

α∥µ∥2

2n
|e+µ1 | − ϵx − αCn

√
p− 3αCn

√
ε log(m)

2
√
mn

∥µ∥2

≥ α∥µ∥2√
n

( 1

8nε
− 4

√
mnp3/2

ωinit

α∥µ∥2
− Cn

√
np

∥µ∥4
− 3Cn

√
ε log(m)

2
√
m

)
≥ α∥µ∥2√

n

( 1

8nε
− 2

m
√
n
− Cn

3Cn0.01
− 3Cn

2
√
Cn0.01

)
> 0,

(A.93)

where the first inequality uses |e+µ1
| ≥ n1/2−ε/4 and ϵx ≤ 4ωinit

√
mp3/2; the second inequality878

uses Assumption (A5), (A1) and (A6); and the last inequality uses n is large enough. Combining879

(A.91)-(A.93), we have880

P(f(x;W (1)) ≤ 0|Ftest) + P(f(−x;W (1)) ≤ 0|Ftest)

≥P(
α∥µ∥2

2n
|e+µ1 | ≥ ϵx + αCn

√
p+

3αCn
√
ε log(m)

2
√
mn

∥µ∥2|Ftest) = 1,
(A.94)

where the inequality uses ϵx ≥ 0. Following a similar procedure, for the other side, we have881

P(f(x;W (1)) ≤ 0|Ftest) + P(f(−x;W (1)) ≤ 0|Ftest)

≤P(
α∥µ∥2

2n
|e+µ1

| ≥ −ϵx − αCn
√
p− 3αCn

√
ε log(m)

2
√
mn

∥µ∥2|Ftest) = 1.
(A.95)

Combining (A.94) and (A.95), we have882

P(f(x;W (1)) ≤ 0|Ftest) + P(f(−x;W (1)) ≤ 0|Ftest) = 1.

Following the same procedure, we have that for any ν ∈ {±µ1,±µ2},883

Px∼N(ν,Ip)(yf(x;W
(1)) ≤ 0|Ftest) + Px∼N(ν,Ip)(yf(−x;W (1)) ≤ 0|Ftest) = 1.

Then for (x, y) ∼ Pclean, we have884

P(x,y)∼Pclean(yf(x;W
(1)) ≤ 0) ≥ P(yf(x;W (1)) ≤ 0|Ftest)P(Ftest) ≥

1

2
(1− n−ε);

885

P(x,y)∼Pclean(yf(x;W
(1)) ≤ 0) ≤ P(yf(x;W (1)) ≤ 0|Ftest)P(Ftest) + P(Fc

test) ≤
1

2
(1 + n−ε).

886

Lemma A.22. Suppose that Assumptions (A1)-(A6) hold. With probability at least 1− 3C/
√
m−887

2n−ε over the initialization of the weights and the generation of training data, we have888

Px∼N(+µ1,Ip)

(∣∣∣f(x;W (1))−
m∑
j=1

αaj
2n

ϕ(ajD
(0)
+µ1,j

)∥µ∥2
∣∣∣ ≤ 2αCn

√
p
)
≥ 1−O(n−ε).

Proof. We have889

|f(x;W (1))−
m∑
i=1

αaj
2n

ϕ(ajD
(0)
+µ1,j

)∥µ∥2| ≤ 4ωinitp
√
mp+ αCn

√
p ≤ 2αCn

√
p.

Here the first inequality uses (A.87), (A.88) and ∥x∥ ≤
√
2p, and the second inequality is from890

Assumption (A5).891

892
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A.6 Probability Lemmas893

Lemma A.23. Suppose we have a random variable g that has finite L3 norm and a Rademacher894

variable a that is independent with g. Then we have895

max{1
2

Var(g),
1

4
(E[g])2} ≤ Var(aϕ(ag)) ≤ max{Var(g),

1

2
(E[g])2}; (A.96)

896

E
[∣∣aϕ(ag)− E[aϕ(ag))]

∣∣3] ≤ 32max{E[|g − E[g]|3], |E[g]|3}. (A.97)

Proof. The expectation of the random variable aϕ(ag) is897

E[aϕ(ag)] =
1

2
E[ϕ(g)− ϕ(−g)] =

1

2
E[g], (A.98)

where the first equation uses the law of expectation, and the second equation uses ϕ(x)−ϕ(−x) = x.898

The second moment of aϕ(ag) is899

E[(aϕ(ag))2] = E[ϕ(ag)2] =
1

2
E[ϕ(g)2 + ϕ(−g)2] =

1

2
E[g2], (A.99)

where the last equation uses ϕ(x)2 + ϕ(−x)2 = x2. Combining (A.98) and (A.99), we have900

Var(aϕ(ag)) =
1

2
E[g2]− 1

4
(E[g])2 =

1

2
Var(g) +

1

4
(E[g])2,

which implies (A.96). Moreover, for a random variable X that has finite L3 norm, we have901

∥X − E[X]∥3 ≤ ∥X∥3 + ∥E[X]∥3 ≤ ∥X∥3 + E[|X|] ≤ 2∥X∥3,

where the second inequality is due to ∥E[X]∥3 = |E[X]| and the last inequality is due to ∥X∥1 ≤902

∥X∥3. Thus we have903

E
[∣∣aϕ(ag)− 1

2
E[g]

∣∣3] ≤ 8E[|aϕ(ag)|3] = 4E[ϕ(g)3 + ϕ(−g)3] = 4E[|g|3],

where the last equation is due to ϕ(x)3 + ϕ(−x)3 = |x|3. Then by ∥g∥3 ≤ ∥g −E[g]∥3 + |E[g]|, we904

have905

E
[∣∣aϕ(ag)− 1

2
E[g]

∣∣3] ≤ 4
(
∥g − E[g]∥3 + |E[g]|

)3 ≤ 32max{E[|g − E[g]|3], |E[g]|3}.

906

Lemma A.24. Suppose Z = [z1, · · · , zn]⊤ ∼ N(0,Σ), where Σii = 1, and |Σij | ≤ 1/(Cn2), 1 ≤907

i ̸= j ≤ n. And Z ′ = [z′1, · · · , z′n]⊤ ∼ N(0, In). Let bi = I(zi > 0) and b′i = I(z′i > 0), i ∈ [n] be908

Bernoulli random variables. Let B = [b1, · · · , bn]⊤ and B′ = [b′1, · · · , b′n]⊤. Then we have that for909

any non-negative function f : Rn → R+ ∪ {0},910

1

2
EB′ [f(b′1, · · · , b′n)] ≤ EB [f(b1, · · · , bn)] ≤ 2EB′ [f(b′1, · · · , b′n)].

Proof. Note that for any fixed value (b1, · · · , bn) ∈ {0, 1}n, PB′(b′1, · · · , b′n) = (1/2)n. Then we911

have912

EB [f(b1, · · · , bn)] =
∑

b1,··· ,bn

f(b1, · · · , bn)PB(b1, · · · , bn)

≥ (2γ1)
n
∑

b1,··· ,bn

f(b1, · · · , bn)PB′(b1, · · · , bn)

= (2γ1)
nEB′ [f(b1, · · · , bn)],

(A.100)

where the inequality comes from Lemma A.25. On the other side, similarly we have913

EB [f(b1, · · · , bn)] ≤ (2γ2)
nEB′ [f(b1, · · · , bn)]. (A.101)
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By C > 8, we have (2γ1)n = (1−4/(Cn))n ≥ 1−4/(Cn) ≥ 1/2 and (2γ2)
n = (1+4/(Cn))n ≤914

exp(4/C) ≤ exp(1/2) ≤ 2. Combining these results with (A.100) and (A.101), we have915

1

2
EB′ [f(b′1, · · · , b′n)] ≤ EB [f(b1, · · · , bn)] ≤ 2EB′ [f(b′1, · · · , b′n)].

916

Lemma A.25. Suppose Z = [z1, · · · , zn]⊤ ∼ N(0,Σ), where Σii = 1, and |Σij | ≤ 1/(Cn2), 1 ≤917

i ̸= j ≤ n. Then we have that for any subset A ⊆ [n],918

γn
1 ≤ E[

∏
i∈A

I(zi > 0) ·
∏

i∈[n]\A

I(zi < 0)] ≤ γn
2

for γ1 = 1/2− 2/(Cn) and γ2 = 1/2 + 2/(Cn).919

Proof. We first prove the result for A = [n]. Note that920

P(z1 > 0, · · · , zn > 0) = P(z1 > 0)

n∏
k=2

P(zk > 0|zk−1 > 0, · · · , z1 > 0). (A.102)

Let Zk−1 = [z1, · · · , zk−1]
⊤ and denote the covariance matrix of [z1, · · · , zk] as921 [

Σk−1 ϵk
ϵ⊤k 1

]
,

where Σk−1 = Cov(Zk−1) and ϵk = Cov(Zk−1, zk). Then |ϵkj | ≤ 1/(Cn2) for j ∈ [k − 1], and922

the conditional distribution of zk|Zk−1 is N(ϵ⊤k Σ
−1
k−1Zk−1, 1− ϵ⊤k Σ

−1
k−1ϵk). By Gershgorin circle923

theorem, we have924

1− 1

Cn
≤ λmin(Σk−1) ≤ λmax(Σk−1) ≤ 1 +

1

Cn
.

Denote fk−1(·) as the density function of Zk−1. Then we have925

P(zk > 0|zk−1 > 0, · · · , z1 > 0) =

∫ ∞

0

· · ·
∫ ∞

0

fk−1(Zk−1)Φ̄
( −ϵ⊤k Σ

−1
k−1Zk−1√

1− ϵ⊤k Σ
−1
k−1ϵk

)
dz1 · · · dzk−1

≥
∫
∥Σ−1/2

k−1 Zk−1∥≤2
√
n

fk−1(Zk−1)Φ̄
( −ϵkΣ

−1
k−1Zk−1√

1− ϵ⊤k Σ
−1
k−1ϵk

)
dz1 · · · dzk−1

≥
(1
2
−

∥Σ−1/2
k−1 ϵk∥ · 2

√
n√

2π(1− ϵ⊤k Σ
−1
k−1ϵk)

)
P(∥Σ−1/2

k−1 Zk−1∥ ≤ 2
√
n)

≥
(1
2
− 2

√
2

nC
√
π

)
P(∥Σ−1/2

k−1 Zk−1∥ ≤ 2
√
n)

≥
(1
2
− 2

√
2

nC
√
π

)
(1− exp(−n)) ≥ 1

2
− 2

Cn
(A.103)

for sufficiently large n. Here the second inequality uses |Φ(x) − Φ(0)| ≤ Φ′(0)|x| and Cauchy-926

Schwarz inequality; the third inequality uses σmin(Σk−1) = λmin(Σk−1) ≥ 1/2 and ∥Σ−1/2
k−1 ϵk∥ ≤927 √

2∥ϵk∥ ≤
√
2n−3/2/C; and the fourth inequality uses the concentration inequality for chi-square928

random variables in Lemma A.26. Then the result is proved by combining (A.102) and (A.103). On929
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the other side, we have930

P(zk > 0|zk−1 > 0, · · · , z1 > 0) ≤
∫
∥Σ−1/2

k−1 Zk−1∥≤2
√
n

fk−1(Zk−1)Φ̄
( −ϵkΣ

−1
k−1Zk−1√

1− ϵ⊤k Σ
−1
k−1ϵk

)
dz1 · · · dzk−1

+ P(∥Σ−1/2
k−1 Zk−1∥ > 2

√
n)

≤
(1
2
+

∥Σ−1/2
k−1 ϵk∥ · 2

√
n√

2π(1− ϵ⊤k Σ
−1
k−1ϵk)

)
+ P(∥Σ−1/2

k−1 Zk−1∥ > 2
√
n)

≤ 1

2
+

2
√
2

nC
√
π
+ exp(−n) ≤ 1

2
+

2

Cn
.

Note that our proof does not use any information related to A, thus we can extend the result for any931

subset A ⊆ [n].932

Lemma A.26. For Xk i.i.d ∼ N(0, σ2), 1 ≤ k ≤ n, we have933

Φ′(t)/t ≤ P(|X1| ≥ tσ) ≤ exp(−t2/2), ∀t ≥ 1;
934

P(
∣∣ 1

nσ2

n∑
k=1

X2
k − 1

∣∣ ≥ t) ≤ 2 exp(−nt2/8), ∀t ∈ (0, 1).

Proof. For the first inequality, we note that935

Φ̄(t) =

∫ +∞

t

x√
2πx

exp(−1

2
x2)dx ≤

∫ +∞

t

1

2
√
2πt

exp(−1

2
x2)dx2 =

Φ′(t)

t
.

It yields that for any t ≥ 1,936

P(|X1| ≥ tσ) = 2Φ̄(t) ≤ 2Φ′(t)/t ≤ exp(−t2/2).

On the other side, we have937

Φ̄(t) ≥
∫ +∞

t

1+x2

x2√
2π 1+t2

t2

exp(−1

2
x2)dx =

1√
2π

t2

1 + t2

(
−

exp(−x2

2 )

x

)∣∣∣+∞

x=t
=

t

1 + t2
Φ′(t).

When t ≥ 1, it further yields that Φ̄(t) ≥ Φ′(t)/(2t). Thus we have938

P(|X1| ≥ tσ) = 2Φ̄(t) ≥ Φ′(t)/t.

The second inequality is Example 2.11 in Wainwright (2019)939

Lemma A.27 (Hoeffding’s inequality, Equation (2.11) in Wainwright (2019)). Let Xk, 1 ≤ k ≤ n940

be a series of independent random variables with Xk ∈ [a, b]. Then941

P(
n∑

k=1

(Xk − E[Xk]) ≥ t) ≤ exp
(
− 2t2

n(b− a)2

)
, ∀t ≥ 0.

Lemma A.28. [Berry-Esseen Theorem, Theorem 3.4.17 in Durrett (2019)] Let X1, · · · , Xn are942

i.i.d. random variables with E[Xi] = 0,Var(Xi) = σ2, and E[|Xi|3] = ρ < ∞. If Fn(x) is the943

distribution of
∑n

i=1 Xi/(σ
√
n), then944

|Fn(x)− Φ(x)| ≤ 3ρ

σ3
√
n
.

A.7 Experimental details945

In our experiments, dimension p = 40000, number of train/test samples n = 200 µ = 2.5
√

p/n,946

number of neurons m = 1000, label noise rate η = 0.05, and initial weight scale ωinit = 10−15. For947

Figure 3, 2, and 1-left, the step size α = 10−12. For Figure 4 and 1-right, α = 10−16.948
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Figure 4: Histograms of inner products between positive neurons and µ’s pooled over 100 independent
runs under the same setting as in Figure 1 but with a smaller step size. Top (resp. bottom) row: Inner
products between positive neurons and µ1 (resp. µ2). While the projections of positive neurons w(t)

j
onto the µ1 and µ2 directions have nearly the same distribution when the network cannot generalize,
they become much more aligned with ±µ1 when the network can generalize.
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