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Abstract

External controls from historical trials or obser-
vational data can augment randomized controlled
trials when large-scale randomization is imprac-
tical or unethical, such as in drug evaluation for
rare diseases. However, non-randomized exter-
nal controls can introduce biases, and existing
Bayesian and frequentist methods may inflate the
type I error rate, particularly in small-sample tri-
als where external data borrowing is most criti-
cal. To address these challenges, we propose a
randomization inference framework that ensures
finite-sample exact and model-free type I error
rate control, adhering to the “analyze as you ran-
domize” principle to safeguard against hidden
biases. Recognizing that biased external con-
trols reduce the power of randomization tests,
we leverage conformal inference to develop an
individualized test-then-pool procedure that se-
lectively borrows comparable external controls to
improve power. Our approach incorporates selec-
tion uncertainty into randomization tests, provid-
ing valid post-selection inference. Additionally,
we propose an adaptive procedure to optimize
the selection threshold by minimizing the mean
squared error across a class of estimators encom-
passing both no-borrowing and full-borrowing
approaches. The proposed methods are supported
by non-asymptotic theoretical analysis, validated
through simulations, and applied to a randomized
lung cancer trial that integrates external controls
from the National Cancer Database.

1Department of Statistics, North Carolina State University,
Raleigh, NC 27695, U.S.A. 2Department of Biostatistics and Bioin-
formatics, Duke University, Durham, NC 27710, U.S.A.. Corre-
spondence to: Shu Yang <syang24@ncsu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Randomized controlled trials (RCTs) are the gold standard
for making causal inferences on the treatment effect of a
new treatment relative to a control treatment. However,
large RCTs are often infeasible to conduct in practice when
the indications of interest involve rare diseases (U.S. Food
and Drug Administration, 2022) or common conditions
where few patients are willing to participate due to a lack
of equipoise (Miller & Joffe, 2011). RCTs in such a con-
text often lack sufficient statistical power to detect realistic
treatment effect sizes. Meanwhile, historical studies or large
external databases provide real-world data under control
conditions, often referred to as external controls (ECs). By
integrating RCT with ECs, hybrid controlled trials have
garnered significant interest as an effective approach to en-
hance the power of RCTs with small sample sizes. However,
most existing methods for hybrid controlled trials rely on
model-based or asymptotic p-values, which can lead to in-
flated type I error rates when the randomized sample size
is small, or the model is misspecified. Moreover, since ECs
are not randomized, they may systematically differ from
randomized controls, even after adjusting for measured con-
founders. Directly incorporating these ECs may introduce
hidden bias, compromising the validity of the statistical in-
ference. Strictly controlling the type I error rate in hybrid
controlled trials, especially with small sample sizes and
unmeasured confounding, remains an open problem.

To address this problem, we extend the randomization infer-
ence framework to hybrid controlled trials. To utilize ECs,
we use a doubly robust estimator of the average treatment
effect (ATE) as the test statistic, which incorporates both
RCT and EC data and effectively balances the measured
confounders between RCT and EC (Li et al., 2023b). Then,
Fisher randomization tests (FRTs) are performed using only
the randomization in the RCT. In contrast to the asymp-
totic inference in Li et al. (2023b), which relies on (i) large
sample sizes for both the RCT and EC, (ii) correct specifi-
cation of at least one of the two nuisance models, and (iii)
no unmeasured confounders, the FRT strictly controls the
type I error rate without requiring any of these conditions,
thus achieving model-free, finite-sample exact inference.
The validity of the FRT relies solely on the randomization
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within the RCT, which is typically well-managed by the
study design. Furthermore, we perform a power analysis for
FRT in hybrid controlled trials and show that incorporating
unbiased ECs with correctly specified models can enhance
statistical power. However, EC borrowing is not a free lunch,
as including biased ECs may diminish power.

The power issue motivates us to develop a method that
selectively incorporates unbiased ECs rather than indiscrim-
inately borrowing all ECs. Unlike observational studies,
where the assumption of no unmeasured confounders is
untestable, a key advantage of hybrid controlled trials is
that the bias in ECs can be identified by comparing EC
units to randomized control units. Existing methods miti-
gate hidden bias by penalized bias estimation and selective
borrowing (Gao et al., 2025), where selection consistency
depends on asymptotic arguments, potentially leading to
inferior performance in small samples.

We propose a novel approach called Conformal Selective
Borrowing (CSB), which tests the comparability of ECs and
selectively incorporates them using conformal inference
(Vovk et al., 2005; Lei et al., 2018). We measure the bias
of each EC using a score function that can flexibly accom-
modate parametric or machine-learning models. We then
calibrate this score to a conformal p-value, which test the
exchangeability of each EC. These conformal p-values are
valid in finite samples, distribution-free, and do not depend
on the asymptotic properties of models. CSB offers three
advantages: (i) individual borrowing decisions for each EC,
(ii) flexibility in using parametric or machine learning mod-
els for bias estimation, and (iii) finite-sample guarantees
with stable performance in small samples.

In summary, the proposed methods leverage the two key ad-
vantages of hybrid controlled trials: (i) randomization within
the RCT data allows us to use FRT to control the type I error
rate, and (ii) the presence of randomized controls enables us
to evaluate bias in ECs using conformal p-values, selectively
borrow unbiased ECs, and enhance power. We account for
selection uncertainty in FRT and offer valid post-selection
inference. Both FRT and CSB are model-free, distribution-
free, and maintain finite-sample exact properties, allowing
them to flexibly incorporate state-of-the-art machine learn-
ing methods while remaining valid for any sample size or
data distribution. To ensure robust performance across vary-
ing bias magnitudes, we propose a data-adaptive procedure
for determining the selection threshold to minimize the MSE
of the CSB estimator. Our MSE-guided adaptive threshold
offers key advantages: (i) it improves FRT power over RCT-
only analysis when EC bias is negligible or detectable; when
the bias is non-negligible yet difficult to detect, it may lead
to power loss, though FRT still maintains valid Type I er-
ror control; (ii) it enables CSB to serve as both a powerful
test statistic and an accurate ATE estimator; (iii) the em-

pirical MSE of CSB can be approximated leveraging the
RCT-only estimator, making the procedure practically feasi-
ble, and we provide a non-asymptotic excess risk bound for
its performance. The advantages of our approach are shown
via simulations and a lung cancer RCT with ECs from the
National Cancer Database.

1.1. Related work

Hybrid controlled trials aim to integrate ECs to boost RCT
efficiency (Pocock, 1976). For an overview of RCT and
RWD integration, see Colnet et al. (2024). A key challenge
is biases in ECs, which stem from factors like selection bias,
non-concurrency, and measurement error (U.S. Food and
Drug Administration, 2023). Statistically, biases are catego-
rized as measured and unmeasured confounding. Measured
confounding, or covariate shift, refers to systematic differ-
ences in observed covariates between RCs and ECs. To
address measured confounding, covariate balancing tech-
niques such as matching, inverse propensity score weighting,
calibration weighting, and their augmented counterparts can
be employed (Li et al., 2023b; Valancius et al., 2024; Li &
Luedtke, 2023). When there is unmeasured confounding
between RCT and EC, a rich body of literature addresses the
hidden bias through various strategies, including test-then-
pool (Viele et al., 2014; Yuan et al., 2019; Li et al., 2020;
Ventz et al., 2022; Liu et al., 2022; Yang et al., 2023; Gao
& Yang, 2023; Dang et al., 2023), weighted combination
(Chen et al., 2020; 2021a; Cheng & Cai, 2021; Li et al.,
2022; Oberst et al., 2022; Rosenman et al., 2023; Chen
et al., 2023; Karlsson et al., 2024), selective borrowing
(Chen et al., 2021b; Li et al., 2023a; Zhai & Han, 2022; Gao
et al., 2025; Huang et al., 2023), bias modeling (Stuart & Ru-
bin, 2008; Cheng et al., 2023; Li & Jemielita, 2023; van der
Laan et al., 2024; Yang et al., 2024; Gu et al., 2024), control
variates or prognostic adjustment (Yang & Ding, 2020; Guo
et al., 2022; Schuler et al., 2022; Gagnon-Bartsch et al.,
2023), Bayesian methods (Hobbs et al., 2011; Schmidli
et al., 2014; Jiang et al., 2023; Kwiatkowski et al., 2024; Alt
et al., 2024; Lin et al., 2024; 2025), and sensitivity analysis
(Yi et al., 2023). None of them use randomization inference
or conformal inference to address unmeasured confounding
in hybrid controlled trials with a small sample size.

Randomization inference, introduced by Fisher (1935),
provides finite-sample exact p-values for any test statistic
and is widely endorsed (Rosenberger et al., 2019; Proschan
& Dodd, 2019; Young, 2019; Bind & Rubin, 2020; Carter
et al., 2023). Randomization tests are useful for small sam-
ple trials or complex designs, including cluster experiments
with few clusters (Rabideau & Wang, 2021) and adaptive
experiments (Simon & Simon, 2011; Plamadeala & Rosen-
berger, 2012; Nair & Janson, 2023; Freidling et al., 2024).
Randomization tests have appeared in regulatory guidance
documents to ensure type I error rate control in adaptive
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designs when conventional statistical methods fail (Euro-
pean Medicines Agency, 2015; U.S. Food and Drug Ad-
ministration, 2019; Carter et al., 2023). For an overview
of randomization inference, see Zhang & Zhao (2023) and
Ritzwoller et al. (2024). Nevertheless, the randomization
inference hasn’t been applied to hybrid controlled trials,
especially with selective borrowing to address unmeasured
confounding.

Conformal inference, or conformal prediction, is a model-
free method providing finite-sample valid uncertainty quan-
tification for individual predictions (Vovk et al., 2005), par-
ticularly useful in high-stakes scenarios with black-box ma-
chine learning models (Angelopoulos & Bates, 2023). Two
main applications are most relevant to this paper. The first
involves using conformal inference to infer individual treat-
ment effects (Chernozhukov et al., 2021; Lei & Candès,
2021). The second line is in outlier detection (Guan & Tib-
shirani, 2022; Bates et al., 2023; Liang et al., 2024). These
studies inspire us to treat biased ECs as outliers and use con-
formal p-values to test their exchangeability. Our primary
goal, however, is to boost FRT power by selectively borrow-
ing unbiased ECs with conformal p-values. The adaptive
selection threshold that minimized the estimator’s MSE is
also a novel approach.

2. Randomization inference framework
2.1. Preliminaries

Consider nR patients in the RCT, nE patients in the EC
group, and n = nR + nE patients in total. Let S = 1 for
patients in RCT and S = 0 for patients in the EC group.
Let A denote the binary treatment, where A = 1 stands
for treatment and A = 0 stands for control. We denote
T = {i : Ai = 1, Si = 1}, C = {i : Ai = 0, Si =
1}, R = T ∪ C, and E = {i : Si = 0}. Let X denote
the baseline covariates, Y denote the observed outcome,
and Y (0) and Y (1) denote the potential outcomes. In an
RCT, we randomize nR patients into either the treatment
or control groups based on the known propensity score
e(x) = P(A = 1 | X = x, S = 1). This results in
n1 patients in the treatment group and n0 patients in the
control group. For nE patients in the EC group, since all
of them are under control, we have A = 0 for S = 0.
Let π(x) = P(S = 1 | X = x) denote the sampling
score of participating in the RCT. We consider the average
treatment effect in the RCT population as our estimand
τ = E{Y (1)−Y (0) | S = 1}. For RCT data, the following
standard identification assumptions are considered (Imbens
& Rubin, 2015).

Assumption 2.1 (RCT identification). (i) (Consistency)
Y = AY (1) + (1−A)Y (0). (ii) (Positivity) 0 < e(x) < 1
for all x such that fX|S(x|1) > 0, where fX|S(x|s) is the
conditional p.d.f. of X given S = s. (iii) (Randomization)

Y (a) ⊥⊥ A | (X,S = 1), a = 0, 1.

Under Assumption 2.1, τ is identifiable based on RCT
data. We denote the conditional outcome mean functions
by µa(x) = E(Y | X = x,A = a, S = 1), a = 0, 1. We
estimate µa(x) and e(x) with only RCT data and denote the
estimated functions by µ̂a,R(x) and ê(x), respectively. An
RCT-only doubly robust estimator of τ is

τ̂R =
1

nR

n∑
i=1

Si

[
µ̂1,R(Xi) +

Ai

ê(Xi)
{Yi − µ̂1,R(Xi)}

− µ̂0,R(Xi)−
1−Ai

1− ê(Xi)
{Yi − µ̂0,R(Xi)}

]
,

which is referred to as the No Borrowing (NB) approach
hereafter. In RCTs, since the propensity score model e(x) is
known, τ̂R is consistent and asymptotically normal regard-
less of whether µa(x) is correctly specified for a = 0, 1.
Thus, τ̂R serves as a model-assisted covariate-adjusted ATE
estimator whose asymptotic variance attains the semipara-
metric efficiency bound if µa(x) is correctly specified for
a = 0, 1. The efficiency of τ̂R could be further improved
by borrowing information from EC data. To incorporate EC
data for estimating τ , many scholars have considered the
following assumption (Li et al., 2023b).

Assumption 2.2 (Mean exchangeability). E{Y (0) |
X,S = 0} = E{Y (0) | X,S = 1}.

Under Assumptions 2.1 and 2.2, τ could be identified with
both RCT and EC data. We estimate µ0(x) with RCT and
EC data and denote the estimated functions by µ̂0,R+E(x).
Let π̂E(x) denote the estimated sampling score. The vari-
ance ratio between randomized controls and ECs is denoted
by r(x) = V{Y (0) | X = x,A = 0, S = 1}

/
V{Y (0) |

X = x,A = 0, S = 0}. Let r̂E(x) denote the estimated
variance ratio. Li et al. (2023b) proposed a doubly robust
estimator of τ :

τ̂R+E =
1

nR

n∑
i=1

[
Si µ̂1,R(Xi) + Si

Ai

ê(Xi)
{Yi − µ̂1,R(Xi)}

− Si µ̂0,R+E(Xi)−Wi{Yi − µ̂0,R+E(Xi)}
]
, (1)

Wi = π̂E(Xi)
Si(1−Ai) + (1− Si)r̂E(Xi)

π̂E(Xi){1− ê(Xi)}+ {1− π̂E(Xi)}r̂E(Xi)
.

τ̂R+E is referred to as the Full Borrowing (FB) approach
hereafter. The term “Full” here refers to incorporating the
full set of ECs to construct τ̂R+E , while down-weighting
those ECs based on similarity measured by X , thereby ad-
dressing bias caused by observed confounders. τ̂R+E is
consistent and asymptotically normal if either (i) µa(x) is
correctly specified for a = 0, 1, or (ii) both π(x) and e(x)
are correctly specified. If all models for µa(x), a = 0, 1,
π(x), and e(x) are correctly specified, τ̂R achieves the semi-
parametric efficiency bound.
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However, asymptotic inference for τ̂R+E may be invalid
due to three main reasons: (i) it assumes nR → ∞, which
contradicts the motivation for EC borrowing, where the sam-
ple size of the RCT is typically small; (ii) it relies on the
correct specification of at least one of the two nuisance mod-
els, which may be violated because sophisticated models
are difficult to work with under small sample sizes; and
(iii) it depends on Assumption 2.2, which may be violated
due to unmeasured confounders. To address these issues,
we consider a finite-sample exact randomization inference
framework that maintains strict type I error rate control even
if all models are misspecified and Assumption 2.2 fails. We
consider τ̂R and τ̂R+E as candidate test statistics and pro-
pose a new class of test statistics in Section 3 to achieve
improved power across various scenarios.

2.2. Fisher randomization test

In the randomization inference framework, we are condi-
tional on the potential outcomes Yi(a) and covariates Xi

for i ∈ R ∪ E , and consider the randomized assignment
A = (A1, . . . , An) as the sole source of randomness. Since
Ai for i ∈ R is well controlled and known in the RCT,
we can leverage this advantage to guarantee the validity of
inference without any additional assumptions. Let A denote
the set of all possible assignments generated by the actual
RCT design. Since all external units are under control, we
have Ai = 0 for i ∈ E . Randomization inference accom-
modates not only Bernoulli trials with Ai

i.i.d.∼ Bernoulli(p)
for i ∈ R but also complex designs like covariate-adaptive
randomization (Rosenberger & Lachin, 2015).

Consider Fisher’s sharp null hypothesisH0 : Yi(0) = Yi(1),
∀i ∈ R, which states no treatment effect for any units in
RCT. Based on H0, we could impute all potential outcomes
Y imp
i (0) = Y imp

i (1) = Yi for i ∈ R. Let T (A) denote
the test statistic, which depends on the assignment A ∈
A. T (A) could be |τ̂R(A)|, |τ̂R+E(A)|, or the estimator
introduced in Section 3. The theoretical guarantee of type I
error rate control holds for any test statistic, including those
involving ECs, even if these ECs have hidden biases. This is
one of the key merits of randomization inference. We define
the p-value for measuring the extremeness of the observed
T (A) against H0 as

pFRT = PA∗ {T (A∗) ≥ T (A)} ,

where A∗ ∈ A has the same distribution as A and is in-
dependent of A, and PA∗ is taken over the distribution of
A∗.
Theorem 2.3. Under H0, for α ∈ (0, 1), we have
PA(pFRT ≤ α) ≤ α, where PA is taken over the distri-
bution of A. If we further assume that T (A) takes distinct
values for different A ∈ A, then we have PA(pFRT ≤ α) =
⌊α|A|⌋/|A| > α−1/|A|, where ⌊x⌋ represents the greatest
integer less than or equal to x.

In practice, we use Monte Carlo to approximate pFRT.
Based on the RCT’s actual randomization, we generate the
new assignment Ab

i for i ∈ R and set Ab
i ≡ 0 for i ∈ E

since the randomization in the RCT does not affect the as-
signments of the ECs. A caveat is that the assignment of ECs
should not be permuted, as this would violate the “analyze
as you randomize” principle and compromise the validity
of the FRT. The new assignment vector is denoted as Ab =
(Ab

1, . . . , A
b
n). We generate assignments for B times and

obtain p̂FRT =
[∑B

b=1 I{T (A
b) ≥ T (A)}+ 1

]
/(B + 1),

where the “+1” term accounts for A itself.

Theorem 2.3 shows that FRT exactly controls the type I
error rate in finite samples, regardless of Assumption 2.2,
because, under H0, the reference distribution is derived
from true randomization, which is well-controlled in clinical
trials. However, the power of FRT heavily depends on the
choice of test statistic, making it the most critical decision
in randomization inference.

2.3. Model-based power analysis

There are two primary approaches for conducting a power
analysis of FRT: model-based or simulation-based (Rosen-
berger & Lachin, 2015). We first perform a model-based
power analysis under Assumption 2.2, highlighting how low
variance of a consistent test statistic enhances the power
of FRT. In the following section, we conduct a simulation-
based power analysis for a more challenging scenario where
Assumption 2.2 does not hold, showing that the bias of an
inconsistent test statistic reduces the power of FRT.

Let M denote the total number of possible assignments,
F1,n,M (t) = PA(T (A) ≤ t) denote the randomization
distribution of T (A), and F0,n,M (t) = PA∗(T (A∗) ≤ t)
denote the reference distribution of T (A∗) under H0. Both
F1,n,M and F0,n,M are discrete in finite samples. To ap-
ply empirical process theory and derive asymptotic rates
for testing power, we assume continuous super-population
distributions F1,n and F0,n, with F1,n,M and F0,n,M rep-
resenting the empirical distribution functions based on M
independent samples drawn from F1,n and F0,n, respec-
tively. In cases where these assumptions do not hold, FRT
still controls the type I error rate, and we will investigate
its power through simulation in Section 4. Based on those
notations, the p-value and the power can be expressed as
pFRT = PA∗ {T (A∗) ≥ T (A)} = 1 − F0,n,M

(
T (A)

)
,

and ψn,M = PA(pFRT ≤ α) = PA{1−F0,n,M

(
T (A)

)
≤

α} = 1− F1,n,M

(
F−1
0,n,M (1− α)

)
.

Theorem 2.4. For fixed n > 0, suppose

(a) There are continuous cumulative distribution functions
(c.d.f.) F0,n and F1,n, such that F0,n,M and F1,n,M are the
empirical distribution functions based on M independent
samples drawn from F0,n and F1,n, respectively.
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(b) There is σn > 0 and a continuous c.d.f. F such that
F0,n(t) = F (t/σn) for all t ∈ R.

(c) For ATE τ , F1,n(t) = F0,n(t − τ) = F
(
(t − τ)/σn

)
,

for all t ∈ R.

For 0 < ι < 0.5 and sufficiently large M ,

E(ψn,M ) ≥ 1− F (F−1(1− α)− τ/σn)−O(M−0.5+ι),

where E is over M independent samples from F0,n and
F1,n.

For a given τ ̸= 0, significance level α, and design with
possible assignments M , Theorem 2.4 shows that the power
of the FRT also depends on the variance of the test statistic,
σn. Under Assumptions 2.1 and 2.2, and with all working
models correctly specified, τ̂R+E is consistent and has a
variance that is less than or equal to that of τ̂R (Li et al.,
2023b). Thus, when there is no hidden bias, using τ̂R+E as
the test statistic improves the power of the FRT compared
to τ̂R, as shown in subplot (B) of Figure 1.

2.4. Simulation-based power analysis

When unmeasured confounding exists between RCT and
EC data, Assumption 2.2 is violated, rendering τ̂R+E incon-
sistent. In such cases, asymptotic inference based on τ̂R+E
is invalid and fails to control the type I error rate. In contrast,
since Theorem 2.3 holds for any test statistic, FRT can still
control the type I error with the inconsistent test statistic
τ̂R+E , highlighting a core merit of FRTs. However, the vio-
lation of Assumption 2.2 subsequently causes Assumption
(c) in Theorem 2.4 to be unfulfilled, rendering FRT with
τ̂R+E unable to achieve a power improvement over FRT
with τ̂R. Furthermore, employing τ̂R+E as the test statistic
results in a substantial loss of power compared to using τ̂R,
as illustrated in subplot (D) of Figure 1.

The trade-off between τ̂R and τ̂R+E generally arises be-
tween a causal estimator that ignores additional informa-
tion and assumptions and one that incorporates them but
risks bias if the assumptions fail (Rothenhäusler, 2020;
Rothenhäusler et al., 2021). In the next section, instead
of choosing between τ̂R and τ̂R+E , we construct a class of
ATE estimators, τ̂γ , indexed by a tuning parameter γ and
encompassing τ̂R and τ̂R+E as special cases. We then pro-
pose a data-adaptive procedure to select γ that minimizes
the MSE of τ̂γ , thereby enhancing the power of FRT by
using τ̂γ as the test statistic.

3. Conformal Selective Borrowing
3.1. A class of estimators

Motivated by heterogeneous scenarios where some ECs sat-
isfy Assumption 2.2 while others do not, we propose an

individualized test-then-pool approach that leverages con-
formal inference to select comparable ECs. The conformal
p-value p∗j ∈ (0, 1] is used to test the exchangeability of
each EC j ∈ E . The selected EC set is then defined as
Ê(γ) = {j ∈ E : p∗j > γ}, where γ ∈ [0, 1] is a selection
threshold. Substituting E with Ê(γ) in (1), we obtain the
Conformal Selective Borrowing (CSB) estimator:

τ̂γ =
1

nR

n∑
i=1

[
Si µ̂1,R(Xi) + Si

Ai

ê(Xi)
{Yi − µ̂1,R(Xi)}

− Si µ̂0,R+Ê(γ)(Xi)− Vi{Yi − µ̂0,R+Ê(γ)(Xi)}
]
, (2)

Vi = π̂Ê(γ)(Xi)

×
Si(1−Ai) + (1− Si)I{i ∈ Ê(γ)}r̂Ê(γ)(Xi)

π̂Ê(γ)(Xi){1− ê(Xi)}+ {1− π̂Ê(γ)(Xi)}r̂Ê(γ)(Xi)
.

CSB represents a class of ATE estimators: when γ = 1, no
ECs borrowed and Ê(1) = ∅, we have τ̂1 ≡ τ̂R; when γ =
0, all ECs borrowed and Ê(0) = E , we have τ̂0 = τ̂R+E .
For 0 < γ < 1, τ̂γ balances the trade-off between borrowing
more ECs with a smaller γ and discarding more ECs with
a larger γ. By using T (A) = |τ̂γ | as the test statistic for
FRT and allowing Ê(γ) to vary with resampling A in FRT
could account for selection uncertainty and provide valid
post-selection inference. The following sections introduce
various conformal p-values and a data-adaptive procedure
for selecting γ to minimize the MSE of τ̂γ .

3.2. Conformal p-value

Split conformal p-value. We first consider split conformal
inference (Papadopoulos et al., 2002). We randomly split
C into a calibration set C1 and a training set C \ C1 accord-
ing to a prespecified sample size ratio, for example, 1 : 3.
We use a score function s(x, y) to measure the “noncon-
formity” of (x, y). For example, we can use the absolute
residual as the score function: si = |Yi − f̂−C1

(Xi)| for
i ∈ C1 and sj = |Yj − f̂−C1(Xj)|, where f̂−C1(x) is a
prediction model fitted by the training set C \ C1. Intu-
itively, if (Xj , Yj) is not exchangeable (see Remark 3.2 for
a formal definition) with {(Xi, Yi)}i∈C1

, sj should be large
compared to {si}i∈C1

. Thus, we define the split conformal
p-value as the proportion of {si}i∈C1

that are larger than
sj , that is, psplitj = {

∑
i∈C1

I(si ≥ sj) + 1}/(|C1| + 1),
where I is the indicator function, and the “+1” accounts for
including sj itself. If psplitj is smaller than a threshold γ,
we reject the hypothesis of exchangeability and discard EC
j. The following theoretical guarantee states that if EC j is
exchangeable, the rejection rate is less than γ.

Proposition 3.1. For j ∈ E , suppose that (Xj , Yj) and
{(Xi, Yi)}i∈C are exchangeable. For γ ∈ (0, 1), we have

5



Randomization Inference and Conformal Selective Borrowing in Hybrid Controlled Trials

Type I error = 0.048

Type I error = 0.038

0.00 0.25 0.50 0.75 1.00

0

10

20

0

10

20

Exact p−value

(A) H0, unbiased ECs

Power = 0.334

Power = 0.486

0.00 0.25 0.50 0.75 1.00

0

50

100

150

0

50

100

150

Exact p−value

(B) H1, unbiased ECs

Type I error = 0.048

Type I error = 0.056

0.00 0.25 0.50 0.75 1.00

0

10

20

0

10

20

Exact p−value

(C) H0, biased ECs

Power = 0.334

Power = 0.186

0.00 0.25 0.50 0.75 1.00

0

30

60

90

0

30

60

90

Exact p−value

(D) H1, biased ECs

Method No Borrow (γ = 1) Full Borrow (γ = 0)

Figure 1. Simulated distributions of p-values under H0 and H1.

P(psplitj ≤ γ) ≤ γ. If sj and {si}i∈C have distinct values,
we have P(psplitj ≤ γ) =

{
⌊γ(|C1| + 1)⌋

}/
(|C1| + 1) >

γ − 1/(|C1|+ 1).

Remark 3.2 (Definition of exchangeability). The random
variables z1, . . . , zn are exchangeable if, for any permuta-
tion ω of 1, . . . , n, the random variables zω(1), . . . , zω(n)

have the same joint distribution as z1, . . . , zn. The i.i.d.
assumption is stronger than exchangeability, as the latter
can hold with dependence (Shafer & Vovk, 2008). The ex-
changeability required by conformal inference is stronger
than the mean exchangeability (Assumption 2.2), which al-
lows the construction of a statistically valid estimator within
the asymptotic inference framework.

CV+ p-value. While split conformal p-values are com-
putationally efficient, they lose statistical efficiency due
to data splitting. CV+ (Barber et al., 2021) fully utilize
training data and remain computationally feasible. We
randomly split C into K disjoint folds: C = ∪K

k=1Ck.
We use the training set C \ Ck to fit prediction models
f̂−Ck

(x) and use the absolute residual as the score function:
si = |Yi − f̂−Ck(i)

(Xi)| and s(i)j = |Yj − f̂−Ck(i)
(Xj)| for

i ∈ C, where k(i) ∈ {1, . . . ,K} is a function that indi-
cates i ∈ Ck. Thus, for i ̸= i′ and k(i) = k(i′), we have
s
(i)
j = s

(i′)
j . We define the CV+ p-value as the proportion

of {si}i∈C that are larger than the corresponding {s(i)j }i∈C ,

that is, pcv+j = {
∑

i∈C I(si ≥ s
(i)
j ) + 1}/(|C|+ 1).

Proposition 3.3. For j ∈ E , suppose that (Xj , Yj) and
{(Xi, Yi)}i∈C are exchangeable. For γ ∈ (0, 1), we have
P(pcv+j ≤ γ) ≤ 2γ+

{
(1−2γ)(m−1)−1

}/
(|C|+m) <

2γ+
(
1−K/|C|

)
/ (K+1), where m = |C|/K is assumed

to be an integer for simplicity.

3.3. Adaptive selection threshold

Since we construct p∗j individually and make borrowing de-
cisions collectively, one might consider choosing a selection

threshold γ that controls the family-wise type I error rate
or false discovery rate for testing the exchangeability of all
ECs (Bates et al., 2023). However, in our context, the power
of the conformal tests is of greater concern. The classical
test-then-pool approach has been criticized for its low power
in detecting hidden bias, especially with small randomized
control sample sizes (Li et al., 2020). Even with effective
control of the family-wise type I error rate, low-power con-
formal tests can allow many biased ECs to be incorrectly
borrowed, increasing the MSE of τ̂γ and reducing the power
of the FRT. Therefore, we propose a data-adaptive procedure
to directly minimize the MSE of τ̂γ .

We decompose MSE(γ) ≡ E(τ̂γ − τ)2 = {E(τ̂γ)− τ}2 +
V(τ̂γ). The main challenge lies in estimating the squared
bias {E(τ̂γ − τ)}2 as the true τ is unknown. Fortunately,
since the NB estimator τ̂1 is consistent for τ , we approximate
{E(τ̂γ−τ)}2 by {E(τ̂γ−τ̂1)}2 = E(τ̂γ−τ̂1)2−V(τ̂γ−τ̂1).
We then use (τ̂γ − τ̂1)

2 to estimate E(τ̂γ − τ̂1)
2 and apply

bootstrap to estimate V(τ̂γ) and V(τ̂γ − τ̂1). Combining
these provides the estimated MSE for each γ over finite
grids, and we select the γ that minimizes it. The complete
procedure is detailed in Algorithm 1.

Algorithm 1: Adaptive Selection Threshold
Input: Grid Γ = {0, 0.1, . . . , 1}; bootstrap times L.
for γ ∈ Γ do

Compute τ̂γ from the original sample.
for l = 1, . . . , L do

Compute τ̂ (l)γ from the l-th bootstrap sample.

for γ ∈ Γ do
Compute V̂(τ̂γ − τ̂1) using τ̂ (l)γ − τ̂

(l)
1 .

Compute V̂(τ̂γ) using τ̂ (l)γ .
M̂SE(γ) = (τ̂γ − τ̂1)

2 − V̂(τ̂γ − τ̂1) + V̂(τ̂γ).

Output: γ̂ = argminγ∈Γ M̂SE(γ)
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We theoretically analyze the procedure from a non-
asymptotic perspective (Wainwright, 2019). Decomposing
τ̂γ = τ+δγ+ϵγ , where δγ ≡ E(τ̂γ)−τ and E(ϵγ) = 0. Let
κ2γ ≡ V(τ̂γ − τ̂1) = V(ϵγ − ϵ1) and σ2

γ ≡ V(τ̂γ) = V(ϵγ).
Theorem 3.4. For fixed n > 0 and γ ∈ Γ, let ϵγ be a
centered sub-Gaussian variable with parameter ϕγ > 0,
i.e., Eexp(λϵγ) ≤ exp(ϕ2γλ

2/2) for all λ ∈ R. For ι > 0,
there exists c > 0 such that with probability at least 1− 4ι:

max
γ∈Γ

∣∣∣M̂SE(γ)−MSE(γ)
∣∣∣ ≤ c∆|δ1|+ c∆Φ

√
log (|Γ|/ι)

+ max
{
cΦ2

√
log (|Γ|/ι), cΦ2 log (|Γ|/ι)

}
+max

γ∈Γ
|V̂(τ̂γ − τ̂1)− κ2γ |+max

γ∈Γ
|V̂(τ̂γ)− σ2

γ |,

where ∆ = maxγ∈Γ |δγ |, Φ = maxγ∈Γ ϕγ , δ1 is the bias
of τ̂1, and |Γ| is the cardinality of Γ.

Theorem 3.4 shows that the discrepancy between the es-
timated and true MSE vanishes if ∆ is bounded and the
bias of the consistent estimator τ̂1, the maximum standard
deviation proxy Φ, and the variance estimation errors are
sufficiently small.
Theorem 3.5. Under the same assumptions as in Theorem
3.4, for any ι > 0, there exists a constant c > 0 such that,
with probability at least 1− 8ι, the following holds:

(τ̂γ̂ − τ)2 −min
γ∈Γ

(τ̂γ − τ)2 ≤ 2c∆|δ1|+ 2c∆Φ
√
log (|Γ|/ι)

+ 2max
{
cΦ2

√
log (|Γ|/ι), cΦ2 log (|Γ|/ι)

}
+ 2max

γ∈Γ
|V̂(τ̂γ − τ̂1)− κ2γ |+ 2max

γ∈Γ
|V̂(τ̂γ)− σ2

γ |.

Theorem 3.5 provides a bound for the excess risk of τ̂γ̂ in
comparison to the oracle estimator. Although τ̂γ̂ generally
outperforms τ̂1 in terms of MSE, it may exhibit excess risk
in certain challenging cases, as shown in Figure 2 (C) in the
simulation. This phenomenon highlights that τ̂γ̂ behaves
similarly to the Hodges estimator (Le Cam, 1953) and to in-
tegrated estimators in data fusion (Yang et al., 2023; Oberst
et al., 2022): improving upon the baseline estimator (here,
the No Borrow estimator) in certain regions of the parameter
space (where there is no bias in ECs) inevitably leads to
worse performance in other regions (where the bias in ECs
is difficult to detect). FRT still controls the type I error rate
even if excess risk is present or the assumptions in Theorem
3.4 are not satisfied.

4. Simulation
We conduct simulations to evaluate the repeated sampling
performance of the proposed methods under small sam-
ple sizes and varying magnitudes of hidden bias, includ-
ing challenging cases where separating biased ECs is dif-
ficult. Specifically, the sample sizes for the randomized

treatment, randomized control, and EC groups are set as
(n1, n0, nE) = (50, 25, 50). Similar results for a larger
EC sample size (nE = 300) are included in the Appendix.
We generate covariates X ∼ Unif(−2, 2) with dimension
p = 2. The sampling indicator S ∼ Bernoulli(π(X)) is
generated with π(X) = {1 + exp (η0 +XTη)}−1, where
η0 is chosen to ensure E(S) = nR/n, and η = (0.1, 0.1).
The assignment is generated by A ∼ Bernoulli(n1/nR) for
S = 1 and A = 0 for S = 0. Let ε ∼ N(0, 1) denote the
noise. For the RCT sample (S = 1), we generate the poten-
tial outcomes as Y (0) = XTβ0 + ε with β0 = (1, 1), and
Y (1) = τ0+X

Tβ1+ ε with τ0 = 0.4 and β1 = (2, 2). For
the EC sample (S = 0), we consider two scenarios: (i) the
scenario without hidden bias, where Y (0) = XTβ0 + 0.5ε;
(ii) the scenario where part of the ECs have hidden bias
b, where a random proportion ρ of the ECs is biased, with
Y (0) = −b + XTβ0 + 0.5ε, and the remaining propor-
tion (1− ρ) are unbiased, with Y (0) = XTβ0 + 0.5ε. We
consider proportions of biased ECs ρ = 50% and mag-
nitudes of hidden bias b = 1, 2, . . . , 8. Note that hidden
bias refers to bias that remains due to unmeasured con-
founders, even after balancing the observed covariates. Un-
der the alternative hypothesis, the observed outcome is
Y = AY (1) + (1− A)Y (0); under the sharp null hypoth-
esis, the observed outcome is Y = Y (0). We consider NB,
FB, and CSB with the adaptive selection threshold as esti-
mators of τ and test statistics for FRT. We also consider
Adaptive Lasso Selective Borrowing (ALSB) by Gao et al.
(2025). Given its higher computational cost (approximately
10 times slower than CSB), we omit FRTs for this method
and instead compare CSB+FRT with ALSB+asymptotic in-
ference in the Appendix. CV+ p-values are used with 10
folds. We set B = 5000 to approximate pFRT and replicate
the simulation 500 times per scenario.

Figure 2 displays performance metrics for b = 0, 1, . . . , 8.
In the first case (b = 0): (i) all methods exhibit neg-
ligible bias; (ii) FB and CSB reduce MSE by 42% and
20%, respectively, compared to NB; (iii) all methods ef-
fectively control the type I error rate; and (iv) FB and CSB

increase power by 46% and 45%, respectively, compared
to NB. In the following eight cases (b = 1, . . . , 8): (i)
FB exhibits a large bias, approximately 125%-203% of
its standard deviation (SD). The absolute bias of FB de-
creases with b when b ≥ 3 because large b values increase
V{Y (0) | X = x,A = 0, S = 0}, causing FB to down-
weight ECs with small r̂(Xi) in (1). CSB performs better at
bias control, with bias ranging from 0%-22% of its SD; (ii)
compared to NB, FB increases MSE by up to 454%, and CSB

decreases MSE by 13%-16% (except when b = 1, 2, where
MSE increases by 1%-18%). (iii) In line with Theorem 2.3,
all methods control the type I error rate well; (iv) compared
to NB, FB decreases power by up to 51%. In contrast, CSB in-
creases power by 13%-36% (except when b = 2, 3, 4, where
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Figure 2. Simulation results across different hidden bias magnitudes b.

power decreases by 7%-20%). In challenging cases where
0 < b ≤ 4, the efficiency loss of CSB occurs because small
biases make it hard to distinguish biased ECs from unbiased
ECs. Such loss is inevitable when aiming to gain efficiency
in scenarios without hidden bias, a phenomenon known in
the transfer learning literature as the cost of transferability
detection (Cai et al., 2024). This phenomenon also occurs
for other data integration estimators under hidden bias (see
Figure 2 in Yang et al. (2023), Figure 4 in Oberst et al.
(2022), and Figure 2 in Lin et al. (2024)). Finally, we ex-
amine the selection performance of CSB. We do not expect
CSB to perfectly separate biased ECs from unbiased ones
due to (i) the small sample size of randomized controls and
(ii) finite sample noise. As shown in Figure 2, CSB discards
biased ECs and some unbiased ones that aren’t sufficiently
similar to randomized controls, demonstrating satisfactory
selection performance.

5. Real data application
The CALGB 9633 and NCDB data. We apply the
proposed methods to an RCT conducted by the Cancer
and Leukemia Group B (CALGB), known as CALGB
9633, which investigated the treatment effect of adjuvant
chemotherapy in patients with stage IB non-small-cell lung
cancer (Strauss et al., 2008). In CALGB 9633 (S = 1),
n1 = 167 patients were randomized to adjuvant chemother-
apy (A = 1), and n0 = 168 were randomized to obser-
vation (A = 0). We extract data for 11,700 patients from
the National Cancer Database (NCDB) as the EC sample

(A = 0, S = 0) to improve CALGB 9633’s statistical effi-
ciency. The NCDB is a clinical oncology database sourced
from hospital registry data, jointly run by the American Can-
cer Society and the American College of Surgeons, covering
70% of U.S. cancer cases.

RMST and pseudo-observations We use the Restricted
Mean Survival Time (RMST), Y = min(T, t∗), as the pri-
mary endpoint, where T represents the survival time and
t∗ is the truncation time. RMST measures survival time
up to a clinically relevant truncation point and serves as
a compelling alternative to the hazard ratio when the pro-
portional hazards assumption is violated (Hernán, 2010).
We consider the difference in 3-year RMST between the
treatment and control groups for the RCT population
τ = E{Y (1) − Y (0) | S = 1} as the estimand, where
Y (a) = min{T (a), 3} and T (a) is the potential survival
time, a = 0, 1. Five baseline covariates in CALGB 9633
and NCDB are considered: sex, age, race, histology, and
tumor size. The censoring rates of T in CALGB 9633 and
NCDB are 42% and 48%, respectively. We use a “once-for-
all” approach to transform right-censored survival times into
pseudo-observations for RMST, allowing standard causal
inference methods as if outcomes were non-censored (An-
dersen et al., 2003; Overgaard et al., 2017). To address
covariate-dependent censoring, we stratified by sex, race,
and histology, applying transformations separately within
each dataset (Andersen & Pohar Perme, 2010). The strat-
ified Kaplan–Meier estimator is used to estimate survival
functions, with pseudo-observations generated via the jack-
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Table 1. Analysis results for CALGB 9633 + NCDB.

Method Est SE CI Asym p Exact p #EC

No Borrow (Dif-in-Means) 0.135 0.072 (-0.007, 0.276) 0.062 0.060 0
No Borrow (AIPW) 0.142 0.074 (-0.003, 0.286) 0.055 0.051 0

Full Borrow 0.241 0.061 (0.122, 0.361) <0.001 0.031 335
Conformal Selective Borrow 0.138 0.058 (0.024, 0.252) 0.018 0.046 264

“Est” is the estimate. “SE”, “CI”, and “Asym p” are the asymptotic standard error, confidence interval,
and p-value, respectively. “Exact p” is the exact p-value. “#EC” is the number of borrowed ECs.

knife method, as implemented in the R package eventglm
(Sachs & Gabriel, 2022). We treat the pseudo-observations
for 3-year RMST as the outcome hereafter. More details
about the real data are provided in Appendix Section D.

Data analysis. We apply NB, FB, and CSB to estimate the
ATE and perform FRTs. For comparison, we also apply
NB without covariate adjustment, i.e., difference-in-means
estimator. In addition to the proposed exact p-value, we
also compute the standard error, confidence interval, and
p-value based on asymptotic inference for all approaches
(Li et al., 2023b). Since the outcome shows a high propor-
tion of truncation at 3 years, resulting in a highly skewed
distribution, we apply the conformal quantile regression
(Romano et al., 2019) to compute the conformal score. We
use the Jackknife+ p-value (Barber et al., 2021) to achieve
a better balance between statistical and computational effi-
ciency. Table 1 presents the analysis results. For NB using
Dif-in-Means and AIPW, asymptotic and exact p-values
range from 0.051 to 0.062. In contrast, FB (using all 335
ECs) gives an asymptotic p-value of < 0.001 and an ex-
act p-value of 0.031, indicating a significantly positive ATE.
Similarly, CSB (using 178 ECs) shows an asymptotic p-value
of 0.018 and an exact p-value of 0.046, also indicating a
significantly positive ATE. The ATE estimate from CSB falls
between NB and FB, indicating a trade-off between these two
approaches.

6. Discussion
This paper proposes using FRT in hybrid controlled trials
and introduces CSB for selectively incorporating comparable
ECs, mitigating hidden bias. FRT with CSB maintains type
I error control and improves power compared to RCT-only
analysis. The proposed CSB estimator with an adaptive se-
lection threshold enhances efficiency over the NB approach.

One limitation of our procedure is that, when the bias is non-
negligible yet difficult to detect, it may incur some power
loss, though it still maintains valid Type I error control.
This no-free-lunch limitation is acknowledged in existing
papers (Oberst et al., 2022; Lin et al., 2024), which point
out that without assuming mean exchangeability of ECs, no

method can uniformly and significantly outperform RCT-
only analysis across varying levels of hidden bias, although
different approaches optimize the risk-reward trade-off from
different perspectives. The most challenging scenarios are
those where bias is non-negligible but complex to correct
or difficult to detect. Our key distinctions from existing
literature are twofold: (i) we prioritize exact Type I error
control in small samples before seeking power gains; (ii) we
optimize the risk-reward trade-off between no borrowing
and full borrowing through conformal selective borrowing,
motivated by real data in which some ECs are unbiased
while others are not.

Heterogeneity among data sources is common in integration
and transfer learning, often leading to bias or efficiency loss
even after balancing measured confounders. While penal-
ized bias estimation is a common solution, our work demon-
strates that conformal inference provides greater stability
and flexibility in finite samples. Extending this approach
to tasks like developing individual treatment regimes (Chu
et al., 2023), exploring treatment effect heterogeneity (Wu
& Yang, 2022), and improving experimental design (Ruan
et al., 2024) shows great potential.

Beyond the sharp null, FRTs can test the weak null asymp-
totically using studentized or prepivoted statistics (Wu &
Ding, 2021; Cohen & Fogarty, 2022). Randomization-based
confidence intervals can be constructed by inverting FRTs
(Luo et al., 2021; Zhu & Liu, 2023; Fiksel, 2024), and ran-
domization inference can test bounded nulls and construct
confidence intervals for treatment effect quantiles (Caughey
et al., 2023). Extending these methods to hybrid controlled
trials would be valuable.

Software and Data
A user-friendly R package, intFRT, is available at:
https://github.com/ke-zhu/intFRT.
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A. Additional conformal p-values
Full conformal p-value. Full conformal inference (Vovk et al., 2005) fully utilizes all data in C for both training and
calibration. We can still use the absolute residual as the score function: si = |Yi− f̂j(Xi)| for i ∈ C and sj = |Yj− f̂j(Xj)|,
where f̂j(x) is a prediction model fitted by the augmented set C ∪ {j}. To measure the extremeness of observing sj under
the exchangeability, we define the full conformal p-value as the proportion of the elements in {si}i∈C that are larger than or
equal to sj , that is, pfullj = {

∑
i∈C I(si ≥ sj) + 1}/(|C|+ 1).

Proposition A.1. For j ∈ E , suppose that (Xj , Yj) and {(Xi, Yi)}i∈C are exchangeable. For γ ∈ (0, 1), we have P(pfullj ≤
γ) ≤ γ. If sj and {si}i∈C have distinct values, we have P(pfullj ≤ γ) =

{
⌊γ (|C|+ 1)⌋

}/
(|C|+ 1) > γ − 1/(|C|+ 1).

To compute full conformal p-values for all ECs j ∈ E , the prediction model must be refit nE times, which is time-consuming
for large EC samples.

Jackknife+ p-value. Jackknife+ p-values (Barber et al., 2021) is a special case of CV+ with K = |C|. We use the
leave-one-out training set C \ {i} to fit prediction models f̂−i(x) and use the absolute residual as the score function:
si = |Yi − f̂−i(Xi)| and s(i)j = |Yj − f̂−i(Xj)| for i ∈ C. We define the Jackknife+ p-value as the proportion of {si}i∈C

that are larger than the corresponding {s(i)j }i∈C , that is, pjackknife+j = {
∑

i∈C I(si ≥ s
(i)
j ) + 1}/(|C|+ 1).

Proposition A.2. For j ∈ E , suppose that (Xj , Yj) and {(Xi, Yi)}i∈C are exchangeable. For γ ∈ (0, 1), we have
P(pjackknife+j ≤ γ) ≤ 2γ − 1/(|C|+ 1) < 2γ.

Remark A.3. The factor of 2 cannot be reduced without further assumptions, as shown by pathological cases in Barber et al.
(2021), though the empirical error rate is close to γ.

B. Proofs
B.1. Proof of Theorem 2.3

Proof of Theorem 2.3. Under H0, the imputed potential outcomes are the same as the true potential outcomes. Thus, the
distribution of T ∗ ≡ T (A∗) is the same as that of T ≡ T (A). With simplified notations, we have

PA(pFRT ≤ α) = PA {PA∗ (T ∗ ≥ T ) ≤ α} .

In a finite sample, A can take only a finite set of values, which implies that T must also take on a finite set of values.
Suppose these values are

T1 > . . . > Tm > . . . > TM ,

and
PA(T = Tm) = PA∗(T ∗ = Tm) = αm, m = 1, . . . ,M.

For T ∈ {T1, . . . , TM}, we have α1 ≤ PA∗ (T ∗ ≥ T ) ≤
∑M

m=1 αm = 1. If 0 < α < α1, we have

PA(pFRT ≤ α) = PA {PA∗ (T ∗ ≥ T ) ≤ α} = 0 ≤ α.

If α1 ≤ α < 1, ∃M̃ ∈ {1, . . . ,M − 1}, such that
∑M̃

m=1 αm ≤ α and
∑M̃+1

m=1 αm > α. Then, we have

PA(pFRT ≤ α) = PA {PA∗ (T ∗ ≥ T ) ≤ α} = PA {T ∈ {T1, . . . , TM̃}} =

M̃∑
m=1

αm ≤ α.

If T (A) takes distinct values for different A ∈ A, pFRT is uniformly distributed:

PA

(
pFRT =

a

|A|

)
=

1

|A|
, a = 1, . . . , |A|.

Thus, we have

PA(pFRT ≤ α) =
⌊α|A|⌋
|A|

>
α|A| − 1

|A|
= α− 1

|A|
.
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Remark B.1. If T is a continuous random variable, suppose its distribution function is F (t) = P (T ≤ t), then the proof
could be simplified as

PA {PA∗ (T ∗ ≥ T ) ≤ α} = P {1− F (T ) ≤ α}
= P

{
T ≥ F−1(1− α)

}
= 1− F{F−1(1− α)}
= α.

However, T is discrete with finite values, and we provide a rigorous proof in the finite-sample setting.

B.2. Proof of Theorem 2.4

We invoke two lemmas from the Supplementary Material of Puelz et al. (2022).
Lemma B.2 (Lemma 5 in Puelz et al. (2022)). Suppose Assumptions (b) and (c) in Theorem 2.4 hold, for some r ∈
(0.5, 1 +O(log−1M)), we have

E(F1,n(qα)− F1,n(qα,M )) ≥ −O(M−r),

Lemma B.3 (Lemma 4 in Puelz et al. (2022)). Suppose Assumption (a) of Theorem 2.4 holds, for any 0 < ι < 0.5 and
large enough M , we have

E(F1,n,M (z)− F1,n(z)) = O(M−0.5+ι), for any z ∈ R.

Proof of Theorem 2.4. Let qα,M = F−1
0,n,M (1− α) and qα = F−1

0,n(1− α). Thus, we have

ψN,M = 1− F1,n,M

(
F−1
0,n,M (1− α)

)
= 1− F1,n,M

(
qα,M

)
= 1− F1,n(qα)︸ ︷︷ ︸

T1

+F1,n(qα)− F1,n(qα,M )︸ ︷︷ ︸
T2

+F1,n(qα,M )− F1,n,M (qα,M )︸ ︷︷ ︸
T3

. (3)

By Assumptions (b) and (c), we have

T1 = 1− F1,n

(
F−1
0,n(1− α)

)
= 1− F

(
F−1(1− α)− τ/σN

)
.

Combined with Lemmas B.2 and B.3, we have

E(ψN,M ) ≥ 1− F
(
F−1(1− α)− τ/σN

)
−O(M−r)−O(M−0.5+ι).

The result follows from that r > 0.5 > 0.5− ι > 0.

B.3. Proof of Proposition A.1

Proof of Proposition A.1. Since the calibration set (Xi, Yj)i∈C and external control (Xj , Yj) are exchangeable, we have
(si)i∈C and sj are exchangeable. Thus, we have

P(pfullj ≤ γ) =P
(∑

i∈C I(si ≥ sj) + 1

|C|+ 1
≤ γ

)
≤⌊γ (|C|+ 1)⌋

|C|+ 1

≤γ,

where the first inequality is due to exchangeability and the possibility of ties in (si)i∈C and sj .

If sj and {si}i∈C have distinct values, pfullj is uniformly distributed due to exchangeability. That is,

P
(
pfullj =

a

|C|+ 1

)
=

1

|C|+ 1
, a = 1, . . . , |C|+ 1.

Thus, we have

P(pfullj ≤ γ) =
⌊γ (|C|+ 1)⌋

|C|+ 1
>
γ (|C|+ 1)− 1

|C|+ 1
= γ − 1

|C|+ 1
.
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B.4. Proof of Proposition 3.1

Proof of Proposition 3.1. Since the calibration set (Xi, Yj)i∈C and external control (Xj , Yj) are exchangeable, we have
(si)i∈C1

and sj are exchangeable. Thus, we have

P(psplitj ≤ γ) =P
(∑

i∈C1
I(si ≥ sj) + 1

|C1|+ 1
≤ γ

)
≤⌊γ(|C1|+ 1)⌋

|C1|+ 1

≤γ,

where the first inequality is due to exchangeability and the possibility of ties in (si)i∈C1
and sj .

If sj and {si}i∈C1
have distinct values, psplitj is uniformly distributed due to exchangeability. That is,

P
(
psplitj =

a

|C1|+ 1

)
=

1

|C1|+ 1
, a = 1, . . . , |C1|+ 1.

Thus, we have

P(psplitj ≤ γ) =
⌊γ(|C1|+ 1)⌋

|C1|+ 1
>
γ(|C1|+ 1)− 1

|C1|+ 1
= γ − 1

|C1|+ 1
.

B.5. Proof of Proposition A.2

Lemma B.4. Consider a matrix R ∈ R(n+1)×(n+1) with elements Rij . Define the set

S =

{
j ∈ {1, . . . , n+ 1} :

n+1∑
i=1

I(Rij < Rji) ≥ (1− γ)(n+ 1)

}
, γ ∈ (0, 1).

Then, we have
s ≤ 2γ(n+ 1)− 1 < 2γ(n+ 1),

where s = |S|.

Proof. Since
n+1∑
i=1

I(Rij < Rji) ≥ (1− γ)(n+ 1) ⇔
n+1∑
i=1

I(Rij ≥ Rji) ≤ γ(n+ 1),

by summing over all j ∈ S, we have ∑
j∈S

n+1∑
i=1

I(Rij ≥ Rji) ≤ sγ(n+ 1).

For i ̸= j, since I(Rij ≥ Rji) + I(Rji ≥ Rij) ≥ 1, we have∑
j∈S

∑
i∈S

I(Rij ≥ Rji) =
∑
j∈S

∑
i∈S,i̸=j

I(Rij ≥ Rji) + s

≥s(s− 1)

2
+ s.

By combining these two inequalities, we obtain

s(s− 1)

2
+ s ≤

∑
j∈S

∑
i∈S

I(Rij ≥ Rji)

≤
∑
j∈S

n+1∑
i=1

I(Rij ≥ Rji)

≤sγ(n+ 1).
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Thus, we have
(s− 1)

2
+ 1 ≤ γ(n+ 1) ⇒ s ≤ 2γ(n+ 1)− 1 < 2γ(n+ 1).

Proof of Proposition A.2. For i′, j′ ∈ C ∪ {j}, we define

Ri′j′ =

{
+∞ i′ = j′,∣∣∣Yi′ − f̂−(i′,j′) (Xi′)

∣∣∣ i′ ̸= j′,

where f̂−(i′,j′) is a prediction model fitted by the leave-two-out augmented set (C ∪ {j}) \ {i′, j′}. For i ∈ C, since
(C ∪ {j}) \ {i, j} = C \ {i}, we have f̂−i(x) = f̂−(i,j)(x), thereby,

si = |Yi − f̂−i(Xi)| = Rij ,

s
(i)
j = |Yj − f̂−i(Xj)| = Rji.

Thus, we have

P(pjackknife+j ≤ γ) =P

(∑
i∈C I(si ≥ s

(i)
j ) + 1

|C|+ 1
≤ γ

)

=P

(∑
i∈C∪{j} I(Rij ≥ Rji)

|C|+ 1
≤ γ

)

=P

 ∑
i∈C∪{j}

I(Rij < Rji) ≥ (1− γ)(|C|+ 1)


≤2γ − 1

|C|+ 1

<2γ,

where first inequality is due to exchangeability and Lemma B.4.

B.6. Proof of Proposition 3.3

Lemma B.5. Suppose m = n/K is an integer, and the n + m units are evenly divided into K + 1 sets, denoted by
C1, . . . , CK+1. Consider a matrix R ∈ R(n+m)×(n+m) with elements Rij = Rji if i and j belong to the same set. Define
the set

S =

{
j ∈ {1, . . . , n+m} :

n+m∑
i=1

I(Rij < Rji) ≥ (1− γ)(n+ 1)

}
, γ ∈ (0, 1).

Then, we have
s ≤ 2γ(n+ 1) +m− 2,

where s = |S|.

Proof. For j ∈ S, by definition, we have
n+m∑
i=1

I(Rij ≥ Rji) ≤ (n+m)− (1− γ)(n+ 1).

Since Rij = Rji if i and j belong to the same set, we have
n+m∑
i=1

I(Rij ≥ Rji) =
∑

i/∈Ck(j)

I(Rij ≥ Rji) +
∑

i∈Ck(j)

I(Rij ≥ Rji)

=
∑

i/∈Ck(j)

I(Rij ≥ Rji) +m,
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where Ck(j) is the set containing unit j. Thus, we have∑
i/∈Ck(j)

I(Rij ≥ Rji) ≤(n+m)− (1− γ)(n+ 1)−m

=γ(n+ 1)− 1.

By summing over all j ∈ S, we have ∑
j∈S

∑
i/∈Ck(j)

I(Rij ≥ Rji) ≤ s{γ(n+ 1)− 1}. (4)

On the other hand, for i ̸= j, since I(Rij ≥ Rji) + I(Rji ≥ Rij) ≥ 1, we have∑
j∈S

∑
i∈S,i̸=j

I(Rij ≥ Rji) ≥
s(s− 1)

2
.

Since Rij = Rji if i and j belong to the same set, we have∑
j∈S

∑
i∈S,i̸=j

I(Rij ≥ Rji) =
∑
j∈S

∑
i∈S,i/∈Ck(j)

I(Rij ≥ Rji) +
∑
j∈S

∑
i∈S,i∈Ck(j),i̸=j

I(Rij ≥ Rji)

=
∑
j∈S

∑
i∈S,i/∈Ck(j)

I(Rij ≥ Rji) +

K+1∑
k=1

sk(sk − 1)

2
,

where sk = |Ck ∩ S|. Thus, we have

∑
j∈S

∑
i∈S,i/∈Ck(j)

I(Rij ≥ Rji) ≥
s(s− 1)

2
−

K+1∑
k=1

sk(sk − 1)

2
. (5)

By combining (4) and (5), we have

s(s− 1)

2
−

K+1∑
k=1

sk(sk − 1)

2
≤
∑
j∈S

∑
i∈S,i/∈Ck(j)

I(Rij ≥ Rji)

≤
∑
j∈S

∑
i/∈Ck(j)

I(Rij ≥ Rji)

≤s{γ(n+ 1)− 1}.

Since sk ≤ m, we have
K+1∑
k=1

sk(sk − 1)

2
≤ s(m− 1)

2
.

Thus, we have

s ≤ 2γ(n+ 1) +m− 2.

Proof of Proposition 3.3. We consider m = |C|/K is an integer for simplicity. Let CK+1 contain j and other m − 1
hypothetical points. For i′, j′ ∈ ∪K+1

k=1 Ck, we define

Ri′j′ =

{
+∞ k(i′) = k(j′),∣∣∣Yi′ − f̂−(Ck(i′),Ck(j′))

(Xi′)
∣∣∣ k(i′) ̸= k(j′),
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where f̂−(Ck(i′),Ck(j′))
is a prediction model fitted by the leave-two-set-out augmented set (∪K+1

k=1 Ck) \ (Ck(i′) ∪ Ck(j′)).
Since C = ∪K

k=1Ck and Ck(j) = CK+1, we have (∪K+1
k=1 Ck) \ (Ck(i) ∪ Ck(j)) = C \ Ck(i) for i ∈ C. Thus, for i ∈ C, we have

f̂−Ck(i)
(x) = f̂−(Ck(i),Ck(j))(x), thereby,

si = |Yi − f̂−Ck(i)
(Xi)| = Rij ,

s
(i)
j = |Yj − f̂−Ck(i)

(Xj)| = Rji.

Thus, we have

P(pcv+j ≤ γ) =P

(∑
i∈C I(si ≥ s

(i)
j ) + 1

|C|+ 1
≤ γ

)

=P

(∑
i∈C∪{j} I(Rij ≥ Rji)

|C|+ 1
≤ γ

)

=P

 ∑
i∈C∪{j}

I(Rij < Rji) ≥ (1− γ)(|C|+ 1)


≤P

 ∑
i∈∪K+1

k=1 Ck

I(Rij < Rji) ≥ (1− γ)(|C|+ 1)


≤2γ(|C|+ 1) +m− 2

|C|+m

≤2γ +
(1− 2γ)(m− 1)− 1

|C|+m

≤2γ +
1−K/|C|
K + 1

,

where the second inequality is due to exchangeability and Lemma B.5.

B.7. Proof of Theorem 3.4

Proof of Theorem 3.4. Since ϵγ is a centered sub-Gaussian variable with parameter ϕγ , we have ϵγ − ϵ1 as a centered
sub-Gaussian variable with parameter 2Φ, where Φ = maxγ∈Γ ϕγ . Moreover, we have (ϵγ − ϵ1)

2 − κ2γ is a centered
sub-exponential variable with parameters (c1Φ2, c1Φ

2), where c1 is a constant. By τ̂γ − τ̂1 = (δγ − δ1) + (ϵγ − ϵ1) and
using the concentration inequalities for sub-Gaussian and sub-exponential variables (Wainwright, 2019), it follows that, with
probability at least 1− 4ι,

max
γ∈Γ

|(τ̂γ − τ̂1)
2 − (δγ − δ1)

2 − κ2γ |

=max
γ∈Γ

|2(δγ − δ1)(ϵγ − ϵ1) + (ϵγ − ϵ1)
2 − κ2γ |

≤8
√
2∆Φ

√
log (|Γ|/ι) + max

{√
2c1Φ

2
√

log (|Γ|/ι), 2c1Φ2 log (|Γ|/ι)
}
, (6)

where ∆ = maxγ∈Γ |δγ |.
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By (6), it follows that, with probability at least 1− 4ι,

max
γ∈Γ

∣∣∣M̂SE(γ)−MSE(γ)
∣∣∣

=max
γ∈Γ

∣∣∣(τ̂γ − τ̂1)
2 − V̂(τ̂γ − τ̂1) + V̂(τ̂γ)− δ2γ − σ2

γ

∣∣∣
≤max

γ∈Γ

∣∣(τ̂γ − τ̂1)
2 − κ2γ + σ2

γ − δ2γ − σ2
γ

∣∣+max
γ∈Γ

|V̂(τ̂γ − τ̂1)− κ2γ |+max
γ∈Γ

|V̂(τ̂γ)− σ2
γ |

≤max
γ∈Γ

∣∣(δγ − δ1)
2 − δ2γ

∣∣+ c∆Φ
√
log (|Γ|/ι) + max

{
cΦ2

√
log (|Γ|/ι), cΦ2 log (|Γ|/ι)

}
+max

γ∈Γ
|V̂(τ̂γ − τ̂1)− κ2γ |+max

γ∈Γ
|V̂(τ̂γ)− σ2

γ |

≤c∆|δ1|+ c∆Φ
√
log (|Γ|/ι) + max

{
cΦ2

√
log (|Γ|/ι), cΦ2 log (|Γ|/ι)

}
+max

γ∈Γ
|V̂(τ̂γ − τ̂1)− κ2γ |+max

γ∈Γ
|V̂(τ̂γ)− σ2

γ |,

where c is a constant.

B.8. Proof of Theorem 3.5

Proof of Theorem 3.5. Since ϵγ is a centered sub-Gaussian variable with parameter ϕγ , we have ϵ2γ − σ2
γ as a centered sub-

exponential variable with parameter (c2Φ2, c2Φ
2), where c2 is a constant. By τ̂γ − τ = δγ + ϵγ and using the concentration

inequalities for sub-Gaussian and sub-exponential variables (Wainwright, 2019), it follows that, with probability at least
1− 4ι,

max
γ∈Γ

|(τ̂γ − τ)2 − δ2γ − σ2
γ |

=max
γ∈Γ

|2δγϵγ + ϵ2γ − σ2
γ |

≤2
√
2∆Φ

√
log (|Γ|/ι) + max

{√
2c2Φ

2
√

log (|Γ|/ι), 2c2Φ2 log (|Γ|/ι)
}
. (7)

By (6) and (7), it follows that, with probability at least 1− 8ι,

max
γ∈Γ

∣∣∣M̂SE(γ)− (τ̂γ − τ)2
∣∣∣

=max
γ∈Γ

∣∣∣(τ̂γ − τ̂1)
2 − V̂(τ̂γ − τ̂1) + V̂(τ̂γ)− (τ̂γ − τ)2

∣∣∣
≤max

γ∈Γ

∣∣(τ̂γ − τ̂1)
2 − κ2γ + σ2

γ − (τ̂γ − τ)2
∣∣+max

γ∈Γ
|V̂(τ̂γ − τ̂1)− κ2γ |+max

γ∈Γ
|V̂(τ̂γ)− σ2

γ |

≤max
γ∈Γ

∣∣(δγ − δ1)
2 − δ2γ

∣∣+ c∆Φ
√
log (|Γ|/ι) + max

{
cΦ2

√
log (|Γ|/ι), cΦ2 log (|Γ|/ι)

}
+max

γ∈Γ
|V̂(τ̂γ − τ̂1)− κ2γ |+max

γ∈Γ
|V̂(τ̂γ)− σ2

γ |

≤c∆|δ1|+ c∆Φ
√
log (|Γ|/ι) + max

{
cΦ2

√
log (|Γ|/ι), cΦ2 log (|Γ|/ι)

}
+max

γ∈Γ
|V̂(τ̂γ − τ̂1)− κ2γ |+max

γ∈Γ
|V̂(τ̂γ)− σ2

γ |, (8)

where c is a constant.

Since ∣∣∣∣min
γ∈Γ

M̂SE(γ)−min
γ∈Γ

(τ̂γ − τ)2
∣∣∣∣ ≤ max

γ∈Γ

∣∣∣M̂SE(γ)− (τ̂γ − τ)2
∣∣∣ ,

and ∣∣∣∣min
γ∈Γ

M̂SE(γ)− (τ̂γ̂ − τ)2
∣∣∣∣ = ∣∣∣M̂SE(γ̂)− (τ̂γ̂ − τ)2

∣∣∣ ≤ max
γ∈Γ

∣∣∣M̂SE(γ)− (τ̂γ − τ)2
∣∣∣ ,
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Figure 3. Power curves when b = 0 and b = 8.

we have

(τ̂γ̂ − τ)2 −min
γ∈Γ

(τ̂γ − τ)2 ≤ 2max
γ∈Γ

∣∣∣M̂SE(γ)− (τ̂γ − τ)2
∣∣∣ .

The result follows from (8).

C. Additional simulation results
C.1. Power curve

For the scenario where there is no hidden bias (b = 0) and another where half of the ECs exhibit hidden bias with a
magnitude of b = 8, we vary τ to plot the power curve, as shown in Figure 3. CSB outperforms NB in both cases, while FB
demonstrates low power in the presence of hidden bias.

C.2. Adaptivity of the selection threshold

Figure 4 illustrates how γ̂ changes with the magnitude of b: (i) When there is no bias (b = 0), γ̂ approaches 0 to borrow all
ECs and maximize power; (ii) with moderate bias (b = 1, 2, 3), where distinguishing between biased and unbiased ECs
is challenging, γ̂ increases to help discard the biased ECs; (iii) when the bias is large (b ≥ 4), γ̂ decreases but remains
non-zero, retaining more unbiased ECs, while easily discarding the biased ones.

C.3. Various selection thresholds

Figure 5 shows the performance of the fixed selection threshold γ and the adaptive selection threshold γ̂ when nE = 50.
As discussed in Section 3.3, smaller γ selects more ECs but risks greater bias when distinguishing between biased and
unbiased ECs is difficult. This creates a power trade-off across different bias levels, similar to MSE simulation results
in data integration (Yang et al., 2023; Oberst et al., 2022; Lin et al., 2024). We find that (i) CSB with γ = 0.6 improves
power compared to NB, except in extreme cases like b = 2, 3, where it decreases power slightly, and (ii) CSB with γ̂ further
improves power but also risks power loss in difficult scenarios. The power trade-off does not compromise the Type I error
rate, which remains controlled with all selection thresholds.

C.4. Comparison to Adaptive Lasso Selective Borrowing

Figure 6 presents the simulation results for ALSB with asymptotic inference. Unlike CSB + FRT, ALSB with asymptotic
inference fails to control the type I error rate in this small sample size scenario. Additionally, CSB demonstrates better
estimation and selection performance in most cases.
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Figure 4. γ̂ versus b when nE = 50.
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Figure 5. Simulation results for various selection threshold γ’s when nE = 50.

We further compared CSB with asymptotic inference to ALSB with asymptotic inference. Figure 7 shows that CSB+Asym Inf
generally achieves better Type I error control than ALSB+Asym Inf, while performing comparably when b = 1.

We did not compare to ALSB + FRT because, while CSB is compatible with FRT, ALSB is not readily applicable due to its
computational complexity. This highlights an advantage of CSB when exact finite-sample inference is desired.

C.5. A larger sample size of ECs

Figures 8, 9, 10, 11, and 12 show the simulation results for nE = 300. The conclusion is similar to that in the main text.

C.6. Dependent covariates with p = 5

We additionally consider p = 5 and X ∼ N(0,Σ), where Σ is a Toeplitz matrix with ρ = 0.6 to introduce dependence
among the coordinates of X . We did not consider larger p since the sample size is small, with only 25 RCT controls. The
simulation results (see Figure 13) show similar conclusions and demonstrate the robustness of our method.

D. More details about the real data
Pseudo-observations. Figure 14 shows the pseudo-observations versus censored times for CALGB 9633 and NCDB,
illustrating that (i) all pseudo-observations are less than or equal to the truncation time of 3 years; (ii) when an event occurs
before 3 years, pseudo-observations are generally equal to the event time; and (iii) when censoring occurs before 3 years,
pseudo-observations are typically greater than the censored time.

Matching. We use nearest-neighbor matching to mitigate the covariate imbalance between CALGB 9633 and NCDB. Tumor
size was imputed for eight missing values in CALGB 9633 using the median of 4. NCDB samples with missing values
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Figure 6. Comparison of CSB + FRT and ALSB + asymptotic inference when nE = 50.
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Figure 7. Comparison of CSB + asymptotic inference and ALSB + asymptotic inference when nE = 50.

or covariates outside the CALGB 9633 range were excluded, leaving 10,241 samples. We perform 1:1 nearest-neighbor
matching using MatchIt (Ho et al., 2011), treating the sampling indicator S as a “treatment” and targeting the average
treatment effect on the treated (ATT). This preserves all RCT samples and matches 335 NCDB samples. Distributional
balance for the baseline covariates and the estimated sampling score P̂(S = 1|X) improves significantly after matching,
with a visual comparison in Figure 15. However, certain covariates, such as tumor size, remain imbalanced, which could not
be addressed by matching without resorting to methods that would undesirably discard RCT samples. This motivates the use
of the doubly robust estimator in Sections 2.1 and 3. Notably, while a doubly robust estimator alone can address covariate
imbalance, matching as a pre-processing step reduces reliance on correct model specification (Ho et al., 2007). A summary
table of the pre-processed data is in Table 2.

Selection performance. Figure 16 shows that, given the observed confounder X , CSB tends to select ECs whose outcomes
are more similar to randomized controls, reducing hidden bias that cannot be addressed by balancing X alone.
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Figure 8. Simulation results when nE = 300. ALSB’s exact p-value is unavailable due to computation.
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Figure 9. Selection performance of CSB (γ̂) when nE = 300.
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Figure 10. γ̂ versus b when nE = 300.
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Figure 11. Simulation results for various selection threshold γ’s when nE = 300.
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Figure 12. Comparison of CSB + FRT and ALSB + asymptotic inference when nE = 300.
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Figure 13. Simulation results across different hidden bias magnitudes b for dependent covariates with p = 5.

Table 2. Summary statistics of the pre-processed data.

C9633 Treated C9633 Controlled NCDB Controlled
(n1 = 167) (n0 = 168) (nE = 335)

Sex
Male 109 (65.3%) 106 (63.1%) 219 (65.4%)
Female 58 (34.7%) 62 (36.9%) 116 (34.6%)

Age (years)
Mean (SD) 60.4 (10.2) 61.2 (9.28) 60.8 (9.69)
Median [Min, Max] 61.0 [34.0, 78.0] 62.0 [40.0, 81.0] 61.0 [34.0, 80.0]

Race
White 151 (90.4%) 148 (88.1%) 300 (89.6%)
Non-white 16 (9.6%) 20 (11.9%) 35 (10.4%)

Histology
Squamous 66 (39.5%) 65 (38.7%) 131 (39.1%)
Other 101 (60.5%) 103 (61.3%) 204 (60.9%)

Tumor Size (cm)
Mean (SD) 4.60 (2.04) 4.56 (2.05) 4.77 (1.42)
Median [Min, Max] 4.00 [1.00, 12.0] 4.00 [1.00, 12.0] 4.50 [3.10, 12.0]

Outcome: 3-year RMST*
Mean (SD) 2.77 (0.596) 2.64 (0.720) 2.43 (0.947)
Median [Min, Max] 3.00 [0.383, 3.00] 3.00 [0.181, 3.00] 3.00 [0.0242, 3.00]

*Pseudo-observations transformed from censored survival time.
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Figure 14. Pseudo-observation vs. Censored Time for CALGB 9633 and NCDB datasets.
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Figure 15. Distributional balance (unmatched and matched) between CALGB 9633 (S = 1) and NCDB (S = 0) for baseline covariates
and the estimated sampling score P̂(S = 1|X).
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Figure 16. 3-year RMST (Outcome) vs. Sampling Score estimated by 5 covariates. The shaded area is constructed using quantile
regression on the CALGB 9633 controlled data.
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