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ABSTRACT

Existing theoretical studies on how in-context learning arises are limited to the
dynamics of a single layer of attention trained on linear regression tasks. In this
paper, we study the optimization of a Transformer consisting of a fully connected
layer followed by a linear attention layer. The MLP acts as a common nonlinear
representation or feature map, greatly enhancing the power of in-context learning.
We prove in the mean-field and two-timescale limit that the infinite-dimensional loss
landscape for the parameter distribution becomes quite benign. We also analyze the
second-order stability of mean-field dynamics and show that Wasserstein gradient
flow almost always avoids saddle points. Furthermore, we establish novel methods
for obtaining concrete improvement rates both away from and near critical points.

1 INTRODUCTION

In-context learning (ICL) refers to the capacity of a pretrained model to solve previously unseen
tasks based on example prompts without further tuning. A line of research initiated by Garg et al.
(2022) has sought to understand the theory behind ICL from a function class perspective. Studies
have shown that certain Transformers are capable of implementing statistical learning algorithms
such as gradient descent (GD) in context (von Oswald et al., 2023; Akyürek et al., 2023; Bai et al.,
2023). In particular, Guo et al. (2023) analyze learning with representations where MLP layers act as
transformations on top of which ICL is performed, achieving near-optimal performance. Other works
have analyzed how ICL emerges from the training dynamics of Transformers (Zhang et al., 2023a;
Huang et al., 2023; Ahn et al., 2023). However, they are limited to models consisting of only a single
attention layer due to the complicated dynamics and thus can only explain ICL of linear functions.
Hence the following question at the intersection of the two approaches remains unsolved:

How does in-context learning with nonlinear representations (features) arise in
Transformers with MLP layers, optimized via gradient descent?

In this paper, we study a Transformer consisting of a 2-layer MLP followed by a linear self-attention
(LSA) layer trained on linear transformations of a feature representation. Contrary to existing
approaches which attempt to solve for exact attention dynamics, we focus on the loss landscape faced
by the MLP and show in the mean-field limit that all critical points are either global minima or saddle
points. We also formally prove that mean-field dynamics (MFD) ‘almost always’ avoids saddle points,
explaining how the MLP can find globally optimal features, and further derive concrete improvement
rates. This is also of technical interest as the first analysis of nonconvex MFD around saddle points.
We develop many results for general functionals and derive an application to 3-layer networks.
Theoretical preliminaries and related works are given in Appendix A, proofs and additional results
for Sections 2-5 are given throughout Appendices B-E, and experiments are detailed in Appendix F.

2 IN-CONTEXT FEATURE LEARNING

We formally define our simplified MLP-LSA Transformer. We switch the ordering as in Guo et al.
(2023) to view attention as a mechanism to exchange feature information encoded into the MLP layer.
Let DX be a distribution over the input space X ⊆ Rd and T a class of functions X → R with
distribution DT . For each prompt, we generate a new task f ∼ DT and a batch of n example and
one query input-output pairs (xi, yi)

n
i=1, (xqr, yqr) where xi,xqr ∼ DX are i.i.d. and yi = f(xi).
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MLP layer. A vector-valued neuron with parameter θ = (a,w)⊤ ∈ Θ ⊆ Rk ×Rd and activation
σ : R → R is defined as hθ(x) = aσ(w⊤x). While the original Transformer takes k = d, we
allow any k ≤ d representing the number of features. The mean-field network corresponding to
µ ∈P(Θ), the space of probability measures on Θ, is defined as hµ(x) =

∫
Θ
hθ(x)µ(dθ). We also

denote Σµ,ν = Ex∼DX [hµ(x)hν(x)
⊤] ∈ Rk×k. To extract features from the input tokens, the MLP

is applied to only the covariates xi,xqr so that the following prompt embedding E is transformed as

E =

[
x1 · · · xn xqr
y1 · · · yn 0

]
7→ MLP(E) =

[
hµ(x1) · · · hµ(xn) hµ(xqr)
y1 · · · yn 0

]
.

LSA layer. We reparametrize query, key and value matrices WQ,WK ,WV ∈ R(k+1)(k+1) with
W ∈ Rk×k, v ∈ R in the usual manner (Zhang et al., 2023a; Mahankali et al., 2023) and set

LSA(E) = WV E · 1
n
(WKE)⊤(WQE), WV =

[
∗ ∗
0⊤d v

]
, (WK)⊤WQ =

[
W 0d
0⊤d ∗

]
.

We further absorb v into W and fix v = 1 to focus on the more complex dynamics of the MLP.
Corresponding to the position of yqr, the (k + 1, n + 1)th element of the output is read out as the
model prediction, yielding ŷqr = LSA ◦MLP(E) = 1

n

∑n
i=1 yihµ(xi)

⊤Whµ(xqr). Hence ŷqr can
be seen as a linear smoother with kernel k(x,xqr) =

1
nhµ(x)

⊤Whµ(xqr) encoded by the MLP.

Regression over Features. In this paper, we study ICL of linear regression tasks over a common
nonlinear transformation or feature map f◦ ∈ C(X ,Rk), that is T = {v⊤f◦|v ∈ Rk}. We assume
that during pretraining the tasks are suitably spread out with Ev[vv

⊤] = Ik. We also take the n→∞
(infinite prompt length) limit to disregard sampling error and let ŷqr = Ex[f(x)hµ(x)

⊤]Whµ(xqr)
for any task f ∈ T ; see Wu et al. (2024) for an analysis of finite task and prompt lengths in the linear
case. Hence our Transformer is pretrained with the following mean squared risk,

LTF(µ,W) =
1

2
Exqr,v

[
(yqr − ŷqr)

2
]
=

1

2
Exqr

[∥∥f◦(xqr)− Ex[f
◦(x)hµ(x)

⊤]Whµ(xqr)
∥∥2] (1)

Our goal is to show that gradient dynamics converges to a global minimum such that LTF = 0. Then
the MLP layer has successfully learned the true representations f◦, and even for a new or ‘unseen’
task vnew ∈ Rk the Transformer is able to return the correct regression output yqr:

ŷqr = Ex[v
⊤
newf

◦(x)hµ(x)
⊤]Whµ(xqr) = v⊤

newf
◦(xqr) = yqr.

We call this behavior in-context feature learning (ICFL). In Appendix B, we show by applying
classical analyses of overparametrized 2-layer networks that adding even a shallow MLP greatly
increases the class of representations learnable in context from linear functions to the Barron class.

3 BENIGN ATTENTION LANDSCAPE

In this Section, we characterize the infinite-dimensional landscape of the ICFL objective. To ensure
regularity, we assume C2 smoothness of σ and restrict the second layer to Dk = {z ∈ Rk : ∥z∥ ≤ 1}.
Assumption 1. The parameter space is Θ = Dk × Rd. The nonlinearity is C2 and |σ| ≤ R1,
|σ′| ≤ R2, |σ′′| ≤ R3. DX has finite 4th moment, Ex∼DX [∥x∥j ] =Mj <∞ for j = 2, 4.

Next, we suppose f◦ = hµ◦ for some ‘teacher’ distribution µ◦, ensuring learnability and allowing for
a rich class of representations (Lemma B.2). These must be suitably spread out in the feature space in
order to be learned effectively. To simplify computations, we assume:

Assumption 2. The true features f◦ = hµ◦ , µ◦ ∈P2(Θ) satisfy Σµ◦,µ◦ = r◦Ik for r◦ > 0.

We do not require the inputs to be Gaussian as in von Oswald et al. (2023); Akyürek et al. (2023);
Zhang et al. (2023a) or orthonormal as in Huang et al. (2023). Note that R2

1 ≥ trΣµ◦,µ◦ = kr◦ and
Σµ,ν ⪯ R2

1Ik for all µ, ν. One implicit assumption is that the number of true features dimhµ◦ is
known and equal to k; experiments on a misspecified model are also conducted in Appendix F.

Fast Convergence of Attention. To isolate the dynamics of µ, we first note that minimizing LTF
over W is a least-squares regression problem. In particular, LTF is convex with respect to W (strongly
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convex unless Σµ◦,µ or Σµ,µ are singular) and thus is optimized potentially much more quickly.
A possibility is that the MLP x 7→ hµ(x) degenerates to completely lie within a low-dimensional
linear subspace of Rk. As the regression (1) is ill-conditioned in this case, we set P0

2(Θ) := {µ ∈
P2(Θ) : rankΣµ,µ < k} and restrict our attention to P+

2 (Θ) = P2(Θ) \P0
2(Θ). We show the

singular set P0
2(Θ) is sparse in a strong sense in Proposition C.5, justifying subsequent calculations.

Lemma 3.1. For any µ ∈ P+
2 (Θ) and initialization W0, the flow d

dtWt = −∇W LTF(µ,Wt)

converges linearly to some Wµ ∈ argminW LTF(µ,W) satisfying Σµ◦,µWµ = Σµ◦,µΣ
−1
µ,µ.

Thus it is reasonable to suppose that W is updated sufficiently quickly and has already converged to
Wµ for each µ – formally by modeling as two-timescale dynamics – leading us to study the objective

L(µ) := infW LTF(µ,W) = 1
2Ex

[
∥ζµ◦,µ(x)∥2

]
, ζµ◦,µ(x) = hµ◦(x)−Σµ◦,µΣ

−1
µ,µhµ(x). (2)

No Spurious Local Minima. We denote the orthogonal group and unit ball in Rk×k as O(k) and
B1(k) = {R ∈ Rk×k : ∥R∥ ≤ 1}. For R ∈ O(k), define R♯µ as the pushforward of µ along the
rotation map R : (a,w) 7→ (Ra,w) so that hR♯µ(x) =

∫
Θ
Rhθ(x) dµ(θ) = Rhµ(x). Since the

convex hull of O(k) is equal to B1(k), this can be extended to any R ∈ B1(k) by decomposing
R =

∑m
j=1 αjRj and defining R♯µ =

∑m
j=1 αjRj♯µ. See Lemma C.6 for details. Achieving zero

loss implies we have learned the true features hµ◦ up to a linear transformation:
Lemma 3.2. The pushforwards R♯µ◦ for any invertible R ∈ B1(k) are global minima of L.
Conversely, L(µ) = 0 implies hµ = Rhµ◦ for some invertible matrix R.

The following theorem is the main result of this Section. It states that for any µ that is not a global
minimum, it is either (1) possible to move in a direction where L is strictly decreasing, or (2) L
possesses an unstable direction. In particular, all local minima must also be global minima.

Theorem 3.3 (no spurious local minima). For any µ ∈P+
2 (Θ) that is not a global minimum,

(i) There exists R ∈ B1(k) such that along µ̄s = (1− s)µ+ sR♯µ◦ we have d
ds

∣∣
t=0
L(µ̄s) ≤ 0.

(ii) If d
ds

∣∣
s=0
L(µ̄s) = 0 for all R ∈ B1(k) above, then r◦

2 ≤ L(µ) ≤
kr◦

2 and d2

ds2 |s=0 L(µ̄s) ≤
− 4

kR2
1
L(µ)2 for some R ∈ B1(k).

As a corollary of (ii), critical points cannot exist if L < r◦

2 , the minimum loss when hµ is uninfor-
mative, i.e. the regression coefficient Σµ◦,µΣ

−1
µ,µ against the true features is singular. We show this

leads to an acceleration phase when converging to global minima in Appendix C.3 and Theorem 5.2.

4 MEAN-FIELD DYNAMICS AVOIDS SADDLE POINTS

Strict saddle properties such as Theorem 3.3 have powerful implications for nonconvex optimization.
In finite dimensions, GD almost always avoids saddle points and converges to global optima (Lee
et al., 2019); see Appendix D.1 for a recap. We develop the analogous result for general Wasserstein
gradient flows (WGF) (3) via the elegant formalism of Otto calculus (Otto, 2001). See Appendix D
as well as Ambrosio et al. (2005); Villani (2009) for expository details. Let F : P2(Ω)→ R be a
general C2 functional with domain Ω ⊆ Rm. We derive a tangent space characterization of MFD:
Lemma 4.1. The WGF (µt) in a neighborhood of a critical point µ† of F can be written as
µt = (idΩ +ϵvt)♯µ

† where the field vt satisfies ∂tvt = −
∫
Hµ†(θ, θ′)vt(θ

′)µ†(dθ′) + o(1). Here,
Hµ : (Ω×Ω, µ⊗ µ)→ R(k+d)(k+d) is the matrix-valued kernel Hµ(θ, θ

′) := ∇θ∇θ′
δ2F
δµ2 (µ, θ, θ

′).

This facilitates stability analysis via the spectral theory of linear operators,
Lemma 4.2. Suppose Hµ is Hilbert-Schmidt for µ ∈ P2(Ω), that is

∫∫
∥Hµ∥2 dµ ⊗ dµ < ∞.

Then its integral operator Hµ : f 7→ Hµf(θ) =
∫
Hµ(θ, θ

′)f(θ′)µ(dθ′) is compact self-adjoint,
hence there exists an orthonormal basis {ψj}j∈Z for L2(Ω, µ;Rk+d) of eigenfunctions ofHµ.

We thus define the set of strict saddle points as G † := {µ ∈ P2(Ω) : ∇ δF
δµ = 0, λmin(Hµ) < 0}.

Near such points, we now apply the center-stable manifold theorem for Banach spaces (Theorem
D.3). This tells us that all flows converging to µ† must be eventually contained in the graph of a
smooth map in the tangent space defined near the origin. Denoting the reversed WGF for time t
inverse to the forward flow as ω−

t whenever it is defined, we conclude:
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Theorem 4.3. For any C2 functional F : P2(Ω) → R with Hilbert-Schmidt kernel Hµ, the set
G †
0 = {µ0 ∈P2(Ω) : limt→∞ µt ∈ G †} of initializations which converge to strictly saddle points

is contained in the countable union ∪ℓ∈N ∪j∈N ω
−
ℓ (Vj) of images of submanifolds Vj .

For ICFL (2), Proposition E.6 and Theorem 3.3(ii) show that all critical points that are not global
optima are strict saddle in G †. Hence Theorem 4.3 applies to L with the domain of interest replaced
by P+

2 (Θ), and thus ‘almost all’ convergent flows in P+
2 (Θ) must converge to global minima. We

apply our theory to the training dynamics of three-layer fully connected networks in Appendix D.4.

5 CONVERGENCE RATES FOR ICFL

Theorem 4.3 is encouraging but only qualitative. In this Section, we develop quantitative improvement
results for MFD (1) away from critical points; (2) near global minima; and (3) near saddle points. We
present our main results for F = L where δL

δµ (µ, θ) = −Ex[ζµ◦,µ(x)
⊤Σµ◦,µΣ

−1
µ,µhθ(x)] in (3).

MFD with Birth-Death. To preserve the benign landscape, we do not add entropic regularization
typical in mean-field analyses; nonetheless, a different modification will be beneficial. For a fixed
π ∈P2(Θ), if at any time t ≥ 0 the density ratio infΘ

dµt

dπ is no larger then a small threshold γ, we
perform the discrete update µt ← (1− γ)µt + γπ. This is easily implemented, see Appendix F.1.
Similar perturbations have been studied for convex MFD in Wei et al. (2019); Rotskoff et al. (2019).
Assumption 3. π is spherically symmetric in the a component, that is π(a,w) = π(a′,w) if
∥a∥ = ∥a′∥. Also, µ◦ has finite density w.r.t. π as ∥dµ◦/ dπ∥∞ ≤ R4.

First-order Improvement. We first give a result which translates nonzero gradients along a
direction of improvement into a first-order rate of decrease for the gradient flow. Unlike convex mean-
field Langevin dynamics which relies on a log-Sobolev inequality to control dissipation (Nitanda
et al., 2022), our idea is to exploit the mobility of the second layer mass. The argument works for any
objective built on top of the MLP layer hµ; see Proposition E.1 in the Appendix for the general result.
Proposition 5.1. Suppose MFD with birth-death on L at time t satisfies Theorem 3.3(i) with
d
ds

∣∣
s=0
L(µ̄s) ≤ −δ. Then d

dt L(µt) ≤ −R−1
4 γδ2.

We further establish convergence near global minima. The rate is quadratic in the feature dimensions
k and independent of d; we take r◦ = Θ( 1k ). O hides polynomial dependency on constants Rj ,Mj .

Theorem 5.2. Once L(µt) ≤ 0.49r◦, MFD with birth-death converges with loss ≤ ϵ in time O(k
2

γϵ ).

Second-order Improvement. We now arrive at the main difficulty of our analysis: the behavior of
MFD near critical points. In the finite-dimensional case, local stability is determined by the Hessian.
We show that the mean-field analogue for a smooth functional F : P2(Θ)→ R is
Lemma 5.3. The velocity field∇ δF

δµ of (3) evolves as ∂t
[
∇ δF

δµ (µt)
]
= −Hµt

[
∇ δF

δµ (µt)
]
.

For the ICFL objective L, we showHµ is Hilbert-Schmidt and derive regularity properties in Lemma
E.3 and E.5. Next, we can translate second-order instability into a spectral bound forHµ.
Proposition 5.4. Suppose MFD with birth-death at time t ≥ 0 satisfies Theorem 3.3(ii) with
d2

ds2

∣∣
s=0
L(µ̄s) ≤ −Λ. Then the smallest eigenvalue λ0 ofHµt satisfies λ0 ≤ −R−1

4 γΛ.

Therefore we expect that even if the dynamics is close to a saddle point and Proposition 5.1 is not
useful, as long as the L2-component along the eigenfunction ψ0 corresponding to λ0 is not exactly
zero, it will blow up exponentially in time until µt escapes and makes progress. In detail,
Theorem 5.5. Suppose MFD with birth-death on L at time t satisfies Theorem 3.3(i) with
d
ds

∣∣
s=0
L(µ̄s) ≥ −O(k−1 L(µt)

2). Further suppose ψ0 satisfies |
∫
ψ⊤
0 ∇ δL

δµ (µt) dµt| ≥ α for some
α ≥ 0. Then MFD within the region {µ ∈ P2(Θ) : λmin(Σµ,µ) = Ω( 1k )} decreases L in time

τ = Õ
(

k
γ L(µt)2

log 1
α

)
as L(µt+τ ) ≤ L(µt)− Ω̃

(
γ2αL(µt)

4

k5d

)
.

Simply put, we make Ω̃(α) progress in Õ(log 1
α ) time. The idea is to find aW2-ball where if µt does

not escape in time τ , the blowup guarantees improvement; if µt does escape, L must have decreased
to warrant such displacement. Again, we present general versions in Proposition E.6 and Theorem
E.7. Unfortunately, this is not enough to establish global rates as the flow might be initialized at or
pass very near multiple saddle points; this is unavoidable even in finite dimensions (Du et al., 2017).
We propose a perturbative scheme to escape saddles based on Gaussian processes in Appendix E.3.
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6 CONCLUSION

In this paper, we explored the training dynamics of a Transformer with one MLP and one attention
layer, enabling in-context feature learning of regression tasks on a rich class of representations.
We showed that the loss landscape becomes benign in the two-timescale and mean-field limit
and developed instability and improvement guarantees for the Wasserstein gradient flow. To our
knowledge, this represents both the first work to theoretically study how features are learned in
context, and the first analysis of nonconvex mean-field dynamics for strict saddle objectives.
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A PRELIMINARIES

A.1 BACKGROUND THEORY

We begin by providing some necessary background for mean-field dynamics. Let Ω ⊆ Rm be a
Euclidean domain with smooth boundary ∂Ω. For p ≥ 1, let Pp(Ω) be the p-Wasserstein space of
probability measures on Ω vanishing on ∂Ω with finite pth moment. We will mostly be concerned
with the space P2(Ω).

Definition A.1 (functional derivative). The functional derivative δF
δµ of a functional F : Pp(Ω)→ R

is defined (if one exists) as a functional δF
δµ : Pp(Ω)× Ω→ R satisfying for all ν ∈Pp(Ω),

d

dϵ

∣∣∣∣
ϵ=0

F (µ+ ϵ(ν − µ)) =
∫
Ω

δF

δµ
(µ, θ)(ν − µ)(dθ).

Note that the functional derivative is defined up to additive constants. We say a functional F is
C1 if∇ δF

δµ (µ, θ) is well-defined and continuous, and C2 if∇θ∇θ′
δ2F
δµ2 (µ, θ, θ

′) is well-defined and
continuous. Furthermore, the functional F is convex if for all ν ∈Pp(Ω) it holds that

F (ν) ≥ F (µ) +
∫
Ω

δF

δµ
(µ, θ)(ν − µ)(dθ).

Definition A.2 (p-Wasserstein metric). The p-Wasserstein distance between µ, ν ∈Pp(Ω) is defined
as

Wp(µ, ν) =

(
inf

γ∈Π(µ,ν)

∫
Rm

∥x− y∥p dγ(x, y)
) 1

p

where Π(µ, ν) denotes the set of joint distributions on Ω × Ω whose first and second factors have
marginal laws µ and ν, respectively.

We consider Pp(Ω) as a metric space with respect toWp, which metrizes weak convergence on
Pp(Ω) (Villani, 2009, Theorem 6.9). By Hölder’s inequality it always holds that P2(Ω) ⊂P1(Ω)
andW1(µ, ν) ≤ W2(µ, ν). TheW1 metric is also characterized via Kantorovich-Rubinstein duality
as

W1(µ, ν) = sup
∥f∥Lip≤1

∫
Ω

f dµ−
∫
Ω

f dν,

where the supremum runs over all 1-Lipschitz functions f : Ω→ R, which makes it well-suited for
perturbation analyses.

We develop more advanced theory concerning the local metric geometry and characterization of flows
on P2(Ω) in Appendix D. As a consequence, one can show the following variational formulation of
theW2 metric:
Proposition A.3 (Benamou-Brenier formula). For µ, ν ∈P2(Ω) it holds that

W2(µ, ν) = inf

{∫ 1

0

∥vt∥2L2(Ω,µt;Rm) dt : ∂tµt +∇ · (vtµt) = 0, µ0 = µ, µ1 = ν

}
,

where the infimum runs over all unit time flows (µt)t∈[0,1] from µ to ν.

Proof. See e.g. Ambrosio et al. (2005), Chapter 8 or Santambrogio (2015), Section 6.1.

The formula can be used to bound the movement of Wasserstein flows in relation to the magnitude of
the gradient field. For convenience, we will use the following time-rescaled version which is easily
checked:

W2(µ, ν) = inf

{
τ

∫ τ

0

∥vt∥2L2(Ω,µt;Rm) dt : ∂tµt +∇ · (vtµt) = 0, µ0 = µ, µτ = ν, τ > 0

}
.

When the velocity field vt = −∇ δF
δµ (µt) is given as the functional derivative of a given functional F ,

the dynamics can be interpreted as the continuous-time limit of a discrete gradient descent process on

8
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F w.r.t. theW2 metric via the celebrated JKO scheme (Jordan et al., 1998). Specifically, the implicit
Euler scheme

µ(k+1)
η = argmin

µ∈P2(Ω)

1

2
W2(µ, µ

(k))2 + ηF (µ), µ(0) = µ0

converges weakly in the limit η → 0 to the solution of the continuity or Fokker-Planck equation
∂tµt = ∇ ·

(
µt∇ δF

δµ (µt)
)

in the sense that µ⌊t/η⌋
η ⇀ µt for all time t ≥ 0. Hence we refer to this

process as the Wasserstein gradient flow on P2(Ω) with respect to F .

A.2 RELATED WORKS

In-context learning. A wide literature has developed around the various aspects of ICL; we only
mention those most relevant to our setup. Akyürek et al. (2023); von Oswald et al. (2023); Mahankali
et al. (2023) give a construction where a single linear attention layer is equivalent to one step of GD
or ridge regression. Transformers are also capable of implementing statistical (Bai et al., 2023) and
reinforcement learning algorithms (Lin et al., 2023) and model averaging (Zhang et al., 2023b). The
attention-over-representation viewpoint has been studied by Guo et al. (2023) and also Tsai et al.
(2019); Han et al. (2023) from a kernel regression perspective. Zhang et al. (2023a) analyze the
optimization of a linear attention-only Transformer and show global convergence; a relationship to
preconditioned GD is established in Ahn et al. (2023). Also, Huang et al. (2023) give a stage-wise
analysis for the softmax attention-only model. Finally, a joint dynamic framework for MLP and
attention has been proposed in Tian et al. (2023).

Mean-field dynamics. Let hθ denote a single neuron with parameter θ ∈ Ω ⊆ Rm and P(Ω) the
space of probability measures over Ω.1 In the infinite-width limit, a 2-layer neural network hN (x) =
1
N

∑N
j=1 hθ(j)(x) can be written as an expectation hµ(x) = Eθ∼µ[hθ(x)] over a distribution µ ∈

P(Ω). The corresponding mean-field limit of gradient flow (GF) w.r.t. an objective function
F : P(Ω)→ R, the Wasserstein gradient flow, is given by the continuity equation

∂tµt = ∇ ·
(
µt∇ δF

δµ (µt)
)
, t ≥ 0. (3)

Networks in this regime are capable of dynamic feature learning and convergence, compared to the
NTK regime where the underlying kernel is essentially frozen. Works such as Chizat & Bach (2018);
Mei et al. (2018); Nitanda et al. (2022) exploit the linearity of hµ in µ and the convexity of the loss to
lift to a convex optimization problem on P(Ω) and obtain convergence results. In contrast, the ICL
loss is inherently nonconvex due to the additional attention layer.

Landscape analyses. Certain nonconvex objectives such as matrix completion, sensing and fac-
torization have been proved to be benign via directional analysis (Ge et al., 2016; 2017; Li et al.,
2019). Recently, Gaussian k-index models have been shown to possess benign landscapes w.r.t.
the projection matrix after factoring out the link function via a similar two-timescale limit (Bietti
et al., 2023). However, our work focuses on the optimization of the infinite-dimensional variable
µ ∈ P(Θ), and the ICL objective (2) has a novel, more complex structure compared to these
problems. Boufadène & Vialard (2024) study a certain energy functional and prove benignity via
flow interchange techniques; however, they do not discuss its implications for general gradient flow.

B RESULTS AND PROOFS FOR SECTION 2

B.1 EXPRESSIVITY OF REPRESENTATIONS

Multivariate Barron class. Barron-type spaces have been well established as the natural function
classes for analyzing approximation and generalization of shallow networks (Barron, 1994; Weinan
et al., 2020; Weinan & Wojtowytsch, 2022). Here, we extend the theory to our vector-valued setting.
We focus on the ReLU case for ease of presentation which does not satisfy Assumption 1, but many
results extend to more general activations (Klusowski & Barron, 2016; Li et al., 2020).

1We will also consider the space P2(Ω) of the space of probability measures on Θ with bounded second
moment that vanish on the boundary of Θ, equipped with the 2-Wasserstein metric.

9



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Set Θ = Rk ×Rd, σ(z) = max{0, z} and suppose M2 = Ex∼DX [∥x∥2] <∞. The Barron space
Bp of order p ∈ [1,∞] is defined as the set of functions f = hµ, µ ∈P(Θ) with finite Barron norm

∥f∥Bp
:= infµ:f=hµ

[∫
∥a∥p∥w∥pµ(dθ)

]1/p
.

This turns out to not depend on p (Lemma B.6), so we refer to the Barron space and norm as
(B, ∥·∥B). This space contains a rich variety of functions. The following is an application of the
classical Fourier analysis (Barron, 1993).
Proposition B.1. Suppose hµ includes a bias term, i.e. X ⊆ X 0×{1}. If f = (fj)

k
j=1 ∈

C(X 0,Rk) such that each fj satisfies inf f̂j
∫
Rd−1∥ω∥21|f̂j(ω)| < ∞ for f̂j the Fourier transform

of an extension of fj to Rd−1, then f ∈ B. In particular, the Sobolev space Hs(X 0)
k ⊂ B for

s > d+1
2 .

Furthermore, B is exactly the class of representations that can be learned in context, demonstrating
the expressive power gained by incorporating the MLP layer:
Lemma B.2. LTF(µ,W) = 0 has a solution such that ess supµ∥a∥∥w∥ <∞ if and only if f◦ ∈ B.

In contrast, Mahankali et al. (2023) show that the optimal LSA-only Transformer implements one step
of GD for the linear regression problem (xi, yi)

n
i=1 even when yi|xi is nonlinear; thus we establish a

clear gap in learning ability.

Generalization to unseen tasks. If the Transformer has successfully learned f◦, it will achieve
perfect accuracy on any new linear task v⊤

newf
◦ as discussed. On the other hand, if the test task is an

arbitrary function g ∈ C(X ), we cannot hope to do better than the projection to the linear span of
learned features f◦1 , · · · , f◦k since (1) is a regression loss. We show this lower bound is optimal:
Proposition B.3. Suppose LTF(µ,W) ≤ ϵ for f◦ ∈ B and ∥hµ∥B, ∥W∥ ≲ 1. Then for any new
task g ∈ C(X ) with ∥g∥L2(DX ) ≲ 1, the test ICL error satisfies

Exqr

[∥∥g(xqr)− Ex[g(x)hµ(x)
⊤]Whµ(xqr)

∥∥2]
≲ ϵ+ inf

v∈Rk
∥g − v⊤f◦∥2L2(DX ).

This extends the LSA-only case where the optimal output was shown to be the near-optimal linear
model in Zhang et al. (2023a). This also raises an important question: if the task g depends nonlinearly
on hµ◦ , is it still beneficial to have learned the relevant features µ◦? Clearly this depends on both g
and the initialization µ0; however, we present experiments supporting this intuition in Appendix F.

B.2 FROM FINITE TO INFINITE WIDTH

Continuing the above discussion, elements of the Barron space are effectively approximated by
finite-width networks, which can be seen as an adaptive kernel method. The proof of the following is
essentially due to Weinan et al. (2022).

Proposition B.4. For any integer N and f◦ ∈ B, there exists a width N network ĥN given by the
discrete measure µ̂N = 1

N

∑N
j=1 δθ(j) with path norm ∥ĥN∥P := 1

N

∑N
j=1∥a(j)∥∥w(j)∥ ≤ 3∥f◦∥B

and
infW LTF(µ̂N ,W) ≤ 1

2∥ĥN − f
◦∥2L2(DX ) ≤

M2∥f◦∥2
B

N .

Using the low Rademacher complexity of Barron spaces, we can also simultaneously bound the
generalization gap for a finite number of tasks T as Õ(T−1/2) which is nearly minimax optimal
(Weinan et al., 2019, Theorem 4.1).

Moreover from a dynamical perspective, a propagation of chaos argument (Sznitman, 1991) shows
that gradient descent indeed converges to (3) in the infinite-width limit. Let F : P2(Ω)→ R be any
C1 functional such that ∥∇ δF

δµ ∥ ≤ L1,∇ δF
δµ (µ, θ) is L2-Lipschitz w.r.t. θ and L3-Lipschitz w.r.t. µ

in theW1 metric. Denote the initial measure as µ0 ∈ P2(Ω), let θ(1)0 , · · · , θ(N)
0 be i.i.d. samples

from µ0 and consider the empirical GF trajectories
d
dtθ

(j)
t = −∇ δF

δµ (µ̂t,N , θ
(j)
t ), µ̂t,N = 1

N

∑N
j=1 δθ(j)

t
.
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Proposition B.5. For any T ≥ 0, the N -particle empirical measure µ̂t,N converges to µt as
E[W1(µ̂t,N , µt)]→ 0 uniformly for all t ∈ [0, T ] as N →∞.

See Remark B.9 for the case of the ICFL objective. Hence it is natural to analyze optimization in the
mean-field or extremely overparametrized regime.

B.3 PROOFS FOR APPENDIX B.1

Lemma B.6. For any p > 1 it holds that ∥f∥B1
= ∥f∥Bp

= ∥f∥B∞ , where

∥f∥B∞ := inf
µ:f=hµ

ess sup
(a,w)∼µ

∥a∥∥w∥.

Proof. Note ∥f∥B1
≤ ∥f∥Bp

≤ ∥f∥B∞ trivially by Hölder’s inequality. For f ∈ B1, choose a
measure µ such that f = hµ and

∫
∥a∥∥w∥µ(dθ) ≤ ∥f∥B1

+ ϵ and define the nonnegative measure
µ on Sk−1 × Sd−1 as

µ(A,B) =

∫
a∈A,w∈B

∥a∥∥w∥µ(da,dw), a =
a

∥a∥
, w =

w

∥w∥

for Borel sets A ⊆ Sk−1, B ⊆ Sd−1. Then we can rewrite f via the ‘projected’ measure µ as

f =

∫
hθ(x)µ(dθ) =

∫
∥a∥∥w∥ · aσ(w⊤x)µ(da,dw) =

∫
aσ(w⊤x)µ(da,dw).

Factoring out the total mass of µ to form a probability distribution on P(Sk−1 × Sd−1), we obtain a
representation of f such that the∞-Barron norm becomes bounded as

∥f∥B∞ ≤ µ(Sk−1,Sd−1) ess sup
(a,w)∼µ

∥a∥∥w∥ ≤ ∥f∥B1
+ ϵ.

Taking ϵ→ 0 shows the reverse inequality.

Proof of Proposition B.1. If fj ∈ C(X ,R) satisfies inf f̂j

∫
Rd−1∥ω∥21|f̂j(ω)| < ∞ for some

transform f̂j , it admits a representation

fj(x) =

∫
ajσ(w

⊤x)µj(daj ,dw)

for a probability distribution µj on R×Rd (Barron, 1993; Weinan et al., 2022). Consider the scaled
inclusion map

ιj : R×Rd ↪→ Rk ×Rd, ιj(aj ,w) = (kajej ,w),

where ej is the unit vector with all zeros except for a single 1 at the jth coordinate. Then for the
averaged pushforward measure µ̄ = 1

k

∑k
j=1 ιj♯µj ∈P(Θ) it holds that

hµ̄(x) =
1

k

k∑
j=1

∫
ajσ(w

⊤x)ιj♯µj(daj ,dw)

=

k∑
j=1

∫
ajejσ(w

⊤x)µj(daj ,dw)

=

k∑
j=1

ejfj(x) = f(x),

and therefore f ∈ B.
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Proof of Lemma B.2. Let A† denote the pseudoinverse of a matrix A. If f◦ = hµ◦ for some
distribution µ◦ ∈P(Θ) with ∥f◦∥B <∞, then setting W◦ = Σ†

µ◦,µ◦ = Ex[f
◦(x)f◦(x)⊤]†,

LTF(µ
◦,W◦) =

1

2
Exqr

[
∥f◦(xqr)−Σµ◦,µ◦W◦f◦(xqr)∥2

]
=

1

2
trΣµ◦,µ◦ − tr (Σµ◦,µ◦W◦Σµ◦,µ◦) +

1

2
tr (Σµ◦,µ◦W◦Σµ◦,µ◦W◦Σµ◦,µ◦)

= 0.

Conversely, LTF(µ,W) = 0 implies that f◦(xqr) = Ex[f
◦(x)hµ(x)

⊤]Whµ(xqr) or f◦ = Ahµ
for some A ∈ Rk×k. Then the pushforward measure A♯µ of µ along the map (a,w) 7→ (Aa,w)
satisfies

hA♯µ(x) =

∫
Aaσ(w⊤x)µ(dθ) = Ahµ(x) = f◦(x)

and ess supA♯µ∥a∥∥w∥ ≤ ∥A∥ ess supµ∥a∥∥w∥ <∞, thus f◦ = hA♯µ ∈ B.

Proof of Proposition B.3. Since the minimization problem is standard linear regression, we can
explicitly set

v = Ex[f
◦(x)f◦(x)⊤]†Ex[g(x)f

◦(x)], ∥v∥ ≤ ∥Ex[f
◦(x)f◦(x)⊤]†∥·∥f◦∥L2(DX )∥g∥L2(DX ).

Writing g0 = g − v⊤f◦, we can bound
1

2
Exqr

[∥∥g(xqr)− Ex[g(x)hµ(x)
⊤]Whµ(xqr)

∥∥2]
≤ ∥v∥2Exqr

[∥∥f◦(xqr)− Ex[f
◦(x)hµ(x)

⊤]Whµ(xqr)
∥∥2]

+ Exqr

[∥∥g0(xqr)− Ex[g0(x)hµ(x)
⊤]Whµ(xqr)

∥∥2]
≤ 2∥v∥2ϵ+ 2∥g0∥2L2(DX ) + 2∥g0∥2L2(DX )∥hµ∥

4
L2(DX )∥W∥

2.

The statement follows by noting that

∥hµ∥L2(DX ) ≤
(∫

Ex[∥hθ(x)∥2]µ(dθ)
)1/2

≤
(∫
∥a∥2∥w∥2Ex[∥x∥2]µ(dθ)

)1/2

=M
1/2
2 ∥hµ∥B

from the limiting argument in Lemma B.6.

B.4 PROOFS FOR APPENDIX B.2

Proof of Proposition B.4. For any network µ, we may take W = Ex[f
◦(x)hµ(x)

⊤]† so that

inf
W
LTF(µ,W) ≤ 1

2
Exqr

[∥∥f◦(xqr)− Ex[f
◦(x)hµ(x)

⊤]Whµ(xqr)
∥∥2]

=
1

2
Ex[∥f◦(x)∥2]− tr

(
Ex[f

◦(x)hµ(x)
⊤]WEx[hµ(x)f

◦(x)⊤]
)

+
1

2
tr
(
W⊤Ex[hµ(x)f

◦(x)⊤]Ex[f
◦(x)hµ(x)

⊤]WΣµ,µ

)
≤ 1

2
Ex[∥f◦(x)∥2]− tr

(
Ex[f

◦(x)hµ(x)
⊤]
)
+

1

2
trΣµ,µ

=
1

2
Ex[∥f◦(x)− hµ(x)∥2].

Now let µ◦ ∈P(Θ) be a distribution such that f◦ = hµ◦ and
∫
∥a∥2∥w∥2µ◦(dθ) ≤ (1 + ϵ)∥f◦∥2B.

Let θ(1), · · · , θ(N) be an i.i.d. sample from µ◦. Then from Eθ∼µ◦ [hθ(x)] = hµ◦(x), it holds on
average that

Eµ̂N
Ex[∥ĥN (x)− f◦(x)∥2]

12
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= ExEµ̂N

∥∥∥∥∥ 1

N

N∑
j=1

hθ(j)(x)− f◦(x)

∥∥∥∥∥
2


=
1

N2

N∑
j=1

ExEµ̂N

[
∥hθ(j)(x)− hµ◦(x)∥2

]
+

1

N2

∑
j ̸=ℓ

ExEµ̂N

[
(hθ(j)(x)− hµ◦(x))⊤(hθ(ℓ)(x)− hµ◦(x))

]
≤ 1

N2

N∑
j=1

ExEθ(j)∼µ◦ [∥hθ(j)(x)∥2]

≤ 1

N

∫
∥a∥2Ex[(w

⊤x)2]µ◦(dθ)

≤ (1 + ϵ)M2

N
∥f◦∥2B.

Moreover, the path norm is bounded on average as Eµ̂N
[∥ĥN∥P ] ≤ (1 + ϵ)∥f◦∥B. Then by

Markov’s inequality, the event ∥ĥN − f◦∥2L2(DX ) >
2M2∥f◦∥2

B

N has probability at most 1+ϵ
2 , and the

event ∥ĥN∥P > 3∥f◦∥B has probability at most 1+ϵ
3 . Hence the stated bounds hold with positive

probability as ϵ→ 0, thus for some size N network µ̂N .

For the propagation of chaos result, we require the following bounds.

Lemma B.7. The second moment m2(µt) =
∫
∥θ∥2µt(dθ) satisfies m2(µt) ≤ e2L

2
1m2(µ0).

Proof. The assertion follows immediately from
d

dt
m2(µt) =

∫
∥θ∥2∂tµt(dθ) = −2

∫
θ⊤∇δF

δµ
(µt, θ)µt(dθ) ≤ 2L2

1m2(µt).

Lemma B.8. Let µ ∈ P2(Ω) and θ(1), · · · , θ(N) be an i.i.d. sample from µ with correspond-
ing empirical distribution µ̂N = 1

N

∑N
j=1 δθ(j) . Then for dimension m ≥ 3 it holds that

E[W1(µ, µ̂N )] ≤ Cm · m2(µ)
1/2N−1/m. The rate is replaced by N−1/2 logN if m = 2 and

N−1/2 if m = 1.

Proof. See e.g. Fournier & Guillin (2015) for the case m ≥ 2 and Bobkov & Ledoux (2019) for
m = 1.

Proof of Proposition B.5. Consider the coupled process
d

dt
θ̃
(j)
t = −∇δF

δµ
(µt, θ̃

(j)
t ), θ̃

(j)
0 = θ

(j)
0 , j ∈ [N ]

and write the corresponding empirical distribution as µ̃t,N = 1
N

∑N
j=1 δθ̃(j)

t
. For any finite time

horizon T ≥ 0, it holds that

1

N

N∑
j=1

∥θ(j)T − θ̃
(j)
T ∥ =

1

N

N∑
j=1

∥∥∥∥∥
∫ T

0

∇δF
δµ

(µ̂t,N , θ
(j)
t )−∇δF

δµ
(µt, θ̃

(j)
t ) dt

∥∥∥∥∥
≤

∫ T

0

L2

N

N∑
j=1

∥θ(j)t − θ̃
(j)
t ∥+ L3W1(µ̂t,N , µt) dt.

Then applying Gronwall’s inequality and taking the expectation over random initialization, we have
for all t ∈ [0, T ]

E[W1(µ̂t,N , µ̃t,N )] ≤ E

[
1

N

N∑
j=1

∥θ(j)t − θ̃
(j)
t ∥

]
≤ L3e

L2T

∫ t

0

E[W1(µ̂s,N , µs)] ds.

13
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Since each trajectory θ̃(j)t of the coupled process is an independent sample from the true distribution
µt, by Lemma B.7 and B.8 it moreover holds that

E[W1(µ̂t,N , µt)] ≤ E[W1(µ̂t,N , µ̃t,N )] + E[W1(µ̃t,N , µt)]

≤ L3e
L2T

∫ t

0

E[W1(µ̂s,N , µs)] ds+ Cme
L2

1m2(µ0)
1/2N−1/m

with the appropriate modification when m = 1, 2. Hence another application of Gronwall’s inequality
yields

E[W1(µ̂t,N , µt)] ≤ Cmm2(µ0)
1/2N−1/m exp(L2

1 + L3Te
L2T )→ 0

as N →∞. The convergence is uniform for any finite horizon T .
Remark B.9. When F = L, we rely on the Lipschitz constants obtained in Lemma E.4 to obtain
the same statement, with the caveat that the flow must not reach the singular set P0

2(Θ) in order
to ensure existence and regularity of the flow; this will be a recurring issue. The result is clearly
still valid for mean-field dynamics incorporating birth-death by the ordinary law of large numbers,
assuming the update happens at the same instant for µ̂t and µt. See also Rotskoff et al. (2019) for a
more involved study of birth-death dynamics.
Remark B.10. The above bounds are not optimized; compare for example Berthier et al. (2023).
Explicit uniform-in-time propagation of chaos bounds have recently been proved for convex mean-
field Langevin dynamics (Chen et al., 2022; Suzuki et al., 2023) and convex-concave descent-ascent
dynamics (Kim et al., 2024). It remains an open problem to prove such results for general nonconvex
mean-field dynamics, with or without the entropic regularization framework.

C RESULTS AND PROOFS FOR SECTION 3

C.1 AUXILIARY RESULTS

We will use the following elementary results from linear algebra without proof.

Lemma C.1. The spectral norm of a block matrix A =

[
A1,1 A1,2

A2,1 A2,2

]
is bounded as ∥A∥ ≤∑2

i,j=1∥Ai,j∥.
Lemma C.2. The spectral and nuclear norms are dual: ∥A∥∗ = max∥B∥≤1⟨A,B⟩ and ∥A∥ =
max∥B∥∗≤1⟨A,B⟩ for any A ∈ Rm×m, m ≥ 1. In particular, tr(A⊤B) ≤ ∥A∥∥B∥∗ for any
A,B ∈ Rm×m.

Lemma C.3. For a positive semi-definite matrix A ∈ Rk×k it holds that 1
k (trA)2 ≤ trA2 ≤

(trA)2.

The neural network output is continuous and well-behaved in the following sense:

Lemma C.4. The map θ 7→ hθ(x) on Θ is (R2
1 +R2

2∥x∥2)1/2-Lipschitz for each x ∈X . Also, the
map µ 7→ hµ(x) on P2(Θ) is (kR2

1 + kR2
2∥x∥2)1/2-Lipschitz w.r.t. 1-Wasserstein distance for each

x ∈X .

Proof. For θ1 = (a1,w1), θ2 = (a2,w2) we have

∥hθ1(x)− hθ2(x)∥ = ∥a1σ(w
⊤
1 x)− a2σ(w

⊤
2 x)∥

≤ ∥a1 − a2∥ · |σ(w⊤
1 x)|+ ∥a2∥ · |σ(w⊤

1 x)− σ(w⊤
2 x)|

≤ R1∥a1 − a2∥+R2∥w1 −w2∥ · ∥x∥
≤ (R2

1 +R2
2∥x∥2)1/2∥θ1 − θ2∥.

The difference of each coordinate |hθ1(x)j − hθ2(x)j | satisfies the same bound for 1 ≤ j ≤ k,
implying that

|hµ(x)j − hν(x)j | =
∣∣∣∣∫

Θ

hθ(x)jµ(dθ)−
∫
Θ

hθ(x)jν(dθ)

∣∣∣∣ ≤ (R2
1 +R2

2∥x∥2)1/2W1(µ, ν)

and hence ∥hµ(x)− hν(x)∥ ≤ (kR2
1 + kR2

2∥x∥2)1/2W1(µ, ν).

14
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Proof of Lemma 3.1. The gradient flow equation for W is given as

d

dt
Wt = −

1

2
∇W tr

(
−2Σµ◦,µWΣµ,µ◦ +Σµ◦,µWΣµ,µW

⊤Σµ,µ◦
)

= −Σµ,µ◦Σµ◦,µ(WtΣµ,µ − Ik).

Denote the singular value decomposition of Σµ,µ◦ as U1D1V
⊤
1 and the spectral decomposition of

Σµ,µ as U2D2U
⊤
2 where U1,U2,V1 ∈ O(k) and Dj = diag(dj,1, · · · , dj,k). Since we assume

Σµ,µ = Ex[hµ(x)hµ(x)
⊤] is positive definite, we also have b2,i > 0 for all i. Further defining the

auxiliary matrix Zt = U⊤
1 WtU2, the dynamics for Zt is expressed as

d

dt
Zt = −U⊤

1 (U1D1V
⊤
1 )(V1D1U

⊤
1 )(U1ZtD2U

⊤
2 − Ik)U2

= −D2
1ZtD2 +D2

1U
⊤
1 U2.

Writing U⊤
1 U2 = (ui,j)1≤i,j≤k, for each entry zi,j(t) := (Zt)i,j we obtain that z′i,j(t) =

−d21,i(d2,jzi,j(t)− ui,j) and therefore

lim
t→∞

zi,j(t) =

{
d−1
2,jui,j d1,i ̸= 0

zi,j(0) d1,i = 0

}
= 1{d1,i ̸=0}d

−1
2,jui,j + 1{d1,i=0}zi,j(0).

This can be recast in matrix form as limt→∞Zt = D†
1D1U

⊤
1 U2D

−1
2 + (Ik −D†

1D1)Z0, and the
convergence rate is exponential. We conclude for the limit Wµ := limt→∞ Wt that

Σµ◦,µWµ = (V1D1U
⊤
1 )U1

(
D†

1D1U
⊤
1 U2D

−1
2 + (Ik −D†

1D1)Z0

)
U⊤

2

= (V1D1U
⊤
1 )(U2D

−1
2 U⊤

2 )

= Σµ◦,µΣ
−1
µ,µ.

Proposition C.5. For any µ ∈P2(Θ), ν ∈P+
2 (Θ), there are at most k values t ∈ [0, 1] such that

(1− t)µ+ tν ∈P0
2(Θ). Consequently, P+

2 (Θ) is dense in P2(Θ).

Note in particular that R♯µ◦ ∈ P+
2 (Θ) for any invertible R ∈ B1(k) as ΣR♯µ◦,R♯µ◦ = r◦RR⊤.

This justifies the computations which appear in the statement and proof of Theorem 3.3.

Proof. Suppose there exist k + 1 distinct tj ∈ [0, 1], j = 0, 1, · · · , k such that (1 − tj)µ + tjν ∈
P0

2(Θ); note that tj ̸= 1 since ν ∈ P+
2 (Θ). Then there exist nonzero vectors zj such that

(1 − tj)z
⊤
j hµ(x) + tjz

⊤
j hν(x) ≡ 0, and which must be linearly dependent. Without loss of

generality, let {zj}ℓj=0 be a minimally dependent subset of {zj}kj=0 so that
∑ℓ

j=0 bjzj = 0 for
constants bj not all zero. Suppose b0 ̸= 0. Then the equality

0 ≡
ℓ∑

j=0

bjz
⊤
j hµ(x) +

tjbj
1− tj

z⊤
j hν(x) =

( ℓ∑
j=0

tjbj
1− tj

z⊤
j

)
hν(x)

implies that

ℓ−1∑
j=0

(
tj

1− tj
− tℓ

1− tℓ

)
bjzj =

ℓ∑
j=0

tjbj
1− tj

zj −
tℓ

1− tℓ

ℓ∑
j=0

bjzj = 0,

which contradicts the minimality of {zj}ℓj=0 since the coefficient of z0 is nonzero. This proves the
first claim. Denseness of P+

2 (Θ) immediately follows: for any µ ∈P2(Θ), all but finitely many
mixture distributions (1− t)µ+ tµ◦ lie in P+

2 (Θ), so there exists a subsequence weakly converging
to µ in P+

2 (Θ).

Lemma C.6. Any element R ∈ B1(k) can be expressed as a convex combination of finitely many
elements R1, · · · ,Rm of O(k). In particular, the pushforward can be defined for any R ∈ B1(k).
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Proof. Denote the singular value decomposition of R as UDV⊤ and denote by D1, · · · ,D2k all
diagonal matrices with every diagonal element equal to ±1. Since every diagonal element of D has
absolute value at most 1, D is contained in the convex hull of D1, · · · ,D2k and hence R can be
written a convex combination of UD1V

⊤, · · · ,UD2kV
⊤ ∈ O(k).

Furthermore, writing R =
∑m

j=1 αjRj for αj ∈ (0, 1),
∑m

j=1 αj = 1 we may define for all
µ ∈P2(Θ) the pushforward measure R♯µ :=

∑m
j=1 αjRj♯µ so that

hR♯µ(x) =

m∑
j=1

αj

∫
Θ

hθ(x) dRj♯µ(θ) =

m∑
j=1

αj

∫
Θ

Rjhθ(x) dµ(θ) = Rhµ(x).

We remark that simply defining R♯µ as the pushforward along the map R : (a,w) 7→ (Ra,w)
would not preserve the bounded density condition (Assumption 3) for pushforwards of µ◦.

Proof of Lemma 3.2. It is straightforward to check that

L(R♯µ◦) =
1

2
Ex

[
∥hµ◦(x)− (Σµ◦,µ◦R⊤)(RΣµ◦,µ◦R⊤)−1Rhµ◦(x)∥2

]
= 0.

Conversely, L(µ) = 0 implies that hµ◦(x) = Σµ◦,µΣ
−1
µ,µhµ(x) a.e. Since x 7→ hµ(x) is always

continuous, equality holds for all x ∈X . Finally, Σµ◦,µΣ
−1
µ,µ cannot be singular since the image of

hµ◦ is not constrained on a lower-dimensional subspace by Assumption 2.

C.2 PROOF OF THEOREM 3.3

We study the first- and second-order properties of the optimization landscape for the functional L.
First note that L(µ) ≤ LTF(µ, 0k×k) =

kr◦

2 . We denote

Lµ =
1

2
Ex

[
ζµ◦,µ(x)ζµ◦,µ(x)

⊤] = 1

2
r◦Ik −

1

2
Σµ◦,µΣ

−1
µ,µΣµ,µ◦

so that Lµ is positive semi-definite and trLµ = L(µ). Let R ∈ B1(k) and µ̄s = (1− s)µ+ sR♯µ◦

for s ∈ [0, 1]. By linearity of the mean-field mapping µ 7→ hµ,

d

ds
hµ̄s

(x) = Rhµ◦(x)− hµ(x),
d

ds
Σµ◦,µ̄s

= r◦R⊤ −Σµ◦,µ,

d

ds
Σµ̄s,µ̄s = 2r◦sIk + (1− 2s)(RΣµ◦,µ +Σµ,µ◦R⊤)− 2(1− s)Σµ,µ.

Then the time derivative of L(µ̄s) for s ∈ [0, 1] is obtained as

d

ds
L(µ̄s) = −Ex

[
ζµ◦,µ̄s(x)

⊤ d

ds

(
Σµ◦,µ̄sΣ

−1
µ̄s,µ̄s

hµ̄s(x)
)]

= −Ex

[
ζµ◦,µ̄s

(x)⊤Σµ◦,µ̄s
Σ−1

µ̄s,µ̄s
(Rhµ◦(x)− hµ(x))

]
,

where we have used that

Ex

[
hµ̄s

(x)ζµ◦,µ̄s
(x)⊤

]
= Ex

[
hµ̄s

(x)(hµ◦(x)⊤ − hµ̄s
(x)⊤Σ−1

µ̄s,µ̄s
Σµ̄s,µ◦)

]
= 0.

In particular, the derivative at s = 0 is equal to

d

ds

∣∣∣∣
s=0

L(µ̄s) = −Ex

[
ζµ◦,µ(x)

⊤Σµ◦,µΣ
−1
µ,µ(Rhµ◦(x)− hµ(x))

]
= −Ex

[
ζµ◦,µ(x)

⊤Σµ◦,µΣ
−1
µ,µRζµ◦,µ(x)

]
= −2 tr

(
RLµΣµ◦,µΣ

−1
µ,µ

)
.

We may choose the pushforward R so that this quantity is minimized over R ∈ B1(k). Via duality
of the spectral and nuclear norms, this yields

d

ds

∣∣∣∣
s=0

L(µ̄s) = min
∥R∥≤1

−2 tr
(
RLµΣµ◦,µΣ

−1
µ,µ

)
= −2 ∥LµΣµ◦,µΣ

−1
µ,µ∥∗ ≤ 0, (4)
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proving the first claim.

Now if the above first order analysis does not yield a direction of improvement (strict decrease) for L,
it must be the case that LµΣµ◦,µΣ

−1
µ,µ = 0. If µ is not a global minimum then Lµ ̸= 0 and hence

rankΣµ◦,µΣ
−1
µ,µ < k, so that the linear regression predictions Σµ◦,µΣ

−1
µ,µhµ(x) are contained in a

lower-dimensional subspace {z}⊥ for some z ∈ Sk−1. This further implies that

L(µ) ≥ 1

2
Ex

[
(z⊤hµ◦(x))2

]
=

1

2
z⊤Σµ◦,µ◦z =

r◦

2
,

confirming the critical point lower bound.

We proceed to analyze the second-order stability of critical points. The second derivative along any
pushforward R ∈ B1(k) is computed as

d2

ds2

∣∣∣∣
s=0

L(µ̄s) = −
d

ds

∣∣∣∣
s=0

Ex

[
ζµ◦,µ̄s

(x)⊤Σµ◦,µ̄s
Σ−1

µ̄s,µ̄s
(Rhµ◦(x)− hµ(x))

]
= Ex

[
d

ds

∣∣∣∣
s=0

(
Σµ◦,µ̄s

Σ−1
µ̄s,µ̄s

hµ̄s
(x)

)⊤
Σµ◦,µ̄s

Σ−1
µ̄s,µ̄s

(Rhµ◦(x)− hµ(x))
]

− Ex

[
ζµ◦,µ̄s(x)

⊤ d

ds

∣∣∣∣
s=0

Σµ◦,µ̄sΣ
−1
µ̄s,µ̄s

(Rhµ◦(x)− hµ(x))
]
.

The first term can be expanded as

Ex

[
(Rhµ◦(x)− hµ(x))⊤Σ−1

µ,µΣµ,µ◦Σµ◦,µΣ
−1
µ,µ(Rhµ◦(x)− hµ(x))

− hµ(x)⊤Σ−1
µ,µ(RΣµ◦,µ +Σµ,µ◦R⊤ − 2Σµ,µ)Σ

−1
µ,µΣµ,µ◦Σµ◦,µΣ

−1
µ,µ(Rhµ◦(x)− hµ(x))

+ hµ(x)
⊤Σ−1

µ,µ(r
◦R−Σµ,µ◦)Σµ◦,µΣ

−1
µ,µ(Rhµ◦(x)− hµ(x))

]
= Ex

[
(Rhµ◦(x) + hµ(x))

⊤Σ−1
µ,µΣµ,µ◦Σµ◦,µΣ

−1
µ,µ(Rhµ◦(x)− hµ(x))

− hµ(x)⊤Σ−1
µ,µ(RΣµ◦,µΣ

−1
µ,µΣµ,µ◦ +Σµ,µ◦R⊤Σ−1

µ,µΣµ,µ◦)Σµ◦,µΣ
−1
µ,µ(Rhµ◦(x)− hµ(x))

+ hµ(x)
⊤Σ−1

µ,µ(r
◦R−Σµ,µ◦)Σµ◦,µΣ

−1
µ,µ(Rhµ◦(x)− hµ(x))

]
= r◦ tr

(
Σ−1

µ,µΣµ,µ◦Σµ◦,µΣ
−1
µ,µRR⊤)− tr

(
Σµ◦,µΣ

−1
µ,µΣµ,µ◦

)
+ tr

(
(r◦R−RΣµ◦,µΣ

−1
µ,µΣµ,µ◦)Σµ◦,µΣ

−1
µ,µ(RΣµ◦,µΣ

−1
µ,µ − Ik)

)
− tr

(
(Σµ,µ◦ +Σµ,µ◦R⊤Σ−1

µ,µΣµ,µ◦)Σµ◦,µΣ
−1
µ,µ(RΣµ◦,µΣ

−1
µ,µ − Ik)

)
= r◦ tr

(
Σ−1

µ,µΣµ,µ◦Σµ◦,µΣ
−1
µ,µRR⊤)− kr◦ + 2 trLµ

+ 2 tr
(
RLµΣµ◦,µΣ

−1
µ,µ(RΣµ◦,µΣ

−1
µ,µ − Ik)

)
− tr

(
(r◦Ik − 2Lµ)(R

⊤Σ−1
µ,µΣµ,µ◦ + Ik)(Σµ◦,µΣ

−1
µ,µR− Ik)

)
= 2 tr

(
Lµ(Σµ◦,µΣ

−1
µ,µR+R⊤Σ−1

µ,µΣµ,µ◦ − Ik)Σµ◦,µΣ
−1
µ,µR

)
,

where we have taken advantage of the symmetry of Lµ to cancel out various terms. The second term
can be expanded as

Ex

[
− ζµ◦,µ(x)

⊤(r◦R⊤ −Σµ◦,µ)Σ
−1
µ,µ(Rhµ◦(x)− hµ(x))

+ ζµ◦,µ(x)
⊤Σµ◦,µΣ

−1
µ,µ(RΣµ◦,µ +Σµ,µ◦R⊤ − 2Σµ,µ)Σ

−1
µ,µ(Rhµ◦(x)− hµ(x))

]
= 2 tr

(
Lµ(−r◦R⊤ −Σµ◦,µ +Σµ◦,µΣ

−1
µ,µRΣµ◦,µ +Σµ◦,µΣ

−1
µ,µΣµ,µ◦R⊤)Σ−1

µ,µR
)

= −4 tr
(
L2
µR

⊤Σ−1
µ,µR

)
+ 2 tr

(
Lµ(Σµ◦,µΣ

−1
µ,µR− Ik)Σµ◦,µΣ

−1
µ,µR

)
.

Combining the above, we obtain

d2

ds2

∣∣∣∣
s=0

L(µ̄s)
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= −4 tr
(
L2
µR

⊤Σ−1
µ,µR

)
+ 2 tr

(
Lµ(2Σµ◦,µΣ

−1
µ,µR+R⊤Σ−1

µ,µΣµ,µ◦ − 2Ik)Σµ◦,µΣ
−1
µ,µR

)
.

(5)
When LµΣµ◦,µΣ

−1
µ,µ = 0, we may take R ∈ O(k) such that Σµ◦,µΣ

−1
µ,µR is symmetric, i.e.

R = VU⊤ where UDV⊤ is the singular value decomposition of Σµ◦,µΣ
−1
µ,µ. Then the second

trace term vanishes since Σµ◦,µΣ
−1
µ,µRLµ = (L⊤

µΣµ◦,µΣ
−1
µ,µR)⊤ = (LµΣµ◦,µΣ

−1
µ,µR)⊤ = 0 and

we have that
d2

ds2

∣∣∣∣
s=0

L(µ̄s) = −4 tr
(
L2
µR

⊤Σ−1
µ,µR

)
≤ − 4

R2
1

trL2
µ ≤ −

4

kR2
1

L(µ)2,

which moreover implies the constant bound d2

ds2

∣∣
s=0
L(µ̄s) ≤ − r◦2

kR2
1

. This concludes the second
claim.

C.3 ACCELERATED CONVERGENCE PHASE

Proposition C.7. Let δ ∈ [0, r◦2

4R2
1
]. For any µ ∈P+

2 (Θ) such that

r◦ −
√
r◦2 − 4R2

1δ ≤ 4L(µ) ≤ r◦ +
√
r◦2 − 4R2

1δ,

there exists R ∈ B1(k) such that along µ̄s = (1− s)µ+ sR♯µ◦ we have d
ds

∣∣
s=0
L(µ̄s) ≤ −δ.

In other words, once in the band (0, r
◦

2 ) we are guaranteed a non-vanishing gradient which moreover
becomes steeper closer to the center of the band, proportional to L(µ)(r◦ − 2L(µ)).

Proof. Observe that the term LµΣµ◦,µΣ
−1
µ,µ lower bounding the first order decrease of L in the proof

of Theorem 3.3 also appears in the expansion

L2
µ =

1

2
r◦Lµ −

1

2
LµΣµ◦,µΣ

−1
µ,µΣµ,µ◦ .

Supposing ∥LµΣµ◦,µΣ
−1
µ,µ∥∗ < δ

2 then allows us to construct the following inequality,

L(µ)2 = (trLµ)
2 ≥ trL2

µ

=
r◦

2
trLµ −

1

2
tr
(
LµΣµ◦,µΣ

−1
µ,µΣµ,µ◦

)
≥ r◦

2
L(µ)− 1

2
∥LµΣµ◦,µΣ

−1
µ,µ∥∗∥Σµ,µ◦∥

>
r◦

2
L(µ)− R2

1δ

4
,

which implies either 4L(µ) < r◦ −
√
r◦2 − 4R2

1δ or 4L(µ) > r◦ +
√
r◦2 − 4R2

1δ. The bounds
are non-vacuous only when δ ≤ r◦2

4R2
1

and are strictly tighter for larger δ. Taking the contrapositive
yields the desired statement.

D RESULTS AND PROOFS FOR SECTION 4

D.1 RECAP: FINITE-DIMENSIONAL DYNAMICS

To help gain intuition, we draw parallels with the ordinary GF for a C2 nonconvex function f :
Rm → R,

dzt = −∇zf(zt) dt.
A strict saddle point z† is defined as a critical point such that λmin(Hessf (z†)) < 0, where Hessf
is the local curvature or Hessian matrix of f . Lee et al. (2019) show that the set of initial values z0
for which limt→∞ zt converges to a strict saddle point has measure zero.2 If every saddle point of
f is strict and all local minima are also global minima, zt converges to global minima for almost
all initializations. The result follows easily from the center-stable manifold theorem (Shub, 2013,
Theorem III.7), which states that all stable local orbits must be contained in a local embedded disk
tangent to the stable eigenspace of Hessf at z†.

2More precisely, this is shown for iterates of discrete gradient descent, but the proof is easily adapted to the
continuous-time flow.
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D.2 LOCAL GEOMETRY OF WASSERSTEIN SPACE

We present some background theory on the metric geometry of Wasserstein spaces. The following
result characterizes absolutely continuous curves in P2(Ω).
Theorem D.1 (Ambrosio et al. (2005), Theorem 8.3.1 and Proposition 8.4.5). Let I ⊂ R be
an open interval and µt : I → P2(Ω) an absolutely continuous curve with metric derivative
|µ′| ∈ L1(I). Then among all Borel vector fields vt ∈ L2(Ω, µt) satisfying the continuity equation
∂tµt +∇ · (vtµt) = 0, there exists an L1(I)-a.e. unique minimal norm velocity field (vt) such that

∥vt∥L2(Ω,µt) ≤ |µ
′| (t).

The field (vt) is also uniquely characterized by the condition that vt is L1(I)-a.e. contained in
the L2(Ω, µt)-closure of the subspace {∇ψ : ψ ∈ C∞

c (Ω)}. Conversely, a narrowly continuous
curve given by the continuity equation for some square-integrable Borel velocity field vt with
∥vt∥L2(Ω,µt) ∈ L1(I) satisfies |µ′| (t) ≤ ∥vt∥L2(Ω,µt) a.e.

This motivates the formal definition of the tangent space to P2(Ω) at µ as

Tanµ P2(Ω) := {v = ∇ψ : ψ ∈ C∞
c (Ω)}

L2(Ω,µ)
(6)

with the inherited inner product. The space can also be retrieved by the following variational principle:
a vector field v ∈ L2(Ω, µ) belongs to Tanµ P2(Ω) if and only if ∥v+w∥L2(Ω,µ) ≥ ∥v∥L2(Ω,µ) for
all divergence-free fields w ∈ L2(Ω, µ) such that ∇ · (wµ) = 0. Moreover, for every v ∈ L2(Ω, µ)
there exists a unique representative Πv ∈ Tanµ P2(Ω) equivalent to v modulo divergence-free
fields. Geometrically, this allows us to describe infinitesimal transport along curves µt by pushing
forward along their tangent fields, analogously to the exponential map.
Proposition D.2 (Ambrosio et al. (2005), Theorem 8.3.1 and Proposition 8.4.6). Let µt : I →P2(Ω)
be an absolutely continuous curve with velocity field vt ∈ Tanµt

P2(Ω) determined as in Theorem
D.1. Then for a.e. t ∈ I we have

W2(µt+ϵ, (idΩ +ϵvt)♯µt) = o(ϵ).

In light of Proposition D.2, the tangent space can alternatively be defined using optimal transport
plans. Denote by Γo(µ, ν) ⊂P2(Ω× Ω) the set of optimal transport plans from µ to ν with cost
function the 2-norm and let

Tanµ P2(Ω) = {λ(r − idΩ) : (idΩ×r)♯µ ∈ Γo(µ, r♯µ), λ > 0}
L2(Ω,µ)

; (7)

this construction is equivalent to (6) (Ambrosio et al., 2005, Theorem 8.5.1).

D.3 STABILITY OF WASSERSTEIN GRADIENT FLOW

We now proceed with the proofs.

Proof of Lemma 4.1. Let µ† be a critical point of F , that is δF
δµ (µ

†) = 0. From the description (7)
for the tangent space at µ†, we write a local WGF (µt) as µt = (idΩ +ϵvt)♯µ

† for a velocity field
vt ∈ Tanµ† P2(Ω). The evolution of vt is derived as follows: for any smooth integrable function
g : Ω→ R, the identity

∫
g dµt =

∫
g ◦ (idΩ +ϵvt) dµ

† implies that∫
∇g · ∇δF

δµ
(µt) dµt = −

∫
g d(∂tµt) = −ϵ

∫
∇g ◦ (idΩ +ϵvt) · ∂tvt dµ

†

= −ϵ
∫
∇g · ∂tvt ◦ (idΩ +ϵvt)

−1 dµt,

and hence ∂tvt = −ϵ−1∇ δF
δµ (µt) ◦ (idΩ +ϵvt). On the other hand, by Proposition D.2 we can

locally approximate the pushforward displacement by the absolutely continuous curve defined by
∂sµ̃s +∇ · (vtµs) = 0 initialized at µ̃0 = µ†:

∇δF
δµ

(µ̃ϵ, θ)−∇
δF

δµ
(µ†, θ) = ∇δF

δµ
(µ̃s, θ)

∣∣∣∣ϵ
s=0
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= ∇θ

∫ ϵ

0

∫
δ2F

δµ2
(µ̃s, θ, θ

′)∂sµ̃s(dθ
′) ds

= ∇θ

∫ ϵ

0

∫
∇θ′

δ2F

δµ2
(µ̃s, θ, θ

′)vt(θ
′)µ̃s(dθ

′) ds

=

∫ ϵ

0

∫
Hµ†(θ, θ′)vt(θ

′)µ†(dθ′) +O(W2(µ̃s, µ
†)) ds

= ϵHµ† vt + o(ϵ)

so that

∂tvt = −
1

ϵ

(
∇δF
δµ

(µt) ◦ (idΩ +ϵvt)−∇
δF

δµ
(µt)︸ ︷︷ ︸

=o(ϵ)

+∇δF
δµ

(µt)−∇
δF

δµ
(µ̃ϵ)︸ ︷︷ ︸

=o(ϵ)

+∇δF
δµ

(µ̃ϵ)−∇
δF

δµ
(µ†) +∇δF

δµ
(µ†)︸ ︷︷ ︸

=0

)

= −Hµ† vt + o(1).

Here, we see that the o(1) perturbation term is more precisely of order O(W2(µt, µ
†)) and vanishes

when the L2-norm of the velocity field vt goes to zero.

Proof of Lemma 4.2. It will suffice to show Hµ is symmetric in the sense that Hµ(θ, θ
′)⊤ =

Hµ(θ
′, θ) for all θ, θ′ ∈ Ω. We appeal directly to Definition A.1: for any µ, ν1, ν2,

d2

dϵ1 dϵ2

∣∣∣∣
ϵ1=ϵ2=0

F (µ+ ϵ1(ν1 − µ) + ϵ2(ν2 − µ))

=
d

dϵ2

∣∣∣∣
ϵ2=0

∫
δF

δµ
(µ+ ϵ2(ν2 − µ), θ)(ν1 − µ)(dθ)

=

∫∫
δ2F

δµ2
(µ, θ, θ′)(ν1 − µ)(dθ)(ν2 − µ)(dθ′),

and comparing with the same computation with the indices swapped yields that δ2F
δµ2 is symmetric in

θ, θ′. Therefore the Hessian matrix satisfies ∇θ∇θ′
δ2F
δµ2 (µ, θ, θ

′) = ∇θ′∇θ
δ2F
δµ2 (µ, θ

′, θ)⊤. Then for

any functions f, g ∈ L2(Ω, µ;Rk+d) it holds that

⟨f,Hµg⟩L2(Ω,µ;Rk+d) =

∫∫
f(θ)⊤Hµ(θ, θ

′)g(θ′)µ(dθ)µ(dθ′)

=

∫∫
g(θ)⊤Hµ(θ, θ

′)f(θ′)µ(dθ)µ(dθ′)

= ⟨Hµf, g⟩L2(Ω,µ;Rk+d) ,

thusHµ is self-adjoint. Since the kernel is Hilbert-Schmidt by assumption,Hµ is also compact, and
we can invoke the spectral theorem to conclude the statement.
Theorem D.3 (Gallay (1993), Theorem 1.1). Let E be a Banach space, A a linear operator on
E , and f : E → E a Ck perturbation with f(0) = 0, Df(0) = 0, where k > 1. Consider the
differential equation

d
dtzt = Azt + f(zt), t ≥ 0. (8)

Assume that E is the direct sum of two closed, A-invariant subspaces E s,E u. The corresponding
restrictions As = A|E s , Au = A|E u generate strongly continuous semigroups eA

st, e−Aut for
t ≥ 0 which moreover satisfy for real numbers 0 ≤ λs < λu,

supt≥0∥eA
st∥e−λst <∞, supt≥0∥e−Aut∥eλut <∞.

Further assume there exists a spectral gap of λu > kλs and that E s has the Ck extension property.
Let Br,Bsr,B

u
r denote the balls of radius r around the origin in E ,E s,E u, respectively. Then for

sufficiently small r > 0, there exists a Ck map h : Bsr → B
u
r with h(0) = 0, Dh(0) = 0 whose graph

V ⊂ Br (the local center-stable manifold) has the following properties.
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(i) (Invariance) For all initial values z0 ∈ V there exists a C1 curve zt : R≥0 → E such that as
long as zt ∈ Br, then zt ∈ V and (8) holds.

(ii) (Uniqueness) If zt is any solution of (8) such that zt ∈ Br for all t ≥ 0, then zt ∈ V for all
t ≥ 0.

Proof of Theorem 4.3. Let µ† ∈ G † be a strict saddle point. We apply the local center-stable
manifold theorem to the system of Lemma 4.1 on L2(Ω, µ†;Rk+d). By the spectral theorem, the
operatorHµ† has a complete set of eigenvalues λj and corresponding eigenfunctions ψj for j ∈ Z,
ordered such that

λ1 ≥ λ2 ≥ · · · ≥ 0, λ0 = · · · = λ−(p−1) < λ−p ≤ · · · ≤ 0.

Since the spectrum may possess a limit point at 0, we cannot separateHµ† into absolutely convergent
and divergent components. Instead, we set the cutoff at the largest negative eigenvalue λ0 =
λmin(Hµ†), taking all possibly multiple eigenvalues, and defining the subspace E u as the span of the
corresponding ψ0, · · · , ψ−(p−1). Then we are guaranteed a jump λ−(p−1) < λ−p since the spectrum
is discrete, and we choose λs = −λ−p, λ

u = −λ0 and k ∈ (1, |λ0/λ−p|) so that the spectral gap
condition is satisfied – we only need continuity (i.e. k ≥ 0) for our argument. Moreover, the Ck

extension property for E s holds automatically as L2(Ω, µ†;Rk+d) is a Hilbert space. Therefore,
any convergent local flow (vt) defined in an open neighborhood Bµ† must be contained in a graph
Vµ† ⊂ Bµ† containing µ†.

The rest of the proof is similar to Lee et al. (2019). Since the collection {Bµ† : µ† ∈ G †} forms an
open cover of G † and P2(Ω) is separable with respect to 2-Wasserstein distance (Ambrosio et al.,
2005, Proposition 7.1.5), we can extract a countable subcover {Bj : j ∈ N} containing G †. If the
WGF (µt)t≥0 converges to a strict saddle point, there exists an index j and an integer threshold ℓ
such that µt ∈ Bj for t ≥ ℓ. In particular, µt must be contained in the corresponding center-stable
manifold Vj for t ≥ ℓ.

Let ω−
t (ν) denote the result of running the reversed gradient flow ∂ν−t = −∇ · (ν−t∇ δF

δµ (ν−t)),
ν0 = ν for time t whenever it exists; time inversion t 7→ −t shows that ω−

t (µt) = µ0 for the forward
flow (µt)t≥0. Since µℓ ∈ Vj for some integer time ℓ and Vj , it holds that

G †
0 ⊆

⋃
j∈N

⋃
ℓ∈N

ω−
ℓ (Vj),

hence G †
0 must be contained in the countable union of images of graphs.

Remark D.4. We point out that Otto calculus is only formal in the sense that existence and regularity
issues are ignored, so it is difficult to rigorously turn the above into a meaningful measure-theoretic
statement as in Lee et al. (2019). This is compounded by the fact that there is no well-behaved
canonical measure on P2(Ω). A possible justification is to restrict to the subspace of measures with
smooth positive Lebesgue density whose geometry is well-behaved (Lott, 2008; Villani, 2009), but
this is outside of the scope of our paper.

D.4 APPLICATION TO THREE-LAYER NETWORKS

The problem (2) can also be motivated by the training dynamics of a three-layer neural network. We
construct the first two layers identically to our MLP layer hµ and consider a linear third layer given
by the transformation T ∈ Rk×k. Then the L2 loss with respect to a teacher network x 7→ T⋆hµ⋆(x)
is

LNN(µ,T) = Ex[∥T⋆hµ⋆(x)−Thµ(x)∥2].

By setting µ◦ = T⋆♯µ⋆ and taking the two-timescale limit where the last layer updates infinitely
quickly, we see that T must converge to Σµ◦,µΣ

−1
µ,µ and we end up with the regression objective (2),

hence Sections 3-5 also directly apply to this problem. We remark that the two-timescale regime has
been leveraged to show convergence of SGD for two-layer networks in Marion & Berthier (2023).
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E RESULTS AND PROOFS FOR SECTION 5

E.1 FIRST-ORDER IMPROVEMENT

Proposition E.1. Let F be a functional depending on µ only through the MLP layer hµ. Suppose
MFD (3) at time t admits a distribution µ̄ ∈P2(Θ) with χ2(µ̄, µt) ≤ χ̄2 such that along the linear
homotopy µ̄s = (1− s)µt + sµ̄ we have d

ds

∣∣
s=0

F (µ̄s) ≤ −δ ≤ 0. Then d
dtF (µt) ≤ −χ̄−2δ2.

Proof. We may express F as F (µ) = J(hµ) for an auxiliary functional h 7→ J(h) defined on
C(X ,Rd), which implies that

δF

δµ
(µ, θ) =

∫
δJ

δh
(hµ,x)

⊤hθ(x) dx.

In particular, since the dependency on the second layer a is linear, it always holds that a⊤∇a
δF
δµ = δF

δµ .
We can then directly lower bound the decrease rate of the objective under (3) by isolating the gradient
provided by a:

d

dt
F (µt) =

∫
δF

δµ
(µt, θ)∂tµt(dθ)

= −
∫ ∥∥∥∥∇θ

δF

δµ
(µt, θ)

∥∥∥∥2 µt(dθ)

≤ −
∫ ∥∥∥∥∇a

δF

δµ
(µt, θ)

∥∥∥∥2 µt(dθ)

≤ −
∫ (

a⊤∇a
δF

δµ
(µt, θ)

)2

µt(dθ)

= −
∫ (

δF

δµ
(µt, θ)

)2

µt(dθ).

Starting from the first-order condition, by the Cauchy-Schwarz inequality we can also bound(
d

ds

∣∣∣∣
s=0

F (µ̄s)

)2

=

(∫
δF

δµ
(µt, θ)(µ̄− µt)(dθ)

)2

≤ χ2(µ̄, µt)

∫ (
δF

δµ
(µt, θ)

)2

µt(dθ).

Joining the two inequalities gives the desired bound.

Proof of Proposition 5.1. Recall that the functional derivative is computed as

δL
δµ

(µ, θ) = −Ex

[
ζµ◦,µ(x)

⊤Σµ◦,µΣ
−1
µ,µhθ(x)

]
, (9)

where the additive constant has been implicitly normalized such that the integral with respect to the
current measure µ is zero, i.e.

∫
δL
δµ (µ) dµ = 0 as shown in the proof of Theorem 3.3. Due to the

spherical symmetry of π in the first component, it is also immediate that∫
δL
δµ

(µ) dπ = −Ex

[
ζµ◦,µ(x)

⊤Σµ◦,µΣ
−1
µ,µhπ(x)

]
= 0.

The chi-square divergence between µ̄ = R♯µ◦ and µt can be bounded as∫ (
dµ̄

dµt
− 1

)2

dµt ≤
∥∥∥∥ dµ̄

dµt

∥∥∥∥
∞
− 1 ≤ γ−1

∥∥∥∥dµ̄dπ
∥∥∥∥
∞

where the birth-death mechanism prevents the density ratio dµt

dπ from falling below the threshold γ at
any point. Writing the convex decomposition of R in the sense of Lemma C.6 as

∑m
j=1 αjRj with

Rj ∈ O(k), the density of µ̄ relative to π is further bounded as∥∥∥∥dµ̄dπ
∥∥∥∥
∞

=

∥∥∥∥dR♯µ◦

dπ

∥∥∥∥
∞
≤

m∑
j=1

αj

∥∥∥∥dµ◦

dπ

∥∥∥∥
∞
≤ R4
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by the spherical symmetry of π. Hence we may apply Proposition E.1 with χ̄2 = γ−1R4, showing
that the objective decreases along MFD by a rate of at least d

dt L(µt) ≤ −R−1
4 γδ2.

Moreover, whenever the discrete linear update is performed, along the homotopy µ̂s := (1− sγ)µt +
sγπ we have

d

ds
L(µ̂s) = γ

∫
δL
δµ

(µ̂s, θ)(π − µt)(dθ) = 0.

Hence t 7→ L(µt) is unaffected by the discrete updates, justifying the inequality for all time t ≥ 0.

As we mentioned briefly, the proof can also be easily modified to handle unbounded second layer a
by invoking the Cauchy-Schwarz inequality to lower bound the gradient∫ ∥∥∥∥∇a

δL
δµ

(µt, θ)

∥∥∥∥2 µt(dθ) ≥
(∫
∥a∥2µt(dθ)

)−1 ∫ (
a⊤∇a

δL
δµ

(µt, θ)

)2

µt(dθ)

and bounding the second moment uniformly in time with the following result,
Lemma E.2. Denote the second moment of µ ∈ P2(Θ) along the a component as ma(µ) =∫
∥a∥2µ(dθ). Then the mean-field dynamics µt for all time t ≥ 0 satisfies ma(µt) ≤ ma(µ0) ∨

ma(π).

Proof. In fact, ma(·) remains unchanged by gradient flow:
d

dt
ma(µt) =

∫
∥a∥2∂tµt(dθ)

= −2
∫

(a 0d)
⊤∇θ

δL
δµ

(µt, θ)µt(dθ)

= −2
∫

a⊤∇a
δL
δµ

(µt, θ)µt(dθ)

= −2
∫
δL
δµ

(µt, θ)µt(dθ) = 0.

Also if the discrete update is performed, the output satisfies ma((1−γ)µt+γπ) = (1−γ)ma(µt)+
γma(π) by linearity of the moment functional µ 7→ ma(µ). Hence ma(µt) always interpolates
between ma(µ0) and ma(π).

Proof of Theorem 5.2. Suppose L(µ0) ≤ 0.49r◦. Then L(µt) ≤ 0.49r◦ for all t ≥ 0 and by
Proposition C.7 we are guaranteed a direction of improvement µ̄s = (1− s)µt + sµ̄ with µ̄ = R♯µ
for some R ∈ B1(k) such that

d

ds

∣∣∣∣
s=0

L(µ̄s) ≤ −
4

R2
1

L(µt)

(
r◦

2
− L(µt)

)
.

Proposition 5.1 then ensures the objective decreases along the Wasserstein flow as

d

dt
L(µt) ≤ −

16γ

R4
1R4
L(µt)

2

(
r◦

2
− L(µt)

)2

, 0 ≤ L(µt) ≤
r◦

2
.

We now divide the band into two halves.

(i) r◦

4 ≤ L ≤
r◦

2 (acceleration band). By substituting L(µt)
2 ≥ r◦2

16 above and solving the
differential inequality, we obtain

L(µt) ≤
r◦

2
−

(
100

r◦
− r◦2γt

R4
1R4

)−1

and hence L(µt) decreases below r◦

4 after time t1 ≤ 96R4
1R4

r◦3γ .

(ii) 0 ≤ L ≤ r◦

4 (deceleration band). By substituting ( r
◦

2 − L(µt))
2 ≥ r◦2

16 we likewise obtain

L(µt) ≤
(

4

r◦
+
r◦2γ(t− t1)

R4
1R4

)−1

and hence L(µt) achieves loss ≤ ϵ after time t1 +
R4

1R4

r◦2γ ·
1
ϵ .

Finally, note that the second term dominates the first since ϵ = O(r◦).
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E.2 SECOND-ORDER IMPROVEMENT

Proof of Lemma 5.3. It is straightforward to show that

∂t

[
∇θ

δF

δµ
(µt, θ)

]
= ∇θ

∫
δ2F

δµ2
(µt, θ, θ

′)(∂tµt)(dθ
′)

= −∇θ

∫
∇θ′

δ2F

δµ2
(µt, θ, θ

′) · ∇θ′
δF

δµ
(µt, θ

′)µt(dθ
′)

= −
∫

Hµt
(θ, θ′)∇θ′

δF

δµ
(µt, θ

′)µt(dθ
′).

Each term is well-defined as soon as the kernel is assumed to be Hilbert-Schmidt, or due to Lemma
E.3 for the case F = L.

Lemma E.3. The kernel Hµ for the functional L is Hilbert-Schmidt for all µ ∈P+
2 (Θ). Moreover,

the corresponding integral operator Hµ f(θ) =
∫
Hµ(θ, θ

′)f(θ′)µ(dθ′) is compact self-adjoint,
hence there exists an orthonormal basis {ψj}j∈Z for L2(Θ, µ;Rk+d) consisting of eigenfunctions of
Hµ.

Proof. We extend our notation to write for example Σµ,θ = Ex∼DX [hµ(x)hθ(x)
⊤]. From (9) the

second order functional derivative can be derived as

δ2L
δµ2

(µ, θ, θ′) = − δ

δµ
Ex

[
(hµ◦(x)−Σµ◦,µΣ

−1
µ,µhµ(x))

⊤Σµ◦,µΣ
−1
µ,µhθ(x)

]
(θ′)

= − tr
(
Σµ◦,θ′Σ−1

µ,µΣθ,µ◦
)

+ tr
(
Σµ◦,µΣ

−1
µ,µ(Σθ′,µ +Σµ,θ′)Σ−1

µ,µΣθ,µ◦
)

+ tr
(
Σ−1

µ,µΣµ,µ◦Σµ◦,µΣ
−1
µ,µΣθ,θ′

)
− tr

(
Σ−1

µ,µ(Σθ′,µ +Σµ,θ′)Σ−1
µ,µΣµ,µ◦Σµ◦,µΣ

−1
µ,µΣθ,µ

)
+ tr

(
Σ−1

µ,µΣθ′,µ◦Σµ◦,µΣ
−1
µ,µΣθ,µ

)
+ tr

(
Σ−1

µ,µΣµ,µ◦Σµ◦,θ′Σ−1
µ,µΣθ,µ

)
− tr

(
Σ−1

µ,µΣµ,µ◦Σµ◦,µΣ
−1
µ,µ(Σθ′,µ +Σµ,θ′)Σ−1

µ,µΣθ,µ

)
.

It is tedious but straightforward to check that this expression is symmetric in θ, θ′ (which would
otherwise follow directly if we had a priori second order regularity estimates for L). We then have
that

[Hµ(θ, θ
′)]i,j = ∂θi∂θ′

j

δ2L
δµ2

(µ, θ, θ′) = ∂θ′
j
∂θi

δ2L
δµ2

(µ, θ′, θ) = [Hµ(θ
′, θ)]j,i

which impliesHµ is self-adjoint as before. For the proof of the first claim, we refer to the uniform
spectral bound for Hµ obtained in Lemma E.5; this also shows thatHµ is compact.

In Lemma E.4 and E.5, we derive various regularity bounds of the ICFL objective L. The constants
C1, · · · , C5, numbered as to be consistent with Theorem E.7, are explicitly defined during the proofs
and have at most polynomial dependency on all problem constants.

Lemma E.4. The gradients of the functional derivative of L at any µ ∈ P+
2 (Θ) such that

λmin(Σµ,µ) ≥ λ uniformly satisfy ∥∇a
δL
δµ ∥ ≤ Ca, ∥∇w

δL
δµ ∥ ≤ Cw and ∥∇ δL

δµ ∥ ≤ C1. More-
over,∇ δL

δµ is C2-Lipschitz on Θ, where Ca, C2 = O( 1
(kλ)1/2

) and Cw, C1 = O( 1
kλ ).

Proof. The gradient with respect to each component is given by

∇a
δL
δµ

(µ, θ) = −Ex

[
ζµ◦,µ(x)

⊤Σµ◦,µΣ
−1
µ,µσ(w

⊤x)
]⊤
,

∇w
δL
δµ

(µ, θ) = −Ex

[
ζµ◦,µ(x)

⊤Σµ◦,µΣ
−1
µ,µaσ

′(w⊤x)x
]
.
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Hence we can bound∥∥∥∥∇a
δL
δµ

(µ, θ)

∥∥∥∥2 ≤ Ex

[
∥ζµ◦,µ(x)

⊤Σµ◦,µΣ
−1
µ,µσ(w

⊤x)∥2
]

≤ R2
1 · Ex

[
ζµ◦,µ(x)

⊤Σµ◦,µΣ
−2
µ,µΣµ,µ◦ζµ◦,µ(x)

]
≤ R2

1

λ
tr
(
LµΣµ◦,µΣ

−1
µ,µΣµ,µ◦

)
≤ r◦R2

1

λ
L(µ)− 2R2

1

λ
trL2

µ

≤ kr◦2R2
1

2λ
=: C2

a,

and also∥∥∥∥∇w
δL
δµ

(µ, θ)

∥∥∥∥2
≤ Ex

[
∥ζµ◦,µ(x)

⊤Σµ◦,µΣ
−1
µ,µaσ

′(w⊤x)x∥2
]

≤ R2
2 · Ex

[
∥ζµ◦,µ(x)

⊤Σµ◦,µΣ
−1
µ,µ∥2∥x∥2

]
≤ R2

2

λ
· Ex

[
∥ζµ◦,µ(x)

⊤Σµ◦,µΣ
−1/2
µ,µ ∥4

]1/2
Ex[∥x∥4]1/2

≤ R2
2M

1/2
4

λ

(
trEx

[(
Σµ◦,µΣ

−1
µ,µΣµ,µ◦ζµ◦,µ(x)ζµ◦,µ(x)

⊤)2])1/2

≤ r◦R2
2M

1/2
4

λ

(
trEx

[
ζµ◦,µ(x)ζµ◦,µ(x)

⊤Σµ◦,µΣ
−1
µ,µΣµ,µ◦ζµ◦,µ(x)ζµ◦,µ(x)

⊤])1/2
− 2R2

2M
1/2
4

λ

(
trLµEx

[
ζµ◦,µ(x)ζµ◦,µ(x)

⊤Σµ◦,µΣ
−1
µ,µΣµ,µ◦ζµ◦,µ(x)ζµ◦,µ(x)

⊤])1/2
≤ r◦R2

2M
1/2
4

λ

(
r◦ trEx

[(
ζµ◦,µ(x)ζµ◦,µ(x)

⊤)2]− 2 trLµEx

[(
ζµ◦,µ(x)ζµ◦,µ(x)

⊤)2])1/2

≤ r◦3/2R2
2M

1/2
4

λ
supx∥ζµ◦,µ(x)∥(2 trLµ)

1/2

≤ 2k1/2r◦5/2R3
1R

2
2M

1/2
4

λ2
=: C2

w,

where for the last line we have used the coarser bounds ∥ζµ◦,µ(x)∥ ≤ R1 + R3
1λ

−1 and λ ≤
1
k trΣµ0,µ0

≤ R2
1

k . Combining the two bounds yields∥∥∥∥∇δLδµ (µ, θ)
∥∥∥∥ ≤ (

r◦2R3
1

2λ2
(R1 + 4k1/2r◦1/2R2

2M
1/2
4 )

)1/2

=: C1.

Furthermore, for θ1 = (a1,w1), θ2 = (a2,w2) we have∥∥∥∥∇a
δL
δµ

(µ, θ1)−∇a
δL
δµ

(µ, θ2)

∥∥∥∥ =
∥∥Ex

[
ζµ◦,µ(x)

⊤Σµ◦,µΣ
−1
µ,µ(σ(w

⊤
1 x)− σ(w⊤

2 x))
]∥∥

≤ R2 · Ex

[
∥ζµ◦,µ(x)

⊤Σµ◦,µΣ
−1
µ,µ∥ · ∥w⊤

1 x−w⊤
2 x∥

]
≤ R2M

1/2
2

(
kr◦2

2λ

)1/2

∥w1 −w2∥,

and also ∥∥∥∥∇w
δL
δµ

(µ, θ1)−∇w
δL
δµ

(µ, θ2)

∥∥∥∥
=

∥∥Ex

[
ζµ◦,µ(x)

⊤Σµ◦,µΣ
−1
µ,µ(a1σ

′(w⊤
1 x)− a2σ

′(w⊤
2 x))x

]∥∥
≤

∥∥Ex

[
ζµ◦,µ(x)

⊤Σµ◦,µΣ
−1
µ,µ(a1 − a2)σ

′(w⊤
1 x)x

]∥∥
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+
∥∥Ex

[
ζµ◦,µ(x)

⊤Σµ◦,µΣ
−1
µ,µa2(σ

′(w⊤
1 x)− σ′(w⊤

2 x))x
]∥∥

≤ R2M
1/2
2

(
kr◦2

2λ

)1/2

∥a1 − a2∥

+R3 · Ex

[
∥ζµ◦,µ(x)

⊤Σµ◦,µΣ
−1
µ,µ∥ · ∥w1 −w2∥∥x∥2

]
≤ R2M

1/2
2

(
kr◦2

2λ

)1/2

∥a1 − a2∥+R3M
1/2
4

(
kr◦2

2λ

)1/2

∥w1 −w2∥.

Combining the two yields that∥∥∥∥∇δLδµ (µ, θ1)−∇δLδµ (µ, θ2)
∥∥∥∥ ≤ (

kr◦2

2λ
(2R2

2M2 +R2
3M4)

)1/2

∥θ1 − θ2∥ =: C2 ∥θ1 − θ2∥.

Lemma E.5. For any µ ∈ P+
2 (Θ) such that λmin(Σµ,µ) ≥ λ it holds that ∥Hµ(θ, θ

′)∥ ≤ C3,
Hµ(θ, θ

′) is uniformly C4-Lipschitz w.r.t. θ and θ′, and Hµ is C5-Lipschitz w.r.t. µ in 1-Wasserstein
distance, where C3, C4 = O(λ−2) and C5 = O(dλ−3).

Proof. To derive regularity estimates of Hµ, we start from the expansion in Lemma E.3 and
perform explicit computations for only the first trace term t(µ, θ, θ′) = tr

(
Σµ◦,θ′Σ−1

µ,µΣθ,µ◦
)
.

∇θ∇θ′t(µ, θ, θ′) consists of block matrices

∇a∇a′t(µ, θ, θ′) = Ex

[
σ(w⊤x)hµ◦(x)⊤

]
Ex

[
σ(w′⊤x)hµ◦(x)

]
Σ−1

µ,µ,

∇a∇w′t(µ, θ, θ′) = Σ−1
µ,µa

′Ex

[
σ(w⊤x)hµ◦(x)⊤

]
Ex

[
σ′(w′⊤x)hµ◦(x)x⊤] ,

∇w∇a′t(µ, θ, θ′) = Ex

[
σ′(w⊤x)xhµ◦(x)⊤

]
Ex

[
σ(w′⊤x)hµ◦(x)

]
a⊤Σ−1

µ,µ,

∇w∇w′t(µ, θ, θ′) = Ex

[
σ′(w⊤x)xhµ◦(x)⊤

]
Ex

[
σ′(w′⊤x)hµ◦(x)x⊤]a′⊤Σ−1

µ,µa.

It follows from Lemma C.1 that ∥∇θ∇θ′t(µ, θ, θ′)∥ ≤ (R4
1 + 2R2

1R2k
1/2r◦1/2M

1/2
2 +

R2
2kr

◦M2)λ
−1 = O(λ−1). Each term of Hµ is likewise uniformly bounded so that Hµ is a

valid kernel.

The Lipschitz constant of∇θ∇θ′t(µ, θ, θ′) w.r.t. θ can also be controlled by separately bounding

∥∇a∇a′t(µ, θ1, θ
′)−∇a∇a′t(µ, θ2, θ

′)∥
≤ Ex

[
|σ(w⊤

1 x)− σ(w⊤
2 x)| · ∥hµ◦(x)∥

]
Ex

[
|σ(w′⊤x)| · ∥hµ◦(x)∥

]
∥Σ−1

µ,µ∥

≤ R1R2M
1/2
2 kr◦λ−1∥w1 −w2∥,

∥∇a∇w′t(µ, θ1, θ
′)−∇a∇w′t(µ, θ2, θ

′)∥
≤ ∥Σ−1

µ,µa
′∥ · Ex

[
|σ(w⊤

1 x)− σ(w⊤
2 x)| · ∥hµ◦(x)∥

]
Ex

[
|σ′(w′⊤x)| · ∥hµ◦(x)x⊤∥

]
≤ R2

2M2kr
◦λ−1∥w1 −w2∥,

∥∇w∇a′t(µ, θ1, θ
′)−∇w∇a′t(µ, θ2, θ

′)∥
≤ Ex

[
|σ′(w⊤

1 x)− σ′(w⊤
2 x)| · ∥xhµ◦(x)⊤∥

]
Ex

[
|σ(w′⊤x)| · ∥hµ◦(x)∥

]
∥a⊤

1 Σ
−1
µ,µ∥

+ Ex

[
|σ′(w⊤

2 x)| · ∥xhµ◦(x)⊤∥
]
Ex

[
|σ(w′⊤x)| · ∥hµ◦(x)∥

]
∥(a1 − a2)

⊤Σ−1
µ,µ∥

≤ R1R3M
1/2
4 kr◦λ−1∥w1 −w2∥+R1R2M

1/2
2 kr◦λ−1∥a1 − a2∥,

∥∇w∇w′t(µ, θ1, θ
′)−∇w∇w′t(µ, θ2, θ

′)∥
≤ Ex

[
|σ′(w⊤

1 x)− σ′(w⊤
2 x)| · ∥xhµ◦(x)⊤∥

]
Ex

[
|σ′(w′⊤x)| · ∥hµ◦(x)x⊤∥

]
∥a′⊤Σ−1

µ,µa1∥
+ Ex

[
|σ′(w⊤

2 x)| · ∥xhµ◦(x)⊤∥
]
Ex

[
|σ′(w′⊤x)| · ∥hµ◦(x)x⊤∥

]
∥a′⊤Σ−1

µ,µ(a1 − a2)∥

≤ R2R3M
1/2
2 M

1/2
4 kr◦λ−1∥w1 −w2∥+R2

2M2kr
◦λ−1∥a1 − a2∥.

Therefore, ∇θ∇θ′t(µ, θ, θ′) is uniformly O(λ−1)-Lipschitz w.r.t. both θ and θ′ by symmetry. All
the remaining terms can also be bounded with at most an O(λ−2) Lipschitz constant; in particular,
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the terms including three factors of Σ−1
µ,µ can be controlled by removing a factor of λ−1/2 twice and

isolating Σ
−1/2
µ,µ Σµ,µ◦ and Σµ◦,µΣ

−1/2
µ,µ as in the proof of Lemma E.4.

Finally, the third-order functional derivative∇θ̃
δ
δµHµ(θ, θ

′)(θ̃) can be bounded in a similar manner
with spectral norm at most O(λ−3), yielding via Kantorovich-Rubinstein duality that

∥Hµ1(θ, θ
′)−Hµ2(θ, θ

′)∥ =
∥∥∥∥∫ δ

δµ
H(1−s)µ1+sµ2

(θ, θ′)(θ̃)(µ2 − µ1)(dθ̃)

∥∥∥∥
≲ (k + d)λ−3 · W1(µ1, µ2).

The additional k + d factor arises from bounding each entry of Hµ1
−Hµ2

separately. We omit the
details.

Proposition E.6. LetF be a functional depending on µ only through the MLP layer hµ. Suppose MFD
(3) at time t admits a distribution µ̄ ∈P2(Θ) with χ2(µ̄, µt) ≤ χ̄2 such that d2

ds2

∣∣
s=0

F (µ̄s) ≤ −Λ.
Then the smallest eigenvalue λ0 ofHµt

satisfies λ0 ≤ −χ̄−2Λ.

Proof. The second derivative along the linear homotopy µ̄s can be expanded as

d2

ds2

∣∣∣∣
s=0

F (µ̄s) =
d

ds

∣∣∣∣
s=0

∫
δF

δµ
(µ̄s, θ)(µ̄− µt)(dθ)

=

∫∫
δ2F

δµ2
(µt, θ, θ

′)(µ̄− µt)(dθ)(µ̄− µt)(dθ
′).

Now similarly to the proof of Proposition 5.1, denoting θ = (a,w), θ′ = (a′,w′) we can exploit the
fact that δ2F

δµ2 (µ, θ, θ
′) is bilinear in a,a′ to relate it to the kernel Hµ,

δ2F

δµ2
(µ, θ, θ′) = a⊤

[
∇a∇a′

δ2F

δµ2
(µ, θ, θ′)

]
a′ = (a 0d)

⊤
[
∇θ∇θ′

δ2F

δµ2
(µ, θ, θ′)

]
(a′ 0d)

= (a 0d)
⊤Hµ(θ, θ

′)(a′ 0d).

Writing the eigenfunction decomposition of Hµt
as (omitting the dependency on t for brevity)

Hµt(θ, θ
′) =

∑
j∈Z

λjψj(θ)ψj(θ
′)⊤,

∫
∥ψj∥2 dµt = 1 ∀j ∈ Z,

with the ordering λ1 ≥ λ2 ≥ · · · ≥ 0 and λ0 ≤ λ−1 ≤ · · · ≤ 0, we may thus bound

−Λ ≥ d2

ds2

∣∣∣∣
s=0

F (µ̄s) =

∫∫
(a 0d)

⊤Hµ(θ, θ
′)(a′ 0d)(µ̄− µt)(dθ)(µ̄− µt)(dθ

′)

=
∑
j∈Z

λj

(∫
(a 0d)

⊤ψj(θ)(µ̄− µt)(dθ)

)2

≥ − |λ0| ·
∑
j∈Z

(∫
(a 0d)

⊤ψj(θ)(µ̄− µt)(dθ)

)2

= − |λ0| ·
∑
j∈Z

(∫ (
dµ̄

dµt
− 1

)
(a 0d)

⊤ψj(θ)µt(dθ)

)2

= − |λ0|
∫ (

dµ̄

dµt
− 1

)2

∥a∥2µt(dθ)

≥ −χ̄2|λ0|,

where we have made use of Parseval’s identity. Hence the largest negative eigenvalue is bounded as
λ0 ≤ −χ̄−2Λ.
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Theorem E.7. Assume F : P2(Ω) → R, Ω ⊆ Rm satisfies ∥∇ δF
δµ ∥ ≤ C1, ∇ δF

δµ is C2-Lipschitz,
Hµ is Hilbert-Schmidt, ∥Hµ∥ ≤ C3, Hµ(θ, θ

′) is C4-Lipschitz w.r.t. θ, θ′ and C5-Lipschitz w.r.t. µ
inW1. Further suppose that λ0 := λmin(Hµ†) < 0 and the corresponding eigenfunction ψ0 satisfies
|
∫
ψ⊤
0 ∇ δL

δµ (µt) dµt| ≥ α for some α > 0. Then WGF initialized at µ0 = µ† decreases F by at least

F (µτ ) ≤ F (µ0)− Ω
(

|λ0|α√
mτ

)
in time τ = O

(
1

|λ0| log
|λ0|√
mα

)
.

Unlike before, F can be completely general and does not need to depend on µ through an MLP layer.

Proof. First note that the function θ′ 7→ Hµ†(θ, θ′)∇ δF
δµ (µt, θ

′) is uniformly Lipschitz: for any
θ′1, θ

′
2, ∥∥∥∥Hµ†(θ, θ′1)∇

δF

δµ
(µt, θ

′
1)−Hµ†(θ, θ′2)∇

δF

δµ
(µt, θ

′
2)

∥∥∥∥
≤ ∥Hµ†(θ, θ′1)−Hµ†(θ, θ′2)∥ ·

∥∥∥∥∇δFδµ (µt, θ
′
1)

∥∥∥∥
+ ∥Hµ†(θ, θ′2)∥ ·

∥∥∥∥∇δFδµ (µt, θ
′
1)−∇

δF

δµ
(µt, θ

′
2)

∥∥∥∥
≤ C1C4∥θ′1 − θ′2∥+ C2C3∥θ′1 − θ′2∥.

We re-expand the evolution equation (Lemma 5.3) for the dynamics (µt)t≥0 around µ† as

∂t

[
∇θ

δF

δµ
(µt, θ)

]
= −

∫
Hµt

(θ, θ′)∇θ′
δF

δµ
(µt, θ

′)µt(dθ
′)

=: −
∫

Hµ†(θ, θ′)∇θ′
δF

δµ
(µt, θ

′)µ†(dθ′) + e(t, θ),

where the difference or error function e(t, θ) can be bounded as

∥e(t, θ)∥ ≤
∥∥∥∥∫ (Hµt

(θ, θ′)−Hµ†(θ, θ′))∇θ′
δF

δµ
(µt, θ

′)µt(dθ
′)

∥∥∥∥
+

∥∥∥∥∫ Hµ†(θ, θ′)∇θ′
δF

δµ
(µt, θ

′)(µt − µ†)(dθ′)

∥∥∥∥
≤

(
C1C5 + (C1C4 + C2C3)m

1/2
)
W1(µt, µ

†).

=: C6W1(µt, µ
†).

For the second term, we have used the Lipschitz constant derived above to bound each entry separately.
Then the ψ0-component α0(t) :=

∫
ψ⊤
0 ∇ δF

δµ (µt) dµ
† of the gradient evolves according to

d

dt
α0(t) = −

∫∫
ψ0(θ)

⊤Hµ†(θ, θ′)∇θ′
δF

δµ
(µt, θ

′)µ†(dθ′)µ†(dθ) +

∫
ψ0(θ)

⊤e(t, θ)µ†(dθ)

= −λ0
∫
ψ0(θ)

⊤∇θ
δF

δµ
(µt, θ)µ

†(dθ) +

∫
ψ0(θ)

⊤e(t, θ)µ†(dθ),

and hence ∣∣∣∣ ddtα0(t) + λ0α0(t)

∣∣∣∣ ≤ (∫
∥ψ0∥2 dµ†

)1/2

sup
θ∈Θ
∥e(t, θ)∥ ≤ C8W1(µt, µ

†).

Without loss of generality, assume initially α0(0) is positive so that α0(0) ≥ α. We consider a 1-
Wasserstein ball centered at µ† with radius small enough so that the error term is negligible compared
to the exponential growth,

BW(∆) =

{
µ ∈P2(Θ) :W1(µ, µ

†) ≤ ∆ :=
|λ0|α
2C6

}
.

Then for a set time interval τ > 0 to be determined, either of the following must happen:
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(i) (µt)t∈[0,τ ] ⊂ BW(∆). In this case, α0(t) grows exponentially during the entire interval t ∈ [0, τ ]
as

d

dt
α0(t) ≥ |λ0|α0(t)− C6∆ = |λ0|

(
α0(t)−

α

2

)
> 0,

showing that

α0(t) ≥ e|λ0|t
(
α0(0)−

α

2

)
+
α

2
≥ α(e|λ0|t + 1)

2
.

Then the decrease of F after time τ can be bounded below by retrieving the ψ0-component as

F (µ0)− F (µτ ) =

∫ τ

0

∫ ∥∥∥∥∇δFδµ (µt, θ)

∥∥∥∥2 µt(dθ) dt

≥
∫ τ

0

(∫ ∥∥∥∥∇δFδµ (µt, θ)

∥∥∥∥2 µ†(dθ) dt− 2C1C2W1(µt, µ
†)

)
≥

∫ τ

0

(∫
ψ0(θ)

⊤∇δF
δµ

(µt, θ)µ
†(dθ)

)2

dt− 2C1C2∆τ

=

∫ τ

0

α0(t)
2 dt− 2C1C2∆τ

≥ α2

4

(
1

2|λ0|
(e2|λ0|τ − 1) +

2

|λ0|
(e|λ0|τ − 1) + τ

)
− C1C2

C6
|λ0|ατ.

(ii) µτe /∈ BW(∆) for some τe ≤ τ . If the mean-field flow has managed to escape the ball BW(∆)
in time τe, the Benamou-Brenier formula (Proposition A.3) immediately guarantees that

F (µ0)− F (µτ ) ≥ F (µ0)− F (µτe)

=

∫ τe

0

∫ ∥∥∥∥∇δFδµ (µt, θ)

∥∥∥∥2 µt(dθ) dt

≥ W2(µτe , µ
†)

τe
>

∆

τ
.

Thus we have proved that:

F (µ0)− F (µτ )

≥
(
α2

4

(
1

2|λ0|
(e2|λ0|τ − 1) +

2

|λ0|
(e|λ0|τ − 1) + τ

)
− C1C2

C6
|λ0|ατ

)
∧ |λ0|α

2C6τ
. (10)

Due to the exponential terms, we see τ ≈ log 1
α is enough to ensure that the two terms become

roughly equal so that the guarantees is close to optimal. For the remainder of the proof, we derive the
exact formula. Choose

τ =
1

|λ0|
log

C7

α

for some C7 > α. The first term in the right-hand side of (10) can be bounded as

α2

4

(
1

2|λ0|
(e2|λ0|τ − 1) +

2

|λ0|
(e|λ0|τ − 1) + τ

)
− C1C2

C6
|λ0|ατ

=
α2

8|λ0|

(
C2

7

α2
− 1

)
+

α2

2|λ0|

(
C7

α
− 1

)
+

α2

4|λ0|
log

C7

α
− C1C2

C6
α log

C7

α

≥
(

C2
7

24|λ0|
− 5α2

8|λ0|

)
+

(
C2

7

24|λ0|
− C1C2

C6
α log

C7

α

)
+

C2
7

24|λ0|
+
C7α

2|λ0|
+

α2

4|λ0|
log

C7

α

≥
(

C2
7

24|λ0|
− 5α2

8|λ0|

)
+

(
C2

7

24|λ0|
− C1C2C7

C6e

)
+

C2
7

24|λ0|
,

where we have used the fact that the function x 7→ x log c
x has maximum c

e . Then the first term of
(10) will dominate the second as long as

C2
7

24|λ0|
≥ 5α2

8|λ0|
∨ C1C2C7

C6e
∨ |λ0|2α

2C6 log
C7

α

.
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Manipulating terms shows that

C7 =
√
15α ∨ 24C1C2|λ0|

C6e
∨
(
24|λ0|3α
C6 log 15

)1/2

is sufficient. For the purposes of the general statement, we focus on asymptotic behavior w.r.t. α and
hide all regularity constants C1, · · · , C5, yielding C6 = O(m1/2) and C7 = O(|λ0|m−1/2).

Proof of Theorem 5.5. Let us fix the lower bound λmin(Σµr,µr
) ≥ λ = Θ( 1k ). (The bound only

needs to hold either locally for theW2-ball of radius ∆ in the proof of Theorem E.7, or along the
dynamics µt until escape.) We first need a robust version of Theorem 3.3(ii) since µt cannot be
exactly on a critical point. If d

ds

∣∣
s=0
L(µ̄s) > −δ it must hold that ∥LµΣµ◦,µΣ

−1
µ,µ∥∗ < δ

2 by (4).
Then from (5), again choosing R ∈ O(k) such that Σµ◦,µΣ

−1
µ,µR is symmetric,

d2

ds2

∣∣∣∣
s=0

L(µ̄s)

= −4 tr
(
L2
µR

⊤Σ−1
µ,µR

)
+ 2 tr

(
Lµ(2Σµ◦,µΣ

−1
µ,µR+R⊤Σ−1

µ,µΣµ,µ◦ − 2Ik)Σµ◦,µΣ
−1
µ,µR

)
= −4 tr

(
L2
µR

⊤Σ−1
µ,µR

)
+ 2 tr

(
(2Σµ◦,µΣ

−1
µ,µR+R⊤Σ−1

µ,µΣµ,µ◦ − 2Ik)
⊤LµΣµ◦,µΣ

−1
µ,µR

)
≤ − 4

kR2
1

L(µt)
2 + 2 ∥LµΣµ◦,µΣ

−1
µ,µ∥∗∥2Σµ◦,µΣ

−1
µ,µR+R⊤Σ−1

µ,µΣµ,µ◦ − 2Ik∥

≤ − 4

kR2
1

L(µt)
2 +

(
3 ∥Σµ◦,µΣ

−1/2
µ,µ ∥ · ∥Σ−1/2

µ,µ R∥+ 2
)
δ

≤ − 4

kR2
1

L(µt)
2 + (3r◦1/2λ−1/2 + 2)δ.

Hence if we take
δ ≤ 2

kR2
1(3r

◦1/2λ−1/2 + 2)
L(µt)

2

then d2

ds2

∣∣
s=0
L(µ̄s) ≤ − 2

kR2
1
L(µt)

2, and by Proposition E.6 it holds that

λ0 = λmin(Hµt
) ≤ − 2γ

kR2
1R4
L(µt)

2.

Then Theorem E.7 applies to F = L by virtue of Lemma E.3 and the regularity constants derived in
Lemma E.4 and E.5. One can check that

C6 = C1C5 + (C1C4 + C2C3)(k + d)1/2 = O

(
d

kλ4

)
and

C7 = O

(
α ∨ λ

5/2γ

k3/2d
L(µt)

2 ∨ λ
2γ3/2α1/2

kd1/2
L(µt)

3

)
= O

(
α+

γ

k4d

)
;

the third term is dominated by the geometric mean of the first two, and L(µt) = O(1). Hence the
time interval of interest is

τ = O

(
k

γ L(µt)2

(
log

γ

k4dα

)
∨ 1

)
,

and the guaranteed decrease of the objective is

L(µt)− L(µt+τ ) ≥
|λ0|α
2C6τ

≥ Ω

(
γ2αL(µt)

4

k5d

(
log

γ

k4dα
∨ 1

)−1
)
.

E.3 ESCAPING FROM SADDLE POINTS EFFICIENTLY

Theorem 5.5 on its own cannot ensure convergence rates. The flow might be initialized at or pass
near multiple saddle points with very small α values, taking longer to escape. This is an unavoidable
problem of nonconvex gradient descent even in finite dimensions (Du et al., 2017). In contrast, it has
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been shown that simply adding uniform noise allows GD to escape saddle points efficiently (Ge et al.,
2015; Jin et al., 2017). Here, we suggest an adaptation to WGF.

The main problem is how to apply ‘random’ perturbations in P2(Ω). Motivated by the characteri-
zation of the tangent space (6), we propose a scheme which constructs perturbations in the velocity
space using vector-valued Gaussian processes.

Definition E.8 (vector-valued Gaussian process). The random function ξ : Ω → Rm is said to
follow a Gaussian process if any finite collection of variables ξ(θ1), · · · , ξ(θj) are jointly normally
distributed. The process is determined by the mean function m : Ω → Rm, m(θ) = E[ξ(θ)] and
matrix-valued covariance function

K : Ω× Ω→ Rm×m, K(θ, θ′) = E[(ξ(θ)−m(θ))(ξ(θ′)−m(θ′))⊤].

We denote this process as ξ ∼ GP(m,K). See Álvarez et al. (2012) for further details.

1. Generate a random velocity field ξ : Ω → Rm from a stationary Gaussian process GP(0,K)
with bounded kernel K : Ω× Ω→ Rm×m.

2. Run the pushforward dynamics ∂tµt = ∇ · (ξµt) from µ0 = µ† for fixed time ∆t.

This can bypass the dimensional dependency in Ge et al. (2015) and ensure a nonzero ψ0-component
for ∇ δF

δµ (µ∆t), which is approximately normally distributed with variance O(∆t).

Lemma E.9. For any µ ∈P2(Ω), square-integrable test function ψ ∈ L2(Ω, µ;Rm) and covariance
function K : Ω×Ω→ Rm×m satisfying

∫
∥K(θ, θ)∥µ(dθ) <∞ the inner product ⟨ψ, ξ⟩L2(Ω,µ;Rm)

for ξ ∼ GP(0,K) is normally distributed.

Proof. Note that the inner product is defined almost surely since

Eξ

[
∥ξ∥2L2(Ω,µ;Rm)

]
=

∫
Eξ[∥ξ(θ)∥2]µ(dθ) =

∫
trK(θ, θ)µ(dθ) <∞.

We denote by E the closed linear span of the set of square-integrable random variables {ψ(θ)⊤ξ(θ) :
θ ∈ Ω}. For any Z ∈ E ⊥ it holds that Eξ[Zψ(θ)

⊤ξ(θ)] = 0, so that by Fubini’s theorem

Eξ

[
Z⟨ψ, ξ⟩L2(Ω,µ;Rm)

]
= Eξ

[∫
Zψ(θ)⊤ξ(θ)µ(dθ)

]
= 0.

Hence ⟨ψ, ξ⟩L2(Ω,µ;Rm) ∈ (E ⊥)⊥ = E , and so is normally distributed.

For the proposed perturbation process, the change in the gradient field along the flow of ξ can be
quantified as

∇δF
δµ

(µ∆t, θ)−∇
δF

δµ
(µ†, θ) =

∫ ∆t

0

∂t

[
∇δF
δµ

(µt, θ)

]
dt

= −
∫ ∆t

0

∫
∇θ∇θ′

δ2F

δµ2
(µt, θ, θ

′)ξ(θ′)µt(dθ
′) dt

= −
∫ ∆t

0

Hµt
[ξ] dt.

The resulting ψ0-component is

α(ξ) =

∫
ψ0(θ)

⊤∇δF
δµ

(µ∆t, θ)µ
†(dθ)

=

∫
ψ0(θ)

⊤
(
∇δF
δµ

(µ†, θ)−
∫ ∆t

0

Hµ† [ξ] dt+

∫ ∆t

0

(Hµ† −Hµt) [ξ] dt

)
µ†(dθ)

= −λ0∆t
∫
ψ0(θ)

⊤ξ(θ)µ†(dθ) + α+O(∆t2),

and first term is normally distributed by Lemma E.9.
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Algorithm 1 Mean-field dynamics with birth-death and perturbation

Require: i.i.d. samples θ(1)0 , · · · , θ(N)
0 ∼ µ0

while L(µ̂k) > ϵ do
Update all particles as θ(j)k+1 = θ

(j)
k − η∇

δL
δµ (µ̂k, θ

(j)
k ), j ∈ [N ]

if L(µ̂k)− L(µ̂k+1) ≤ δb then
Randomly replace ⌊γN⌋ neurons with i.i.d. samples from π

end if
if L(µ̂k)− L(µ̂k+1) ≤ δp and k − kp > τ then
kp ← k
Generate a Gaussian process ξ ∼ GP(0,K)

Update all particles as θ(j)k+1 = θ
(j)
k − ηp∇ξ(θ

(j)
k ), j ∈ [N ]

end if
k ← k + 1

end while

Unfortunately this naive approach is not enough to ensure large α, at least in polynomial time, since
the eigenfunction ψ0 and base measure also change along the perturbation. Jin et al. (2017) bypass this
issue in finite dimensions via a geometric argument; we conjecture that our method also guarantees
polynomial escape time. If this is true, we may combine Proposition 5.1 with δ = O(k−1 L(µt)

2),
yielding O( k6

γ3t3 ) convergence away from saddle points, and Theorem 5.5 to conclude that perturbed
WGF enjoys polynomial convergence to global minima.

Dimensional dependency of Theorem 5.5. The rate is polynomial in the number of features k but
only linear in d, mitigating the curse of dimensionality. Initially L decreases by Ω̃(k−5d−1) in time
Õ(k) when L = Θ(1). As training progresses, the rate worsens to Ω̃(k−9d−1) in time Õ(k3) when
L = Θ( 1k ) due to the smaller curvature of L, until we enter the accelerated phase and Theorem 5.2
takes over. Since L becomes ill-conditioned if hµ(x) is nearly constrained on a subspace, we have
assumed that λmin(Σµ,µ) is locally bounded below (on the same order as the upper bound R2

1/k) to
obtain regularity estimates. We expect this to not be a problem in practice since W will not diverge
without timescale separation. In our experiments, λmin(Σµ,µ) never varied by over 25% during each
run.

F NUMERICAL EXPERIMENTS

F.1 IMPLEMENTATION

We provide a simple summary of the proposed modified mean-field dynamics in Algorithm 1. For the
birth-death process, a fraction γ of all neurons are randomly deleted and replaced with samples from
π whenever L does not sufficiently decrease. Here θ(1)k , · · · , θ(N)

k denote the values of theN particles
at step k with empirical distribution µ̂k = 1

N

∑N
j=1 δθ(j)

k

, ϵ is the convergence error and δb, δp are
improvement thresholds for applying the birth-death and perturbation procedures, respectively. We
also set learning rate η, perturbation step size ηp and a waiting time τ for escaping saddle points.
More generally, δb, δp could be decreased and τ could be increased depending on the current objective
value as suggested in Theorem 5.5. In addition, the density ratio dµt

dπ could be estimated at certain
steps to directly check for the birth-death condition; see Sugiyama et al. (2018) for an overview of
applicable methods, especially in high dimensions.

F.2 EXPERIMENTAL RESULTS

Complementing our theoretical analyses, we now explore some empirical aspects of in-context feature
learning of a toy Transformer. We compare three models: the attention Transformer jointly optimizes
the loss LTF(µ,W), while the static and modified Transformers directly minimize L(µ) without
passing through the LSA layer. All models are pretrained using SGD on 10K prompts each containing
1K token pairs. For the MLP we set d = 20, k = 5 with 500 sigmoid neurons and DX ∼ N (0, Id).
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Figure 1: (a) Training error of the attention, static and modified Transformers. (b) Learning a
misspecified task containing two extra features. (c) Test error for the nonlinear maximum task
max1≤j≤k hµ◦(x); (d) for the norm task ∥hµ◦(x)∥.

The modified model additionally implements the birth-death and perturbation dynamics of Section 5
if L has not decreased by 1% every 100 epochs.

Figure 1(a) shows that attention and static Transformers exhibit similar dynamics and successfully
converge to global optima, justifying the two-timescale approach. Next, Figure 1(b) plots the training
curve for a misspecified model where the true features hµ◦ are 7-dimensional. While zero loss
is not achievable due to the increased complexity, all models still find a well-behaved minimum,
and the modified dynamics escapes a potential saddle point more quickly. Finally, we compute
the test loss w.r.t. two nonlinear feature-based tasks max1≤j≤k hµ◦(x)j and ∥hµ◦(x)∥ in Figures
1(c),(d). Accuracy sharply improves when the relevant features are learned, confirming that ICFL can
generalize beyond linear regression even in one-layer Transformers and further demonstrating the
importance of feature learning.
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