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ABSTRACT

Deep learning-based automatic sleep staging demonstrates strong performance as
a promising solution for diagnosing sleep disorders. However, deep learning mod-
els often struggle to generalize on unseen subjects due to variability in physiologi-
cal signals, resulting in degraded performance in out-of-distribution scenarios. To
address this issue, domain generalization approaches have recently been studied
actively to ensure generalized performance on unseen domains during the training.
Among those techniques, contrastive learning has proven its validity in learning
domain-invariant features by aligning samples of the same class across different
domains. Despite its potential, many existing methods are insufficient for ex-
tracting truly domain-invariant representations, as they do not explicitly reduce
domain-relevant information embedded in the features. In this paper, we argue
that addressing superfluous information is a key to bridging the domain gap. Fur-
thermore, existing methods often neglect the multi-scale nature of sleep signals,
potentially missing important temporal and spectral characteristics. To address
these limitations, we propose a novel Multi-Scale Minimal Sufficient represen-
tation learning (MSMS) framework, which effectively reduces domain-relevant
information while preserving essential temporal and spectral features for sleep
stage classification. We evaluate our method on publicly available sleep staging
benchmark datasets, SleepEDF-20 and MASS. Experimental results demonstrate
that our approach consistently outperforms state-of-the-art methods.

1 INTRODUCTION

Sleep staging, the process of identifying and tracking transitions between different sleep stages over
time, plays a pivotal role in analyzing sleep quality and treating sleep disorders (Scott et al., 2023).
Typically, experts categorize sleep states into five stages—Wake, N1, N2, N3, and rapid eye move-
ment (REM)— using polysomnography (PSG), which records various physiological signals. While
manual sleep staging remains the gold standard, it is both labor-intensive and time-consuming, of-
ten requiring trained specialists to carefully examine hours of physiological data. To alleviate these
challenges, deep learning (DL)-based techniques have emerged as a powerful alternative. Despite
such advanced, numerous DL-based techniques inevitably struggle when confronted with out-of-
distribution (OOD) data (i.e., unseen domain), leading to significant performance degradation caused
by a discrepancy in data distribution (Zhou et al., 2022).

The challenge of OOD generalization in sleep staging is particularly prevalent due to the high vari-
ability in physiological signals between individuals. For instance, insomnia patients typically exhibit
increased high-frequency activity and reduced slow-wave sleep in electroencephalogram (EEG) sig-
nals, which measure brain activity (Buysse et al., 2008). Moreover, age-related changes add to this
complexity; research has shown that slow-wave sleep decreases with age—by as much as 2% per
decade in adults—while the proportions of N2 and REM sleep undergo significant shifts across the
lifespan (Ohayon et al., 2004). These patient-specific characteristics, or covariates, pose a significant
challenge for DL models, often causing them to perform poorly on data from unseen subjects.

Domain generalization (DG) aims to enhance the robustness of DL models by improving their abil-
ity to generalize across unseen data domains. Prior works in DG have focused on learning domain-
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Figure 1: Comparison between sufficient representation and minimal sufficient representation. In
conventional contrastive learning, zi denotes the normalized feature of i-th sample in the batch,
while zp represents the normalized feature of positive sample vp for vi (a sample with the same label
as the i-th sample). (a) Sufficient representation: In this paradigm, the feature representation zi (il-
lustrated by ellipse with dashed line) includes superfluous information I(zi;vi|vp), which is biased
towards the specific characteristics of the i-th sample. It is not effective in learning domain-invariant
features because excess domain-relevant information I(zi; di|zp) remains within the features. Here,
di refers to specific domain information in domain factor D that is associated with vi. (b) Minimal
Sufficient Representation: In contrast, minimal sufficient representation learning aims to reduce the
superfluous information I(zi;vi|vp), thereby diminishing the domain-relevant information within
the feature representation (illustrated in light blue in the figure). This reduction enables the model
to learn domain-invariant features effectively.

invariant features by aligning multiple source domains (Li et al., 2018c; Mahajan et al., 2021; Lu
et al., 2022; Dayal et al., 2024). Within this paradigm, contrastive learning-based DG techniques
have recently emerged as a promising strategy for extracting domain-invariant representation (Maha-
jan et al., 2021; Yao et al., 2022; Liu et al., 2023). These methods effectively align multiple domains
by clustering samples of the same category (i.e., class) from different domains while simultaneously
pushing apart dissimilar ones (i.e., negative pairs). Notably, those methods have demonstrated effec-
tively learning generalized representations from biosignals, suggesting their potential applicability
in sleep staging (Zhang et al., 2022; Wang et al., 2024b).

Contrary to their superiority, those approaches often struggle to extract genuinely domain-invariant
representations. As illustrated in Figure 1(a), these methods primarily focus on increasing the shared
information between positive samples, thereby facilitating sufficient representation learning, where
the learned features retain all task-relevant information. However, this approach does not effectively
eliminate domain-relevant information, which often remains embedded within the features as su-
perfluous information-unshared information across different samples (Federici et al., 2020). For this
reason, minimal sufficient representation learning, which aims to minimize superfluous information,
is a crucial approach for achieving robust domain-invariant representations in DG. However, this ap-
proach risks overfitting the features of the final layer, potentially reducing the diversity of learned
representations. This limitation is particularly significant in sleep staging tasks, where multi-level
features are essential for capturing distinct frequency characteristics. More advanced methods are
required to address these limitations, incorporating both the elimination of superfluous informa-
tion and the utilization of multi-scale learning to preserve feature diversity and effectively capture
hierarchical representations.

In this work, we propose a novel framework called Multi-Scale Minimal Sufficient representation
learning (MSMS), designed to leverage multi-scale domain-invariant features to effectively bridge
distribution gaps. The primary objective of our MSMS is to minimize domain discrepancies by
reducing superfluous information via minimal sufficient representation learning. We argue that min-
imizing this superfluous information is crucial for extracting more robust domain-invariant features,
as domain-relevant characteristics are still present in it, as illustrated in Figure 1(b). To mitigate
potential information reduction and to enhance the model’s capabilities for capturing diverse tem-
poral and spectral characteristics inherent in sleep signals, we apply the proposed objective function
across encoder features extracted from multiple layers. Consequently, the main contributions of our
work are:
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• To the best of our knowledge, we introduce a theoretically grounded novel objective func-
tion to learn minimal sufficient representations, providing a more effective method for do-
main generalization compared to traditional contrastive learning techniques.

• We proposed a novel integration of multi-scale learning within the minimal sufficient learn-
ing, effectively preventing overemphasis on specific layer features and enhancing general-
ization across domains.

• We demonstrate the superiority of our MSMS over state-of-the-art approaches on two sleep
staging datasets, achieving significant improvements.

2 RELATED WORK

2.1 SLEEP STAGING

Sleep staging refers to the classification of sleep states, which is crucial for assessing sleep qual-
ity and diagnosing sleep disorders (Melek et al., 2021). Many DL methods have been developed
to classify sleep stages using PSG. Conventional DL approaches focused on CNN-based encoder
architectures designed to effectively capture the temporal characteristics of EEG signals (Tsinalis
et al., 2016; Supratak et al., 2017). Recent studies have introduced techniques that enable models
to learn representations across multiple scales of the encoder, effectively reflecting diverse temporal
and spectral characteristics from different perspectives (Eldele et al., 2021; Wang et al., 2022b; Lee
et al., 2024). For example, Eldele et al. (2021) developed a multi-resolution CNN leveraging varying
filter widths to capture features across multiple scales effectively. Similarly, Lee et al. (2024) pro-
posed SleePyCo, which employed contrastive learning and a feature pyramid to capture multi-level
features, which were then utilized in a transformer-based classifier. Despite these advancements,
previous approaches often fail to generalize effectively to unseen subjects due to inadequately ad-
dressing variability in physiological signals across individuals. To overcome this limitation, our
MSMS method proposed extracting subject agnostic features via the minimal sufficient representa-
tion learning.

2.2 DOMAIN GENERALIZATION

Domain generalization techniques have been introduced to enhance model performance on unseen
domains (Li et al., 2018a; Arjovsky et al., 2019; Xu et al., 2021). A common strategy in these
approaches is to learn domain-invariant representations by aligning samples from different source
domains (Volpi et al., 2018; Ding et al., 2022; Liu et al., 2024). For example, Li et al. (2018b)
introduced a model that learns invariant features by considering the changes across conditional dis-
tributions over labels. Yao et al. (2022) utilized proxy-based contrastive learning to acquire domain-
invariant representations by facilitating effective domain alignment. Dayal et al. (2024) introduced
margin-based adversarial learning that uses margin loss-based discrepancy to learn domain-invariant
features. Building on these advancements, several studies have investigated the application of do-
main generalization to sleep staging tasks, aiming to OOD challenges (Jia et al., 2021; Yang et al.,
2023; Wang et al., 2024a). For instance, Yang et al. (2023) proposed a novel framework that uses
mutual reconstruction and orthogonal projection techniques to extract domain-invariant features, ad-
dressing subject variability. Wang et al. (2024a) proposed a method for obtaining domain-invariant
features through both epoch-level feature alignment and sequence-level alignment. Despite this su-
periority, they often overlook the importance of capturing both temporal and spectral information
concurrently. Unlike the existing methods in the literature, our MSMS effectively captures both
temporal and spectral information while ensuring domain-invariant representations by reducing su-
perfluous information across multiple feature levels simultaneously.

3 PRELIMINARIES

Contrastive learning aims to learn robust representations by enhancing the similarity between
views of the same sample. In this context, views refer to different augmentations applied
to the same input sample, which retain essential semantic information while enhancing in-
put diversity. Let v1, v2, and z1, z2 represent two different views of the input sam-
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ple x and normalized vectors of the projection head outputs from each view, respectively.
Here, the projection head is typically a multi-layer perceptron to map low-dimension space.

Figure 2: Graphical model for
contrastive learning.

The relationships between x, v1, v2, z1 and z2 are depicted in Fig-
ure 2, represented through a graphical model. The contrastive learn-
ing loss is designed to align the representations z1 and z2, ensuring
they retain consistent information extracted from the same input x.
This objective inherently promotes the maximization of mutual in-
formation I(z1; z2).

Due to the data processing inequality (Beaudry & Renner, 2012),
maximization of the mutual information I(z1; z2) serves as a lower
bound for I(z1;v2). As a result, this maximizes the mutual infor-
mation between the learned representation and the alternate view,
I(z1;v2) (Tsai et al., 2021).

Definition 1. (Sufficient representation for contrastive learning) A
representation zsuf

1 is considered sufficient for v2 if and only if I(zsuf
1 ;v2) = I(v1;v2)

This definition implies that a sufficient representation zsuf
1 retains all the information that v1 con-

tains about v2 (Wang et al., 2022a).

Definition 2. (Minimal sufficient representation) A minimal sufficient representation zmin
1 is con-

sidered minimal sufficient for v2 if and only if I(zmin
1 ;v1|v2) = 0, for all sufficient representations.

The superfluous information refers to the information that is not shared between the two views, and it
can be represented as conditional mutual information I(z1;v1|v2). A minimal sufficient representa-
tion zmin

1 retains the least amount of this superfluous information for all sufficient representations.
In multi-view information bottleneck (MVIB) research, minimal sufficient representations can be
obtained by minimizing the superfluous information while maximizing the alignment between dif-
ferent views (Federici et al., 2020):

LMVIB(ϕ) = λI(z1;v1|v2)− I(z1;v2), (1)

where ϕ is the model parameter and λ is a weighting constant. This learning approach has been
shown in previous studies to facilitate more robust representation learning (Wan et al., 2021; Wen
et al., 2024).

4 METHOD

4.1 PROBLEM FORMULATION AND NOTATIONS

We define the domain factor D as the set of variables contributing to variability in biosignals
across different individuals, including but not limited to factors such as age, gender, and patho-
logical conditions. Let us denote the several domains as Dm := (xkm , ykm , dkm)

|Dm|
km=1, where

m ∈ {1, 2, 3, · · · ,M} denotes the m-th domain, M is the number of domains. Here, xkm
rep-

resents the physiological signal of k-th sample in m-th domain, ykm
is the corresponding sleep

stage label, and dkm
is the domain label. A km-th sequence composed of L signal samples is

XL
km

= {xkm−L,xkm−L+1, · · · ,xkm
}. The target domain T is defined as Dm=T and the source

domain S is defined as Dm̸=T , where T represents the index set corresponding to the target sub-
jects. The goal of our domain generalization in the sleep staging task is to learn the mapping function
g : X → Y that can accurately predict the sleep stage (ykm

) given a sequence of signals (XL
km

) on
unseen target domain T , using only data from the source domains S.

In the pre-training, we leverage the contrastive learning framework and randomly sampled N in-
stances set {xl, yl, dl}l=1,...,N from the source domain. Each instance xl is augmented to two views
vl,vl+N , following the procedure outlined in SleePyCo (Lee et al., 2024). In a batch with multiple
views, let i ∈ B := {1, · · · , 2N} be the index of the augmented sample, and A(i) := B \ {i} be
all index excluding i, where \ indicates a set difference operator. The normalized feature from the
projection head of a sample xi is denoted as zi.
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(a) Multi-scale minimal sufficient representation learning (c) Feature distribution

(b) Sleep staging
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Figure 3: Overview of MSMS. Our method consists of two stages: (a) Multi-scale minimal suf-
ficient representation learning and (b) Sleep staging. In (a), multi-scale features capturing diverse
frequency and temporal information are projected into a shared feature space. Without conditional
entropy H(z|d), features cluster by class but show domain misalignment. By maximizing H(z|d),
the feature space expands, aligning domain distributions and improving domain-invariant represen-
tation, as illustrated in (c). In (b), the encoder is frozen, and the extracted multi-scale features are
fed into a transformer to produce level-specific predictions. These are aggregated using argmax to
determine the final sleep stage classification, following (Lee et al., 2024).

4.2 OVERALL FRAMEWORK

We adopt a CNN-based encoder and transformer-based sequential classifier to predict sleep stages
using multi-scale features, following the approach proposed in SleePyCo (Lee et al., 2024). This
method, which employs supervised learning for representation learning and incorporates multi-scale
features for sleep staging, provides a robust and reliable baseline for our study.

First, the encoder is trained to extract multi-scale domain-invariant features by optimizing the ob-
jective in Eq. (11), as illustrated in Figure 3. Subsequently, the encoder is frozen, and the extracted
multi-scale features are individually fed into the transformer. This process produces level-specific
predictions, which are aggregated by taking the argmax values to determine the final sleep stage
classification. Further implementation details are provided in Appendix B.6.

4.3 MINIMAL SUFFICIENT REPRESENTATION LEARNING

In contrastive learning-based DG, the feature space is typically encouraged to become more domain-
invariant by increasing the similarity of samples belonging to the same class across various domains.
However, while these methods may provide a sufficient presentation, they do not necessarily ensure
the learning of a minimal sufficient representation. As a result, domain-relevant information that is
not shared between different domains often remains within superfluous information, thereby making
it insufficient to achieve domain-invariant features. We posit that minimal sufficient learning is more
effective in obtaining domain-invariant features compared to contrastive learning-based approaches.

Theorem 1. The sufficient representation zsuf
1 contains more domain-relevant information than the

minimal sufficient representation zmin
1 (proof in Appendix A).

I(zsuf
1 ; d1) ≥ I(zmin

1 ; d1), (2)

where d refers to the domain label of x and z1, z2 is the normalized and projected outputs of two
augmented views of x.

Intuitively, this theorem holds because the superfluous information I(z1;v1|v2) often encompasses
domain-relevant information contained in z1. By minimizing this superfluous information, we can
extract more domain-invariant features, which is crucial for domain generalization.

To formalize this intuition for the supervised setting, let P (i) := {p ∈ A(i) | yp = yi} denote the
set of indices for positive pairs. We can learn a minimal sufficient representation by reducing the
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superfluous information I(zi;vi|vp). Additionally, we minimize the domain-relevant information
I(zi; di) to effectively obtain domain-invariant features. Using the Lagrangian multiplier method,
we can derive the following equation:

L(ϕ) = λ1I(zi; di) + λ2I(zi;vi|vp)− I(zi;vp), (3)

where ϕ refer to model parameter, λ1 and λ2 are the Lagrangian multiplier. This loss function can
be seen as an extension of the multi-view information bottleneck objectives in Eq. (1) to incorporate
domain generalization and a supervised manner.

Mutual information is notoriously challenging to compute directly, particularly due to the require-
ment of estimating high-dimensional probability distributions. Recent advances (Wen et al., 2024)
have addressed this challenge by approximating mutual information using the von Mises-Fisher
(vMF) distribution, which is well-suited for modeling data constrained to a hypersphere. To lever-
age this approximation, we first express mutual information in terms of entropy. The Eq. (3) can
be simplified by reducing the number of Lagrangian multiplier for computational convenience and
reformulated in terms of entropy as follows (see Appendix B.1):

L(ϕ) = (λ+ 1)H(zi|vp)−H(zi|di), (4)

where λ is the Lagrangian multiplier. Since the joint distribution p(zi,vp) is unknown, directly cal-
culating the conditional entropy H(zi |vp) becomes intractable. Therefore, we employ a variational
approximation qϕ(zi,vp) and derive the upper bound:

H(zi|vp) = −Ep(zi,vp)[log p(zi|vp)] (5)

= −Ep(zi,vp)[log qϕ(zi|vp)]−DKL(p(zi|vp)||qϕ(zi|vp)) (6)

≤ −Ep(zi,vp)[log qϕ(zi|vp)]. (7)

Hence, minimization of Eq. (4) can be achieved through the following objective:

L̄(ϕ) = −(λ+ 1)Ep(zi,vp)[log qϕ(zi|vp)]−H(zi|di). (8)

To approximate Ep(zi,vp)[log qϕ(zi|vp)] and H(zi|di), we utilize the von Mises-Fisher (vMF) dis-
tribution and Stein gradient estimation (Li & Turner, 2017). Consequently, we can optimize the
Eq. (8) by minimize the following objective (see Appendix B.2 for comprehensive details):

L̂(ϕ) = −Ep(zi,zp)[zi · zp]− βH(zi|di), (9)

where β is the balance factor.

However, the aforementioned objective lacks sufficient class discriminative power, as maximizing
the conditional entropy H(zi|di) tends to diffuse the feature space. To address this limitation,
we introduce a negative pair term that pushes samples from different classes farther apart. This
approach encourages the feature space to become more distinguishable by clustering samples of the
same class, commonly utilized in contrastive learning. To ensure consistency within the contrastive
learning framework, the cosine similarity is scaled by the temperature parameter τ . This integrated
objective can be expressed as follows (more details in Appendix B.4):

L̃(ϕ) =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

n∈N(i) exp(zi · zn/τ)
− αH(zi|di), (10)

where N(i) := {n ∈ A(i) | yn ̸= yi} is the set of indices of negative pairs for i-th instance in batch,
|P (i)| refer to cardinality of positive pair set and α is regularization parameter. H(z|d) can be al-
ternatively expressed as −

∑M
di=1 Ep(v|di)[Ĝ

Stein
m z] in gradient descent optimization, where ĜStein

m
represents the score function derived using Stein gradient approximation (Li & Turner, 2017) for
the m-th domain, similar to the approach in (Wen et al., 2024). This alternative is valid because its
gradient, −

∑M
di=1 Ep(v|di)[Ĝ

Stein
m ∇ϕfϕ(v|di)], serves an approximation of ∇ϕH(z|d), as further

detailed in Appendix B.2.

This objective can be viewed as an extension of traditional contrastive learning, incorporating a reg-
ularization term to facilitate domain generalization. Maximizing the conditional entropy H(zi|di)
prevents the clustering of samples from the same domain, thereby promoting the extraction of
domain-invariant features. This limitation is particularly significant in sleep staging tasks, where
multi-level features are essential for capturing distinct frequency characteristics.
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4.4 MULTI-SCALE MINIMAL SUFFICIENT REPRESENTATION LEARNING

While minimal sufficient learning at the higher level is crucial for mitigating domain gaps, this
process carries the risk of inadvertently discarding essential information in the sub-level features
due to the reduction of information. This limitation is critical in sleep stage tasks, where multi-level
features capture distinct frequency characteristics. For example, slow-wave sleep (N3) is associated
with low frequencies (0.5–2 Hz), captured by lower-level features, while Wake involves higher-
frequency patterns (8–30 Hz), represented by higher-level features (Berry, 2014; Lee et al., 2024).
Therefore, it is essential to ensure that feature information across multiple levels is preserved for
accurate sleep stage classification.

To achieve this, we aim to employ minimal sufficient representation learning across multiple scales
to effectively capture the diverse temporal and frequency characteristics present across different
sleep stages. The objective for minimal sufficient representation learning in Eq. (10) can be extended
to account for multi-scale features as follows:

Lpre(ϕ) =
∑
j

∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi,j · zp,j/τ)∑

n∈N(i) exp(zi,j · zn,j/τ)
− αH(zi,j |di), (11)

where zi,j refers to the normalized feature from the j-th output of the encoder layer for the i-th
instance. This objective ensures that the model captures not only various temporal and spectral
information but also mitigates domain bias.

5 EXPERIMENT

5.1 DATASET

We evaluated the performance of our proposed method on two different sleep staging datasets:
SleepEDF-20 (Kemp et al., 2000) and Montreal Archive of Sleep Studies (MASS) (O’reilly et al.,
2014). The sleepEDF-20 dataset comprises PSG recordings from 20 subjects aged from 25 to 34.
MASS contains PSG recordings from 62 subjects aged from 25 to 69. For the SleepEDF-20 dataset,
we extracted a single-channel EEG (Fpz-Cz) sampled at 100Hz, and for the MASS dataset, we uti-
lized the F4-LER channel, downsampled to 100Hz. For both SleepEDF-20 datasets, we combined
the N3 and N4 stages into a single N3 stage. The class distribution of two datasets is in Appendix
B.5. This process is a commonly used data preprocessing method in sleep staging, and we adhered
to the settings of numerous previous studies to ensure a fair comparison (Seo et al., 2020; Phyo et al.,
2022; Lee et al., 2024). In this study, we treat each subject as a separate domain, aligning with the
common practice in sleep research. This approach accounts for the substantial inter-subject variabil-
ity in physiological signals, as highlighted in prior works (Phan et al., 2021; Yang et al., 2023; Ko
et al., 2024).

5.2 IMPLEMENTATIONS DETAILS

The model was pre-trained with a batch size of 1024, an initial learning rate of 5 × 10−4, and
a weight decay of 1 × 10−4 for the Adam optimizer. The temperature hyperparameter τ for the
contrastive loss was set to 0.07, while the regularization parameter α was set to 0.001. We extracted
features from the last two layers (j = 4, 5) of the encoder to align the multi-scale feature. The sleep
staging process follows the same architecture as the transformer-based classifier utilizing multi-scale
features (j = 3,4,5), as proposed in SleePyCo. For sleep staging, the pre-trained encoder was frozen,
and only the classifier was trained, with the sequence length set to L = 10.

We employed the widely adopted k-fold cross-validation protocol to evaluate the performance of
domain generalization. For each fold, we designated specific unseen subjects as the test set and
repeated the experiment, ensuring that each subject was included in the test set exactly once. For the
SleepEDF-20 dataset (k = 20), we partitioned the data into training, validation, and test sets with a
ratio of 15:4:1, respectively. For the MASS dataset (k = 31), we used a ratio of 45:15:2 for training,
validation, and test sets. All experiments were conducted on a server equipped with an NVIDIA
RTX A6000 D6 48GB GPU.
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Table 1: Performance comparison between Ours and sleep staging SOTA methods, and DG ap-
proaches for sleep staging on SleepEDF-20 and MASS dataset. We evaluated performance using
three metrics: accuracy (ACC), macro-averaged F1 score (F1), and Cohen’s Kappa (κ).

Datasets Method Overall metrics

ACC (%) F1 (%) κ

SleepEDF-20

XSleepNet (Phan et al., 2021) 86.3 80.6 0.813
Dream (Lee et al., 2022) 83.9 75.7 0.770

Regularized SeqSleepNet (Phan et al., 2023) 86.2 79.3 0.811
SleePyCo (Base) (Lee et al., 2024) 86.2 80.6 0.812

ERM (Vapnik, 1998) 84.0 76.9 0.777
IRM (Arjovsky et al., 2019) 84.2 77.4 0.783

PCL (Yao et al., 2022) 86.0 80.1 0.809
SleepDG (Wang et al., 2024a) 84.8 78.4 0.792
COMET (Wang et al., 2024b) 84.8 79.1 0.792

MSMS (Ours) 86.7 81.1 0.818

MASS

IITNet (Seo et al., 2020) 86.3 80.5 0.794
ProductGraph (Einizade et al., 2023) 86.7 81.8 0.802

SleepMG (Ma et al., 2024) 86.6 81.7 0.802
SleePyCo (Base) (Lee et al., 2024) 88.0 82.8 0.821

ERM (Vapnik, 1998) 86.5 81.4 0.792
IRM (Arjovsky et al., 2019) 87.7 82.5 0.817

PCL (Yao et al., 2022) 87.9 82.9 0.819
SleepDG (Wang et al., 2024a) 85.1 77.9 0.778
COMET (Wang et al., 2024b) 87.5 82.7 0.815

MSMS (Ours) 88.3 83.6 0.826

5.3 RESULTS

We conducted a comprehensive evaluation in comparison to state-of-the-art methods for sleep stag-
ing, as well as various domain generalization techniques, including ERM (empirical risk minimiza-
tion) (Vapnik, 1998), IRM (minimizing risk across different environments) (Arjovsky et al., 2019),
PCL (a proxy-based contrastive learning approach) (Yao et al., 2022), COMET (hierarchical con-
trastive learning in medical time series) (Wang et al., 2024b), and SleepDG (distribution matching
of both global and local sleep sequences) (Wang et al., 2024a). All DG approaches, except for
SleepDG, were trained using the SleePyCo backbone. The comparison was carried out using multi-
ple metrics, including accuracy (ACC), macro-averaged F1 score (F1), and Cohen’s Kappa (κ). As
shown in Table 1 , our method demonstrated superior performance across both benchmark datasets,
SleepEDF-20 and MASS.

Specifically, for the SleepEDF-20 dataset, our approach achieved an accuracy of 86.7%, an F1 score
of 81.1%, and a κ of 0.818. Similarly, for the MASS dataset, our method yielded competitive results
with an accuracy of 88.3%, an F1 score of 83.6%, and a κ of 0.826. We conducted statistical t-testing
between our method and the baseline, calculating a p-value (P < 0.001) on both SleepEDF-20 and
MASS datasets. The experimental results demonstrate the effectiveness of our proposed method
over the baseline model, SleePyCo (Base), which employed supervised contrastive learning (SCL).
Additionally, our approach outperforms other competitive contrastive learning-based domain gener-
alization methods, such as PCL and COMET. This illustrates that our method can more effectively
handle domain shifts, leading to better generalization on challenging sleep staging task.

5.4 ABLATION STUDIES

Effect of Multi-Scale and Minimal Sufficient Representation Learning on Model Performance.
To demonstrate the validity of MSMS, we performed ablation experiments to evaluate the impact
of multi-scale features and minimal sufficient representation learning, as shown in Figure 4. Our
method consistently performs well across both datasets and all three evaluation metrics. However,
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Our method using SCL without minimal sufficient learning (Ours (w/o minimal)) did not result in
performance improvements over standard SCL, which may be due to the accumulation of superflu-
ous information from earlier layers. Conversely, an important observation is that Ours (w/o multi)
underperforms compared to the baseline on SleepEDF-20, likely due to the reduced information
in lower-level features caused by the pruning of high-level feature information. This highlights
the necessity of combining minimal sufficient representation learning with multi-scale learning to
effectively preserve meaningful information in low-level features.

DatasetsDatasets Datasets

A
C

C
 (%

)

Acc comparison F1 comparison

F1

SleepEDF-20 MASSSleepEDF-20 MASS SleepEDF-20 MASS SleepEDF-20 MASS

F1 comparison

SCL
Mode

Ours (w/o minimal)
Ours (w/o multi)
Ours 

SCL
Mode

Ours (w/o minimal)
Ours (w/o multi)
Ours 

SCL
Mode

Ours (w/o minimal)
Ours (w/o multi)
Ours 

Figure 4: Ablation study results comparing the performance of different models on SleepEDF-
20 and MASS datasets. SCL (w/ multi) refers to supervised contrastive learning with multi-scale
learning, while Ours (w/o multi) refers to our proposed model without multi-scale learning.

Exploring Optimal Feature Alignment Levels We conducted ablation studies to determine which
level of features should be aligned for optimal performance. Among the five encoder layers, we
used the output features from the final layer (high-level), the fourth layer (middle-level), and the
third layer (low-level). The results of this analysis are presented in Table 2. Our findings reveal that
aligning only high-level features leads to a decrease in performance, whereas including other-level
feature alignment results in significant performance improvement. The observed decline is likely
due to the loss of information from previous feature layers by reducing superfluous information.
Aligning only high-level features led to a decline in the model’s performance across other sleep
stages besides the Wake stage. This effect can be attributed to the high-level features effectively
capturing high-frequency information, such as the distinctive beta rhythm (13–30 Hz) commonly
observed in the Wake stage. This result underscores the necessity of employing multi-scale learning
to preserve information across feature hierarchies.

A
C

C
 (%

)

Preformance comparison by 

Figure 5: Performance comparison across
varying the α on SleepEDF-20.

Analysis of regularization parameter α. We con-
ducted ablation studies to evaluate the influence of the
regularization parameter α on model performance, as
illustrated in Figure 5. The optimal performance was
achieved at α = 0.001, indicating that appropriate reg-
ularization plays a crucial role in enhancing domain
generalization. In contrast, larger values of α led to
an overemphasis on H(zi|di), resulting in a failure to
capture meaningful features and a subsequent decline
in performance. These results highlight the signifi-
cance of carefully balancing regularization to ensure
the model retains class-relevant information while mit-
igating the influence of domain biases.

5.5 ANALYSIS

t-SNE visualization. We performed a feature visualization to further demonstrate the effectiveness
of our method, as illustrated in Figure 6. The t-SNE visualizations show distributions of features
between source (green) and target (orange) domains. For effective visualization in SleepEDF-20,
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Table 2: Performance comparison of feature alignment at different levels on SleepEDF-20 datasets.
We utilized the features extracted from the last encoder layer (high-level), the fourth layer (middle-
level), and the third layer (low-level).

High Middle Low ACC (%) F1 (%) κ W N1 N2 N3 REM

✓ 85.8 79.0 0.806 93.2 43.8 88.3 88.0 81.9
✓ ✓ 86.2 80.5 0.811 90.5 50.1 88.3 87.9 85.8
✓ ✓ 86.7 81.1 0.818 91.9 51.2 89.0 87.3 86.3
✓ ✓ ✓ 86.5 81.1 0.816 91.5 51.7 88.8 88.0 85.5

we selected subject 9, which exhibits significant variation, as the target for our analysis. The feature
distribution in SCL exhibits misalignment between the source and target domains. In contrast, our
MSMS approach achieves a much more aligned distribution between these domains, indicating that
our method effectively generalizes unseen data well.

(a) SCL  

t-SNE  visualization of features for domaint-SNE  visualization of features for domaint-SNE  visualization of features for domain t-SNE  visualization of features for label

SourceSource
Source
Target

W
N1
N2
N3
R

t-SNE  visualization of features for domain t-SNE  visualization of features for label

SourceSource
Source
Target

W
N1
N2
N3
R

(b) MSMS (Ours)

Figure 6: t-SNE visualization of features distribution on SleepEDF-20. We assigned subject 9 as
the target (orange) and used the remaining 15 subjects, excluding the validation set, as the source
(green) in this figure.
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Domain-relrvant information

ACC: 86.7 
ACC: 85.8 

ACC: 86.2 

ACC: 85.9 Ours

SCL
Ours (w/o multi)

Ours (w/o minimal)

Figure 7: Visualization of correlation
between the superfluous information
and domain-relevant information.

Analysis of Superfluous and Domain-Relevant Infor-
mation Correlations. To assess whether our method
effectively reduces superfluous information and cap-
tures domain-invariant features, we conducted an anal-
ysis comparing three different approaches, as illustrated
in Figure 7. The information quantities at high-level
features depicted in the figure were approximated us-
ing the vMF distribution, which is used in our method.
Our method achieved the lowest quantities of superflu-
ous information I(zi;vi|vp) and domain-relevant infor-
mation I(zi|di), suggesting that our approach effectively
minimizes both during training. Additionally, we ob-
served a proportional relationship between superfluous
and domain-relevant information, which supports Theo-
rem 1—minimizing superfluous information leads to a re-
duction in domain-relevant information.

6 CONCLUSION

In this work, we proposed a novel framework, Multi-Scale Minimal Sufficient representation learn-
ing (MSMS), which mitigates domain gaps by reducing superfluous information while simultane-
ously aligning multi-scale features to consider various temporal and spectral characteristics inher-
ent in physiological signals. Extensive experiments conducted on publicly available sleep staging
datasets demonstrate that our approach consistently outperforms SOTA techniques. These results
highlight that our method ensures generalization to unseen domains. While this framework demon-
strates promising results, future research will explore incorporating mechanisms to mitigate dis-
tribution shifts across datasets, thereby improving the framework’s robustness and applicability in
real-world scenarios.
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A PROOF OF THEOREM 1

Theorem 1 The sufficient representation zsuf
1 contains more domain-relevant information than the

minimal sufficient representation zmin
1 .

Proof: First, recall that zsuf
1 is a sufficient representation of v1 with respect to v2, meaning:

I(zsuf
1 ;v2) = I(v1;v2). We also know that zmin

1 is a minimal sufficient representation, which
means it is derived from zsuf

1 and satisfies: I(zmin
1 ;v1|v2) = 0. We begin by examining the

mutual information between the sufficient representation zsuf
1 and the domain label d:

I(zsuf
1 ; d) = H(d)−H(d|zsuf

1 ) (12)

= H(d)−H(d|zsuf
1 ,v2)− I(d;v2|zsuf

1 ) (13)

= [H(d)−H(d|v2)] + [H(d|v2)−H(d|zsuf
1 ,v2)]− I(d;v2|zsuf

1 ) (14)

= I(d;v2) + I(zsuf
1 ; d|v2)− I(d;v2|zsuf

1 ) (15)

≥ I(d;v2) + I(zsuf
1 ; d|v2)− I(d;v2|zmin

1 ) (16)

= I(zsuf
1 ; d|v2) + I(zmin

1 ; d) (17)

≥ I(zmin
1 ; d). (18)

Here is the explanation for each step:

Eq. (12) Now, let’s consider the joint distribution of (zsuf
1 ,v2, d). We can express the mutual infor-

mation I(zsuf
1 ; d) in terms of entropies: I(zsuf

1 ; d) = H(d)−H(d|zsuf
1 ).

Eq. (13) We can further decompose this using the chain rule of entropy: I(zsuf
1 ; d) = H(d) −

H(d|zsuf
1 ,v2)− I(d;v2|zsuf

1 ).

Eq. (14) Rearranging this equation: I(zsuf
1 ; d) = [H(d)−H(d|v2)]+[H(d|v2)−H(d|zsuf

1 ,v2)]−
I(d;v2|zsuf

1 ).

Eq. (15) Recognizing mutual information terms, we get Eq (15): I(zsuf
1 ; d) = I(d;v2) +

I(zsuf
1 ; d|v2)− I(d;v2|zsuf

1 ).
Eq. (16) Inequality Eq. (16) is due to the data processing inequality. Since zmin

1 is a function of
zsuf
1 , we have I(d;v2|zsuf

1 ) ≤ I(d;v2|zmin
1 ).

Eq. (17) Eq. (17) uses the definition of minimal sufficient representation. For zmin
1 , we have

I(zmin
1 ; d) = I(d;v2)− I(d;v2|zmin

1 ).

Eq (18) Inequality Eq (18) holds because mutual information is non-negative, so I(zsuf
1 ; d|v2) ≥ 0.

Therefore, we have shown that I(zsuf
1 ; d) ≥ I(zmin

1 ; d), which means that the sufficient represen-
tation zsuf

1 contains more domain-relevant information than the minimal sufficient representation
zmin
1 .

B PROOF OF MINIMAL SUFFICIENT LEARNING METHOD

In this section, we provide the formal proof of the minimal sufficient learning method proposed in
the paper.

B.1 PROOF OF EQ. (4)

Eq. (4) : L(ϕ) = (λ+ 1)H(zi|vp)−H(zi|di).
The superfluous information I(zi;vi|vp) can be decomposed as:

I (zi;vi|vp) = H(zi|vp)−H(zi|vi,vp) (19)
= H(zi|vp), (20)
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where the conditional entropy H(zi|vi,vp) = 0 because zi is determined given vi (we used deter-
ministic encoder). We can also decompose mutual information as:

I(zi;vp) = H(zi)−H(zi|vp) (21)
I(zi; di) = H(zi)−H(zi|di). (22)

Based on the above derivations and Eq. (3), we finally obtain the general objective below:

L(ϕ) = λ1I(zi; di) + λ2I(zi;vi|vp)− I(zi;vp) (23)
= λ1(H(zi)−H(zi|di)) + λ2(H(zi|vp))−H(zi) +H(zi|vp) (24)
= (λ2 + 1)(H(zi|vp)) + (λ1 − 1)H(zi)− λ1H(zi|di). (25)

For the sake of computational convenience and to simplify the search for optimized parameters, we
set λ1 = 1. Consequently, we can obtain the objective as follows:

(λ+ 1)H(zi|vp)−H(zi|di), (26)

where λ2 is redefined as λ.

B.2 PROOF OF EQ. (9)

Proof of Eq. (9): L(ϕ) = −Ep(zi,zp)[zi, zp]− βH(zi|di).
The von Mises–Fisher (vMF) is the common distribution of the hypersphere space:

p(x;µ, κ) = Cn(κ) exp(κµ · x), (27)

Cn(κ) =
κn/2−1

(2π)n/2In/2−1(κ)
, (28)

where µ is the mean direction, κ denotes the concentration parameter of the vMF distribution, and
In denotes the modified Bessel function of the first kind at order n.

The representation z is ℓ2-normalized in the hypersphere space. Hence, The variational distribution
qϕ(zi|vp) can be adequately approximated by the vMF distribution as, similar to (Wen et al., 2024):

qϕ(zi|vp) = Cn(κ) exp(κzp · zi). (29)

We assume that κ is constant and use zp as µ. Hence, Eq. (7) can be reformulated as follows:

H(zi|vp) ≤ −Ep(zi,vp)[κzp · zi]− logCn(κ). (30)

Eq. (8) can be expressed as follows:

L̄(ϕ) = −Ep(zi,vp)[zp · zi]− βH(zi|di), (31)

where β = 1
(λ+1)κ is the balance factor.

B.3 COMPUTATION OF ENTROPY

The conditional entropy term H(zi|di) in Eq. (31) is anticipated to be maximized during model
training. Thus, we maximize the H(zi|di) to use stein gradient estimation (Li & Turner, 2017). We
follow the derivation from (Wen et al., 2024), with the key difference being that it is conditioned on
the given parameter di.

The gradient of H(zi|d) w.r.t. ϕ can be decomposed as:

∇ϕH(z|di) = −∇ϕEqϕ(z,di)[log q(z|di)]− Eq(z,di)[∇ϕ log qϕ(z|di)], (32)

where q(z, d) without the subscript ϕ means the gradient of computation is irrelevant to ϕ. The
second term can be further decomposed as:

Eq(z,di)[∇ϕ log qϕ(z|di)] = Eq(z)

[
∇ϕqϕ(z|di)×

1

q(z|di)

]
(33)

=

∫
∇ϕqϕ(z|di)dz = ∇ϕ

∫
qϕ(z|di)dz = 0. (34)
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Hence we have
∇ϕH(z|di) = −∇ϕEqϕ(z,di)[log q(z|di)]. (35)

We adopt the reparameterization trick to address non-differentiable H(z|di) w.r.t ϕ. We introduce
the deterministic function fϕ and any joint distribution p(·) that is independent to model parameter
ϕ:

z = fϕ(v|di) with v ∼ p(v, di). (36)

The conditional entropy gradient estimator is eventually derived as follows:

∇ϕH(z|di) = −∇ϕEqϕ(z,di)[log q(z|di)] = −Ep(v,di)[∇ϕ log q(fϕ(v|di))] (37)

= −Ep(v,di)[∇z log q(z|di)∇ϕfϕ(v|di)], (38)

where ∇z log q(z|d) is the score function. ∇ϕfϕ(v|d) can be obtained by direct back-propagation.

We use Stein gradient estimation (Li & Turner, 2017) to approximate the score function
∇z log q(z|di). Let z be supported on Z ⊆ Rd′

, where d′ represents dimensionality of the fea-
ture space. Define h(z) = [h1(z), h2(z), . . . , hd′(z)]

T as a d′-dimensional differentiable vector
function, satisfying the following boundary condition:

q(z)h(z) = 0 ,∀z ∈ ∂Z if Z is compact, or lim
z→∞

q(z)h(z) = 0 if Z = Rd′
(39)

Then the following Stein’s identity can be derived through the integration of parts:

Eq

[
h(z)[∇z log q(z)]

T +∇zh(z)
]
= 0, (40)

The expectation in Eq. (40) can be estimated using the Monte Carlo method. Specifically, let z1:M ′

represent M ′ independent and identically distributed (i.i.d.) samples drawn from q(z). Monte Carlo
sampling shows:

− 1

M ′HG ≈ ∇zh (41)

where H =
[
h
(
z1

)
, · · · ,h

(
zM ′

)]
∈ Rd′′×M ′

,G =
[
∇z1 log q

(
z1

)
, · · · ,∇zM′ log q

(
zM ′

)]T
∈ RM ′×d′

, ∇zmh (zm) = [∇zmh1 (z
m) , . . . ,∇zmhd′ (zm)]T ∈ Rd′′×d′

, and ∇zh =
1

M ′

∑M ′

m=1 ∇zmh (zm) ∈ Rd′′×d′
This leads to the following ridge regression formulation:

argmin
Ĝ∈RM′×d′

∥∥∥∥∇zh+
1

M
HĜ

∥∥∥∥2
F

+
η

M2
∥Ĝ∥2F , (42)

where η ≤ 0 serves as the regularization coefficient. An analytic solution of Eq. (42) is

ĜStein = −M ′(K+ ηI)−1HT∇zh, (43)

where K = HTH. Similar to (Wen et al., 2024), we express Ki,j = k(zi, zj), and establish
(HT∇zh)i,j = 1

M ′∇zm
j
k(zi, zj). We adopt the von Mises-Fhiser kernel defined as k (z, z′) =

exp
(

zT z′

△

)
to compute the ĜStein.

We approximate the score function ∇z log q(z) as ĜStein. Based on this approximation, the entropy
gradient estimator is formulated as:

∇ϕH(z) = −Ep(v)[∇z log q(z)∇ϕfϕ(v)] (44)

≈ −Ep(v)[Ĝ
Stein∇ϕfϕ(v)] (45)

∇ϕH(z|d) = −
M∑

di=1

Ep(v|di)[∇z log q(z|di)∇ϕfϕ(v|di)] (46)

≈ −
M∑

di=1

Ep(v|di)[Ĝ
Stein
m ∇ϕfϕ(v|di)] (47)

(48)
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where, ĜStein
m represent the approximation of the score function ∇z log q(z|di) computed for the

m-th domain.

H(z|d) can be alternatively represented as −
∑M

di=1 Ep(v|di)[Ĝ
Stein
m z] in decent gradient optimiza-

tion. This is because its gradient, −
∑M

di=1 Ep(v|di)[Ĝ
Stein
m ∇ϕfϕ(v|di)], provides an approximation

of ∇ϕH(z|d), as described in Eq. (47).

B.4 PROOF OF EQ. 10

Ep(zi,zp)[zi · zp] can be decomposed using Monte Carlo approximation as:

Ep(zi,zp)[zi · zp] =
∑
i∈I

∑
p∈P (i)

p(zp|zi)p(zi) zi · zp (49)

≈ 1

|I|
∑
i∈I

∑
p∈P (i)

1

|P (i)|
zi · zp, (50)

Ep(zi,zp)[zi · zp/τ ] =
1

|I|
∑
i∈I

∑
p∈P (i)

1

|P (i)|
zi · zp/τ. (51)

Eq. (9) can rewrite as follows:

L̂(ϕ)/τ = − 1

|I|
∑
i∈I

∑
p∈P (i)

1

|P (i)|
zi · zp/τ − β/τH(zi|di). (52)

We also consider a set of negative pairs as follows:

L̂w/neg(ϕ)/τ =− 1

|I|
∑
i∈I

∑
p∈P (i)

1

|P (i)|
zi · zp/τ +

1

|I|
∑
i∈I

log(
∑

n∈N(i)

exp(zi · zn/τ))

− β/τH(zi|di) (53)

=− 1

|I|
∑
i∈I

1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

n∈N(i) exp(zi · zn/τ)
− β/τH(zi|di). (54)

We can minimize the Eq. (54) by minimizing the objective as follows:

L̃(ϕ) = −
∑
i∈I

1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

n∈N(i) exp(zi · zn/τ)
− αH(zi|di), (55)

where α is regularization parameter.

B.5 DATASET DESCRIPTION

We evaluated the effectiveness of our proposed approach using two distinct sleep staging datasets:
SleepEDF-20 (Kemp et al., 2000) and the Montreal Archive of Sleep Studies (MASS) (O’reilly et al.,
2014). A summary and distribution of classes for each dataset are presented in Table 3.

Table 3: Summary of sleep stage distribution for SleepEDF-20 and MASS datasets.

Dataset SleepEDF-20 MASS
W 8285 (19.6 %) 6231 (10.6 %)
N1 2804 (6.6 %) 4814 (8.2 %)
N2 17799 (42.1 %) 29777 (50.4 %)
N3 5703 (13.5 %) 7653 (12.9 %)

REM 7717 (18.2 %) 10581 (17.9 %)
Total 42308 59056
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B.6 SLEEP STAGING

We employ a transformer-based sequential classifier to predict sleep stages by leveraging multi-
scale features, following the approach proposed in (Lee et al., 2024). The encoder, trained with our
objective, is fixed, and the k-th sequence XL

k is input to the encoder to extract the j-th level sequence
features, denoted as Hj = {hk−L,j ,hk−L+1,j , . . . ,hk,j}, where j ∈ {3, 4, 5}. The attention sum
of the transformer’s hidden states for Hj is represented as h̃j . The prediction for the j-th level, oj ,
is obtained by passing h̃j through a linear layer. The final predicted sleep stage, ŷk, is computed as
follows:

ŷk = argmax

∑
j

oj


B.7 DISTINGUISHING THE ROLES OF SUPERFLUOUS INFORMATION AND DOMAIN RELEVANT

INFORMATION

To investigate the respective roles of minimizing superfluous I(zi; di) and maximizing domain rel-
evant information I(zi;vi|vp), we conducted an ablation study on the SleepEDF-20 dataset. The
results are presented in Table 4. The analysis reveals that training without I(zi;vi|vp) leads to fea-
tures that are less distinguishable across classes. This is likely due to the influence of minimization
I(zi; di), which, while suppressing domain-specific information, may inadvertently discard criti-
cal class-related information as well. These findings emphasize that if the loss for I(zi; di) is to
be used, it is essential to include a minimization of superfluous information term for I(zi;vi|vp),
which helps encode meaningful and relevant information within the features. On the other hand,
when using only I(zi;vi|vp) without I(zi; di), the model’s generalization ability is reduced. We
will include this analysis and the corresponding table in the final version to further illustrate the
effect of each term on feature representation and model performance.

Table 4: Performance comparison based on mutual information components.

I(zi; di) I(zi;vi | vp) ACC (%) F1 (%) κ
✓ 79.1 78.1 0.712

✓ 86.2 80.3 0.809
✓ ✓ 86.7 81.1 0.818

B.8 ANALYSIS OF λ1 IN EQ. (25)

In our initial experiments, we set λ1 in Eq. (25), ignoring the influence of H(z) for computa-
tional simplicity. To evaluate the impact of this design choice, we conducted experiments on the
SleepEDF-20 dataset by varying the value of λ1. The results of these experiments are presented in
Table 5.

Table 5: Performance results for different values of λ1.

λ1 ACC (%) F1 (%) κ
0.1 85.8 79.7 0.806
0.5 86.0 80.3 0.809
0.7 85.9 80.1 0.807
1 86.7 81.1 0.818

1.5 86.3 80.4 0.811
2 86.2 80.2 0.810

When λ1 is not fixed to 1, the objective function in Eq. (11) can be expressed as follows:

Lpre(ϕ) =
∑
j

∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi,j · zp,j/τ)∑

n∈N(i) exp(zi,j · zn,j/τ)
+α(λ1−1)H(zi,j)−αλ1H(zi,j | di)

(56)
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In the case where λ1 > 1, the coefficient in front of H(zi,j) is positive, causing the model to attempt
to minimize H(zi,j). Minimizing H(zi,j) reduces the amount of information contained in z, which
appears to hinder the learning process.

In the case where λ1 ≤ 1, the model simultaneously maximizes both H(zi,j) and H(zi,j |d). While
maximizing H(zi,j |d) minimize the domain-relevant information I(zi,j ; di), maximizing H(zi,j)
increases I(zi,j ; di), as I(z; d) = H(z) −H(z|d). Therefore, setting λ1 = 1 allows the model to
focus entirely on maximizing H(zi,j |d), enabling the extraction of more domain-invariant features
and improving the model’s ability to generalize across domains.
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