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Abstract
This paper focuses on reducing the communica-
tion cost of federated learning by exploring gener-
alization bounds and representation learning. We
first characterize a tighter generalization bound
for one-round federated learning based on local
clients’ generalizations and heterogeneity of data
distribution (non-iid scenario). We also character-
ize a generalization bound in R-round federated
learning and its relation to the number of local up-
dates (local stochastic gradient descents (SGDs)).
Then, based on our generalization bound analy-
sis and our representation learning interpretation
of this analysis, we show for the first time that
less frequent aggregations, hence more local up-
dates, for the representation extractor (usually cor-
responds to initial layers) leads to the creation of
more generalizable models, particularly for non-
iid scenarios. We design a novel Federated Learn-
ing with Adaptive Local Steps (FedALS) algo-
rithm based on our generalization bound and rep-
resentation learning analysis. FedALS employs
varying aggregation frequencies for different parts
of the model, so reduces the communication cost.
The paper is followed with experimental results
showing the effectiveness of FedALS.

1. Introduction
Federated learning advocates that multiple clients collabora-
tively train machine learning models under the coordination
of a parameter server (central aggregator) (McMahan et al.,
2016). This approach has great potential for preserving the
privacy of data stored at clients while simultaneously lever-
aging the computational capacities of all clients. Despite its
promise, federated learning still suffers from high commu-
nication costs between clients and the parameter server.

In a federated learning setup, a parameter server oversees
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a global model and distributes it to participating clients.
These clients then conduct local training using their own
data. Then, the clients send their model updates to the pa-
rameter server, which aggregates them to a global model.
This process continues until convergence. Exchanging ma-
chine learning models is costly, especially for large models,
which are typical in today’s machine learning applications
(Konecný et al., 2016; Zhang et al., 2013; Barnes et al.,
2020; Braverman et al., 2015). Furthermore, the uplink
bandwidth of clients may be limited, time-varying and ex-
pensive. Thus, there is an increasing interest in reducing
the communication cost of federated learning especially
by taking advantage of multiple local updates also known
as “Local SGD” (Stich, 2018; Stich & Karimireddy, 2019;
Wang & Joshi, 2018). The crucial questions in this context
are (i) how long clients shall do Local SGD, (ii) when they
shall aggregate their local models, and (iii) which parts of
the model shall be aggregated. The goal of this paper is to
address these questions and reduce communication costs
without hurting convergence.

The primary purpose of communication in federated learn-
ing is to periodically aggregate local models to reduce the
consensus distance among clients. This practice helps main-
tain the overall optimization process on a trajectory toward
global optimization. It is important to note that when the
consensus distance among clients becomes substantial, the
convergence rate reduces. This occurs as individual clients
gradually veer towards their respective local optima without
being synchronized with the models from other clients. This
issue is amplified when the data distribution among clients
is non-iid. It has been demonstrated that the consensus dis-
tance is correlated to (i) the randomness in each client’s own
dataset, which causes variation in consecutive local gradi-
ents, as well as (ii) the dissimilarity in loss functions among
clients due to non-iidness (Stich & Karimireddy, 2019; Gho-
lami & Seferoglu, 2024). More specifically, the consensus
distance at iteration t is defined as 1

K

∑K
k=1 ∥θ̂t − θk,t∥2,

where θ̂t =
1
K

∑K
k=1 θk,t, K is the number of clients, θk,t

is the local model at client k at iteration t, and ∥ · ∥2 is
squared l2 norm. Note that the consensus distance goes to
zero when global aggregation is performed at each commu-
nication round. This makes the communication of models
between clients and the parameter server crucial, but this
introduces significant communication overhead. This paper
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aims to reduce the communication overhead of federated
learning through the following contributions.

Contribution I: Improved Generalization Error Bound. The
generalization error of a learning model is defined as the dif-
ference between the model’s empirical risk and population
risks. (We provide a mathematical definition in Section 3).
Existing approaches for training models mostly minimize
the empirical risk or its variants. However, a small popula-
tion risk is desired showing how well the model performs
in the test phase as it denotes the loss that occurs when new
samples are randomly drawn from the distribution. Note
that a small empirical risk and a reduced generalization er-
ror correspond to a low population risk. Thus, there is an
increasing interest in establishing an upper limit for the gen-
eralization error and understanding the underlying factors
that affect the generalization error. The generalization error
analysis is also important to quantitatively assess the gener-
alization characteristics of trained models, provide reliable
guarantees concerning their anticipated performance quality,
and design new models and systems.

In this paper, we offer a tighter generalization bound com-
pared to the state of the art (Barnes et al., 2022; Yagli et al.,
2020; Sun et al., 2023) for one-round federated learning,
considering local clients’ generalizations and non-iidness
(i.e., heterogeneous data distribution across the clients). Ad-
ditionally, we characterize the generalization error bound in
R-round federated learning.

Contribution II: Representation Learning Interpretation.
Recent studies have demonstrated that the concept of rep-
resentation learning is a promising approach to reducing
the communication cost of federated learning (Collins et al.,
2021). This is achieved by leveraging the shared represen-
tations in all clients’ datasets. For example, let us consider
a federated learning application for image classification,
where different clients have datasets of different animals.
Despite each client having a different dataset (one client
has dog images, another has cat images, etc.), these images
usually have common features such as an eye/ear shape.
These shared features, typically extracted in the same way
for different types of animals, require consistent layers of a
neural network to extract them, whether the animal is a dog
or a cat. As a result, these layers demonstrate similarity (i.e.,
less variation) across clients even when the datasets are non-
iid. This implies that the consensus distance for this part of
the model (feature extraction) is likely smaller. Based on
these observations, our key idea is to reduce the aggregation
frequency of the layers that show high similarity, where
these layers are updated locally between consecutive aggre-
gations. This approach would reduce the communication
cost of federated learning as some layers are aggregated,
hence their parameters are exchanged, less frequently. The
next example scratches the surface of the problem for a toy
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Figure 1: Average consensus distance over time for different
layers, measured while training a ResNet-20 by FedAvg on
CIFAR-10 with 5 clients with non-iid data distribution over
clients (2 classes per client). The early layers responsible for
extracting representations exhibit lower levels of consensus
distance.

example.

Example 1. We consider a federated learning setup of five
clients with a central parameter server to train a ResNet-20
(He et al., 2015) on a heterogeneous partition of CIFAR-
10 dataset (Krizhevsky, 2009). We use Federated Averag-
ing (FedAvg) (McMahan et al., 2016) as an aggregation
algorithm since it is the dominant algorithm in federated
learning. We applied FedAvg with 50 local steps prior to
each averaging step, denoted as τ = 50. Non-iidness is
introduced by allocating 2 classes to each client. Finally,
we evaluate the quantity of the average consensus distance
for each model layer during the optimization in Fig. 1. It is
clear that the initial layers have smaller consensus distance
as compared to the final layers. This is due to initial layers’
role in extracting representations from input data and their
higher similarity across clients.

The above example indicates that initial layers show higher
similarity, so they can be aggregated less frequently. Addi-
tionally, several empirical studies (Reddi et al., 2021; Yu
et al., 2020) show that federated learning with multiple local
updates per round learns a generalizable representation and
is unexpectedly successful in non-iid settings. These studies
encourage us to delve deeper into investigating how local
updates and model aggregation frequency affect the model’s
representation extractor in terms of its generalization.

In this paper, based on our improved generalization bound
analysis and our representation learning interpretation of
this analysis, we showed for the first time that employing
different frequencies of aggregation, i.e., the number of lo-
cal updates (local SGDs), for the representation extractor
(typically corresponding to initial layers) and the head (fi-
nal label prediction layers), leads to the creation of more
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generalizable models particularly in non-iid scenarios.

Contribution III: Design of FedALS. We design a novel Fed-
erated Learning with Adaptive Local Steps (FedALS) algo-
rithm based on our generalization error bound analysis and
its representation learning interpretation. FedALS employs
varying aggregation frequencies for different parts of the
model.

Contribution IV: Evaluation. We evaluate the performance
of FedALS using deep neural network model ResNet-20 for
CIFAR-10, CIFAR-100 (Krizhevsky, 2009), SVHN (Netzer
et al., 2011), and MNIST (Lecun et al., 1998) datasets. We
also estimate the impact of FedALS on large language mod-
els (LLMs) in fine-tuning OPT-125M (Zhang et al., 2022)
on the Multi-Genre Natural Language Inference (MultiNLI)
corpus (Williams et al., 2018). We consider both iid and
non-iid data distributions. Experimental results confirm that
FedALS outperforms the baselines in terms of accuracy in
non-iid setups while also saving on communication costs
across all setups.

2. Related Work
There has been increasing interest in distributed learning
recently, largely driven by Federated Learning. Several
studies have highlighted that these algorithms achieve con-
vergence to a global optimum or a stationary point of the
overall objective, particularly in convex or non-convex sce-
narios (Stich & Karimireddy, 2019; Stich, 2018; Gholami
& Seferoglu, 2024; Lian et al., 2018; Kairouz et al., 2019).
However, it is widely accepted that communication cost
is the major bottleneck for these techniques in large-scale
optimization applications (Konecný et al., 2016; Lin et al.,
2017). To tackle this issue, two primary strategies are put
forth: the utilization of mini-batch parallel SGD, and the
adoption of Local SGD. These approaches aim to enhance
the equilibrium between computation and communication.
Woodworth et al. (2020b;a) attempt to theoretically capture
the distinction to comprehend under what circumstances
Local SGD outperforms minibatch SGD.

Local SGD appears to be more intuitive compared to mini-
batch SGD, as it ensures progress towards the optimum even
in cases where workers are not communicating and employ-
ing a mini-batch size that is too large may lead to a decrease
in performance (Lin et al., 2017). However, due to the fact
that individual gradients for each worker are computed at
distinct instances, this technique brings about residual errors.
As a result, a compromise arises between reducing commu-
nication rounds and introducing supplementary errors into
the gradient estimations. This becomes increasingly signifi-
cant when data is unevenly distributed across nodes. There
are several decentralized algorithms that have been shown
to mitigate heterogeneity (Karimireddy et al., 2019; Liu
et al., 2023) . One prominent example is the Stochastic Con-

trolled Averaging algorithm (SCAFFOLD) (Karimireddy
et al., 2019), which addresses the node drift caused by non-
iid characteristics of data distribution. They establish the
notion that SCAFFOLD demonstrates a convergence rate at
least equivalent to SGD, ensuring convergence even when
dealing with highly non-iid datasets.

However, despite these factors, multiple investigations
(Reddi et al., 2021; Yu et al., 2020; Lin et al., 2020; Gu
et al., 2023), have noted that the model trained using FedAvg
and incorporating multiple Local SGD per round exhibits
unexpected effectiveness when subsequently fine-tuned for
individual clients in non-iid FL setting. This implies that
the utilization of FedAvg with several local updates proves
effective in acquiring a valuable data representation, which
can later be employed on each node for downstream tasks.
Following this line of reasoning, our justification will be
based on the argument that the Local SGD component of
FedAvg contributes to improving performance in heteroge-
neous scenarios by facilitating the acquisition of models
with enhanced generalizability.

An essential characteristic of machine learning systems is
their capacity to extend their performance to novel and
unseen data. This capacity, referred to as generalization, can
be expressed within the framework of statistical learning
theory. There has been a line of research to characterize
generalization bound in FL (Wang & Ma, 2023; Mohri
et al., 2019). More recently Barnes et al. (2022); Sun et al.
(2023); Yagli et al. (2020) considered this problem and gave
upper bounds on the expected generalization error for FL
in iid setting in terms of the local generalizations of clients.
This work demonstrates an improved dependence of 1

K on
the number of nodes. Motivated by this work, we build
our research foundation by analyzing generalization in a
non-iid setting and use the derived insights to introduce
FedALS, aiming to enhance conventional machine learning
generalization.

Note that FedALS differs from exploiting shared represen-
tations for personalized federated learning, as discussed in
Collins et al. (2021). In FedALS, we do not employ different
models on different clients, as seen in personalized learning.
Our proof demonstrates that increasing the number of local
steps enhances generalization in the standard (single-model)
federated learning setting.

3. Background and Problem Statement
3.1. Preliminaries and Notation
We consider that we have K clients/nodes in our system, and
each node has its own portion of the dataset. For example,
node k has a local dataset Sk = {zk,1, ...,zk,nk

}, where
zk,i = (xk,i,yk,i) is drawn from a distribution Dk over
X × Y , where X is the input space and Y is the label
space. We consider X ⊆ Rd and Y ⊆ R . The size of the
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local dataset at node k is nk. The dataset across all nodes
is defined as S = {S1, ...,SK}. Data distribution across
the nodes could be independent and identically distributed
(iid) or non-iid. In iid setting, we assume that D1 = ... =
DK = D holds. On the other hand, non-iid setting covers all
possible distributions and cases, where D1 = ... = DK =
D does not hold.

We assume that Mθ = A(S) represents the output of a
possibly stochastic function denoted as A(S), where Mθ :
X → Y represents the learned model parameterized by θ .
We consider a real-valued loss function denoted as l(Mθ , z),
which assesses the model Mθ based on a sample z.

3.2. Generalization Error
We first define an empirical risk on dataset S as

RS (Mθ )=Ek∼KRSk
(Mθ )=Ek∼K

1

nk

nk∑
i=1

l(Mθ , zk,i), (1)

where K is an arbitrary distribution over nodes to weight
different local risk contributions in the global risk. Specifi-
cally, K(k) represents the contribution of node k’s loss in
the global loss. In the most conventional case, it is usually
assumed to be uniform across all nodes, i.e., K(k) = 1

K for
all k. RSk

(Mθ ) is the empirical risk for model Mθ on local
dataset Sk. We further define a population risk for model
Mθ as

R(Mθ ) = Ek∼K Rk(Mθ ) = Ek∼K,z∼Dk
l(Mθ , z), (2)

where Rk(Mθ ) is the population risk on node k’s data dis-
tribution.

Now, we can define the generalization error for dataset S
and function A(S) as

∆A(S) = R(A(S))−RS (A(S)). (3)

The expected generalization error is expressed as
ES ∆A(S), where ES [·] = E{Sk∼Dnk

k }K
k=1

[·] is used for
the sake of notation convenience.

3.3. Federated Learning
We consider a federated learning scenario with K
nodes/clients and a centralized parameter server. The nodes
update their localized models to minimize their empirical
risk RSk

(Mθ ) on local dataset Sk, while the parameter
server aggregates the local models to minimize the empirical
risk RS (Mθ ). Due to connectivity and privacy constraints,
the clients do not exchange their data with each other. One
of the most widely used federated learning algorithms is
FedAvg (McMahan et al., 2016), which we explain in detail
next.

At round r of FedAvg, each node k trains its model Mθk,r
=

Ak,r(Sk) locally using the function/algorithm Ak,r. The

local models Mθk,r
are transmitted to the central parameter

server, which merges the received local models to aggre-
gated model parameters θ̂r+1 = Â(θ1,r, ...,θK,r), where
Â is the aggregation function. In FedAvg, the aggregation
function calculates an average, so the aggregated model is
expressed as

θ̂r+1 = Ek∼K θk,r. (4)

Subsequently, the aggregated model is transmitted to all
nodes. This process continues for R rounds. The final
model after R rounds of FedAvg is A(S).

The local models are usually trained using stochastic gra-
dient descent (SGD) at each node. To reduce the commu-
nication cost needed between the nodes and the parameter
server, each node executes multiple SGD steps using its
local data after receiving an aggregated model from the pa-
rameter server. To be precise, we have the aggregated model
parameters at round r as θ̂r. Specifically, upon receiving
θ̂r, node k computes

θk,r,t+1 = θk,r,t −
η

|Bk,r,t|
∑

i∈Bk,r,t

∇l(Mθk,r,t
, zk,i) (5)

for t = 0, . . . , τ − 1, where τ is the number of local SGD
steps, θk,r,0 is defined as θk,r,0 = θ̂r, η is the learning rate,
Bk,r,t is the batch of samples used in local step t of round
r in node k, ∇ is the gradient, and | · | shows the size of a
set. Upon completing the local steps in round r, each node
transmits θk,r = θk,r,τ to the parameter server to calculate
θ̂r+1 as in (4).

3.4. Representation Learning
Our approach for analyzing the generalization error bounds
for federated learning, by specifically focusing on FedAvg,
uses representation learning, which we explain next.

We consider a class of models that consist of a representation
extractor (e.g., ResNet). Let θ be the model Mθ ’s parame-
ters. We can decompose θ into two sets: ϕ containing the
representation extractor’s parameters and h containing the
head parameters, i.e., θ = [ϕ,h]. Mϕ is a function that
maps from the original input space to some feature space,
i.e., Mϕ : Rd → Rd′

, where usually d′ ≪ d. The function
Mh performs a low complexity mapping from the represen-
tation space to the label space, which can be expressed as
Mh : Rd′ → R.

For any x ∈ X , the output of the model is Mθ (x) =
(Mϕ ◦Mh)(x) = Mh(Mϕ(x)). For instance, if Mθ is a
neural network, Mϕ represents several initial layers of the
network, which are typically designed to extract meaningful
representations from the neural network’s input. On the
other hand, Mh denotes the final few layers that lead to the
network’s output.
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4. Improved Generalization Bounds
In this section, we derive generalization bounds for FedAvg
based on clients’ local generalization performances in a gen-
eral non-iid setting for the first time in the literature. First,
we start with one-round FedAvg and analyze its general-
ization bound. Then, we extend our analysis to R−round
FedAvg.

4.1. One-Round Generalization Bound
In the following theorem, we determine the generalization
bound for one round of FedAvg.

Theorem 4.1. Let l(Mθ , z) be µ-strongly convex and
L-smooth in Mθ . Mθk

= Ak(Sk) represents
the model obtained from Empirical Risk Minimization
(ERM) algorithm on local dataset Sk, i.e., Mθk

=
argminM

∑nk

i=1 l(M, zk,i), and Mθ̂ = A(S) is the model
after one round of FedAvg (θ̂ = Ek∼K θk). Then, the ex-
pected generalization error is

ES∆A(S) ≤ Ek∼K

[
LK(k)2

µ
ESk

∆Ak
(Sk)︸ ︷︷ ︸

Expected local generalization

(6)

+ 2

√
L

µ
K(k)

(
ES δk,A(S)︸ ︷︷ ︸

Expected non-iidness

ESk
∆Ak

(Sk)︸ ︷︷ ︸
Expected local generalization

) 1
2
]
,

where δk,A(S) = RSk
(A(S))−RSk

(Ak(Sk)) indicates
the level of non-iidness at client k for function A on dataset
S .

Proof: The proof of Theorem 4.1 is provided in Appendix
A of the supplementary materials. □
Remark 4.2. We note that this theorem and its proof assume
that all clients participate in learning. The other scenario is
that not all clients participate in the learning procedure. We
can consider the following two cases when not all clients
participate in the learning procedure.

Case I: Sampling K̂ clients with replacement based on
distribution K, followed by averaging the local models with
equal weights.

Case II: Sampling K̂ clients without replacement uniformly
at random, then performing weighted averaging of local
models. Here, the weight of client k is rescaled to K(k)K

K̂
.

The generalization error results in these cases are affected
by substituting 1

K̂
and K(k)K

K̂
instead of K(k) in (6) for

cases I and II, respectively. The detailed proof is provided
in Appendix C.

Discussion. Note that there are two terms in the general-
ization error bound: (i) local generalization of each client
that shows more generalizable local models lead to a better
generalization of the aggregated model, (ii) non-iidness of
each client which deteriorates generalization. Theorem 4.1

reveals a factor of K(k)2 for the first term, which is the sole
term in the iid setting. For example, in the uniform case
(K(k) = 1

K ), we will observe an improvement with a factor
of 1

K2 for the iid case. This represents an enhancement
compared to the state of the art (Barnes et al., 2022; Sun
et al., 2023; Yagli et al., 2020), which only demonstrates a
factor of 1

K . As a result, after the averaging process carried
out by the central parameter server, the generalization error
is reduced by a factor of K(k)2 in iid case.

On the other hand, we do not see a similar behavior in non-
iid case. In other words, the expected generalization error
bound does not necessarily decrease with averaging. These
results show why FedAvg works well in iid setup, but not
necessarily in non-iid setup. This observation motivates
us to design a new federated learning approach for non-iid
setup. The question in this context is what should be the
new federated learning design. To answer this question, we
analyze R−round generalization bound in the next section.

4.2. R−Round Generalization Bound
In this setup, after R rounds, there is a sequence of weights
{θ̂r}Rr=1 and the final model is θ̂R. We consider that at
round r, each node constructs its updated model as in (5)
by taking τ gradient steps starting from θ̂r with respect to
τ random mini-batches Zk,r =

⋃
{Bk,r,t}τ−1

t=0 drawn from
the local dataset Sk. For this type of iterative algorithm, we
consider the following averaged empirical risk

1

R

R∑
r=1

Ek∼K

[
1

|Zk,r|
∑

i∈Zk,r

l(Mθ̂r
, zk,i)

]
. (7)

The corresponding generalization error, ∆FedAvg(S), is

1

R

R∑
r=1

Ek∼K

[
Ez∼Dk

l(Mθ̂r
, z)− 1

|Zk,r|
∑

i∈Zk,r

l(Mθ̂r
, zk,i)

]
.

(8)

Note that the expression in (8) differs slightly from the
end-to-end generalization error that would be obtained by
considering the final model Mθ̂R

and the entire dataset S .
More specifically, (8) is an average of the generalization
errors measured at each round, similar to (Barnes et al.,
2022)). We anticipate that the generalization error dimin-
ishes with the increasing number of data samples, so this
generalization error definition yields to a more cautious up-
per limit and serves as a sensible measure. The next theorem
characterizes the expected generalization error bounds for
R−Round FedAvg in iid and non-iid settings.

Theorem 4.3. Let l(Mθ , z) be µ-strongly convex and L-
smooth in Mθ . Local models at round r are calculated by
doing τ local gradient descent steps (5), and the local gradi-
ent variance is bounded by σ2, i.e., Ez∼Dk

∥∇l(Mθ , z)−
Ez∼Dk

∇l(Mθ , z)∥2 ≤ σ2. The aggregated model at
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round r, Mθ̂r
, is obtained by performing FedAvg, and the

data points used in round r (i.e., Zk,r) are sampled with-
out replacement. Then the average generalization error,
ES ∆FedAvg(S), is upper bounded by

1

R

R∑
r=1

Ek∼K

[
2LK(k)2

µ
A+

√
8L

µ
K(k)(AB)

1
2

]
, (9)

where A = Õ

(√
C(Mθ )
|Zk,r| + σ2

µτ + L
µ

)
, B =

Õ

(
E{Zk,r}K

k=1
δk,A({Zk,r}Kk=1)+

σ2

µτ + L
µ

)
, Õ hides con-

stants and poly-logarithmic factors, and C(Mθ ) shows the
complexity of the model class of Mθ .

Proof: The proof of Theorem 4.3 is provided in Appendix
B of the supplementary materials. □

The generalization error bound in (9) depends on the fol-
lowing parameters: (i) number of rounds; R, (ii) number
of samples used in every round; |Zk,r|, (iii) the complexity
of the model class; C(Mθ ), non-iidness; δk,A({Zk,r}Kk=1),
number of local steps in each round; τ . We note that (9)
also depends on K (more specifically K), but this depen-
dence is similar to the discussion we had for one-round
generalization, so we skip it here.

5. Representation Learning Interpretation of
R-Round Generalization Bound

The complexity of the model class and the number of sam-
ples and local steps used in every round are crucial to mini-
mizing the generalization error bound especially in non-iid
case in (9) where the generalization error bound is loose in
comparison to iid setup.

Some common complexity measures in the literature include
the number of parameters (classical VC Dimension (Shalev-
Shwartz & Ben-David, 2014)), parameter norms (e.g., l1, l2,
spectral) (Bartlett, 1997), or other potential complexity mea-
sures (Lipschitzness, Sharpness, . . . ) (Neyshabur et al.,
2017; Dziugaite & Roy, 2017; Nagarajan & Kolter, 2019;
Wei & Ma, 2019; Norton & Royset, 2019; Foret et al., 2021).
Independent from a specific complexity measure, a model
in representation learning can be divided into two parts: (i)
Mϕ , which is the representation extractor, and (ii) Mh , a
simple head which maps the representation to an output.
The complexities of these parts follow C(Mh)≪ C(Mϕ).

Our key intuition in this paper is that we can reduce the
aggregation frequency of Mϕ , which leads to a larger τ and
|Zk,r|, hence smaller generalization error bound according
to (9).1

As seen, there is a nice trade-off between aggregation fre-

1We do not reduce the aggregation frequency of Mh as its
complexity, so its contribution to generalization error, is small.

Algorithm 1 FedALS
Input: Initial model {θk,0,0 = [ϕk,0,0,hk,0,0]}Kk=1, learn-
ing rate η, number of local steps for the head τ , adaptation
coefficient α.

1: for Round r in 0, ..., R− 1 do
2: for Node k in 1, ...,K in parallel do
3: for Local step t in 0, ..., τ − 1 do
4: Sample the batch Bk,r,t from Dk.
5: θk,r,t+1 = θk,r,t − η

|Bk,r,t|
∑

i∈Bk,r,t

∇l(Mθk,r,t
, zk,i)

6: if mod (rτ + t, τ) = 0 then
7: hk,r,t ← 1

K

∑K
k=1 hk,r,t

8: else if mod (rτ + t, ατ) = 0 then
9: ϕk,r,t ← 1

K

∑K
k=1 ϕk,r,t

10: θk,r+1,0 = θk,r,τ

11: return θ̂R = 1
K

∑K
k=1 θk,R,0

quency of Mϕ and population risk. In the next section, we
design our Federated Learning with Adaptive Local Steps
(FedALS) algorithm by taking into account this trade-off.
Remark 5.1. We note that the aggregation frequency of
Mϕ cannot be reduced arbitrarily, as it would increase the
empirical risk. It is proven that the convergence rate of the
optimization problem of ERM in a general non-iid setting

for a non-convex loss function is O
(

τ
T +

(
τ
T

) 2
3 + 1√

T

)
(Koloskova et al., 2020). Here T is the total number of
iterations, i.e., T = τR.

6. FedALS: Federated Learning with
Adaptive Local Steps

Theorem 4.3 and our key intuition above demonstrate that
more local SGD steps (less aggregations at the parameter
server) are necessary for representation extractor Mϕ as
compared to the model’s head Mh to reduce generalization
error bound. This approach, since it will reduce the aggrega-
tion frequency of Mϕ , will also reduce the communication
cost of federated learning.

The main idea of FedALS is to maintain a uniform gener-
alization error across both components (Mϕ and Mh) of
the model. This can be achieved if τMϕ

is set larger than
τMϕ

, where τM denotes the number of local iterations in a
single round for the model M while τMϕ

and τMh
are the

corresponding number of local iterations for Mϕ and Mh ,
respectively. Following this approach, we designed FedALS
in Algorithm 1.

FedALS in Algorithm 1 divides the model into two parts:
(i) the representation extractor, denoted as Mϕ , and (ii)
the head, denoted as Mh . Additionally, we introduce the
parameter α =

τMϕ

τMh
as an adaptation coefficient, which

can be regarded as a hyperparameter for estimating the true
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Figure 2: Training ResNet-20 on SVHN.

ratio. Note that this ratio depends on C(Mϕ) and C(Mh),
and determining these values is not straightforward.

7. Experimental Results
In this section, we assess the performance of FedALS using
ResNet-20 as a deep neural network architecture and OPT-
125M as a large language model. We treat the convolutional
layers of ResNet-20 as the representation extractor and the
final dense layers as the model head. For OPT-125M, we
consider the first 10 layers of the model as the representa-
tion extractor. We used the datasets CIFAR-10, CIFAR-100,
SVHN, and MNIST for image classification and the Multi-
Genre Natural Language Inference (MultiNLI) corpus for
the LLM. The experimentation was conducted on a network
consisting of five nodes alongside a central server. For im-
age classification, we utilized a batch size of 64 per node.
SGD with momentum was employed as the optimizer, with
the momentum set to 0.9, and the weight decay to 10−4. For
the LLM fine-tuning, we employed a batch size of 16 sen-
tences from the corpus, and the optimizer used was AdamW.
In all the experiments, to perform a grid search for the learn-
ing rate, we conducted each experiment by multiplying and
dividing the learning rate by powers of two, stopping each
experiment after reaching a local optimum learning rate.
We repeat each experiment 20 times and present the error
bars associated with the randomness of the optimization. In
every figure, we include the average and standard deviation
error bars.

7.1. FedALS in non-iid Setting
In this section, we allocate the dataset to nodes using a non-
iid approach. For image classification, we initially sorted
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Figure 3: Fine-tuning OPT-125M on MultiNLI.

the data based on their labels and subsequently divided it
among nodes following this sorted sequence. In MultiNLI,
we sorted the sentences based on their genre.

In this scenario, we can observe in Fig. 2a, 3a the anticipated
performance improvement through the incorporation of dif-
ferent local steps across the model. By utilizing parameters
τ = 5 and α = 10 in FedALS, it becomes apparent that
aggregation and communication costs are reduced as com-
pared to FedAvg with the same τ value of 5. This implies
that the initial layers perform aggregation at every 50 itera-
tions. This reduction in the number of communications is
accompanied by enhanced model generalization stemming
from the larger number of local steps in the initial layers,
which contributes to an overall performance enhancement.
Thus, our approach in FedALS is beneficial for both com-
munication efficiency and enhancing model generalization
performance simultaneously.

7.2. FedALS in iid Setting
The results for the iid setting are presented in Fig. 2b, 3b.
In order to obtain these results, the data is shuffled, and then
evenly divided among nodes. We note that in this situation,
the performance improvement of FedALS is negligible. This
is expected since there is a factor of 1

K2 in the generalization
in this case, ensuring that we will have nearly the same
population risk as the empirical risk. Therefore, the deciding
factor here is the optimization of the empirical risk, which
is improved with a smaller τ as discussed in Remark 5.1.
Thus, the improvement of the generalization error using the
FedALS approach is negligible in this setup.
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Table 1: Test Performance for 5 nodes FL; Accuracy after training ResNet-20 and test loss after fine-tuning OPT-125M in
iid and non-iid settings with τ = 5 and α = 10.

MODEL/DATASET
FEDAVG FEDALS SCAFFOLD FEDALS + SCAFFOLD

IID NON-IID IID NON-IID NON-IID NON-IID

RESNET-20/SVHN 0.9476 ± 0.0016 0.7010 ± 0.0330 0.9541 ± 0.0021 0.8117 ± 0.0214 0.7180 ± 0.04016 0.8097 ± 0.0271

RESNET-20/CIFAR-10 0.8761 ± 0.0091 0.4651 ± 0.0071 0.8865 ± 0.0021 0.5224 ± 0.0365 0.4538 ± 0.0706 0.5121 ± 0.0098

RESNET-20/CIFAR-100 0.5999 ± 0.0068 0.4177 ± 0.0143 0.6120 ± 0.0052 0.4863 ± 0.0224 0.4124 ± 0.0183 0.4820 ± 0.0129

RESNET-20/MNIST 0.9906 ± 0.0001 0.7967 ± 0.0635 0.9914 ± 0.0001 0.8208 ± 0.0363 0.8121 ± 0.0546 0.7827 ± 0.1184

OPT-125M/MULTINLI 1.2503 ± 0.0003 1.2842 ± 0.0016 1.2478 ± 0.0005 1.2773 ± 0.0019 1.2839 ± 0.0009 1.2782 ± 0.0018

7.3. Compared to and Complementing SCAFFOLD
Karimireddy et al. (2019) introduced an innovative tech-
nique called SCAFFOLD, which employs some control vari-
ables for variance reduction to address the issue of “client-
drift” in local updates. This drift happens when data is
heterogeneous (non-iid), causing individual nodes/clients to
converge towards their local optima rather than the global
optima. While this approach is a significant theoretical ad-
vancement in achieving independence from loss function
disparities among nodes, it hinges on the assumption of
smoothness in the loss functions, which might not hold
true for practical deep learning problems in the real world.
Additionally, since SCAFFOLD requires the transmission
of control variables to the central server, which is of the
same size as the models themselves, it results in approxi-
mately twice the communication overhead when compared
to FedAvg.

Let us consider Fig. 2a, 3a to notice that in real-world deep
learning situations, FedALS enhances performance signifi-
cantly, while SCAFFOLD exhibits slight improvements in
specific scenarios. Moreover, we integrated FedALS and
SCAFFOLD to concurrently leverage both approaches. The
results of the test accuracy in different datasets are summa-
rized in Table 1.

7.4. The Role of α and Communication Overhead
As shown in Table 2, it becomes evident that when we
increase α from 1 (FedAvg), we initially witness an en-
hancement in accuracy owing to improved generalization.
However, beyond a certain threshold (α = 10), further incre-
ment in α ceases to contribute to performance improvement.
This is due to the adverse impact of a high number of local
steps on optimization performance indicated in Remark 5.1.
The trade-off we discussed in the earlier sections is evident
in this context. We have also demonstrated the impact of
FedALS on the communication overhead in this table.

7.5. Different Combinations of ϕ,h

In Table 3, we have presented the results of our experiments,
illustrating how different combinations of ϕ and h influence
the model performance in FedALS. The parameter L indi-
cates the number of layers in the model considered as the
representation extractor (ϕ), while the remaining layers are
considered as h. We observe that for ResNet-20, choosing
ϕ to be the first 16 layers and performing less aggregation

Table 2: The accuracy and communication overhead per
client after training ResNet-20 in non-iid setting with τ = 5
and variable α.

VALUE OF α
DATASET

# OF COMMUNICATED

SVHN CIFAR-10 PARAMETERS

1 0.7010 ± 0.0330 0.4651 ± 0.0071 2.344B

5 0.8107 ± 0.0278 0.5201 ± 0.0302 0.473B

10 0.8117 ± 0.0214 0.5224 ± 0.0365 0.239B

25 0.7201 ± 0.1565 0.3814 ± 0.0641 0.099B

50 0.6377 ± 0.0520 0.2853 ± 0.0641 0.052B

100 0.5837 ± 0.0715 0.2817 ± 0.032 0.029B

Table 3: Different Combinations of ϕ,h for training
ResNet-20 in non-iid setting with τ = 5, α = 10.

VALUE OF L
DATASET

SVHN CIFAR-10 CIFAR-100

20 0.6991 ± 0.0160 0.4383 ± 0.0423 0.4781 ± 0.0123

16 0.7112 ± 0.04710.4687 ± 0.0111 0.4782 ± 0.0087

12 0.6760 ± 0.0474 0.4125 ± 0.0283 0.4249 ± 0.0143

8 0.6381 ± 0.0428 0.3779 ± 0.03451 0.4085 ± 0.0094

4 0.6339 ± 0.0446 0.3730 ± 0.0310 0.4183 ± 0.0108

1 0.6058 ± 0.0197 0.4013 ± 0.0308 0.3880 ± 0.0305

for them seems to be the most effective option.
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9. Conclusion
In this paper, we first characterized generalization error
bound for one- and R-round federated learning. One-round
generalization bound is tighter than the state of the art.
Based on our improved generalization bound analysis and
our representation learning interpretation of this analysis,
we showed for the first time that less frequent aggregations,
hence more local updates, for the representation extractor
(usually corresponds to initial layers) leads to the creation
of more generalizable models, particularly for non-iid sce-
narios. This insight led us to develop the FedALS algo-
rithm, which centers around the concept of increasing local
steps for the initial layers of the deep learning model while
conducting more averaging for the final layers. The experi-
mental results demonstrated the effectiveness of FedALS in
heterogeneous setups.
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A. Proof of Theorem 4.1
We first state and prove the following lemma that will be used in the proof of Theorem 4.1.
Lemma A.1 (Leave-one-out). [Expansion of Theorem 1 in (Barnes et al., 2022)]

Let S′
k = (z′

k,1, ...,z
′
k,nk

), where z′
k,i is sampled from Dk. Denote S(k) = (S1, ...,S

′
k, ...,SK). Then

E{Sk∼Dnk
k }K

k=1
∆A(S) = Ek∼K,{Sk,S′

k∼Dnk
k }K

k=1

[
1

nk

nk∑
i=1

(
l(A(S), z′

k,i)− l(A(S(k)), z′
k,i)

)]
. (10)

Proof. We have

E{Sk∼Dnk
k }K

k=1
R(A(S)) = Ek∼K,{Sk,S′

k∼Dnk
k }K

k=1
l(A(S), z′

k,i). (11)

Also, observe that

E{Sk∼Dnk
k }K

k=1
RS (A(S)) = Ek∼K,{Sk∼Dnk

k }K
k=1

[
1

nk

nk∑
i=1

l(A(S), zk,i)

]
(12)

= Ek∼K,{Sk,S′
k∼Dnk

k }K
k=1

[
1

nk

nk∑
i=1

l(A(S(k)), z′
k,i)

]
. (13)

Putting 11, and 13 together, and by the definition of the expected generalization error, we get

E{Sk∼Dnk
k }K

k=1
∆A(S) = Ek∼K,{Sk,S′

k∼Dnk
k }K

k=1

[
1

nk

nk∑
i=1

(
l(A(S), z′

k,i)− l(A(S(k)), z′
k,i)

)]
. (14)

In the following lemma, we establish a fundamental generalization bound for a single round of ERM and FedAvg. (Theorem
4.1).
Theorem A.2. Let l(Mθ , z) be µ-strongly convex and L-smooth in Mθ , Mθk

= Ak(Sk) represents the model ob-
tained from Empirical Risk Minimization (ERM) algorithm on local dataset Sk, i.e., Mθk

= argminM
∑nk

i=1 l(M, zk,i),
and Mθ̂ = A(S) is the model after one round of FedAvg (θ̂ = Ek∼K θk). Then, the expected generalization error,
E{Sk∼Dnk

k }K
k=1

∆A(S), is bounded by

Ek∼K

[
LK(k)2

µ
E{Sk∼Dnk

k } ∆Ak
(Sk)︸ ︷︷ ︸

Expected local generalization

+2

√
L

µ
K(k)

√
E{Sk∼Dnk

k }K
k=1

δk,A(S)︸ ︷︷ ︸
Root of expected non-iidness

√
E{Sk∼Dnk

k } ∆Ak
(Sk)︸ ︷︷ ︸

Root of expected local generalization

]
, (15)

where δk,A(S) =

[
RSk

(A(S))−RSk
(Ak(Sk))

]
indicates the level of non-iidness for client k in function A on dataset

S .

Proof. We again consider S′
k = (z′

k,1, ...,z
′
k,nk

), where z′
k,i is sampled from Dk. Let also define S(k) =

(S1, ...,S
′
k, ...,SK). Based on Lemma A.1, we can express the expected generalization error as

E{Sk∼Dnk
k }K

k=1
∆A(S) = Ek∼K,{Sk,S′

k∼Dnk
k }K

k=1

[
1

nk

nk∑
i=1

(
l(A(S), z′

k,i)− l(A(S(k)), z′
k,i)

)]
. (16)

Based on L-smoothness of l(Mθ , z) in Mθ , we obtain

1

nk

nk∑
i=1

(
l(A(S), z′

k,i)− l(A(S(k)), z′
k,i)

)
≤ ⟨∇ 1

nk

nk∑
i=1

l(A(S(k)), z′
k,i),A(S)−A(S(k))⟩+ L

2
∥A(S)−A(S(k))∥2,

(17)

12
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where ⟨·, ·⟩, ∥ · ∥2 indicate Euclidean inner product, and squared L2-norm. Note that (17) holds due to

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥2. (18)

We can bound expectation of the inner product term on the right-hand side of (17) using Cauchy–Schwarz inequality as

Ek∼K,{Sk,S′
k∼Dnk

k }K
k=1
⟨∇ 1

nk

nk∑
i=1

l(A(S(k)), z′
k,i),A(S)−A(S(k))⟩

≤ Ek∼K E{Sk,S′
k∼Dnk

k }K
k=1
|⟨∇ 1

nk

nk∑
i=1

l(A(S(k)), z′
k,i),A(S)−A(S(k))⟩| (19)

≤ Ek∼K

[
E{Sk,S′

k∼Dnk
k }K

k=1
||∇ 1

nk

nk∑
i=1

l(A(S(k)), z′
k,i)|| ||A(S)−A(S(k))||

]
(20)

≤ Ek∼K

√√√√E{Sk,S′
k∼Dnk

k }K
k=1
∥∇ 1

nk

nk∑
i=1

l(A(S(k)), z′
k,i)∥2 E{Sk,S′

k∼Dnk
k }K

k=1
∥A(S)−A(S(k))∥2, (21)

where (19) is true because on the right we have the absolute value. (20), and (21) are based on Cauchy–Schwarz inequality.

Now Let’s find an upper bound for E{Sk,S′
k∼Dnk

k }K
k=1
∥A(S)−A(S(k))∥2 that appears on the right-hand side of both (17),

and (21). We obtain

E{Sk,S′
k∼Dnk

k }K
k=1
∥A(S)−A(S(k))∥2

= E{Sk,S′
k∼Dnk

k }K
k=1
K(k)2∥Ak(Sk)−Ak(S

′
k)∥2 (22)

≤ E{Sk,S′
k∼Dnk

k }K
k=1

2K(k)2

µ

(
RS′

k
(Ak(Sk))−RS′

k
(Ak(S

′
k))

)
(23)

= E{Sk,S′
k∼Dnk

k }K
k=1

2K(k)2

µ

1

nk

nk∑
j=1

(
l(Ak(Sk), z

′
k,j)− l(Ak(S

′
k), z

′
k,j)

)
(24)

= E{Sk,S′
k∼Dnk

k }K
k=1

2K(k)2

µ
∆Ak

(S′
k) (25)

= E{Sk∼Dnk
k }K

k=1

2K(k)2

µ
∆Ak

(Sk), (26)

where (22) proceeds by observing that A(S(k,i)) varies solely in the sub-model derived from node k, diverging from A(S),
and this discrepancy is magnified by a factor of K(k) when averaging of all sub-models. (23) holds due to the µ-strongly
convexity of l(Mθ , z) in Mθ which leads to µ-strongly convexity of RSk

(Mθ ) and the fact thatAk(S
′
k) is derived from the

local ERM, i.e., Ak(S
′
k) = argminM

(∑nk

i=1 l(M, z′
k,i)

)
and ∇RS′

k
(Ak(S

′
k)) = 0. Note that if f is µ-strongly convex,

we get

f(x)− f(y) +
µ

2
∥x− y∥2 ≤ ⟨∇f(x),x− y⟩. (27)

(24), (25) are based on local empirical and population risk definitions.

Now we bound Ek∼K,{Sk,S′
k∼Dnk

k }K
k=1
∥∇ 1

nk

∑nk

i=1 l(A(S
(k)), z′

k,i)∥2 on the right-hand side of (21). Note that

∥∇ 1

nk

nk∑
i=1

l(A(S(k)), z′
k,i)∥2 ≤ 2L

(
1

nk

nk∑
i=1

l(A(S(k)), z′
k,i)−

1

nk

nk∑
i=1

l(Ak(S
′
k), z

′
k,i)

)
(28)

≤ 2L

(
RS′

k
(A(S(k)))−RS′

k
(Ak(S

′
k))

)
, (29)

13
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where 28 is obtained using the fact that for any L-smooth function f , we have

∥∇f(x)∥2 ≤ 2L(f(x)− f∗), (30)

and the fact that Ak(S
′
k) is derived from the local ERM, i.e., Ak(S

′
k) = argminM

∑nk

i=1 l(M, z′
k,i). 29 is based on the

definition of local empirical risk.

Putting (17) into (16) and considering (21) we get

E{Sk∼Dnk
k }K

k=1
∆A(S)

≤ Ek∼K

[
E{Sk,S′

k∼Dnk
k }K

k=1

L

2
∥A(S)−A(S(k))∥2 (31)

+

√√√√E{Sk,S′
k∼Dnk

k }K
k=1
∥∇ 1

nk

nk∑
i=1

l(A(S(k)), z′
k,i)∥2 E{Sk,S′

k∼Dnk
k }K

k=1
∥A(S)−A(S(k))∥2

]

≤ Ek∼K

[
E{Sk∼Dnk

k }K
k=1

LK(k)2

µ
∆Ak

(Sk) (32)

+

√
E{Sk,S′

k∼Dnk
k }K

k=1
2L

(
RS′

k
(A(S(k)))−RS′

k
(Ak(S

′
k))

)
E{Sk∼Dnk

k }K
k=1

2K(k)2
µ

∆Ak
(Sk)

]
≤ Ek∼K

[
E{Sk∼Dnk

k }K
k=1

LK(k)2

µ
∆Ak

(Sk) (33)

+

√
E{Sk∼Dnk

k }K
k=1

2L

(
RSk

(A(S))−RSk
(Ak(Sk))

)
E{Sk∼Dnk

k }K
k=1

2K(k)2
µ

∆Ak
(Sk)

]

≤ Ek∼K

[
LK(k)2

µ
E{Sk∼Dnk

k }K
k=1

∆Ak
(Sk) + 2

√
L

µ
K(k)

√
E{Sk∼Dnk

k }K
k=1

δk,A(S)E{Sk∼Dnk
k }K

k=1
∆Ak

(Sk)

]
(34)

, (35)

where in (32) we have applied (26), and (29). (33) proceeds by considering that

E{Sk,S′
k∼Dnk

k }K
k=1

[
RS′

k
(A(S(k)))−RS′

k
(Ak(S

′
k))

]
= E{Sk∼Dnk

k }K
k=1

[
RSk

(A(S))−RSk
(Ak(Sk))

]
. (36)

In (34) we have used the definition of δk,A(S) =

[
RSk

(A(S))−RSk
(Ak(Sk))

]
. This completes the proof and provides

the following upper bound for E{Sk∼Dnk
k }K

k=1
∆A(S),

Ek∼K

[
LK(k)2

µ
E{Sk∼Dnk

k } ∆Ak
(Sk) + 2

√
L

µ
K(k)

√
E{Sk∼Dnk

k }K
k=1

δk,A(S)E{Sk∼Dnk
k } ∆Ak

(Sk)

]
. (37)

B. Proof of Theorem 4.3
Here we provide an identical theorem as Theorem A.2, except that instead of ERM, multiple local stochastic gradient
descent steps are used as the local optimizer.

Theorem B.1. Let l(Mθ , z) be µ-strongly convex and L-smooth in Mθ , Mθk
= Ak(Sk) represents the model obtained

by doing multiple local steps as in (5) on local dataset Sk, and Mθ̂ = A(S) is the model after one round of FedAvg

14
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(θ̂ = Ek∼K θk). Then, the expected generalization error, E{Sk∼Dnk
k }K

k=1
∆A(S), is bounded by

Ek∼K

[
E{Sk∼Dnk

k }K
k=1

2LK(k)2

µ

(
∆Ak

(Sk) + 2ϵk(Sk)

)
(38)

+

√
8L

µ
K(k)

√
E{Sk∼Dnk

k }K
k=1

(
δk,A(S) + ϵk(Sk)

)
E{Sk∼Dnk

k }K
k=1

(
∆Ak

(Sk) + 2ϵk(Sk)

)]
,

where ϵk(Sk) = RSk
(Ak(Sk))−RSk

(A∗(Sk)).

Proof. All the steps are exactly the same as in the proof of theorem A.2 except for the two steps below:

First, we use a new upper bound for E{Sk,S′
k∼Dnk

k }K
k=1
∥A(S) − A(S(k))∥2 that appears on the right-hand side of both

(17), and (21). We have

E{Sk,S′
k∼Dnk

k }K
k=1
∥A(S)−A(S(k))∥2

= E{Sk,S′
k∼Dnk

k }K
k=1
K(k)2∥Ak(Sk)−Ak(S

′
k)∥2 (39)

= E{Sk,S′
k∼Dnk

k }K
k=1
K(k)2∥Ak(Sk)−A∗(S′

k) +A∗(S′
k)−Ak(S

′
k)∥2 (40)

= E{Sk,S′
k∼Dnk

k }K
k=1

2K(k)2
(
∥Ak(Sk)−A∗(S′

k)∥2 + ∥A∗(S′
k)−Ak(S

′
k)∥2

)
(41)

≤ E{Sk,S′
k∼Dnk

k }K
k=1

4K(k)2

µ

(
RS′

k
(Ak(Sk))−RS′

k
(A∗(S′

k)) +RS′
k
(Ak(S

′
k))−RS′

k
(A∗(S′

k))

)
(42)

= E{Sk,S′
k∼Dnk

k }K
k=1

4K(k)2

µ

(
RS′

k
(Ak(Sk))−RS′

k
(Ak(S

′
k)) + 2RS′

k
(Ak(S

′
k))− 2RS′

k
(A∗(S′

k))

)
(43)

= E{Sk,S′
k∼Dnk

k }K
k=1

4K(k)2

µ

(
1

nk

nk∑
j=1

(
l(Ak(Sk), z

′
k,j)− l(Ak(S

′
k), z

′
k,j)

)
+ 2RS′

k
(Ak(S

′
k))− 2RS′

k
(A∗(S′

k))

)
(44)

= E{Sk,S′
k∼Dnk

k }K
k=1

4K(k)2

µ

(
∆Ak

(S′
k) + 2RS′

k
(Ak(S

′
k))− 2RS′

k
(A∗(S′

k))

)
(45)

= E{Sk∼Dnk
k }K

k=1

4K(k)2

µ

(
∆Ak

(Sk) + 2RSk
(Ak(Sk))− 2RSk

(A∗(Sk))

)
, (46)

where in (40) A∗(Sk) is the ERM on Sk. (41) is based on the following inequality.

∥
n∑

i=1

ai∥2 ≤ n

n∑
i=1

∥ai∥2. (47)

Secondly, we derive a new bound for Ek∼K,{Sk,S′
k∼Dnk

k }K
k=1
∥∇ 1

nk

∑nk

i=1 l(A(S
(k)), z′

k,i)∥2 on the right hand side of (21).
We get

∥∇ 1

nk

nk∑
i=1

l(A(S(k)), z′
k,i)∥2 ≤ 2L

(
1

nk

nk∑
i=1

l(A(S(k)), z′
k,i)−

1

nk

nk∑
i=1

l(A∗(S′
k), z

′
k,i)

)
(48)

≤ 2L

(
RS′

k
(A(S(k)))−RS′

k
(A∗(S′

k))

)
(49)

≤ 2L

(
RS′

k
(A(S(k)))−RS′

k
(Ak(S

′
k)) +RS′

k
(Ak(S

′
k))−RS′

k
(A∗(S′

k))

)
(50)

≤ 2L

(
δk,A(S

(k)) +RS′
k
(Ak(S

′
k))−RS′

k
(A∗(S′

k))

)
. (51)

15



Communication Efficient Federated Learning with Differentiated Aggregation

Let’s define ϵk(Sk) = RSk
(Ak(Sk))−RSk

(A∗(Sk)). Putting (17) into (16) and considering (21) we get

E{Sk∼Dnk
k }K

k=1
∆A(S) ≤ Ek∼K

[
E{Sk,S′

k∼Dnk
k }K

k=1

L

2
∥A(S)−A(S(k))∥2

+

√√√√E{Sk,S′
k∼Dnk

k }K
k=1
∥∇ 1

nk

nk∑
i=1

l(A(S(k)), z′
k,i)∥2 E{Sk,S′

k∼Dnk
k }K

k=1
∥A(S)−A(S(k))∥2

]

≤ Ek∼K

[
E{Sk∼Dnk

k }K
k=1

2LK(k)2

µ

(
∆Ak

(Sk) + 2ϵk(Sk)

)
(52)

+

√
E{Sk,S′

k∼Dnk
k }K

k=1
2L

(
δk,A(S

(k)) + ϵk(S
′
k)

)
E{Sk∼Dnk

k }K
k=1

4K(k)2
µ

(
∆Ak

(Sk) + 2ϵk(Sk)

)]
≤ Ek∼K

[
E{Sk∼Dnk

k }K
k=1

2LK(k)2

µ

(
∆Ak

(Sk) + 2ϵk(Sk)

)
(53)

+

√
8L

µ
K(k)

√
E{Sk∼Dnk

k }K
k=1

(
δk,A(S) + ϵk(Sk)

)
E{Sk∼Dnk

k }K
k=1

(
∆Ak

(Sk) + 2ϵk(Sk)

)]
,

where in (52) we have applied (46), and (51). This completes the proof.

Now, we prove Theorem 4.3 as follows.

Theorem B.2. Let l(Mθ , z) be µ-strongly convex and L-smooth in Mθ . Local models at round r are calculated by
doing τ local gradient descent steps (5), and the local gradient variance is bounded by σ2, i.e., Ez∼Dk

∥∇l(Mθ , z) −
Ez∼Dk

∇l(Mθ , z)∥2 ≤ σ2. The aggregated model at round r, Mθ̂r
, is obtained by performing FedAvg, and the data points

used in round r (i.e., Zk,r) are sampled without replacement. The average generalization error bound is

ES ∆FedAvg(S)≤ 1

R

R∑
r=1

Ek∼K

[
2LK(k)2

µ
A+

√
8L

µ
K(k)(AB)

1
2

]

where A = Õ

(√
C(Mθ )
|Zk,r| + σ2

µτ + L
µ

)
, B = Õ

(
E{Zk,r}K

k=1
δk,A({Zk,r}Kk=1) +

σ2

µτ + L
µ

)
, Õ hides constants and poly-

logarithmic factors, and C(Mθ ) shows the complexity of the model class of Mθ .
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Proof. Based on the definition, we have

E{Sk∼Dnk
k }K

k=1
∆FedAvg(S) = E{Sk∼Dnk

k }K
k=1

1

R

R∑
r=1

Ek∼K

[
Ez∼Dk

l(Mθ̂r
, z)− 1

|Zk,r|

K∑
i∈Zk,r

l(Mθ̂r
, zk,i)

]
(54)

=
1

R

R∑
r=1

E
{Zk,r∼D

|Zk,r|
k }K

k=1

Ek∼K

[
Ez∼Dk

l(Mθ̂r
, z)− 1

|Zk,r|

K∑
i∈Zk,r

l(Mθ̂r
, zk,i)

]
(55)

=
1

R

R∑
r=1

E
{Zk,r∼D

|Zk,r|
k }K

k=1

∆A({Zk,r}Kk=1) (56)

≤ 1

R

R∑
r=1

Ek∼K

[
E
{Zk,r∼D

|Zk,r|
k }

2LK(k)2

µ

(
∆Ak

(Zk,r) + 2ϵk(Zk,r)

)
(57)

+

√
8L

µ
K(k)

√
E
{Zk,r∼D

|Zk,r|
k }K

k=1

(
δk,A({Zk,r}Kk=1) + ϵk(Zk,r)

)
E
{Zk,r∼D

|Zk,r|
k }

(
∆Ak

(Zk,r) + ϵk(Zk,r)

)]

≤ 1

R

R∑
r=1

Ek∼K

[
2LK(k)2

µ
Õ

(√
C(Mθ )

|Zk,r|
+

σ2

µτ
+

L

µ

)
(58)

+

√
8L

µ
K(k)

√√√√Õ

(
E
{Zk,r∼D

|Zk,r|
k }K

k=1

δk,A({Zk,r}Kk=1) +
σ2

µτ
+

L

µ

)
Õ

(√
C(Mθ )

|Zk,r|
+

σ2

µτ
+

L

µ

)]
,

where in (56), A represents one-round FedAvg algorithm. In (57) we have used Theorem B.1. In (58) we have used the
conventional statistical learning theory originated with Leslie Valiant’s probably approximately correct (PAC) framework
(Valiant, 1984). We have also applied the optimization convergence rate bounds in the literature (Stich & Karimireddy,
2019). Note that Õ hides constants and poly-logarithmic factors.

C. Partial Client Participation Setting
We first define an empirical risk for the partial participation distribution K̂ on dataset S , where Supp(K̂) ̸= {1, . . . ,K} and
|Supp(K̂)| = K̂ ≤ K, as

RK̂
S (Mθ ) = Ek∼K̂ RSk

(Mθ ) = Ek∼K̂
1

nk

nk∑
i=1

l(Mθ , zk,i), (59)

where K̂ is an arbitrary distribution on participating nodes that is a part of all nodes, and RSk
(Mθ ) is the empirical risk for

model Mθ on local dataset Sk. We further define a partial population risk for model Mθ as

RK̂(Mθ ) = Ek∼K̂ Rk(Mθ ) = Ek∼K̂,z∼Dk
l(Mθ , z), (60)

where Rk(Mθ ) is the population risk on node k’s data distribution.

Now, we can define the generalization error for dataset S and function A(S) as

∆A(S) = R(A(S))−RK̂
S (A(S)) (61)

= R(A(S))−RK̂(A(S))︸ ︷︷ ︸
Participation gap

+RK̂(A(S))−RK̂
S (A(S))︸ ︷︷ ︸

Out-of-sample gap

. (62)

The expected generalization error is expressed as ESk∼Dknkk=1K ∆A(S). Note that the second term in (62), which is
related to the difference between in-sample and out-of-sample loss, can be bounded in the same way as in Theorem 4.1 and
Theorem 4.3. The first term is associated with the participation of not all clients. In the following, we demonstrate that
under certain conditions, this term would be zero in expectation.

We assume there is a meta-distribution P supported on all distributions K̂.
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Lemma C.1. Let {xi}Ki=1 denote any fixed deterministic sequence. Assume P is derived by sampling K̂ clients with
replacement based on distribution K followed by an equal probability on all sampled clients, i.e., K̂(k) = 1

K̂
. Then

EP Ek∼K̂ xk = Ek∼K xk,EP Ek∼K̂ K̂(k)xk =
1

K̂
Ek∼K xk,EP Ek∼K̂ K̂

2(k)xk =
1

K̂2
Ek∼K xk. (63)

Proof.

EP Ek∼K̂ xk = EP
1

K̂

K̂∑
i=1

xi =
1

K̂

K̂∑
i=1

EP xi = EP xi = Ek∼K xk (64)

EP Ek∼K̂ K̂(k)xk = EP
1

K̂2

K̂∑
i=1

xi =
1

K̂2

K̂∑
i=1

EP xi =
1

K̂
EP xi =

1

K̂
Ek∼K xk (65)

EP Ek∼K̂ K̂
2(k)xk = EP

1

K̂3

K̂∑
i=1

xi =
1

K̂3

K̂∑
i=1

EP xi =
1

K̂2
EP xi =

1

K̂2
Ek∼K xk (66)

Lemma C.2. Let {xi}Ki=1 denote any fixed deterministic sequence. Assume P is derived by sampling K̂ clients without
replacement uniformly at random followed by weighted probability on all sampled clients as K̂(k) = K(k)K

K̂
. Then

EP Ek∼K̂ xk = Ek∼K xk,EP Ek∼K̂ K̂(k)xk =
K

K̂
Ek∼KK(k)xk,EP Ek∼K̂ K̂

2(k)xk =
K2

K̂2
Ek∼KK2(k)xk. (67)

Proof.

EP Ek∼K̂ xk = EP
K

K̂

K̂∑
i=1

K(i)xi =
K

K̂

K̂∑
i=1

EP K(i)xi = K EP K(i)xi = K
1

K

k∑
i=1

K(i)xi = Ek∼K xk (68)

EP Ek∼K̂ K̂(k)xk = EP
K2

K̂2

K̂∑
i=1

K2(i)xi =
K2

K̂2

K̂∑
i=1

EP K2(i)xi =
K2

K̂
EP K2(i)xi =

K2

K̂

1

K

k∑
i=1

K2(i)xi (69)

=
K

K̂
Ek∼KK(k)xk

EP Ek∼K̂ K̂
2(k)xk = EP

K3

K̂3

K̂∑
i=1

K3(i)xi =
K3

K̂3

K̂∑
i=1

EP K3(i)xi =
K3

K̂2
EP K3(i)xi =

K3

K̂2

1

K

k∑
i=1

K3(i)xi (70)

=
K2

K̂2
Ek∼KK2(k)xk

So based on lemmas C.1, and C.2, it becomes evident that the expectation of the participation gap in (62) becomes zero for
both two methods, i.e.,

EP

[
R(A(S))−RK̂(A(S))

]
= 0. (71)

The expected generalization error, E{Sk∼Dnk
k }K

k=1
∆A(S),will be just the expectation of the second term in 62 that can be

bounded using Lemma A.2 by

Ek∼K̂

[
LK̂(k)2

µ
E{Sk∼Dnk

k } ∆Ak
(Sk) + 2

√
L

µ
K̂(k)

√
E{Sk∼Dnk

k }K
k=1

δk,A(S)E{Sk∼Dnk
k } ∆Ak

(Sk)

]
. (72)
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Algorithm 2 FedAvg
Input: Initial model {θk,1,0}Kk=1, Learning rate η, and number of local steps τ .
Output: θ̂R

1: for Round r in 1, ..., R do
2: for Node k in 1, ...,K in parallel do
3: for Local step t in 0, ..., τ − 1 do
4: Sample the batch Bk,r,t from Dk.
5: θk,r,t+1= θk,r,t − η

|Bk,r,t|
∑

i∈Bk,r,t
∇l(Mθk,r,t

, zk,i)

6: θk,r+1,0 = 1
K

∑K
k=1 θk,r,τ

7: return θ̂R = 1
K

∑K
k=1 θk,R,τ

Algorithm 3 SCAFFOLD
Input: Initial model {θk,1,0}Kk=1, Initial control variable {ck,1}Kk=1, learning rate η, and number of local steps τ .
Output: θ̂R

1: for Round r in 1, ..., R do
2: for Node k in 1, ...,K in parallel do
3: for Local step t in 0, ..., τ − 1 do
4: Sample the batch Bk,r,t from Dk.
5: θk,r,t+1= θk,r,t − η

(
1

|Bk,r,t|
∑

i∈Bk,r,t
∇l(Mθk,r,t

, zk,i)− ck,r +
1
K

∑K
k=1 ck,r

)
6: ck,r+1 = ck,r − 1

K

∑K
k=1 ck,r +

1
ητ (θk,r,0 − θk,r,τ )

7: θk,r+1,0 = 1
K

∑K
k=1 θk,r,τ

8: return θ̂R = 1
K

∑K
k=1 θk,R,τ

If we take the expectation of (72) with respect to P , and taking into account Lemma C.1, we get the generalization bound
for method 1 as

Ek∼K

[
L

µK̂2
E{Sk∼Dnk

k } ∆Ak
(Sk) + 2

√
L

µ

1

K̂

√
E{Sk∼Dnk

k }K
k=1

δk,A(S)E{Sk∼Dnk
k } ∆Ak

(Sk)

]
. (73)

For Scheme 2, we can obtain the generalization bound in the same way by taking the expectation of (72) with respect to P
and considering Lemma C.2. We get the generalization bound for Method 2 as:

Ek∼K

[
L

µ

K(k)2K2

K̂2
E{Sk∼Dnk

k } ∆Ak
(Sk) + 2

√
L

µ

K(k)K
K̂

√
E{Sk∼Dnk

k }K
k=1

δk,A(S)E{Sk∼Dnk
k } ∆Ak

(Sk)

]
. (74)

D. Algorithms Used in the Experiments
In this section, we have listed our implementation of FedAvg (Algorithm 2), SCAFFOLD (Karimireddy et al., 2019)
(Algorithm 3), and FedALS+SCAFFOLD (Algorithm 4). In Algorithm 3, we observe that in addition to the model,
SCAFFOLD also keeps track of a state-specific to each client, referred to as the client control variate ck,r. It is important
to recognize that the clients within SCAFFOLD have memory and preserve the ck,r and

∑K
k=1 ck,r values. Additionally,

when ck,r consistently remains at 0, SCAFFOLD essentially becomes equivalent to FedAvg.

Algorithm 4 demonstrates the integration of FedALS and SCAFFOLD. It is important to observe that in this algorithm, the
control variables are fragmented according to different model partitions as distinct local step counts exist for different parts.
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Algorithm 4 FedALS + SCAFFOLD

Input: Initial model {θk,1,0 = [ϕk,1,0,hk,1,0]}Kk=1, Initial control variable {ck,1 = [c
ϕ
k,1, c

h
k,1]}Kk=1, learning rate η,

number of local steps for the head model τ , adaptation coefficient α.
Output: θ̂R

1: for Round r in 1, ..., R do
2: for Node k in 1, ...,K in parallel do
3: for Local step t in 0, ..., τ − 1 do
4: Sample the batch Bk,r,t from Dk.
5: θk,r,t+1= θk,r,t − η

(
1

|Bk,r,t|
∑

i∈Bk,r,t
∇l(Mθk,r,t

, zk,i)− ck,r +
1
K

∑K
k=1 ck,r

)
6: if mod (rτ + t, τ) = 0 then
7: chk,r ← chk,r −

1
K

∑K
k=1 c

h
k,r +

1
ητ (hk,r,0 − hk,r,t)

8: hk,r,t ← 1
K

∑K
k=1 hk,r,t

9: else if mod (rτ + t, ατ) = 0 then
10: c

ϕ
k,r ← c

ϕ
k,r −

1
K

∑K
k=1 c

ϕ
k,r +

1
ηατ (ϕ

l
k,⌊ rτ+t−ατ

τ ⌋, mod (rτ+t−ατ,τ)
− ϕl

k,r,t)

11: ϕk,r,t ← 1
K

∑K
k=1 ϕk,r,t

12: ck,r+1 = ck,r
13: θk,r+1,0 = θk,r,τ

14: return θ̂R = 1
K

∑K
k=1 θk,R,τ
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