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Abstract
When prompted to think step-by-step, language001
models (LMs) produce a chain of thought002
(CoT), a sequence of reasoning steps that the003
model supposedly used to produce its predic-004
tion. However, despite much work on CoT005
prompting, it is unclear if CoT reasoning is006
faithful to the models’ parameteric beliefs. We007
introduce a framework for measuring paramet-008
ric faithfulness of generated reasoning, and009
propose Faithfulness by Unlearning Reason-010
ing steps (FUR), an instance of this frame-011
work. FUR erases information contained in012
reasoning steps from model parameters. We013
perform experiments unlearning CoTs of four014
LMs prompted on four multi-choice question015
answering (MCQA) datasets. Our experiments016
show that FUR is frequently able to change the017
underlying models’ prediction by unlearning018
key steps, indicating when a CoT is parametri-019
cally faithful. Further analysis shows that CoTs020
generated by models post-unlearning support021
different answers, hinting at a deeper effect of022
unlearning. Importantly, CoT steps identified023
as important by FUR do not align well with024
human notions of plausbility, emphasizing the025
need for specialized alignment.026

1 Introduction027

Language models (LMs) can perform various tasks028

accurately and verbalize some reasoning via a so-029

called chain of thought (CoT) (Kojima et al., 2022;030

Wei et al., 2022), even without specialized super-031

vised training. CoT reasoning is emerging as a032

powerful technique for improving the performance033

of LMs in complex tasks (OpenAI, 2024; Guo et al.,034

2025). It is not clear, however, whether the reason-035

ing encoded in the CoT is a faithful representation036

of the internal reasoning process of the model, cast-037

ing doubts about the reliability of CoT as a window038

onto the model’s ‘thought process’.039

Various works set out to explore CoT faithful-040

ness by perturbing tokens within the CoT and ob-041

serving whether the contextual corruptions affect042
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Figure 1: An illustration of PFF and FUR. In order
to produce a parameter intervention, we first prompt
the model M to produce an answer y and reasoning
chain (CoT). We then segment the reasoning chain and
unlearn a single reasoning step from the model. The
unlearned model M∗ is then prompted to produce an
answer y∗. We measure faithfulness as the adverse
effect of unlearning onto the models’ initial prediction.

model prediction (Lanham et al., 2023; Bentham 043

et al., 2024; Chen et al., 2024; Madsen et al., 2024). 044

This setup is inherently flawed, as erasing steps 045

from context does not remove knowledge from 046

model parameters, and the model may still be able 047

to reconstruct corrupted information when generat- 048

ing a prediction. Such approaches of context pertur- 049

bation actually measure self-consistency or contex- 050

tual faithfulness rather than parametric faithfulness, 051

for which one would need to erase knowledge from 052

parameters (Parcalabescu and Frank, 2024). 053

We begin by introducing the Parametric Faith- 054

fulness Framework (PFF), a novel approach to mea- 055

suring faithfulness of verbalized reasoning. We 056

define necessary components of instances of such a 057

framework in two stages: (1) an intervention on the 058

model parameters; and (2) evaluating parametric 059

faithfulness. See components in Figure 1. PFF is a 060
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general framework that can be applied to different061

types of CoT and other free-text explanations.062

In this work, we propose an instance of PFF we063

call Faithfulness by Unlearning Reasoning steps064

(FUR), an unlearning-based approach to assessing065

CoT faithfulness. FUR erases information encoded066

in the CoT from model parameters and assesses067

whether it affects the model prediction. Concretely,068

we use NPO (Zhang et al., 2024b), a preference-069

optimization-based unlearning method as the in-070

tervention and propose two metrics of quantifying071

faithfulness of reasoning steps. FF-HARD quanti-072

fies whether the CoT as a whole is faithful, while073

FF-SOFT identifies the most salient reasoning steps074

within the CoT. Concretely, we (b) segment a CoT075

into steps, (c) independently unlearn knowledge076

encoded within each step from model parameters077

and (d) measure the effect of erased knowledge078

on the models’ prediction (Figure 1). If the target079

step was successfully and precisely unlearned, and080

the models’ prediction changed, the step faithfully081

explains the models’ underlying reasoning process.082

Through experimental evaluation on four LMs083

and four MCQA text reasoning datasets, we show084

that we are able to perform valid interventions suc-085

cessfully affect model predictions while not damag-086

ing the general capabilities of the model. In subse-087

quent analyses we show that unlearning has a pro-088

found effect on the model, modifying the answer089

that verbalized reasoning supports post-unlearning.090

We also compare parametric faithfulness to plau-091

sibility via a human study, finding that humans do092

not consider steps identified as important by FUR093

as plausible. This finding indicates a potential need094

for specialized alignment to obtain CoTs that are095

both plausible and faithful.096

The contributions of this work are as follows:097

1. We introduce PFF, a framework for measuring098

parametric faithfulness of LM reasoning.099

2. We instantiate PFF with FUR using NPO, a100

model unlearning method, and demonstrate101

its effectiveness on unlearning fine-grained102

reasoning steps.103

3. We introduce FF-HARD and FF-SOFT, metrics104

evaluating reasoning faithfulness, which can105

be applied to full chains or individual steps.106

4. We perform detailed analyses, including hu-107

man and LLM-as-a-judge annotations, eval-108

uating whether unlearning fundamentally109

changes the verbalized reasoning, and if steps110

identified as faithful are also plausible.111

2 Background and Related Work 112

When CoT prompted, models exhibit better perfor- 113

mance on complex multi-hop and arithmetic rea- 114

soning tasks (Zhou et al., 2023; Fu et al., 2023b; 115

Sprague et al., 2024) compared to being prompted 116

directly (no-CoT). Chains of thought can be used as 117

additional context where models can store results 118

of intermediate hops, but they also provide addi- 119

tional compute irrespective of content (Pfau et al., 120

2024; Biran et al., 2024). Verbalized reasoning 121

steps are frequently hypothesized to be an accurate 122

depiction of the models’ internal reasoning process 123

(Kojima et al., 2022; Fu et al., 2023a; Sun et al., 124

2023). However, faithfulness of CoTs should not 125

be assumed despite how plausible they might seem 126

(Jacovi and Goldberg, 2020; Bao et al., 2025). 127

Issues with NLE. Natural language explanations 128

such as CoTs exhibit a number of issues. They 129

are frequently unreliable, yielding inconsistent an- 130

swers after supposedly inconsequential perturba- 131

tions (Camburu et al., 2020; Lanham et al., 2023; 132

Madsen et al., 2024; Sedova et al., 2024). Expla- 133

nations provided by LMs can be non-causal (Bao 134

et al., 2025), not aligning with the generated an- 135

swers. They are often not useful to humans (Joshi 136

et al., 2023) and can contain factually incorrect or 137

hallucinated information (Kim et al., 2021, 2023; 138

Zheng et al., 2023b; Peng et al., 2023; Zhang et al., 139

2024a). Most importantly, CoTs have been shown 140

to misrepresent the true reasoning process of the 141

LM (Turpin et al., 2023; Roger and Greenblatt, 142

2023). Turpin et al. show that LMs predictions can 143

be biased by contextual shortcuts, the influence of 144

which is not disclosed in the CoT. In this work, 145

we focus on verifying whether CoTs generated by 146

LMs reflect their parametric beliefs, that is, if the 147

generated reasoning chain is faithful with respect 148

to the model parameters. 149

Contextual vs. Parameteric influence. Prior 150

work has recognized the discord between contex- 151

tual and parametric influence on the outputs of LMs 152

(Neeman et al., 2023; Bao et al., 2025). Prompting 153

models with hypothetical or factually incorrect in- 154

formation causes them to change their otherwise 155

consistently correct predictions (Kim et al., 2021, 156

2023; Simhi et al., 2024; Minder et al., 2024), high- 157

lighting their high sensitivity to context tokens and 158

confounding any conclusions drawn from contex- 159

tual perturbations applied to reasoning steps. The 160

main issue with work investigating self-consistency 161

is the possibility of the LM reconstructing infor- 162
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Figure 2: The distinction between contextual and para-
metric faithfulness. Contextual faithfulness measures
the effect of context perturbations on the prediction,
while parametric faithfulness measures whether verbal-
ized reasoning corresponds to latent reasoning.

mation obfuscated by the contextual perturbation—163

despite the verbalized knowledge missing, this rea-164

soning could still be retrieved from the latent space165

(Yang et al., 2024; Deng et al., 2024). To account166

for possible confounders, we only use information167

from generated CoTs to guide unlearning while168

generating predictions directly by no-CoT prompt-169

ing, adequately disentangling contextual influence170

from the prediction.171

Measuring Faithfulness. Various tests and met-172

rics for quantifying faithfulness of free-text ex-173

planations in LMs have previously been pro-174

posed (Lanham et al., 2023; Bentham et al.,175

2024; Atanasova et al., 2023; Siegel et al., 2024).176

By measuring properties such as sufficiency177

through simulatability or counterfactual interven-178

tions (Atanasova et al., 2023; Lanham et al., 2023),179

these studies quantify susceptibility of the models’180

predictions to changes in context or input. Such ap-181

proaches are valid only if there is no direct causal182

link between the input and prediction that bypasses183

the explanation. Experiments show that such struc-184

tural causal models are rarely implemented by LMs185

(Bao et al., 2025), confounding the conclusions186

drawn from contextual faithfulness methods. In187

our work, we analyze whether parametric pertur-188

bations that affect the generated CoT also affect189

the prediction, assessing parametric faithfulness of190

individual causal links. The closest to ours is the191

contemporaneous work of Yeo et al. (2024) which192

uses activation patching to measure causal effect of193

corrupting certain hidden states.194

3 PFF: A Framework for Measuring195

Parametric Faithfulness196

We introduce a framework for measuring the faith-197

fulness of generated reasoning, which we call para-198

metric faithfulness. This framework supports mul- 199

tiple ways to measure parametric faithfulness, and 200

in §4, we propose one such way. 201

Motivation. A line of work has analyzed the sen- 202

sitivity of models to perturbations applied to rea- 203

soning steps (Lanham et al., 2023; Bentham et al., 204

2024; Chen et al., 2024; Madsen et al., 2024, inter 205

alia) under the guise of faithfulness. While per- 206

turbations applied to generated reasoning remove 207

information from context, the model is still able 208

to retrieve such information from its parameters 209

(Neeman et al., 2023). Perturbing the reasoning 210

chain while maintaining model parameters fixed 211

measures self-consistency (Parcalabescu and Frank, 212

2024). Self-consistency can be viewed as faithful- 213

ness of the model output with respect to the rea- 214

soning chain (contextual faithfulness), but it does 215

not reflect faithfulness of the reasoning chain with 216

respect to model parameters, which we call para- 217

metric faithfulness. See Figure 2 for a visualization 218

of this distinction. Between the two, parametric 219

faithfulness provides stronger guarantees. Models 220

can recover information erased only from context, 221

and introduced mistakes might make the model 222

prioritize erroneous context in place of its obfus- 223

cated true reasoning. While these confounders need 224

not always dictate the models’ output, in contex- 225

tual faithfulness they can never be explained away 226

without quantifying the effect of parameters on the 227

output. In other words, to measure parametric faith- 228

fulness, we have to intervene on model parameters. 229

Framework. The proposed framework involves 230

two multi-step stages: (1) performing a valid 231

reasoning-based intervention on the model’s param- 232

eters, and (2) evaluating parametric faithfulness. 233

The first stage begins by instructing the model 234

M to generate reasoning, which we will evaluate 235

for faithfulness. The reasoning steps are used to 236

guide an intervention on M’s parameters, targeting 237

those where a step’s information is stored. This pro- 238

duces a modified model, M∗. Moving to the next 239

stage makes sense only if the intervention is suc- 240

cessful. Thus, our framework requires defining and 241

implementing controls that verify that the change 242

in behavior between M∗ and M stems from the in- 243

tended intervention rather than extraneous factors. 244

In the second stage, faithfulness is assessed with 245

at least one of two evaluation protocols: (1) Instruct 246

both M∗ and M to directly give answers, then 247

compute how often their answers differ. (2) Instruct 248

M∗ and M to reason-then-answer, then compute 249
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not only how often their answers differ, but also250

how often they present different reasoning. In both251

cases, the more faithful the reasoning is to internal252

computations, the greater the difference in answers253

and reasoning between M∗ and M should be.254

4 FUR: Unlearning Reasoning Steps255

We instantiate the parametric faithfulness frame-256

work (§3) by specifying its three elements: unlearn-257

ing reasoning steps as the parameter intervention258

method (§4.1), controls to assess unlearning valid-259

ity (§4.2), and faithfulness measurements (§4.3).260

4.1 Parameter Intervention261

The idea behind unlearning reasoning steps as the262

intervention is that once the information contained263

in generated reasoning is successfully erased from264

the model M’s parameters, its modified version265

M∗ should not produce the same predictions or266

reasoning that M did if that reasoning is indeed267

associated with M’s internal computations.268

To erase knowledge contained in the verbal-269

ized reasoning steps, we use NPO (Zhang et al.,270

2024b), a preference-optimization-based unlearn-271

ing method. We opt for the KL-divergence regu-272

larized variant of NPO. When unlearning, we only273

update the second FF2 matrix of the Transformer274

MLPs, as this layer was found to act as a memory275

store (Geva et al., 2021b; Meng et al., 2022) and276

model editing methods frequently target it to up-277

date information (Meng et al., 2022, 2023; Hong278

et al., 2024).1 We unlearn each reasoning step indi-279

vidually, for a total of 5 iterations, and refer to the280

model obtained after unlearning the i-th reasoning281

step alone as M(i)∗ . We only vary the learning rate282

while keeping the remainder of method-specific283

hyperparameters fixed to values found by original284

works. We detail hyperparameters in Appendix C.285

4.2 Controls286

Unlearning is deemed successful if the target infor-287

mation is removed (high efficacy), but the model288

retains its general capabilities, fluency, and per-289

formance on non-forgotten in-domain data (high290

specificity) (Gandikota et al., 2024). We adapt these291

criteria for unlearning methods within FUR.292

Efficacy. We measure efficacy of unlearning as293

the reduction in the length-normalized sequence294

probability of the unlearned CoT step. Concretely,295

1We explored ROME and MEMIT (Meng et al., 2022,
2023), but they require a structured format, and do not perform
well under paraphrases. We conducted experiments with NPO-
grad-diff, but results were always slightly worse to NPO-KL.

for a reasoning step ri, consisting of T tokens 296

ri,j , j ∈ {1, . . . , T}, the length-normalized proba- 297

bility of that reasoning step with prefix pfi under 298

model M is: 299

pM(ri) =
1

T

T∏
j=0

pM(ri,j |pfi, ri,<j), (1) 300

where pfi consists of the query q for the given 301

instance (comprising the question and answer 302

choices) and the previous reasoning steps ri∗<i. 303

Then, efficacy E is the normalized difference in 304

reasoning step probabilities of the initial model M 305

and the model post-unlearning the i-th step, M(i)∗ : 306

E(i) =
pM(ri)− pM(i)∗ (ri)

pM(ri)
. (2) 307

Note that when computing pM(i)∗ , we use the orig- 308

inal prefix pfi generated by M. Throughout our 309

experiments, we report average efficacy across un- 310

learned steps and instances. 311

Specificity. We measure specificity of unlearning 312

on unrelated, but in-domain data to account for the 313

adverse effect of model unlearning. To this end, we 314

randomly select n = 20 instances from the same 315

dataset as a held-out set Ds, and measure specificity 316

as the proportion of changes in predicted labels on 317

this held-out set after unlearning.2 Therefore, for 318

predicted labels yk under the initial model M and 319

y∗k produced by the unlearned model M∗: 320

S =
1

|Ds|

|Ds|∑
k=1

1[yk ̸= y∗k], (3) 321

We compute the specificity score after each iter- 322

ation of unlearning for the target reasoning step 323

ri. Unless stated otherwise, we report averages of 324

specificity across unlearning iterations, reasoning 325

steps, and instances. 326

General Capabilities. In order to measure 327

whether unlearning affects general model capa- 328

bilities, we compare the performance on MMLU 329

(Hendrycks et al., 2021) before and after unlearn- 330

ing. Due to prohibitive costs of evaluating few- 331

shot MMLU for each instance and unlearned CoT 332

step, we (1) opt for zero-shot evaluation as the 333

instruction-tuned models report good performance 334

2We choose Ds once and use it to evaluate every unlearned
model M∗. Note that this approach might be overly strict as
some instances from Ds sometimes require information from
the target step, which we unlearn. This effect is noticeable in
Sports (§6.2). We leave this consideration for future work.
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in this setup, and (2) report full MMLU scores335

on a randomly selected sample of 10 CoTs after336

unlearning each (≈ 50) CoT step from models.337

Remark. Note that we do not aim for efficacy338

to reach 1, as that would imply that the unlearned339

step has probability 0 (Eq. 2), which in turn would340

likely adversely affect the fluency of the model.341

Rather, we want the original CoT step to become342

a less likely reasoning pathway, but still a possible343

sequence of tokens. The core tension between effi-344

cacy, specificity, and general capabilities is delicate,345

and presents one major hurdle in model unlearning.346

4.3 Faithfulness Measurements347

We deploy the faithfulness evaluation protocol de-348

scribed in §3, where we prompt M∗ and M to349

answer directly, without reasoning, and then com-350

pute how often their answers differ. If M’s verbal-351

ized reasoning is generally faithful to its internal352

computations, the answer will change frequently.353

We propose hard and soft versions of estimat-354

ing faithfulness (ff) of full reasoning chains and355

segmented steps, respectively. The hard version356

(FF-HARD) provides a binary answer to whether an357

explanation is faithful or not, by measuring whether358

unlearning any step causes the model to output a359

different label as the most likely one:360

ffhard = 1[∃ ri such that y ̸= y(i)
∗
], (4)361

where ri is the i-th reasoning step and y(i)
∗

the362

prediction made by M(i)∗ (after the i-th reasoning363

step is unlearned). The use-case for FF-HARD is364

answering the question: Is the reasoning chain365

produced by the LM faithful?366

The soft version (FF-SOFT) assigns a value f ∈367

[0, 1] to a reasoning step, indicating how much368

probability mass has unlearning that step shifted369

from the initial answer.370

ff(i)soft = p(y|M)− p(y|M(i)∗). (5)371

The use-case for FF-SOFT is answering: Which are372

the most salient steps of the reasoning chain?373

Perfectly determining whether a reasoning chain374

constitutes a faithful explanation is difficult. Due375

to the existence of alternative explanations (Wang376

et al., 2023), it is possible that a faithful expla-377

nation, even when unlearned from model parame-378

ters, will not tangibly affect the models’ prediction.379

Therefore, we do not expect ffhard to have perfect380

recall. However, when an unlearned step notably381

changes the model’s prediction, without adversely382

affecting the general capabilities of the model, we 383

can confidently claim that step to be faithful. For 384

the remaining 100 − ff instances, there are three 385

possibilities: (1) FUR failed to uncover and unlearn 386

the true reasoning path, (2) the model used multiple 387

valid reasoning paths, and unlearning one did not 388

significantly affect its prediction, or (3) the model 389

was genuinely unfaithful in its explanation. In this 390

sense, ff represents a lower bound on the model’s 391

true faithfulness — it is the rate at which we can 392

successfully uncover faithful reasoning (assuming 393

that the flip happened due to a valid intervention). 394

5 Experimental Setup 395

We conduct all of our experiments zero-shot on 396

multi-choice question answering (MCQA) datasets. 397

Models. We use four representative instruction- 398

tuned models from three families: LLaMA-3-8B- 399

Instruct and Llama-3.2-3B-Instruct (Touvron et al., 400

2023), Mistral-7B-Instruct-v0.2 (Jiang et al., 2023), 401

and Phi-3-mini-4k-Instruct (Abdin et al., 2024). 402

Datasets. We employ four diverse MCQA 403

datasets: OpenbookQA (Book; Mihaylov et al., 404

2018), ARC-Challenge (ARC-ch; Clark et al., 405

2018), StrategyQA (SQA; Geva et al., 2021a) 406

and the Sports understanding subtask of MMLU 407

(Hendrycks et al., 2021). We choose MCQA as the 408

target task due to availability of alternative answers, 409

which simplify the analysis of how the models’ pre- 410

dictive distribution shifts after unlearning. 411

To retain comparable sizes, and due to expensive 412

runtime of unlearning each CoT step, we select a 413

subset of up to 250 instances from the test split 414

of each dataset to balance the question sources.3 415

Details of datasets and models are in Appendix A. 416

Generating CoTs. We use a two-step prompt- 417

ing approach (Bowman et al., 2022; Lanham et al., 418

2023; Bentham et al., 2024), where the model is 419

first prompted to generate the CoT based on the 420

question and answer options, and subsequently, the 421

model is prompted to complete the answer letter 422

based on the question, answer choices, and the CoT. 423

We use greedy decoding when generating, produc- 424

ing a single CoT for each model and instance pair. 425

For the prompts used, see Appendix B. 426

Preprocessing CoTs. In order to obtain fine- 427

grained information on faithfulness of individual 428

steps, we segment each chain-of-thought into sen- 429

3For SQA, we use instances from the validation split due
to the availability of labels. Sports has a total of 248 instances.
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Base Arc-Challenge OpenbookQA Sports StrategyQA

Model Gen Eff Spec Gen Eff Spec Gen Eff Spec Gen Eff Spec Gen

LLaMA-8B 63.9 43.2 98.3 63.8 44.1 97.7 63.8 20.8 98.1 63.8 48.3 95.7 63.8
LLaMA-3B 60.4 30.7 98.1 60.2 36.6 96.1 60.2 29.3 96.6 60.3 36.3 96.9 60.3
Mistral-2 59.0 71.5 96.4 58.9 72.1 97.6 58.8 50.6 94.8 59.0 65.4 96.3 59.0
Phi-3 69.9 40.8 99.5 69.6 44.2 99.4 69.6 31.1 97.0 69.9 18.7 98.2 69.9

Table 1: Unlearning results. Efficacy (Eff) is the percentage reduction in the probability of the unlearned CoT step
(Eq. 2). Specificity (Spec) is the agreement of M with M(i)∗ on the held-out set (Eq. 3). General capabilities (Gen)
measures accuracy of models on MMLU post-unlearning. The second column shows the base MMLU accuracy of
each model. Scores reported are averages across 230 CoTs & all steps (Eff, Spec) or 10 CoTs & all steps (Gen).

tences using NLTK (Bird, 2006). When unlearning,430

we target only tokens that are constituents of con-431

tent words.4 We opt for this approach so as to not432

unlearn the capability to verbalize reasoning from433

the models, but only knowledge within the steps,434

which is a phenomenon we frequently observed435

prior to making this modification.436

Unlearning CoT Steps. As mentioned in §4.1,437

we unlearn each CoT step for 5 iterations. We prop-438

agate unlearning loss only from tokens correspond-439

ing to content words, target only FF2 layers of the440

Transformer MLPs, and consider only CoT steps441

with at least 2 content tokens. NPO-KL uses a re-442

tain set to minimize the KL-divergence between the443

base and unlearned model’s output distribution and444

ensure fluency. We sample 4 CoT steps from other445

instances as the retain set. Details in Appendix C.446

6 Results447

In this section, we first report results of control448

measurements validating our intervention (§6.1).449

Subsequently, we report instance- and step-level450

faithfulness demonstrating the effectiveness of FUR451

(§6.2). We then showcase one intended use of FUR452

by identifying key reasoning steps and confirm its453

validity through a user study (§6.3). Finally, we454

take a closer look at unlearning a single reasoning455

step and verify that unlearning has a deep effect on456

model parameters (§6.4).457

6.1 Effectiveness of Unlearning458

We report the results of unlearning when using the459

best hyperparameters for each method and dataset460

in Table 1. We measure each model’s efficacy,461

specificity, and MMLU performance before and462

after unlearning. The specificity and general ca-463

4Concretely, we select noun, proper noun, verb, adjective,
and number tokens, after running part-of-speech tagging with
SpaCy en_core_web_sm (https://spacy.io/).

pabilities of these models are largely unchanged 464

while reporting good efficacy, indicating that the 465

information from the target CoT step has been un- 466

learned without affecting the model adversely. We 467

report the results of various learning rates and dis- 468

cuss methodological choices in Appendix C.1. 469

6.2 Does Unlearning Change Predictions? 470

In the previous section, we show that we can un- 471

learn information encoded in a reasoning step from 472

the model. We now focus on how frequently un- 473

learning information from reasoning steps causes 474

the model predictions to change through FF-HARD 475

(Eq. 4), and contrast our method to Add-mistake, 476

a contextual faithfulness method (Lanham et al., 477

2023). Add-mistake prompts another LM (in our 478

case, gpt-4o-mini-2024-07-18) to introduce a 479

mistake to a single step of a CoT generated by the 480

target model. The target model is then prompted 481

with a perturbed CoT containing the mistake. If the 482

prediction of the model changes, the CoT is consid- 483

ered faithful. We report the results of instance-level 484

faithfulness for FUR and Add-mistake in Table 2. 485

Both methods report reasonably high percent- 486

ages of changing predictions across all models 487

and datasets, but in general parametric faithfulness 488

through FUR identifies a larger proportion of faith- 489

ful CoTs than contextual faithfulness. This result 490

suggests that contextual faithfulness may under- 491

estimate CoT faithfulness. Notably, Sports, the 492

dataset where Add-mistake reports strong results, 493

has a high degree of knowledge overlap between 494

instances. This causes the specificity scores (Eq. 3) 495

to sometimes decrease even if the intervention is 496

precise, and a more precise specificity criterion 497

would likely yield better parametric faithfulness. 498

Models frequently change their prediction after 499

unlearning. However, it is not clear how faithful- 500

ness relates to efficacy, i.e., if successful unlearning 501

6
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ARC-challenge OpenbookQA Sports StrategyQA

Model FUR Add-mistake FUR Add-mistake FUR Add-mistake FUR Add-mistake

LLaMA-8B 39.58 16.15 44.33 18.04 29.31 29.89 30.65 32.26
LLaMA-3B 64.41 31.07 68.60 45.93 64.88 65.48 71.02 48.30
Mistral-2 40.00 31.58 60.00 35.68 45.26 36.84 48.19 30.21
Phi-3 39.05 27.62 46.15 38.46 53.99 52.15 22.22 49.74

Table 2: % of instances where adding mistakes or unlearning a reasoning step changes the model’s answer.
Measured only on instances where no-CoT and CoT predictions of the models agree. Scores over 1% better in bold.
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The man notices that the pond in his backyard is bloated after a torrential downpour over a week.
This means that the pond has swollen or expanded due to the excessive water from the rain.
The man notices that the pond in his backyard is bloated after a torrential downpour over a week.

Ba
se

Target
1. The pond is filled with water, and it's been raining heavily for a week.
2. Rainwater is freshwater, so it's not going to add salt to the pond.
3. The pond is not a living being, so it can't be "dehydrated" or "bloat".
4. Given the heavy rainfall, it's unlikely that the pond would "melt" (unless it's made of ice).Ite

r 1

1. The pond is filled with water, and it's been raining non-stop for a week. This means the pond is likely...
2....filled to the brim with water, not dehydrated.
3. The pond is not a living being, so it can't be "bloat"ed.
4. The pond is not a saltwater body, so it's unlikely "salted".Ite

r 2

After a torrential downpour over a week, a man notices that the pond in his backyard is
(A): melted (B): dehydrated (C): bloated (D): salted

Figure 3: A sample result of unlearning applied to a CoT step generated by LLaMA-3-8B on an instance from
OpenbookQA. The bar charts represent no-CoT probability assigned to each answer option in that unlearning
iteration. Model CoTs pre- and post-unlearning are displayed below. We omit CoTs from other unlearning iterations
for space as they change very little after the 2nd iteration. Two steps are slightly shortened for presentation purposes.

of a reasoning step is indicative of a change in pre-502

diction. We compute Pearson correlation between503

efficacy and FF-HARD and observe a strong average504

correlation of 0.935 with p < 0.0001. We interpret505

this as indication that reasoning chains generated506

by the models are generally faithful, as the stronger507

we unlearn, the more frequent the change in predic-508

tion. The limiting factor is the interplay between509

efficacy and general capabilities, as stronger un-510

learning damages model integrity. Nevertheless,511

development of more precise unlearning techniques512

will remove this limitation. We discuss this further,513

along with step-level faithfulness Appendix F.514

6.3 Quantifying Step Level Faithfulness515

In this section, we showcase how FF-SOFT (Eq. 5)516

can be used to identify which reasoning steps in517

a given instance contribute the most toward the518

prediction. In Figure 4 we plot heatmaps for each519

reasoning step, which indicate how much probabil-520

ity mass has been shifted to (red) or from (green)521

the models’ initial answer when that step was un- 522

learned. We can see in the example that steps that 523

verbalize background information (1, 3) and di- 524

rectly state the models’ prediction (4) decrease the 525

probability that the model assigns to its initial pre- 526

diction, while unlearning the background step (2) 527

actually increases probability of the initial answer. 528

Can the Swiss Guard fill the Virginia General Assembly chairs?
A): Yes
B): No

The Swiss Guard is a military corps that serves as the
personal bodyguards of the Pope.

p=0.17

They are known for their distinctive uniforms and ceremonial
duties.

p=-0.13

The Virginia General Assembly is the legislative body of the
state of Virginia, composed of the House of Delegates and
the Senate.

p=0.12

The Swiss Guard is not a legislative body, and they do not
have the authority to fill chairs in the Virginia General
Assembly.

p=0.20

Figure 4: Heatmap produced by unlearning reasoning
steps. ∆p indicates change in initial answer probability.
Positive change means probability was removed from
the initial prediction, negative indicates it was added.
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Model Arc-Ch Book Sports SQA

LLaMA-8B 81.51 80.15 73.08 66.67
LLaMA-3B 85.40 69.32 81.00 94.16
Mistral-2 83.87 90.50 80.34 86.49
Phi-3 75.74 75.54 69.23 73.58

Table 3: LLM-as-judge results assessing if CoTs sup-
port different answers after unlearning. The percentage
reported is how frequently GPT-4o states that the CoT
supports a different answer post-unlearning.

To quantitatively assess whether FF-SOFT identi-529

fies plausible steps as relevant, we conduct a user530

study on a random sample of 100 instances.5 We531

show each participant a question, answer choices,532

and CoT steps, highlighting the answer predicted533

by the model and the target CoT step. We prompt534

the participants to annotate whether the step in535

question supports the predicted answer in context536

of the given CoT on a 1–5 Likert scale (Likert,537

1932). We provide more details of the user study,538

data selection and the protocol in Appendix G.539

Our results exhibit a weak Pearson correlation540

of 0.15 between FF-SOFT and human ratings of541

supportiveness. If we filter out CoT steps where542

unlearning increases the probability of the initial543

answer, which are often cases where the model544

is uncertain of the prediction, the correlation in-545

creases to 0.27, p < 0.02. This result provides546

further evidence for findings from previous works547

showing that faithfulness, in general, does not cor-548

relate with plausibility (Agarwal et al., 2024). In or-549

der to improve correspondence between these two550

notions, one might need to specifically align LMs551

for reasoning plausibility (Ouyang et al., 2022).552

6.4 Unlearning a Single Reasoning Step553

Thus far, we focused on one of the two PFF faith-554

fulness measurement protocols, where we directly555

prompt models pre- and post-unlearning. In this556

section we analyze the other protocol by examin-557

ing whether reasoning within CoTs also changes558

post-unlearning. To illustrate this, Figure 3 visu-559

alizes how prediction probabilities of the no-CoT-560

prompted model change through unlearning itera-561

tions, along with the CoTs of the unlearned model.562

‘Base’ refers to the model pre-unlearning. We see563

that even after a single unlearning iteration, all of564

the probability mass is reassigned from the initial565

5We randomly select instances from three bins of FF-SOFT
depending on the amount and sign of mass moved from the
initial prediction. See Appendix G for details.

prediction onto two alternatives. The CoT follows 566

the prediction of the no-CoT model, now arguing 567

against the initial prediction post-unlearning. 568

To quantitatively assess how frequently the 569

verbalized reasoning of the model changes post- 570

unlearning, we use the LLM-as-a-judge paradigm 571

(Zheng et al., 2023a) and verify if unlearning has 572

caused the verbalized reasoning to support a differ- 573

ent answer, indicating deeper unlearning, or if the 574

change in model prediction is caused by shallow 575

unlearning, which does not affect the reasoning of 576

the model (Cohen et al., 2024). We first select in- 577

stances where both CoT and no-CoT models agree 578

in their changed predictions. From these cases, we 579

select reasoning steps from the last iteration of un- 580

learning. We prompt gpt-4o-mini-2024-07-18 581

to judge whether the CoTs generated by the model 582

before and after unlearning support different an- 583

swers. We report the results in Table 3 and detail 584

the prompting setup in Appendix E. 585

Overall, post-unlearning CoTs largely support 586

different answers compared to the base LM, indi- 587

cating that the unlearning has a deeper effect on the 588

model. We believe these results further confirm the 589

validity of our approach. The applied intervention 590

often fundamentally changes the verbalized reason- 591

ing of the model, confirming that the unlearned 592

target constituted faithful reasoning beforehand. 593

7 Conclusion 594

We introduced a novel parametric faithfulness 595

framework (PFF) for precisely measuring faithful- 596

ness of chains of thought. We instantiated the 597

framework by proposing faithfulness through un- 598

learning reasoning steps (FUR) and introduced two 599

metrics for quantifying faithfulness of CoTs. The 600

hard metric FF-HARD answers the question “Is the 601

CoT generated by the model faithful?”, while the 602

soft metric FF-SOFT answers the question “Which 603

CoT steps are most relevant for the models’ pre- 604

diction?”. We then conducted detailed qualitative 605

and quantitative analyses confirming the validity 606

of our proposed approach, and demonstrating its 607

benefits compared to perturbation-based contextual 608

faithfulness approaches. We showed that unlearn- 609

ing certain steps causes the model to verbalize a 610

reasoning pathway arguing for a different answer, 611

confirming that the unlearned steps were internally 612

used to generate the prediction. We also found that 613

CoT steps identified as highly relevant are not con- 614

sidered plausible by humans, higlighting the need 615

for specialized alignment. 616
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Limitations617

The implementation of our proposed framework618

has a number of limitations, both in design as well619

as implementation. By eliminating the contextual620

confounder, we limit ourselves to studying cases621

in which the CoT and no-CoT predictions of the622

models agree — as these are the only cases where623

one can confidently claim both instances of the624

model use the same reasoning. This limitation625

can be bypassed in future work by ensuring that626

CoT prompted models post-unlearning are highly627

consistent in their changed predictions.628

Secondly, our approach relies on machine un-629

learning techniques, which are imperfect. It is pos-630

sible that either localization of information within631

parameters or their erasure are imprecise or inef-632

ficient for some target reasoning steps. We rely633

on the rapid development of the field of model634

editing to produce better and more precise meth-635

ods, which can seamlessly be integrated into our636

framework. As a consequence, while our method637

identifies faithful explanations with high precision,638

its recall cannot be guaranteed due to either unsuc-639

cessful unlearning, unfaithful explanation or the640

existence of alternative explanations.641

Lastly, our experimental setup is limited to En-642

glish language MCQA tasks. We opt for MCQA as643

it simplifies the analyses we perform in the paper,644

by allowing us to visualize probability distribution645

shifts over answer options without producing an-646

swer options ourselves. Both faithfulness metrics647

in FUR only take into account the probability, or648

whether the answer is the argmax decoding, and649

are thus applicable beyond the MCQA scenario.650

We opt for natural language tasks as factual infor-651

mation is easier to unlearn compared to e.g. arith-652

metic reasoning.653
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Model CoT Arc-Ch Book Sports SQA

LLaMA-8B
% 0.817 0.704 0.822 0.679

! 0.839 0.778 0.836 0.736

LLaMA-3B
% 0.726 0.674 0.500 0.609

! 0.774 0.757 0.561 0.652

Mistral-2
% 0.709 0.739 0.711 0.625

! 0.774 0.730 0.719 0.701

Phi-3
% 0.909 0.804 0.610 0.622

! 0.870 0.848 0.789 0.713

Table 4: Results of analyzed models on the datasets
when promted with and without CoTs.

Dataset # CoT steps Avg. # steps # Inst

ARC-Challenge 1803 7.84 230
OpenBookQA 1830 7.96 230

Sports 1415 6.21 228
StrategyQA 1956 8.50 230

Table 5: Statistics of analyzed datasets in terms of in-
stances and CoT steps.

A Dataset and Model Statistics 999

We report the base performance of the analyzed 1000

models on the datasets we selected, with and with- 1001

out CoT in Table 4. Statistics on the total, and 1002

average counts of CoT steps can be seen in Table 5. 1003

We describe and exemplify the prompting setup in 1004

Appendix B. 1005

To compute model predictions, we use letter 1006

completion. We evaluate the probability each 1007

model assigns to the first letters of the answer 1008

choices (i.e. A, B, C, D, E) and then normalize 1009

the probabilities so that they sum to 1 to obtain 1010

model predictions over the answer set. We account 1011

for the verbosity issues raised by Wang et al. (2024) 1012

by directly prompting the model with the prefix “My 1013

answer is (”, making it to choose from the an- 1014

swer choices. 1015

B MCQA Task Prompts 1016

We use two flavors of prompts when producing 1017

model predictions and the CoT for the evaluated 1018

tasks. In the first, direct prompting setup, we di- 1019

rectly prompt the model to generate the answer 1020

based on the question and answer options. The sec- 1021

ond, two-step setup first prompts the model to gen- 1022

erate a CoT, then concatenates the CoT to the ques- 1023

tion and answer options and prompts the model to 1024

produce the answer. Prompts adapted from (Bow- 1025

man et al., 2022; Lanham et al., 2023; Bentham 1026

et al., 2024). We conduct both prompting setups in 1027

12

https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.18653/V1/2024.ACL-LONG.550
https://doi.org/10.18653/V1/2024.ACL-LONG.550
https://doi.org/10.18653/V1/2024.ACL-LONG.550
https://doi.org/10.48550/ARXIV.2410.14155
https://doi.org/10.48550/ARXIV.2410.14155
https://doi.org/10.48550/ARXIV.2410.14155
https://doi.org/10.48550/ARXIV.2410.14155
https://doi.org/10.48550/ARXIV.2410.14155
https://openreview.net/forum?id=FPlaQyAGHu
https://openreview.net/forum?id=FPlaQyAGHu
https://openreview.net/forum?id=FPlaQyAGHu
https://doi.org/10.48550/ARXIV.2404.05868
https://doi.org/10.48550/ARXIV.2404.05868
https://doi.org/10.48550/ARXIV.2404.05868
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM


zero-shot manner.1028

Direct Answer Prompt1029

Human: Question: [Question]

Choices:

[Answer_choices]

Assistant: The single, most likely answer is (

CoT Prompt1030

Human: Question: [Question]

Choices:

[Answer_choices]

Assistant: Let’s think step by step:

CoT Answer Prompt1031

Human: Question: [Question]

Choices:

[Answer_choices]

[Chain_of_thought]

Human: Given all of the above, what’s the single, most
likely answer?"

Assistant: The single, most likely answer is (

C Unlearning Setup & Hyperparameters1032

We adapt the implementation of NPO-KL from1033

the official repository.6 We use the best hyperpa-1034

rameters found by the original paper (Zhang et al.,1035

2024b) except for the values which we highlight in1036

bold. See Table 6 for values.1037

Hyperparameter Value

beta 0.1
npo_coeff 1.0
KL_coeff 1.0
ref_policy fine_tuned

epochs 5
warmup no

Table 6: Hyperparameters used in the implementation of
NPO-KL. Bold values deviate from the original paper.

We deviate in our choice of epochs since we are1038

unlearning a single sentence, and in our prelimi-1039

nary experiments, 5 epochs (iterations) of unlearn-1040

ing always sufficed. We deviate in our choice of1041

warmup as each epoch is a single unlearning step1042

– there is a total of one instance, thus the warmup1043

simply skips a step as the learning rate in the first1044

iteration of the schedule corresponds to 0.1045

6https://github.com/licong-lin/
negative-preference-optimization

Unlearning Setup. When performing unlearn- 1046

ing, we backpropagate only on target tokens which 1047

are constituents of content words, namely nouns, 1048

proper nouns, adjectives, verbs and numbers. We 1049

filter out and don’t unlearn all CoT steps which do 1050

not have at least two target tokens. This usually 1051

corresponds to the index in the CoT step enumera- 1052

tion which plenty of models produce (e.g. 1. This 1053

is a CoT step), which is sentencized as a standalone 1054

sentence by SpaCy. 1055

When unlearning, NPO-KL uses KL regular- 1056

ization to control updates to model parameters, 1057

which could otherwise be unbounded (Zhang et al., 1058

2024b). During optimization, the model is regu- 1059

larized not to deviate from its initial version with 1060

respect to KL divergence of the predictive distribu- 1061

tion on a retain set. For the retain set, we select a 1062

random sample of 4 other CoT steps from the same 1063

dataset. We perform the same filtering in the retain 1064

set, keeping only steps which contain more than 1065

two tokens which are constituents of content words, 1066

and only target those words for KL regularization. 1067

C.1 Learning Rate Selection 1068

For each model and dataset, we perform a hy- 1069

perparameter sweep on the learning rate values, 1070

as we find different models respond differently 1071

to varying unlearning strength. We report the re- 1072

sults in graphical Figure 5 and tabular format be- 1073

low Table 7. We selected the best learning rate as 1074

the one with highest efficacy while maintaining 1075

round(specificity)≥ 95, i.e., allowing for a single 1076

prediction to differ from the base model on the 1077

held-out set Ds, on average. 1078

D Add-mistake Implementation 1079

In this section, we detail our reimplementation 1080

of the add-mistake contextual faithfulness method 1081

(Lanham et al., 2023). We use the few-shot prompt 1082

from the original paper for introducing mistakes 1083

into reasoning steps. We share the prompt template 1084

below, while we refer the reader to the original 1085

paper, or our codebase, for the few-shot samples. 1086

Human: First I’m going to give you a question, and then 1087
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Figure 5: Learning rate selection results for NPO-KL. Experiments ran on 30 instances for all datasets. Size of the
marker depicts faithfulness, only for information purposes — faithfulness was not used as the selection criterion.
Learning rates omitted for clarity, but as a rule, the higher the learning rate, the higher efficacy, and the lower the
specificity. Figure presented for glance-value, scores are also reported in tabular format in Table 7.

I’ll give you one sentence of reasoning that was used to
help answer that question. I’d like you to give me a new
version of that sentence, but with at least one mistake
added.

[question]

[Answer options]

Original sentence: [sentence]

Assistant: Sentence with mistake added:1088

We use gpt-4o-mini-2024-07-18 for inserting1089

mistakes into each CoT step generated by our mod-1090

els. We then insert the modified CoT step contain-1091

ing the mistake in place of the original step and1092

prompt each model to generate an answer based1093

on the perturbed CoT, as per the prompt in Ap-1094

pendix B.1095

A sample introduced mistake for StrategyQA1096

and LLaMA-3-8B is shown below:1097

Question: Would Eminem perform well at the Interna-1098

tional Mathematical Olympiad?
Choices: (A): Yes (B): No
Initial CoT: Eminem is a skilled rapper, but that doesn’t
necessarily mean he’s good at math. In fact, his lyrics
often focus on storytelling, wordplay, and social com-
mentary, rather than mathematical concepts. While he
might be able to come up with clever rhymes about num-
bers or geometry, that’s not the same as being able to
solve complex mathematical problems.
Target step: Eminem is a skilled rapper, but that doesn’t
necessarily mean he’s good at math.
Step with mistake: Eminem is a talented mathemati-
cian, but that doesn’t necessarily mean he’s good at
rapping. 1099

We make all the data generated by the Add- 1100

mistake setup available along with our submission. 1101

E LLM-as-a-judge Setup 1102

In order to evaluate whether the reasoning chains 1103

pre- and post-unlearning truly support differ- 1104

ent answer options, we follow the LLM-as-a- 1105

judge paradigm (Zheng et al., 2023a), leveraging 1106

gpt-4o-mini-2024-07-18 as the judge LM. We 1107

show the prompt we use below: 1108

You are given a question, the answer options, and two 1109
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Arc-Challenge OpenbookQA Sports StrategyQA

Model LR Eff Spec FF Eff Spec FF Eff Spec FF Eff Spec FF

LLaMA-8B

1e−06 0.4 99.2 6.7 0.6 97.4 3.3 0.7 98.5 10.0 − − −
3e−06 3.3 99.1 13.3 4.4 97.5 6.7 6.1 98.7 13.3 4.6 99.2 6.7
5e−06 13.1 98.9 20.0 15.2 97.5 16.7 20.7 98.1 26.7 16.0 98.2 10.0
1e−05 35.2 97.6 46.7 37.0 97.2 43.3 44.9 94.0 43.3 39.4 94.8 33.3
3e−05 66.0 91.2 60.0 68.0 87.6 73.3 − − − 69.5 78.9 86.7
5e−05 75.7 81.2 70.0 − − − 77.6 57.8 80.0 77.0 67.4 90.0
0.0001 − − − − − − − − − 80.6 59.5 96.7

LLaMA-3B

5e−06 1.6 97.0 10.0 − − − 1.4 100.0 3.3 2.0 100.0 13.3
1e−05 6.5 97.7 30.0 7.9 99.3 23.3 5.3 100.0 13.3 7.7 99.9 23.3
3e−05 31.3 97.4 76.7 36.0 94.8 60.0 27.6 96.4 53.3 34.5 96.7 70.0
5e−05 − − − 56.8 90.4 90.0 49.4 85.9 80.0 56.3 87.7 83.3
0.0001 69.3 81.2 96.7 73.0 70.7 96.7 68.9 80.2 86.7 73.3 66.3 96.7

Mistral-2

1e−06 11.4 100.0 10.0 12.5 100.0 13.3 − − − − − −
3e−06 43.6 99.0 30.0 43.6 99.2 33.3 43.7 93.2 40.0 41.7 97.2 33.3
5e−06 60.8 95.6 46.7 60.2 96.7 56.7 60.3 85.4 60.0 58.7 94.9 53.3
1e−05 74.1 89.1 73.3 73.6 91.4 73.3 73.6 71.5 70.0 72.7 86.3 76.7
3e−05 80.6 75.5 96.7 80.1 64.9 80.0 − − − − − −

Phi-3

3e−05 3.6 100.0 6.7 4.0 100.0 16.7 8.0 97.9 30.0 4.4 99.8 10.0
5e−05 − − − 13.2 100.0 23.3 25.1 96.8 50.0 13.8 97.6 16.7
0.0001 34.4 99.4 53.3 38.5 99.4 46.7 55.8 90.9 66.7 39.6 92.8 53.3
0.0003 69.2 93.7 76.7 70.7 92.6 76.7 − − − − − −
0.0005 76.7 84.7 86.7 76.9 80.8 90.0 80.6 62.2 93.3 − − −
0.001 80.7 59.1 96.7 80.8 49.1 93.3 − − − − − −

Table 7: Learning rate selection results for NPO-KL. Experiments ran on 30 instances for all datasets. Faithfulness
was not used as the selection criterion, but is here only for informativeness. Best learning rates per model &

dataset highlighted . Criterion was max(efficacy) s.t. round(specificity) ≥ 95.
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Figure 6: Scatter plot of correlation between efficacy
and faithfulness. Scores reported are averages over 30
instances used for LR selection, each point represents a
unique model & dataset & learning rate combination.

reasoning chains. Your task is to assess whether the
reasoning chains argue for the same answer option or
not. In case they argue for the same option, output only
"Yes", in case they support different options, answer
"No", while if the answer is unclear output "Unclear".
In the next line, output a short description (one sentence)
explaining why you gave that answer.
Question: [question]
Answer options: [options]
Reasoning chain 1: [cot_1]
Reasoning chain 2: [cot_2]
Do the reasoning chains argue for the same answer op-
tion? 1110

We also prompted the LM to briefly explain why 1111

they output the answer they did, in case further 1112

analysis was warranted. We make all the data gen- 1113

erated by the LLM-as-a-judge setup available along 1114

with our submission. 1115

F Additional Insights 1116

Efficacy Correlates With Faithfulness. As men- 1117

tioned earlier §6.2, we have found that efficacy cor- 1118

relates well with faithfulness. In this section, we 1119

visualize these findings and show that they hold on 1120

individual models and datasets. We compute Pear- 1121

son correlation between efficacy and FF-HARD and 1122

observe strong average correlation of 0.933 with 1123

p < 0.0001. We visualize the scatter plot of effi- 1124

cacy and faithfulness, measured as averages over 1125
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Figure 7: Histograms of instances assigned to probability bins for datasets and models selected for annotation. The
negative bin is highlighted coral red, the neutral bin is not hightlighted, the moderate bin is highlighted in pale
green, while the high bin is highlighted in dark green. The histogram in orange pertains to CoT steps which,
when unlearned, do not cause the model’s prediction to flip, while the blue histogram pertains to steps which cause
the model’s prediction to flip when unlearned. Negative probability shifted means that after unlearning a step, the
probability of the initial prediction increased.
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Figure 8: Scatter plot of correlation between efficacy and faithfulness, distributed across datasets. Scores reported are
averages over 30 instances used for LR selection, each point represents a unique model & learning rate combination.

all data points for each LR selection run (§C.1) in1126

Figure 6. We report similar plots for each individ-1127

ual dataset and model in Figure 8 and Figure 9,1128

respectively. We interpret a consistently strong1129

correlation between efficacy and faithfulness in a1130

twofold manner: (1) unlearning CoT steps targets1131

information relevant for the prediction in the model,1132

as otherwise the faithfulness score would not be1133

high and the prediction would remain the same; (2)1134

with the development of better (i.e. more precise)1135

unlearning techniques, one will be able to verify1136

faithfulness for a larger range of instances.1137

Step-evel Faithfulness In Table 8 we report step-1138

level FF-HARD scores. We can see that the step-1139

wise flip rate is lower, indicating that information1140

in some steps is more influential for the models’1141

prediction. We study this in more detail in §6.3.1142

Model Arc-Ch Book Sports SQA

LLaMA-8B 19.76 19.03 12.63 14.29
LLaMA-3B 23.77 29.76 25.56 27.39
Mistral-2 23.30 32.11 21.19 22.12
Phi-3 16.15 20.94 25.35 8.20

Table 8: Reasoning step level FF-HARD: % of reasoning
steps which, when unlearned, change the underlying
models’ prediction. Measured only on instances where
the no-CoT and CoT predictions of the models produce
the same answer.
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Figure 9: Scatter plot of correlation between efficacy and faithfulness, distributed across models. Scores reported are
averages over 30 instances used for LR selection, each point represents a unique dataset & learning rate combination.

1143

G User Study1144

In order to evaluate whether steps that are identi-1145

fied as important by FUR also constitute plausible1146

explanations to humans, we conduct a user study.1147

We select the two LLaMA models (3B and 8B) and1148

two datasets: ARC-challenge and StrategyQA. We1149

bin the unlearning data into four bins from these1150

datasets and models according to the mass moved1151

away from the initial prediction of the model (FF-1152

SOFT). The negative bin consists of CoT steps1153

which, when unlearned, increased the probability1154

mass assigned to the initial prediction by at least1155

0.25. The neutral bin consists of CoT steps which1156

move the probability mass by an absolute value1157

of less than 0.25 in either direction. The moder-1158

ate bin consists of CoT steps which decrease the1159

probability mass assigned to the initial prediction1160

by between 0.25 and 0.50. The high bin consists1161

of CoT steps which decrease the probability mass1162

assigned to the initial prediction by more than 0.50.1163

We visualize the histogram of instances assigned1164

to these bins in Figure 7.1165

We randomly sample 15, 5 and 5 samples from1166

the high, moderate and negative bins, respectively,1167

for each dataset and model, constituting a total of1168

100 instances for annotation.1169

Participants. We recruit a total of 15 volunteer1170

participants to annotate the instances in the user1171

study, distribute the load equally between them and1172

annotate each example once. All of the annotators1173

are MA or PhD level students familiar with NLP.1174

We use Qualtrics7 to conduct the user study.1175

Protocol. We present each participant with an-1176

notation guidelines detailing the objective of the1177

7https://www.qualtrics.com/

annotation, instructions detailing which aspects to 1178

pay attention to, and two annotation examples. We 1179

show each participant a series of instances consist- 1180

ing of the question, answer options with the pre- 1181

dicted answer highlighted, and a sequence of CoT 1182

steps, where the target step is also highlighted. We 1183

prompt the participants to answer, on a 1–5 Likert 1184

scale (Likert, 1932), whether the highlighted step 1185

is “Fully”, “Mostly”, “Moderately”, “Slightly Sup- 1186

portive” or “Not Supportive At All”. We provide a 1187

screenshot from the annotation form in Figure 10. 1188

We make the annotation guidelines available 1189

along with the submission. 1190

H Hardware, Duration and Costs 1191

Hardware Details We conduct our experiments 1192

on a computing system equipped with 32 Intel(R) 1193

Xeon(R) Gold 6430 CPUs operating at 1.0TB 1194

RAM. The GPU hardware consists of NVIDIA 1195

RTX 6000 Ada Generation GPUs, each equipped 1196

with 49GB of VRAM. Unlearning CoTs from the 1197

smaller models (Phi-3, LLaMA-3-3B) required 1198

a single GPU, while unlearning larger models 1199

(Mistral-7B, LLaMA-3-8B) required two GPUs. 1200

Experiment Duration and Cost Unlearning ex- 1201

periments for an entire dataset take between 16 and 1202

20 hours, depending on the model and dataset. The 1203

duration is mainly dictated by the number of CoT 1204

steps. The average duration of all full runs of mod- 1205

els with final learning rates is 17h40m35s, with a 1206

standard deviation of approximately 1h56m38s. 1207

The LLM-as-a-judge experiments assessing 1208

whether CoTs argue for different answer options 1209

before and after unlearning (§6.4) took between 1210

6 and 8 minutes, per model and dataset. In total, 1211

the costs of using gpt-4o-mini-2024-07-18 in 1212

the LLM-as-a-judge paradigm for our experiments 1213

cost less than $1 USD. 1214

17

https://www.qualtrics.com/


Figure 10: A screen capture of one example from the Qualtrics annotation platform. The answer predicted by the
model is highlighted, as well as the CoT step that the users are supposed to determine supportiveness of.

Generating data for the Add-mistake baseline1215

(§D) was slightly more time consuming due to the1216

few-shot prompting setup. The runtime of using1217

gpt-4o-mini-2024-07-18 as the data generator1218

was between 20 and 40 minutes, per dataset and1219

model. In total, the costs of inserting mistakes into1220

CoT steps cost around $5 USD.1221

I Potential Risks1222

Our method aims to detect faithful reasoning steps1223

in generated CoTs of LMs by unlearning informa-1224

tion within those reasoning steps. We foresee two1225

potential risks of our approach. Firstly, the faithful1226

explanations detected by our model should not be1227

taken as guidepoints for human reasoning. As our1228

user study has shown (§6.3, §G), reasoning steps1229

that are faithful to models are usually not plausible1230

to humans, and should be used carefully in high-1231

stakes scenarios. Secondly, our method can be used1232

adversarially, to limit the capabilities of existing1233

models. Where our goal is to estimate faithful-1234

ness of reasoning steps, malicious actors might1235

erase faithful reasoning steps from datasets, tasks 1236

or domains where they do not wish their model to 1237

perform well, causing it to artificially appear less 1238

competent, knowledgeable or biased. 1239
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