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Abstract

Pretraining on large-scale collections of PDE-governed spatiotemporal trajectories
has recently shown promise for building generalizable models of dynamical sys-
tems. Yet, most existing PDE foundation models rely on deterministic Transformer
architectures, which demand substantial computational resources and lack genera-
tive flexibility. In contrast, generative models can capture uncertainty, making them
well-suited for probabilistic forecasting, data assimilation, and scientific design.
In this work, we introduce a generative PDE foundation model that bridges neural
operator learning with flow matching. By jointly sampling the noise level and
the physical timestep between adjacent states, the model learns a unified velocity
field that transports a noisy current state toward its clean successor. Alongside
the core framework, we introduce novel architectural strategies that achieve up to
15x greater computational efficiency than full-length diffusion models, enabling
large-scale pretraining at substantially reduced cost. Our framework combines
autoregressive Transformers and latent diffusion in a two-stage training pipeline,
yielding scalable, accurate, and extensible generative modeling of PDE systems.
We curate a training corpus of ~2M trajectories across 12 distinct PDE families
and release a suite of pretrained autoencoders and generative latent models of
varying parameter scales. For downstream evaluation, we benchmark on previously
unseen Kolmogorov turbulence with few-shot adaptation, and show long-term
rollout stability of our model compared to its deterministic counterparts.

1 Introduction

Generative models can capture uncertainty through sampling, which is vital for scientific and en-
gineering applications where forecasts [37, 23], machine and material design [46} [50], and safety
margins [7, [18] depend on an ensemble of predictions rather than single point predictions. PDE
foundation models [33] |5 49| are large, pre-trained neural operators that learn generalizable rep-
resentations of spatiotemporal dynamics, enabling zero-shot prediction, control, and design across
diverse physical systems. However, most foundation models for PDEs have emphasized deterministic
mapping from the current state to future states. This creates a gap between the application need and
the capability of current large pretrained models.

This gap motivates a fundamental question about regression vs. sampling approaches in physical
dynamics (e.g., generative ensemble-regression contrasts point-wise regression [47]): when should
we learn a deterministic operator, and when must we sample from a conditional distribution over
future fields? More importantly, can we unify these regimes in a single scalable framework that
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offers the speed of neural operators while retaining the fidelity and extensive applications of modern
generative models?

Training large-scale generative models for PDEs is challenging on two fronts, efficiency and data
source. High-resolution fields are expensive to denoise or transport step-by-step; naively applying
diffusion or flow-based methods in pixel space leads to prohibitive memory and computation cost.
Meanwhile, scientific data are often multi-fidelity, heterogeneous across systems, and scarce at high
accuracy; a practical foundation model must leverage broad-but-imperfect corpora while remaining
physically plausible and stable in long-term rollouts.

Hence, we propose a latent diffusion-based generative PDE foundation model that unifies determinis-
tic operators and stochastic flows within one training and inference stack. Our framework is efficient
and scalable, while being capable to accommodate diverse types of dynamical systems.

Our approach has two components: a Pretrained Physics Variational Autoencoder (P2VAE) and a
Flow Marching Transformer (FMT). P2VAE compresses static physical field snapshots into a compact
latent grid (e.g., 16x16) to slash the cost of generative training and inference, and is trained across
heterogeneous PDE datasets. FMT introduces a flow marching algorithm that bridges deterministic
neural operator and stochastic flow matching through a bridge parameter k. For k = 1, FMT behaves
like a neural operator; for k£ = 0, it reduces to a flow-matching—style stochastic sampler. In between,
it learns transport on mixtures that combine data-driven drift with controlled stochasticity. We train
the latent velocity field with a numerically stable frame-interpolation objective:

11— t)g(xy,t) — (x1 — x7)|1%, (1

which follows directly from the continuity equation for the induced interpolation path. To support
long-horizon rollouts, we introduce a diffusion forcing scheme that adaptively injects small stochas-
tic increments during autoregressive prediction, mitigating error accumulation without sacrificing
stability. Finally, a latent temporal pyramid executes coarse-to-fine transport, cutting training and
inference cost while improving long-range consistency.

The key contributions of this paper are summarized as follow:

* We propose a latent generative PDE foundation model that unifies deterministic and stochas-
tic modeling through a single transport field trained with a principled, well-conditioned
regression objective rooted in flow matching.

* We design a novel flow marching algorithm equipped with diffusion forcing scheme and
latent temporal pyramids that allows large-scale pretraining and stable long-term rollouts.

* We sort and provide a heterogeneous dataset across public PDE datasets including FNO-v,
PDEArena, PDEBench and The Well, totaling up to 233 Gigabyte and consisting of 2.5
million trajectories.

2 Related works

2.1 Neural operator and PDE foundation models

Neural operators are data-driven models that build surrogate models for science and engineering
applications. Existing methods include but not limited to FNO [25]], DeepONet [31], PINO [26],
OFormer [24]], and UPT [[1]. They excel at fast rollout and generalization to unseen inputs [20} 3} 21]].
PDE foundation models based on Transformer architecture [45]], such as ICON [48|, 5], MPP [33]],
DPOT [13], PROSE [29, 41], and PITT [30], learn the PDE-governed spatiotemporal dynamics
through large-scale pretraining across diverse spatiotemporal systems, and enable fast adaptation to
new dynamics and in-context learning ability. However, they are mostly deterministic and lack the
flexibility of generative modeling.

Diffusion-based generative models have been explored to solve PDE equations recently [[15, 14, 35].
However, they follow the paradigm of generating new state out of pure noise conditioned on the
previous states, which is different from our flow marching method; also, they target at a single
dynamics, which is different from the concept of PDE foundation models.



2.2 Flow matching

Preliminaries Flow matching (FM) trains a time-dependent vector field by regressing to conditional
velocities that deterministically transport white noise to data along a prescribed probability path [27,
28, 143]). Large-scale studies [10]] further show FM can match or surpass diffusion on high-resolution
image synthesis while retaining fast ODE sampling, motivating FM as a practical training principle
for modern generative backbones.

Pyramidal flow matching Recent work proposes Pyramidal Flow Matching (PFM) [19]], which
reinterprets the denoising/transport trajectory as a multi-stage spatial pyramid, where only the final
stage runs at full resolution while earlier stages operate coarser and are linked through a renoising
technique to preserve continuity. This yields notable efficiency gains (especially for video) and pairs
naturally with temporal pyramids for autoregressive history compression. These ideas directly inspire
our latent temporal pyramid and coarse-to-fine training/inference strategy.

2.3 Diffusion forcing

Diffusion Forcing [6] blends autoregressive (AR) prediction with diffusion-style denoising: a causal
next-token (or next-segment) model is trained to produce future content while simultaneously de-
noising a set of tokens with independent per-token noise levels. Compared to pure AR, diffusion
forcing lets the model get access to partially noised data distributions; compared to pure diffusion,
it preserves causal structure and AR efficiency. Interleaving causal prediction with one to three
lightweight denoising refinements reduces exposure bias [2] while preserving autoregressive effi-
ciency. In practice, it improves long-horizon stability, temporal coherence, and ensemble calibration
with minimal latent-space overhead, which is suitable for the PDE condition propagation during an
autoregressive generation process.

3 Methods

3.1 Flow marching
Let (xg,x1) ~ 7 be consecutive states of a dynamical system. We synthesize intermediate training
particles via a location-scale interpolation kernel in Fig. 1]

X} = p + 002, = tx1 + k(1 = t)x0,00 = (1 = t)(1 = k), z ~ N(0,1), (2)
with ¢, k ~ Unif(0, 1).

Neural Operator

Figure 1: Location-scale interpolation kernel for flow marching

Conditionally,
qF (xF|x0, x1, k) ~ N(tx1 + k(1 — t)xo, (1 — t)*(1 — k)I). 3)
Two limits are informative: (i) k = 0 recovers a flow-matching kernel x{ ~ N (tx1, (1 — t)%I);

(ii) k = 1 gives the deterministic neural operator interpolation x; = tx; + (1 — t)xo. Thus, k
continuously bridges stochastic flow transport and deterministic operator regression.



Using the equivalent form
Xf:xo—i—t(xl—xo)—(l—t)(l—k)(xo—z). (@)

Differentiation gives the sample-wise velocity

f= = 1B+ XX ®
u —xF=(1-k)(xg—2)+x; —x9= —L
T ’ P 1t
Because the kernel is Gaussian local-scale, its conditional score at the sampled point x = xF is
xF — Z
Vi log gf (xf) = == =— . 6
0g q; (x;) o? (1—t)(1—k) ©

We substitute Eq. [6]into Eq.[5] and get the score-velocity decomposition:
ug = (x1 — kxo) + (1 = £)(1 = k)* Vi log g7 (x7). @

Therefore, the transport velocity is a well-posed learnable target: its random part is aligned with an
intrinsic geometric direction of the conditional density (the score), and its deterministic part is fixed
by the pair (x¢,x1) and the bridge parameter k. Regressing a model g to uf theoretically recovers
the posterior-mean transporting field g* (see [A.T).

With the above justification, our setting trains a neural network approximation g by regressing to the
oracle velocity:

Rera(€) = Egenmy i [Hg |} ®)

We notice that sampling both k and ¢ to be the input of g is empirically slow to converge, and one of
the most apparent failure mode of using % in the denoising process is that an intermediate denoised
state would deviate from the original assigned bridge parameter k thus introduce an accumulatmg
error. In practice, we adopted u¥ = (x; — x¥)/(1 — t) in Eq.|5|as the training objective, so that x¥
and ¢ are sufficient as inputs. This k-free objective can also be intuitively understood as the linear
vector pointing to the end state x; from the current state x*. This frame-interpolation view — “predict

the missing bridge (x; — x¥)”— makes the training interface minimal: once x¥ is constructed offline,

the supervision depends only on (x; — xF).

The form is numerical stiff near ¢ — 1. We therefore precondition the target by (1 — ¢) and obtain
the flow marching objective:

1
L = SE [[I(1 — )go(xf 1) — (a1 —x])][°] - ©

Minimizers of Lgy correspond to minimizers of Rpy (up to the benign (1 — t) scaling), and the
regression is well-conditioned at late times.

3.2 Conditional flow marching through diffusion forcing

There exists a variety of different dynamics in the training dataset. To accommodate these dynamics
in one PDE foundation model, we introduce the conditional form of flow marching and design an
approach to condition the dynamics through past states.

The conditional flow marching target could be derived from a conditional probability:
¢ (%, 1) = B (xg ), [a7 (X[x0, %1, )] (10)

Following the same derivation, we have the conditional flow marching objective:

Lcpm = [H( )ge(xtvt h) — (x _X?)HQ] . )

To derive the condition h, we follow the style of diffusion forcing (DF) [6] to design a forcing scheme,
which makes use of history states with different noise levels to induce the filtered PDE condition h,



(denote the physical timestep as s = 1,2, ...T). Specifically, a DF keeps and updates a compressed
latent state h to be the condition at each step to inform the denoising process. We adopt a simplistic
RNN parametrized by ¢ like original DF paper to evolve latent state h, ~ pg(hs|hs_1, x?fts ,ls),
because governing equation and coefficients of PDE dynamics are usually kept the same as time
evolves.

In conclusion, the training objective for FMT is

M=

1
Lcepm = = E

2 ts,Xs,Xst1,hs
k
hs"’pd)(hs [hs—1 7xs,st5 its)

2
U\(l — )80 (x5t Byo1) = (ko = xE7)| ] . a2)
1

S

where xffts = X5+ ts(Xs41 — Xs) — (1 —t5)(1 — ks )(xs — 2), ts, ks are independently sampled at

each physical timestep s.

3.3 Latent temporal pyramids

We introduce two techniques to improve the computational efficiency of our model.

Firstly, we introduce an autoencoder P2VAE parametrized by w to compress the state x to lower
token count y used in the following implementations.

y =&u(x), X=Duy),

1 2 (13)
Lvae = SE[x = %[|" + SKL(qu (y [x)[[p(v))-
To further simplify the computational complexity, we introduce temporal pyramids in PEM [19],
which resonates with the fact that a physical dynamics system is mostly Markovian and prediction
relies less on farther previous states.

For early s, we use compressed latent states to propagate the PDE condition h;. In practice, we
always train the conditional flow marching model on 4 consecutive states (X, X1, X2, X3), where the

FMT model takes (xlg?to, X’fjtl , ngtz , xlgftg) as input to predict the flow marching velocities by latent
temporal pyramids (Down(y’&f’to, 8), Down(y’fjt1 ,4), Down(ygftz, 2), ylgf’ta ).

3.4 Prediction and generation processes

We use the Euler ODE sampler (discretization on t) to propagate an intermediate state x¥ to x;.
(to,t1,to, t3) are initialized to be 0, and are updated simultaneously during the flow marching process.
The discretization is taken to be N = 100 throughout the evaluation phase, with dt = 0.01. In a
deterministic prediction setting, we set (ko, k1, k2, k3) to be 1, meaning that the past states are not
noisy. In a generation setting, we choose to set (ko, k1, k2) to be 1 and ks less than 1. The smaller the
k, the larger the uncertainty about the current state. This setting allows hj to be passed down from a
clean history, and generate possible x4 out of pure noise. (ko, k1, k2)’s parametrization choice can be
further explored.

4 Experiments

4.1 Setup

Dataset gathering We consider a combination of public benchmark datasets for PDE foundation
models: FNO-v [25], PDEBench [42], PDEArena [[11], and the Well [34] to form a heterogeneous
dataset consisting of 12 distinct dynamical systems. All the dynamical systems are 2D intrinsically,
and three physical fields are chosen at maximum. We compressed the aforementioned datasets to the
format of 128 128 spatial resolution with 3 multiphysics channels (c3p128) with float16 precision
to form a 233 GB dataset, consisting over 2.5M trajectories with length 4. We provide the exact
compression ratio and dataset information in



Training dataset The heterogeneous dataset is partitioned into train, valid, and test sets according
to the original settings of each sub-dataset first; under the cases that there is no partition, we use a ratio
of 8:1:1. We train P2VAE and FMT on the train set. Datasets are sampled with equal probabilities
according to the practice in DPOT [13]. P2VAE’s AdamW optimizer is used with 3; = 0.9 and
B2 = 0.995, cosine learning rate schedule with 10% of linear warm up, and a weight decay of 1e-4;
FMT’s AdamW optimizer is used with 5; = 0.9 and 52 = 0.95, cosine learning rate schedule with
10% of linear warm up, and a weight decay of 0.01. Base learning rates of 1e-4 for a 256 batch size
are adjusted according to batch sizes and model sizes to balance convergence speed and training
stability. We conduct a two stage training recipe. We trained 2 P2VAEs, 16M and 87M, for 100k
steps with KL term’s weight 8 =1e-3. Based on the 16M P2VAE (with frozen weights), we train
3 FMTs with size 6M, 42M, and 138M (Small, Base, and Large) on the same training dataset for
another 100k steps.

Evaluation metrics To assess the reconstruction and prediction quality of our model, we employ
both the L2 relative error (L2RE), which is a common practice of PDE foundation models, and the
variance-normalized root mean square error (VRMSE), as suggested by [34]].

Implementation details For P2VAE, we reuse the standard SD-VAE [38]] architecture to compress
each state from c3p128 to c16p16 (12x compression rate) following the recommendation in [[12].
P2VAE-16M uses 64 as the base dimensions, while P2VAE-87M uses 128. For FMT, we use the
AdalLN-Zero mechanism introduced in [36]] to condition a SiT [32]]. In the Transformer side, we
adopt the modern architecture RMSNorm and SwiGLU introduced by Llama-2 [44]. Multi-head
self-attention with head dim 64 is implemented with FlashAttention v2 [9]. FMT-S, FMT-B, and
FMT-L have 256, 512, and 768 as the embedding dimensions, respectively. The RNN in the diffusion
forcing scheme is a GRU [8] which shares the same internal dimension as the embedding dimension
in SiT; the current state x” is first compressed onto a single token by cross attention to update the
latent state h to inform dynamics.

4.2 Efficiency

Compared to a vanilla video-diffusion model [14]] that operates with bidirectional self-attention across
4 frames with 256 tokens each and quadratic attention complexity, the efficiency gain due to FMT
could be estimated by
_ (4 x 162)?
n= (22)2 + (42)2 + (82)2 + (162)2

= 15. (14)

4.3 Baselines

Baseline methods include: UNet [39], FNO [25]], CNextU-net [[17], which are trained on individual
dynamics; DPOT [13]], MPP [33]], VICON [5]], which are PDE foundation models jointly trained on
several dynamics. All of the above is based on a deterministic neural operator setting. The results are
listed in Tab. |1} The entries with * is the implementation provided in the Well benchmark [34]. We
provide the reconstruction error in L2RE and VRMSE of our P2VAEs to demonstrate the compression
loss level due to the autoencoder structure for further comparisons. Note that since we unified the
sub-datasets to p128c3 and float16, the metrics taken from other papers could be different on our
format-unified dataset.

Table 1: P2VAE reconstruction error compared to benchmark PDE models. The best (or better)
results among the existing statistics are in bold.

L2RE FNO-v5 FNO-v4 FNO-v3 PA-NS PA-NSC PA-SWE PB-CNSL PB-CNSH PB-SWE W-AM W-GS W-SWE W-RB W-SF W-TR W-VE
UNet 0.198 0.119 0.0245  0.102 0.337 0.463 0.313 0.0521

FNO 0.116 0.0922  0.0156  0.210 0.384 0.153 0.130 0.00912

DPOT-30M 0.0553 0.0442  0.0131  0.0991 0.316 0.0153 0.0245 0.00657

MPP-116M 0.0617 0.164 0.209

VICON-88M 0.111 0.1561 0.0597

P2VAE-16M  0.0890 0.0850 0.124  0.0651  0.0604 0.1093 0.0267 0.0334 0.438 0.0466  0.0774  0.0629  0.105 0.0956 0.0401 0.0360
P2VAE-87M  0.0802 0.0732 0.115  0.0582  0.0527 0.1039 0.0266 0.0325 0.186 0.0329  0.0400  0.0596  0.0802 0.0846 0.0374 0.0274
VRMSE FNO-v5 FNO-v4 FNO-v3 PA-NS PA-NSC PA-SWE PB-CNSL PB-CNSH PB-SWE W-AM W-GS W-SWE W-RB W-SF W-TR W-VE
UNet* 0.2489  0.2252  0.3620  1.4860 3.447 02418 04185
FNO* 0.3691  0.1365 0.1727 0.8395 1.189 0.5001 0.7212
CNextU-net* 0.1034 0.1761  0.3724  0.6699 0.8080 0.1956 0.2499
P2VAE-16M  0.2240 0.2457  0.2721  0.0936  0.0850 0.1135 0.6028 0.3386 0.6504  0.4064 04916 0.1126 02499 0.1718 0.2838 0.2962

P2VAE-87M  0.1886 0.2192  0.1986  0.0828  0.0743 0.1074 0.4444 0.2714 0.2945 02016 0.3298  0.0951 0.1886 0.1453 0.2324 0.1568




4.4 Downstream evaluation results

Adapting foundation model to isotropic Kolmogorov turbulence According to REPA-E [22]],
we finetune the pretrained model (P2VAE+FMT) to adapt to an unseen system with a stop-gradient
operation after the generation of latent states y, so that the conditional flow marching loss won’t
deteriorate the autoencoder. The end-to-end finetuning loss is derived as

5(0, QZS,LU) = ﬁcm(e, ¢) + /\VAE£VAE(UJ)~ (15)

We conduct the experiment on an isotropic Kolmogorov turbulence dataset with u and v fields at
Re = 222 [40]. We finetuned our FMT-B-42M model on 200 of the training trajectories in the train
set for 5k steps with A\yag = 1 and test the performance on 500 trajectories in the test set. The metrics
are shown in Table. , and one exemplary vorticity (w = 22 — 2%) reconstruction and prediction

ox oy
case is shown in Fig. 2]

Table 2: Few-shot adaptation result on the Kolmogorov turbulence dataset

Model L2RE VRMSE

P2VAE-16M-FT 0.0243 0.0614
FMT-B-42M-FT 0.0836 0.1053

0.50 ground truth reconstruction recon error prediction pred error 0.10
. - - E - - < T Y,

0.25 RIS 0.05

0.00

AN 0.00
-0.25
-0.05
-0.50

-0.10

Figure 2: Reconstructed and predicted vorticity by the finetuned model

Long-term rollout We test the long-term rollout performance on the PDEArena-NS, PDEBench-
CNS-Low, and PDEBench-CNS-High datasets of our model, and make the comparison with the
statistics in VICON [5]], as shown in Tab. [3] We plot sample trajectories based on FMT-B-42M in

A3l
Table 3: Comparison of long term rollout errors (in L2RE), with best results in bold.

L2RE Case FMT-S-6M FMT-B-42M FMT-L-138M  VICON-88M

Step 1 PA-NS 0.1060 0.0879 0.0745 0.1110
PB-CNS-Low  0.0960 0.0796 0.0557 0.1561
PB-CNS-High 0.0890 0.0450 0.0411 0.0597

Step 5 PA-NS 0.1889 0.1355 0.1292 0.2300
PB-CNS-Low  0.0957 0.0958 0.0872 0.2456
PB-CNS-High 0.1091 0.0992 0.0797 0.1973

Step 10  PA-NS 0.3318 0.2234 0.2088 0.3618
PB-CNS-Low  0.1444 0.1119 0.1004 0.3747
PB-CNS-High 0.1621 0.1218 0.1198 0.5788

Laststep PA-NS 0.5664 0.6134 0.5271 0.7781
PB-CNS-Low  0.2820 0.1298 0.1311 0.3903
PB-CNS-High 0.2130 0.1392 0.1279 0.7117

Average  PA-NS 0.4176 0.3859 0.3048 0.5627
PB-CNS-Low  0.1480 0.1035 0.0960 0.2708
PB-CNS-High 0.1497 0.1092 0.0914 0.3006

In DPOT [13], the authors noticed that injecting noise during training would benefit the long-term
rollout capability because the distribution of model-predicted states can be partially taken into



account. However, they lack a systematic way to evaluate the noise level, which in turn demands
a hyperparameter tuning process. In contrast, our model can deal with any noisy state because the
distribution ¢, k € [0, 1] has been modelled, so that any misaligned predicted states are exposed
during the training implicitly, which in turn minimize the exposure bias [2} [16] during long term
prediction.

Generate ensemble of next states By tuning bridge parameter k3 during the generation, we can
effectively generate an ensemble of possible next state given a noisy initialization ksx3 + (1 — k3)z
and concluded PDE condition h3 from clean past frames (xg, X1, X2).

We sampled one trajectory from PDEArena-NS and tested it on the FMT-B-42M model to generate
a 32-batch size ensemble. The variance of the predicted ensemble is a decreasing function of prior
noise level k3 as shown in Fig. 3| Selected generated samples at different k3 are displayed in

variance across ensemble

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

k3

Figure 3: Average of batch-wise variation of x4 ensemble generated at different x5 noise levels k3.

5 Conclusion

In this paper, we propose a conditional flow marching algorithm with a diffusion forcing scheme to
construct a generative PDE foundation model that predicts future states given a series of past states.
Empowered by a diverse training dataset, it displays excellent few-shot adaptation performance on
unseen isotropic Kolmogorov turbulence; it allows accurate long-term rollout ability by reducing the
exposure bias through generative modeling; and also allows generating reasonable and new physical
dynamics data from noise.

We envision the current generative model to serve as a foundational tool for PDE-related applications
that have a real-world impact. In the future, on the architecture side, we expect advanced Transformer
models to enable better convergence of flow marching target; also we expect a stronger autoencoder
would unlock the base performance bottleneck by minimizing the compression loss. On the ap-
plication side, more generative applications could be explored based on the current model setting,
including but not limited to conditional generation, data assimilation, uncertainty quantification,
sparse reconstruction, etc.
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A Technical Appendices and Supplementary Material

A.1 Derivations for posterior mean g* and continuity equation for location-scale
interpolation kernel

We mentioned that regressing g to uf = (x; — x5)/(1 — ) would recover the posterior-mean
transporting field g*. The claim comes from the continuity equation.
Define the mixture marginal

qt(X) = E(Xo»xl,k) [Qf(X|X07X1)] . (16)

For any smooth test function ¢,

d : , ,
7B [60c)] = Eq, [Vo(xi) - ui] = / Vo) Efuf |xf = x ] g(x)dx (A7)
~—_———
=g (x,t)
Integrating by parts gives

& [omutxax =~ [ 6609 (a0’ (x.0) dx. (18)

because [, ¢(x)g*(x,t)q:(x)n(x)dS = 0, ¢ € C°(9). Since this holds for all ¢, ¢; and g* satisfy
the continuity equation

atQt(X) + V- (Qt(x)g* (Xv t)) =0, (19)
The location-scale interpolation kernel is admissible — it induces a path of densities ¢; that is
transported by the velocity field equal to the posterior mean g* of the sample-wise velocities uf;
smoothness and integrability are valid.

A.2 Dataset description

All the data are compressed to float16 (half) precision to enable the Data Distributed Parallel training
on a 4 H-100 GPU node.

FNO-v We upsampled original data from c1p64 to c3p128 (the 2nd and 3rd dimension are filled
with zero). The dataset size is expanded from 11.1GB to 21GB. Trajectory count: FNO-v5 — 15.4k,
FNO-v4 — 368k, FNO-v3 — 184k.

PDEArena For the PDEArena-NavierStokes(PA-NS) and PDEArena-NavierStokesCond(PA-NSC),
the dataset size is compressed from 60GB to 25GB. For the PDEArena-ShallowWaterEquation(PA-
SWE), it was compressed to 62GB from 76.6GB. Trajectory count: PA-NS — 48k, PA-NSC — 120k,
PA-SWE - 470k.

PDEBench For the PDEBench-CompressibleNavierStokes(PB-CNS), unimportant physical
fields are filtered. Thus, it becomes 65GB compressed from 551GB. For the PDEBench-
ShallowWaterEquation(PB-SWE), it is compressed to 0.3GB from 6.2GB, the 2nd and 3rd dimension
is filled with zero. Trajectory count: PB-CNS — 598k, PB-SWE - 77.6k.
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The Well For the Well-GrayScott(W-GS), we fill the 3rd dimension with zero, ending up with
a 5.3GB data set compressed from 153GB. For the Well-ActiveMatter(W-AM), we downsampled
the data from c3p256 to c3p128, and obtained a compressed 1.1GB dataset from 51.3GB. For the
Well-PlanetShallow WaterEquation(W-SWE), we downsampled the data from ¢3p256,512 to c3p128
and filtered out unimportant fields, so the data size is compressed to 9.3GB from 185.8GB. For
the Well-RayleighBenard(W-RB), we downsampled the data from c3p512,128 to c3p128, and get a
26GB dataset from 342GB original data. For the Well-ShearFlow(W-SF), it is compressed to 14GB
from 547GB by filtering out unimportant fields. For the Well-TurbulentRadiativeLayer2D(W-TR),
it is downsampled from c3p128,384 to c3p128, thus compressed to 0.5GB from 6.9GB. For the
Well-ViscoElasticInstability(W-VE), it is downsampled from c3p512 to c3p128, thus compressed
to 0.5GB from 66GB. Trajectory count: W-GS — 92.2k, W-AM - 13.4k, W-SWE - 96.4k, W-RB —
266.6k, W-SF — 175.6k, W-TR — 7k, W-VE - 5.3k.

A.3 Rollout visualizations

Step 10 Last step

Figure Al: Sampled long-term rollout trajectories from PDEArena-NS by FMT-B-42M. Upper row:
prediction. Bottom row: ground truth.

Step 1 Step 5 Step 10 Last step

Figure A2: Sampled long-term rollout trajectories from PDEBench-CNS-Low by FMT-B-42M.
Upper row: prediction. Bottom row: ground truth.

A.4 Generated ensemble at different ks
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Step 10 Last step

Figure A3: Sampled long-term rollout trajectories from PDEBench-CNS-High by FMT-B-42M.
Upper row: prediction. Bottom row: ground truth.

k3=0.0 sample 1 k3=0.0 sample 2 k3=0.0 sample 3
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Figure A4: Generated ensembles at different k3: 0,0.3,0.6,0.9.
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