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Abstract

We propose an efficient method, In-Context Abstraction Learning (ICAL), to improve
in-context VLM agents from sub-optimal demonstrations and human feedback.
Specifically, given a noisy demonstration for a task in a new domain, LLMs/VLMs are
used to fix inefficient actions and annotate four types of cognitive abstractions. These
abstractions are then refined by executing the trajectory in the environment, guided
by natural language feedback from humans. We demonstrate that this method rapidly
learns useful experience abstractions. Our ICAL agent improves on the state-of-the-
art when tested in dialogue-based instruction following in household environments in
TEACh, action anticipation in Ego4D, and in multimodal autonomous web agents in
VisualWebArena. In TEACh, we improve on the state-of-the-art by 12.6% in goal-
condition success, outperforming LLM agents that use the raw visual demonstrations
as in context examples without abstraction learning. In VisualWebArena, we improve
on the state-of-the-art by an absolute 8.4% and relative 58.74% in task success,
outperforming VLM agents that use hand-written examples. In Ego4D, we improve
6.4 noun and 1.7 action edit distance over few-shot GPT4V. Lastly, we find that
weight fine-tuning and in-context abstraction learning complement each other, with
their combination yielding the best performance.

1 Introduction
Humans acquire skills through language and observation, a model for automated systems. These
systems must learn from verbal instructions and demonstrations to develop rapid learning technologies.
This involves integrating linguistic feedback and demonstrative learning to refine knowledge across
different contexts.

Research has used large language models (LLMs) and visual language models (VLMs) to derive
insights from experiences, improving performance by adding these insights to prompts [6, 10, 7, 8].
However, there remains limitations in task transfer and underutilization of visual data.

We introduce a new method, In-Context Abstraction Learning (ICAL), for teaching VLMs using sub-
optimal demonstrations and feedback. ICAL helps VLMs create and refine multimodal abstractions,
aiding them in understanding task dynamics and critical knowledge [11, 1, 2, 4].

2 In-Context Abstraction Learning (ICAL)
ICAL starts by obtaining a noisy trajectory. It has two phases: (1) the abstraction phase Fabstract,
where a VLM corrects the trajectory and adds language comments in isolation (Section 2.1), and (2)
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Figure 1: ICAL transforms raw experience into useful abstractions for in-context learning. Top:
Given a noisy trajectory, It prompts a VLM to optimize actions and add language annotations. The
optimized trajectory is executed, incorporating human feedback on failures. Successful examples are
stored for future VLM in-context action generation.

the human-in-the-loop phase Fhitl, where the trajectory is executed with human feedback to refine it
(Section 2.2). Each corrected trajectory is stored as a contextual reference for learning and inference.

2.1 VLM-driven Abstraction Generation
The abstraction function Fabstract processes trajectory ξnoisy into an optimized sequence ξopt with
language abstractions L based on the instruction I and previous successful examples {e1, . . . , ek}:
Fabstract : (ξnoisy, I, {e1, . . . , ek}) → (ξopt, L). Given a noisy demonstration of actions and images,
the VLM is prompted to annotate subgoals [2], causal relationships [11], state changes [1], and
relevant state [4], highlighting important demonstration aspects.

2.2 Human-in-the-loop Abstraction Verification
Human-in-the-loop learning involves executing the optimized trajectory ξopt in the environment. A
human monitors and provides feedback H(at, ot) on failures. The VLM is then prompted to revise
the trajectory and annotations: Ξupdate(ξopt, H(at, ot), L, I, {e1, ..., ek}) → ξ′

opt, L′. The environment
is reset after feedback, and the process repeats until the task is successful or a limit is reached.

2.3 Agent Deployment After Example Learning
Once examples are learned, the agent uses them to perform new tasks. The VLM generates actions
based on the new instruction I, visual and textual state, and retrieving the top K ICAL examples
from the learned set E to guide action generation, with similarity scores based on input instruction,
textual, and visual state features. Implementation uses gpt-4-1106-vision-preview for the text
generation, unless otherwise noted.

3 Experiments
TEACh Evaluation ICAL shows continual improvement in validation task success as more
examples are learned. ICAL outperforms baseline approaches significantly, achieving a 17.9%
absolute improvement in task success rate over unprocessed demonstrations. ICAL outperforms the
handwritten examples used by the existing state-of-the-art in TEACh by 12.6% in goal condition
success and 0.6% in task success (Table 2).

Improving with Fine-Tuning Fine-tuning the LLM on ICAL examples further improves per-
formance, especially when combined with retrieval-augmented generation, indicating the utility of
integrating learned examples in training (Table 5).

Ablation Studies Ablation studies confirm that each component of ICAL—from the abstraction
phase to the human-in-the-loop phase—is crucial for achieving the observed improvements in
performance (Table 2).
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Figure 2: Evaluation of the TEACh
unseen validation set using GPT-3.5-
1106. Visual demos utilize an inverse
dynamics model, while Kinesthetic de-
mos are labeled with ground truth ac-
tions. GC = goal-condition success

Success GC

HELPER handwritten [9] 34.5 36.7
Zero-Shot CoT [6] 11.8 24.6
Raw Visual Demos 17.2 26.6
Raw Kinesthetic Demos 26.5 29.5
ICAL (ours) 35.1 49.3

w/o abstraction phase 29.4 44.9
w/o human-in-the-loop 29.9 41.0
w/ re-ranking [12] 35.3 51.7
w/ GPT4 41.7 63.6

Figure 3: Evaluation on Ego4D Long
Term Action Anticipation unseen valida-
tion subset. ICAL does not use human-
in-the-loop due to the passive nature of
this task.

ED@(Z=20)
Verb Noun Action

Supervised [3] 0.725 0.739 0.923
639x more data

Few-shot CoT [13] 0.787 0.757 0.941
ICAL (ours) 0.780 0.693 0.924

Figure 4: Evaluation results on Visu-
alWebArena. Ablations are done on a
reduced 257 episodes.

Seen Unseen Avg.

GPT4V+SoM [5] 16.3 14.1 14.3
ICAL (ours) 38.8 20.9 22.7

Ablations
GPT4V+SoM [5] 11.5 12.9 12.7
ICAL (ours) 28.0 21.6 22.2

w/o image 28.0 17.3 19.0
w/ full trajectory 57.7 21.6 25.5

Figure 5: Results on finetuning the
LLM on the ICAL demonstrations. The
model used is GPT3.5-turbo-1106.

Success GC

zero-shot 11.8 24.6
retrieval 35.1 49.3
finetuned 23.2 40.3
finetuned + retrieval 35.8 54.2

Ego4D Evaluation See Ta-
ble 3. ICAL demonstrates
superior few-shot performance
on Ego4D action anticipation
compared to hand-written few-
shot GPT4V that uses chain of
thought [13] by 6.4 noun and
1.7 action edit distance. ICAL
also remains competitive with
the fully supervised baseline [3]
despite using 639x less training
data. We find GPT4V video pro-
cessing to have the most trouble
with verb prediction.

Visual Web Navigation Eval-
uation ICAL demonstrates
state-of-the-art performance on
VisualWebArena, outperforming
previous best methods by an
absolute 8.4% (relative 58.74%)
in success rate (Table 4).
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