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ABSTRACT

In this paper, we consider offline reinforcement learning (RL) problems. Within
this setting, posterior sampling has been rarely used, perhaps partly due to its
explorative nature. The only work using posterior sampling for offline RL that
we are aware of is the model-based posterior sampling of [US21]. However, this
framework does not permit any tractable algorithm (not even in the linear models)
where simulations of posterior samples become challenging, especially in high
dimensions. In addition, the algorithm only admits a weak form of guarantees –
Bayesian sub-optimality bounds which depend on the prior distribution. To ad-
dress these problems, we propose and analyze the use of Markov Chain Monte
Carlo methods for offline RL. We show that for low-rank Markov decision pro-
cesses (MDPs), using the Langevin Monte Carlo (LMC) algorithm, our algorithm
obtains the (frequentist) sub-optimality bound that competes against any compara-
tor policy π and interpolates between Õ(H2d

√
Cπ/K) and Õ(H2

√
dCπ/K),

where Cπ is the concentrability coefficient of π, d is the dimension of the linear
feature, H is the episode length, and K is the number of episodes in the offline
data. For general MDPs with overparameterized neural network function approxi-
mation, we show that our LMC-based algorithm obtains the sub-optimality bounds
of Õ(H2.5d̃

√
Cπ/K), where d̃ is the effective dimension of the neural network.

Finally, we collaborate our findings with numerical evaluations to demonstrate
that LMC-based algorithms could be both efficient and competitive for offline RL
in high dimensions.

1 INTRODUCTION

Offline reinforcement learning (RL) [LGR12] is an important paradigm of RL that finds vast appli-
cations in a number of critical domains where online experimentation is costly or dangerous such as
healthcare [GJK+19; NBW21], econometrics [KT18; AW21], and robotics [LKTF20]. Formally, a
learner is presented with a fixed dataset of tuples of {current state, action, reward, next state} col-
lected by some (unknown) behavior policy during prior interaction with the environment. The goal
of offline RL is then to learn a “good” policy out of the offline data without any online interaction.
The main challenge toward this goal, due to the lack of exploration capability, is the distribution
shift issue, where the distribution induced by the offline data is different from that induced by a
comparator policy that the learner wants to compete against.

The approaches to addressing offline RL can be broadly divided into two categories. Maximum like-
lihood methods with pessimistic adjustments induce pessimism by keeping the model close to those
supported by the offline data. These were adopted in various forms such as lower-confidence bounds
(LCB) [JYW21; RZM+21], version space [US21; XCJ+21], pessimistic regularization [XCJ+21]
and primal-dual methods [CJ22; ZHH+22; RZY+22; OPZZ23]. The second approach is based on
the Bayesian perspective that relies on samples drawn from a posterior distribution of a statistical
model of a target quantity [US21]. This is called posterior sampling (i.e. Thompson sampling).
Both of these approaches leverage the idea (either explicitly or implicitly) that more uncertain es-
timates should be more conservative as the offline data is static. In addition, these approaches
complement each other and provide important theoretical guarantees. However, while maximum
likelihood methods have been studied extensively for offline RL, posterior sampling has been rarely
used for offline RL, perhaps partly due to its explorative nature. Note that this is in stark con-
trast to online RL settings where posterior sampling has been used and analyzed extensively, e.g.,
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see [RVR14; AJ17; Zha22; DMZZ21; ZXZ+22; AZ22]. Indeed, the only work using posterior
sampling for offline RL that we are aware of is the model-based posterior sampling of [US21].

However, there are several defects with the current posterior sampling framework for offline RL,
in particular, that of [US21]. First, the model-based posterior sampling of [US21] does not permit
any tractable algorithms, not even in the linear case. In addition, [US21] only provide Bayesian
sub-optimality bounds (averages over a known prior distribution of the model) which are a weaker
guarantee than frequentist (i.e., worst-case) sub-optimality bounds. The objective of our paper is
precisely to close this gap. To address this problem, we instead consider a value-based posterior
sampling framework for offline RL and propose the use of Langevin Monte Carlo (LMC) [WT11] to
simulate the samples from the target posterior distribution. While LMC has also been used in online
RL settings [MPM+20; XZM+22; HZD23], to the best of our knowledge, the present work is the
first to study LMC for offline RL. Our goal is then to propose tractable algorithms and understand
the theoretical aspects of using posterior sampling via LMC for offline RL.

Summary of Contributions and Results. We summarize our contributions and results as follows.

• We introduce PPS (pessimistic posterior sampling) – a generic (value-based) posterior sam-
pling framework for offline RL, where we explicitly incorporate pessimism into posterior
sampling by simply taking multiple posterior samples and acting pessimistically according
to them. Since posterior sampling in our framework is in general still intractable, we pro-
pose to use Langevin Monte Carlo (LMC) to draw approximate posterior samples, thus the
LMC-PPS framework.

• For linear (low-rank) MDPs, we show that LMC-PPS obtains the sub-optimality bound
that interpolates between the worst-case scenario of Õ(H2d

√
Cπ/K) and the best-case

scenario of Õ(H2
√
dCπ/K) (depending on the empirical data), where Cπ is the concen-

trability coefficient of any comparator policy π, d is the dimension of the linear feature, H
is the episode length, and K is the number of episodes in the offline data. As a concrete
comparison, in tabular MDPs where d = SA with S being the state space cardinality, and
A the number of actions, the bound in the best-case scenario above nearly matches the

lower bound Ω(
√

H3Smin{Cπ,A}
K ) [XJW+21] (up to a gap of O(

√
H) due to the variance-

agnostic nature of the current algorithm). However, there is still a gap of O(
√
dH) for the

worst-case scenario bounds that we left as an open problem.
• To showcase the applicability of the LMC-PPS framework, we also consider a more practi-

cal setting of non-linear MDPs where we use neural networks as value function approx-
imation. Different from the exact posterior sampling, the use of LMC in this context
adds complications that can compromise theoretical guarantees. We address this prob-
lem with a novel algorithmic design using auxiliary linear models. We show that, under
standard assumptions, if the network is over-parameterized, LMC-PPS achieves a bound of
H2.5d̃

√
Cπ/K, where d̃ is the effective dimension of the neural network. This improves

the bound of [NTA23] by a factor of
√
Cπ , due to our more refined analysis.

• In addition, we corroborate our theoretical results with empirical evaluations showing that
LMC-PPS could be both efficient and competitive for offline RL.

2 PRELIMINARIES

2.1 EPISODIC TIME-INHOMOGENOUS MARKOV DECISION PROCESSES

We consider an episodic time-inhomogeneous Markov decision process (MDP) M =
(S,A, P, r,H, d1), where S is the state space, A is the action space, P = {Ph}h∈[H] ∈ {S ×A →
∆(S)}H are the transition probabilities 1, r = {rh}h∈[H] ∈ {S × A → [0, 1]}H is the mean
reward functions, H ∈ N is the horizon and d1 ∈ {S × A → [0, 1]} is the initial state distri-
bution. For simplicity, we assume that |S| is finite but could be exponentially large. 2 A policy
π = {πh}Hh=1 ∈ Πall := {S → ∆(A)}H maps each state to a distribution over the action space at
each h. The state value function V π

h ∈ RS and the action-state value function Qπ
h ∈ RS×A at each h

1Here ∆(X ) denotes the set of probabilities over X and [n] := {1, . . . , n}.
2As large as the total number of atoms in the observable universe 1082.
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are defined as Qπ
h(s, a) = Eπ[

∑H
t=h rt|sh = s, ah = a], and V π

h (s) = Ea∼π(·|s) [Q
π
h(s, a)], where

the expectation Eπ is taken w.r.t. the randomness of the trajectory induced by π. For any V : S → R,
we define the Bellman operator at timestep h as (BhV )(s, a) := rh(s, a) + (PhV )(s, a), where Ph

is the transition operator defined as (PhV )(s, a) := Es′∼Ph(·|s,a)[V (s′)]. We define an optimal
policy π∗ as any policy that yields the optimal value function, i.e. V π∗

h (s) = supπ V
π
h (s) for any

(s, h) ∈ S× [H]. The occupancy density dπh(s, a) := Pr((sh, ah) = (s, a)|π) is the probability that
(s, a) is reached by policy π at timestep h.

Data collection. Consider a fixed dataset D = {(sth, ath, rth, sth+1)}h∈[H],t∈[K] generated a priori
by some unknown behaviour policy {µt

h}h∈[H],t∈[K], where K is the total number of trajectories,
ath ∼ µt

h(·|sth), sth+1 ∼ Ph(·|sth, ath) for any (t, h) ∈ [K] × [H]. Define µ = 1
K

∑K
k=1 µ

k and

dµh = 1
K

∑K
k=1 d

µk

h . Here µt is allowed to depend no {(sih, aih, rih)}
i∈[t−1]
h∈[H] ,∀t ∈ [K]. This setting

of adaptively collected data covers a common practice where the offline data is collected by using
some adaptive experimentation [ZRAZ21]. 3

The value suboptimality of policy π ∈ Πall is defined as:

SubOptπ(π̂) := Es1∼d1
[SubOptπ(π̂; s1)] , where SubOptπ(π̂; s1) := V π

1 (s1)− V π̂
1 (s1).

Additional Notations. For any square real-valued matrix A, λmin(A) and λmax(A) denotes the
smallest and largest eigenvalue of A, respectively. Denote κ(A) the condition number of A, i.e.,
κ(A) = λmax(A)

λmin(A) . Let ∥x∥A :=
√
xTAx. Denote x ≲ y to mean x = O(y). We write x = om(1) to

mean that x = O(m−α) for some α > 0. Let Φ(·) be the c.d.f. of the standard normal distribution.
Let Õ(·) be O(·) with hidden log factors.

2.2 OFFLINE RL WITH VALUE FUNCTION APPROXIMATIONS

We consider large state space settings where we employ some function classes to estimate the value
functions. In particular, in this paper, we consider linear function approximation and (overparame-
terized) neural network function approximation.

2.2.1 LOW-RANK MDPS

For linear function approximation, we consider low-rank (linear) MDPs which have been exten-
sively studied in offline [JYW21; YDWW22; NTYG+22] and online setting [JYWJ20; AKKS20;
MCK+21].
Definition 1 (Low-rank MDP). An MDP is said to be low-rank of d if for all h ∈ [H], there exist a
known feature map ϕh : S ×A → Rd, a reward parameter wh ∈ Rd, and a mapping ρh : S → Rd

+
such that ∥ρh(s)∥1 = 1,∀s such that

rh(s, a) = ⟨ϕh(s, a), wh⟩, Ph(s
′|s, a) = ⟨ϕh(s, a), ρh(s

′)⟩,∀(s, a, s′, h).

where sup(s,a) ∥ϕh(s, a)∥2 ≤ 1, ∥wh∥2 ≤
√
d, and |

∫
ρh(s)v(s)ds| ≤

√
d∥v∥∞.

2.2.2 GENERAL MDPS WITH NEURAL FUNCTION APPROXIMATION

We also consider a more general setting where the underlying MDP does not admit a low-rank
structure and we need to resort to a more complex function approximation for learning the value
functions. In particular, we consider the setting where we use a ReLU neural network as a function
approximator. For simplicity, we denote X := S × A and view it as a subset of Rd; we also denote
xt
h = (sth, a

t
h) and x = (s, a) throughout the paper. Without loss of generality (w.l.o.g.), we assume

X ⊂ Sd−1 := {x ∈ Rd : ∥x∥2 = 1}. We consider a standard two-layer neural network:

f(x; θ) := f(x;W, b) =
1√
m

m∑
i=1

biσ(w
T
i x), (1)

where m is an even number, σ(·) = max{·, 0} is the ReLU activation function, bi ∈ R ∀i ∈
{1, . . . ,m}, and θ = (wT

1 , . . . , w
T
m)T ∈ Rmd.

3When µ1 = · · · = µK , it recovers the setting of independent episodes in [DJW20].
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Symmetric initialization. During training, we initialize (θ, b) via the symmetric initialization
scheme [GCL+19] as follows: For any i ≤ m

2 , wi = wm
2 +i ∼ N (0, Id/d), and bm

2 +i = −bi ∼
Unif({−1, 1}). 4 For simplicity, during training we fix all bi after initialization and only optimize
over θ, thus we write f(x; θ, b) as f(x; θ). Let Fnn(m) denote the set of such f(x; θ). Denote
g(x; θ) = ∇θf(x; θ) ∈ Rmd, and let θ0 be the initial parameters of θ. We allow the network to be
overparameterized in the sense that the width m can be sufficiently larger than the sample size K.

Our analysis is motivated by the recent developments in understanding the dynamics of (S)GD in
overparameterized neural networks. Given the initialization above, and sufficient parameterization,
we can show that the iterates of (S)GD tend to stay close to its initialization; thus the first-order
Taylor expansion f(x; θ) ≈ f(x; θ0)+⟨g(x; θ0), θ−θ0⟩ can be used as a proxy to track the dynamics
of the training weights [ADH+19; AZLS19; HN19; CG19; Bel21]. This behaviour can be captured
in the framework of Neural Tangent Kernel (NTK) [JGH18].
Definition 2 (NTK [JGH18]). Let σ′(u) = 1{u ≥ 0}. The NTK kernel Kntk : X × X → R is
defined as

Kntk(x, x
′) = Ew∼N (0,Id/d)

〈
xσ′(wTx), x′σ′(wTx′)

〉
.

Let Hntk be the reproducing kernel Hilbert space (RKHS) induced by Kntk. Note that Kntk is a
universal kernel [JTX20], thusHntk is dense in the space of continuous functions on X [RR08].

3 POSTERIOR SAMPLING FOR OFFLINE REINFORCEMENT LEARNING

We consider a generic value-based posterior sampling framework for offline RL below. The main
challenge for the algorithmic design is how to ensure pessimism in posterior sampling (PS). The only
work about posterior sampling for offline RL that we are aware of is the model-based PS of [US21].
A key advantage of the model-based PS of [US21] is that the algorithm does not require explicit
pessimism enforcement. That is, pessimism is implicit from posterior sampling. However, the
implicit pessimism emerges at the cost of sacrificing the frequentist (i.e., worst-case) sub-optimality
bounds for the Bayesian sub-optimality bounds (averages over a known prior distribution).

Algorithm 1 PPS: Pessimistic Posterior Sampling for offline RL
Input: Offline data D, number of posterior samples M , truncation parameter ι

1: Initialize ṼH+1 ≡ 0
2: for h = H, . . . , 1 do
3: {f̃ i

h}i∈[M ]
i.i.d.∼ Prh(·|D, Ṽh+1) ▷ Posterior sampling

4: Q̃h(·, ·)← min{min
i∈[M ]

f̃ i
h(·, ·), (H − h+ 1)(1 + ι)}+ ▷ Pessimism

5: π̃h ← argmaxπh∈Π⟨Q̃h, πh⟩ and Ṽh(·)← ⟨Q̃h(·, ·), π̃h(·|·)⟩.
6: end for

Output: π̃ = (π̃1, . . . , π̃H)

To obtain high probability frequentist bounds for PS, we consider a simple algorithmic framework
that naturally incorporates pessimism into posterior sampling, namely Pessimistic Posterior Sam-
pling (PPS). We present the pseudo-code of PPS in Algorithm 1. At each timestep h ∈ [H], given
the offline data D and the previous value estimate Ṽh+1, PPS constructs a posterior distribution
Prh(·|D, Ṽh+1) over the function space {S × A → R}. To enforce pessimism into posterior sam-
pling, PPS draws several posterior samples and acts pessimistically with respect to them. 5

However, exact sampling from the data posterior Prh(·|D, Ṽh+1) is usually intractable in high di-
mensions and an MCMC algorithm has to be used. Consequently, the main objective and contribu-
tion of our paper is to devise new algorithms and analyses by considering the additional complexity

4This symmetric initialization scheme makes f(x; θ0) = 0 and ⟨g(x; θ0), θ0⟩ = 0 for any x.
5It’s worth noting that the idea of taking multiple samples and acting accordingly (either optimistically for

online RL and pessimistically for offline RL) in the PPS framework of Algorithm 1 is not new as it has been
explored, especially in the context of reward-perturbing algorithms [KZS+20; ICN+21; TBC+22; NTA23].
Thus, it would be best to view the PPS framework above as a natural protocol that we consider to study
Langevin Monte Carlo for offline RL.

4



Under review as a conference paper at ICLR 2024

of using approximate samples of the data posterior. Specifically, we consider Langevin Monte Carlo
(LMC) 6, a gradient-based MCMC scheme to draw approximate samples from the data posterior. In
spirit, LMC simply performs noisy gradient descent to minimize squared value errors. However, in
high dimensions, directly applying LMC can compromise the convergence guarantees. We describe
in detail how we use LMC in low-rank MDPs and general MDPs in the following subsections.

3.1 LMC FOR LOW-RANK MDPS

We consider low-rank MDPs defined in Definition 1 with known feature maps ϕh. The LMC frame-
work for approximate posterior sampling is presented in Algorithm 2. In particular, given the pre-
vious value estimate Ṽh+1 and the offline data D, we construct the regularized squared temporal-
difference (TD) loss Lh defined in Line 1. We obtain approximate posterior samples by simply
adding controlled Gaussian noise to the gradient update to minimize the loss Lh (Line 4). 7 We dub
Lin-LMC-PPS as the combination of Lin-LMC in Algorithm 2 and PPS of Algorithm 1.

Algorithm 2 Lin-LMC

Input: Offline data D, previous value estimate Ṽh+1, regularization parameter λ, number of poste-
rior samples M , learning rate η, noise variance τ , iteration number T

1: Set Lh(θ) :=
∑K

k=1(ϕh(s
k
h, a

k
h)

T θ − rkh − Ṽh+1(s
k
h+1))

2 + λ∥θ∥22 and initialize θih,0 ≡ 0,∀i.
2: for i = 1, . . . ,M do
3: for t = 1, . . . , T do
4: θih,t ← θih,t−1 + η∇Lh(θ

i
h,t−1) +

√
2ητϵt where ϵt ∼ N (0, Id)

5: end for
6: Set f̃ i

h = ⟨ϕh(·, ·), θih,T ⟩
7: end for

Output: {f̃ i
h}i∈[M ]

3.2 LMC FOR GENERAL MDPS WITH NEURAL FUNCTION APPROXIMATION

We now consider an LMC-based approximate posterior sampling scheme for general MDPs, where
the action-value functions are approximated by overparameterized neural networks defined in Equa-
tion (1). The pseudo-code for this algorithm is presented in Algorithm 3. Designing an LMC-
based scheme for this setting requires more subtlety than for low-rank MDPs. First of all, for each
timestep h, instead of using the data from all episodes, we only use data from the set of episodes
Ih := [(H − h)K ′ + 1, . . . , (H − h + 1)K ′] with K ′ := ⌊K/H⌋. We adopt this data splitting
technique from [NTA23] to avoid the complications of the data dependence induced in the neural
network setting. We now explain in detail the other components of the algorithm as follows.

It is tempting to directly apply LMC to the squared TD loss Lh(θ) :=
∑

k∈Ih
(f(xk

h; θ) − rkh −
Ṽh+1(s

k
h+1))

2+λ∥θ−θh,0∥22, just like Algorithm 2. While, in practice, this may be a natural choice,
it poses two main technical difficulties for the theoretical analysis in the overparameterized setting:
(i) a uniform convergence argument cannot apply to an overparameterized setting, and (ii) sufficient
pessimism moves the network out of the NTK regime. For (i), since Ṽh+1 depends on (skh, a

k
h) if

we use up all data for computing Ṽh+1, we typically need to construct an infinity-norm cover of the
function class of Ṽh+1 in analyzing the regression rkh + Ṽh+1(s

k
h+1) [JYW21]. However, since the

class of Ṽh+1 is an overparameterized neural network – whose complexity scales polynomially with
the network width m, this analysis results in a vacuous bound in the overparameterized setting where
m also scales in a high-order polynomial of K. For (ii), since we will need to maintain sufficient
pessimism, we need the noise level in LMC to be sufficiently large – in particular, τ = Ω(1).
However, adding that much noise directly to the network weights during the training causes the
weights to deviate from the initial value θ0 as much as

√
τmd (in 2-norm), effectively moving the

network dynamics out of the NTK regime where the weights stay close to the initial values.
6It is possible to use the Metropolis-Adjusted Langevin Algorithm to correct the bias introduced by LMC.

As this bias can be controlled in our settings, to avoid any further complications, we stick with LMC to draw
approximate posterior samples.

7In this case, Prh(θ|D, Ṽh+1) ∝ exp (−Lh(θ)).
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To overcome this issue, we decouple neural networking training and weight perturbation into two
separate phases. The first phase (Line 1-Line 5) simply trains the neural network with standard
gradient descent (GD) to minimize the regularized squared TD loss Lh (defined in Line 2). Given
the trained weight θh,T1

from the first phase, in the second phase (Line 6-Line 16), we train an
auxiliary linear model flin(·, ·; θ) := ⟨g(·, ·; θh,T1

), θ⟩ on the offline data using the standard gradient
descent (Line 8-Line 10) to obtain θlinh,T2

and using LMC (Line 12-Line 14) to obtain θlin,ih,T2
for each

i ∈ [N ]. The intuition is to simulate perturbations in the neural network that would have been caused
by exact posterior sampling, without actually perturbing the network weights during the training in
the first phase. The perturbation ⟨g(·, ·; θh), θlin,ih,T2

− θlinh ⟩ is then augmented to the trained network

f(·, ·; θh,T1
) to form an approximate posterior sample f̃ i

h (Line 15). Finally, we dub the combination
of PPS and Neural-LMC as Neural-LMC-PPS.

Algorithm 3 Neural-LMC

Input: Offline data D, previous value estimate Ṽh+1, regularization parameter λ, number of poste-
rior samples M , learning rates η1, η2, noise variance τ , iteration numbers T1, T2

1: PHASE I: Standard network training with GD
2: Set Lh(θ) =

∑
k∈Ih

(f(xk
h; θ)−rkh− Ṽh+1(s

k
h+1))

2+λ∥θ−θh,0∥22 and where θh,0 is initialized
using the symmetric scheme

3: for t = 1, . . . , T1 do
4: θh,t ← θh,t−1 + η1∇Lh(θh,t−1)
5: end for
6: PHASE II: Auxillary linear model training with LMC
7: Set Llin

h (θ)←
∑
k∈Ih

(θT g(xk
h; θh,T1)− rkh − Ṽh+1(s

k
h+1))

2 + λ∥θ∥22, and θlin,ih,0 = θlinh,0 ≡ 0,∀i

8: for t = 1, . . . , T2 do
9: θlinh,t ← θlinh,t−1 + η∇Llin

h (θlinh,t−1)
10: end for
11: for i = 1, . . . ,M do
12: for t = 1, . . . , T2 do
13: θlin,ih,t ← θlin,ih,t−1 + η∇Llin

h (θlin,ih,t−1) +
√
2ητϵt where ϵt ∼ N (0, Imd)

14: end for
15: f̃ i

h(·, ·)← f(·, ·; θh) + ⟨g(·, ·; θh,T1
), θlin,ih,T2

− θlinh,T2
⟩

16: end for
Output: {f̃ i

h}i∈[M ]

4 THEORETICAL ANALYSIS OF LMC-PPS FOR OFFLINE RL
In this section, we provide the sub-optimality analysis of (Lin/Neural)-LMC-PPS algorithms. To
measure the distribution mismatch between a comparator policy π and the behavior policy µ, we
adopt the single-policy concentrability coefficient [LSAB19; RZM+21].
Definition 3 (Single-policy concentrability coefficient). For any policy π, the (single-policy) con-
centrability coefficient Cπ of π is defined by: Cπ := suph,s,a

dπ
h(s,a)

dµ(s,a) .

Cπ is fully characterized by the MDP, comparator policy π, and the behavior policy µ. It is weaker
than the classic uniform concentrability coefficient [SM05] and has been used extensively in recent
offline RL works [YW21; NTGNV22; NTYG+22; JRYW22; NTA23; LSC+22].

4.1 GUARANTEES OF LIN-LMC-PPS

Theorem 1. Fix any δ > 0. Consider the low-rank MDP in Definition 1 and let π̃ be the policy re-
turned by Lin-LMC-PPS, in which we set M = ln H|S|

δ
/ ln 1

1−Φ(−1)
, T ≥ − ln 4

ln(1−(2maxh κ(Λh))−1)
≈

κ(Λh),
√
τ = Õ(H

√
dmax{

√
λ, 1}), ηλ < 1/2, ι ≥ (1 − 2ηλ)THK/

√
λ, where Λh := λI +∑K

k=1 ϕh(s
k
h, a

k
h)ϕh(s

k
h, a

k
h)

T . Then with probability at least 1− 4Hδ, for any π ∈ Πall, we have

SubOptπ(π̃) ≲

√
Cπτ ln(KHM/δ)

K

H∑
h=1

√√√√ d∑
i=1

λi

λ+ λi
+ ζopt + ζest,
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where {λi}i∈[d] are the eigenvalues of
∑K

k=1 ϕh(s
k
h, a

k
h)ϕh(s

k
h, a

k
h)

T , Cπ is defined in Definition 3, ζest =

H2
√

Cπ
K

ln lnKCπH2

δ
+H

√
H ln(1/δ)

K
, and ζopt =

√
Cπ(1− 2ηλ)T H2(1+ι)K√

λ
.

Interpretation. The optimization error ζopt can be driven to be arbitrarily small with large T , thus
not a dominant term. Several remarks are in order. Theorem 1 provides a family of upper bounds on
the sub-optimality of the learned policy π̃, indexed by the choice of the comparator policy π ∈ Πall.
This is meaningful in practice as there is no reason to expect that Cπ∗ is a small quantity given the
offline data is given a prior. Note that the bound holds with high probability and is in the frequentist
(worst-case) nature, which is stronger than the expected Bayesian bound of [US21].

Tight confidence bounds. An intriguing property is that the confidence parameter
√
τ scales in

the order of
√
d, instead of the order of d as in the LCB-based methods [JYW21]. 8 This

√
d

improvement comes from the different ways PPS enforces pessimism. In the LCB-based algorithm,
pessimism is incorporated by explicitly subtracting a bonus term from the regression estimate. This
enlarges the function space from a linear space to a quadratic space. This function enlargement
results in a sub-optimal d scaling, due to that the bonus function is data-dependent and we need a
uniform convergence argument over this random bonus to leverage the concentration phenomenon.
In contrast, posterior samples in Lin-LMC-PPS do not enlarge the function space, thus saving the√
d factor from the uniform convergence argument. This tight confidence makes it possible to have

a near-optimal bound in some “begnin” regimes, as discussed in the following.

Interpolating bounds. The bounds in Theorem 1 is data-adaptive in the sense that it depends
on the scaling of the eigenvalues {λi}i∈[d] of the unregularized empirical covariance matrix∑K

k=1 ϕh(s
k
h, a

k
h)ϕh(s

k
h, a

k
h)

T . In particular, the bounds interpolate from the worst-case-scenario
bound Õ(H2d

√
Cπ/K) to the best-case-scenario bound Õ(H2

√
dCπ/K) (when

∑d
i=1 λi =

Õ(1), which could occur in high dimensions when d ≫ K). As a concrete comparison, in tabular
MDPs, our bounds translate into Õ(H2SA

√
Cπ/K) for the worst case and Õ(H2

√
SACπ/K) for

the best case, which nearly match the lower bound Ω(
√

H3Smin{Cπ,A}
K ) [XJW+21]. 9

4.2 GUARANTEES OF NEURAL-LMC-PPS

Our sub-optimality bounds depend on a notion of effective dimension.
Definition 4 (Effective dimension). For any h ∈ [H] and some index set Ih ⊆ [K], the effective
dimension of the NTK matrix on data {xk

h}k∈Ih
is defined as

d̃h :=
ln det(IK +Kh/λ)

ln(1 + |Ih|/λ)
,∀h ∈ [H], and d̃ := max

h∈[H]
d̃h,

where Kh := [Kntk(x
i
h, x

j
h)]i,j∈Ih

is the Gram matrix of Kntk on the data {xk
h}k∈Ih

.

The effective dimension is widely used in contextual bandits [SKKS09; VKM+13; ZLG20; CG17]
and in RL [YW20; KKL+20]. We define the function class

Q∗ :=

{
x 7→

∫
Rd

c(w)Txσ′(wTx)dw : c(w) ∈ {Rd → R} and sup
w

∥c(w)∥2
p0(w)

< B

}
where B > 0 is some absolute constant and p0 is the probability density function of N (0, Id/d).

Note that Q∗ is a dense subset of Hntk [GCL+19, Lemma C.1] when B = ∞. To interpret our
results in the present paper, it’s convenient to view B as fixed while letting K become large.

We impose an assumption on the closeness of the Bellman operator.
Assumption 4.1 (Approximate completeness). There exist ξh ≥ 0,∀h ∈ [H] such that

sup
f∈Fnn

inf
g∈Q∗

∥Bhf − g∥∞ ≤ ξh,∀h ∈ [H].

8With a refined analysis using the advantage-reference decomposition, [XZS+22] showed that the LCB-
based algorithm also needs the confidence parameter in the order of

√
d. However, this relies on an explorative

assumption, i.e., minh∈[H] λmin

(
E(sh,ah)∼d

µ
h

[
ϕh(sh, ah)ϕh(sh, ah)

T
])

> 0, which we do not require.
9The gap O(

√
H) could potentially be closed by using the variance-weighted regression in [YDWW22;

XZS+22] which could be added to our current algorithms.
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Figure 1: Value suboptimality (in log scale) in a hard instance of linear MDP as a function of sample
size K for episode lengths H ∈ {20, 30, 50, 80}. Four methods: GreedyVI, PEVI, Thompson
sampling, and Lin-LMC-PPS (ours) are presented.

Assumption 4.1 ensures that Bh applied in the class of overparameterized neural networks can be
captured by infinite-width neural network up to some error ξ. This is a common assumption in the
literature of RL with neural function approximation [CYLW19; WSY20; YJW+20; YWW22].

Define Λh := λI +
∑

k∈Ih
g(xk

h; θh)g(x
k
h; θh)

T and Λ̄h := λI +
∑

k∈Ih
g(xk

h; θ0)g(x
k
h; θ0)

T .

Theorem 2. Fix any δ > 0. Let π̃ be the policy returned by Neural-LMC-PPS, in which we set m ≳
poly(K ′, H, d,B, λ, 1/δ), ι ≳ (1 − 2ηλmax(Λ̄h))

T1λ−1/2K ′H(1 + ι) + om(1), η1 ≤ 1
2λmax(Λ̄h)

,

η2 = 1
4λmax(Λh)

, T2 ≥ ln 2
ln(1+ 1

2κ(Λh)−1
)
, M = ln H|S|

δ / ln 1
1−Φ(−1) , λ = 1 + 1

K′ , and
√
τ =

4H
√
d̃ ln(1 +K ′/λ) + 1 + 2 ln(3H/δ)+B

√
λ+ ξ

√
K ′/λ+om(1). Then, under Assumption 4.1,

with probability at least 1 − 4δ over the randomness of the offline data and network initialization,
for any π ∈ Πall such that Cπ <∞, we have

SubOptπ(π̃) ≲ H

√
τ d̃Cπ

K′ ln
MK′H

δ
ln(1 +

K′

δ
) + ζopt + ζmsp + ζest,

where ζopt = H(1 + ι)
√

CπK′

λ

∑H
h=1(1− 2η1λmin(Λ̄h))

T1 , ζmsp =
√

Cπ
K′

∑H
h=1 ξh + om(1), and ζest =

H(1+ι)√
K′ (H

√
Cπ ln ln 4K′CπH2

δ
+

√
2 + 2

√
H ln 1

δ
).

The bound consists of four main terms. The first term is the excess error and is of main interest
on account of being the dominating term. The second term ζopt is the optimization error of gra-
dient descent which can be made arbitrarily small with large T1. The third term stems from the
misspecification in the representational assumption of the Bellman operator (Assumption 4.1) and
the approximation error of a neural network to its first-order Taylor expansion in the NTK regime.
The last term ζest is a low-order estimation error. If we assume that there is no misspecification
error, i.e., ξh = 0,∀h ∈ [H], then SubOptπ(π̃) = Õ(H2d̃

√
Cπ/K ′). Note that our upper bounds

do not scale with the (neural tangent) feature dimension md, which is polynomial in the sample
size K. Instead, our bound scales polynomially with the effective dimension d̃, which is a data-
dependent quantity. This is in contrast with the bounds of Langevin-type algorithms for (online)
bandits with finite-dimensional parametric function classes, which scale polynomially with feature
dimension [MPM+20; XZM+22]. Compared to the bound of [NTA23] that also considers offline
RL in general MDPs with overparameterized neural network function approximation, our bound
improves by a factor of

√
Cπ due to a more refined analysis.

5 EXPERIMENTS

In this section, we empirically evaluate the efficacy of LMC for offline RL. We compare the proposed
algorithm against the following approaches: (i) Greedy methods (GreedyVI and NeuralGreedy for
linear and neural cases, respectively) which fit a given model to the data without any perturbation
or uncertainty quantification; (ii) LCB-based methods, namely LinLCB [JYW21] and NeuraLCB
[NTGNV22] that construct LCB using linear and neural tangent features, respectively; and (iii)
exact Thompson sampling (we refer to it as Thompson and NeuralTS in the linear and neural cases,
respectively) that directly performs posterior sampling from an exact posterior. For Neural-LMC-
PPS, we directly apply noisy gradient updates to the network, instead of using an auxiliary linear
model, to approximate posterior samples (see the supplementary for details).10

10In our implementation, we do not grow the network width (polynomially) with data size. Nonetheless, our
method exhibits fundamental aspects of approximate posterior sampling via LMC.
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Figure 2: Value suboptimality (in log scale) as a func-
tion of sample size K in non-linear contextual bandits with
the reward functions: (left) r(s, a) = 10(sT θa)

2, (right)
r(s, a) = cos(3sT θa).

Figure 3: Action selection run-time
(in seconds) of NeuraLCB, Neu-
ralTS, and Neural-LMC-PPS.

We evaluated all methods in two settings: (1) a hard instance of linear MDP [JYWJ20], and (2)
non-linear contextual bandits with (a) r(s, a) = 10(sT θa)

2, and (b) r(s, a) = cos(3sT θa)
2, where

s, θa ∼ Unif(Sd−1) with d = 16 and |A| = 10 (see the supplementary for details).

In Figure 1, the greedy methods fail with partial data coverage which reaffirms the practical ben-
efits of pessimism for offline RL. We also see that Lin-LMC-PPS nearly matches the performance
of PEVI [JYW21] and even slightly outperforms the exact posterior sampling method (Thompson).
In Figure Figure 2, we observe the benefit of neural representation in non-linear problems where
methods using linear models clearly fail. Again, we observe that Neural-LMC-PPS offers a compet-
itive performance compared to LCB-based and exact posterior sampling methods in this case, even
without computing any LCB or data posterior. In Figure 3, we show that Neural-LMC-PPS enjoys
constant action selection time while NeuraLCB and NeuralTS grow in time with the network width
(due to computing LCB and an exact posterior computation) for action selection.

6 CONCLUSION AND DISCUSSION

Conclusion. We presented the first framework for posterior sampling via Langevin Monte Carlo
for offline RL. We showed that the framework is provably sample-efficient in low-rank MDP settings
and general MDPs with overparameterized neural network function approximation. We also showed
empirically that the proposed framework could be both efficient and competitive for offline RL in
some settings.

Comparison with exact posterior sampling. In both low-rank MDP and “neural” MDP settings
that we considered, it is possible to use exact posterior sampling in PPS without resorting to LMC.
We would like to make two remarks about this. First, we can show that PPS has the same-order
bounds as LMC-PPS (but the analysis and algorithms for PPS are much simpler than those for
LMC-PPS) for both settings. This shows that using approximate posterior sampling via LMC does
not compromise the statistical guarantees of the exact posterior sampling in these settings. Second,
computation-wise, in most cases exact posterior sampling is not even tractable, especially when
the posterior does not admit any closed forms. LMC-PPS on the other hand can apply to any dif-
ferentiable models, even beyond the low-rank MDPs and neural MDPs we considered. Even in
the low-rank MDPs and the neural MDPs where the exact posterior sampling is computable, exact
posterior sampling is computationally expensive in high dimensions and sometimes unstable. As a
concrete comparison, in low-rank MDPs, the computational complexity of the exact posterior sam-
pling is O(min{Kd2, d3 + Kd}) 11 (using the Sherman-Morrison formula to compute the inverse
matrix) while that of Lin-LMC-PPS isO(min{d,K} ·Kd). In high dimensions when d≫ K (e.g.,
NTK setting), the latter is much smaller than the former.

Theoretical gap between maximum likelihood methods and (approximate) PS for offline RL.
While maximum likelihood methods with pessimistic adjustments for offline RL can achieve a near-
optimal bound (up to the natural O(

√
H) gap due to the variance-agnostic nature of the algorithms)

[ZWB21; XZS+22], (approximate) posterior sampling currently suffers a gap of O(
√
dH) (in the

worst-case scenarios) in low-rank MDPs. Thus, we ask the follow-up question: Can (approximate)
posterior sampling (e.g., via Langevin Monte Carlo) obtain optimal bounds in offline RL? We leave
this important open question as a future work.

11In this specific case, it is possible to do exact posterior sampling with O(min{d,K} ·Kd) computations
using SVD and Woodbury lemma. However, it suffers from the numerical instability of SVD and the space
complexity of Ω(dK) (to store the matrix for SVD) none of which LMC-PPS requires.
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Appendices
APPENDIX A PRELIMINARIES AND SUPPORTING LEMMAS

In this appendix, we present support lemmas that we frequently refer to during our proof process of
the main theorems.

A.1 NEURAL NETWORK APPROXIMATION

The following lemma quantifies the approximation error of representing an overparameterized neural
network by its first-order Taylor approximation. It also bounds the 2-norm of the gradient of the
network and with respect to the gradient at the initialization.
Lemma A.1. Consider the neural network defined in Equation (1) with the symmetric initialization
scheme considered in Section 2.2.2. Recall that m is the network width, and g(x; θ) = ∇θf(x; θ).

Let m = Ω
(
d3/2R−1 ln3/2(

√
m/R)

)
and R = O

(
m1/2 ln−3 m

)
. With probability at least 1 −

e−Ω(ln2 m) ≥ 1 −m−2 with respect to the random initialization, it holds for any θ, θ′ ∈ B(θ0;R)
and x ∈ Sd−1 that

∥g(x; θ)∥2 ≤ Cg,

∥g(x; θ)− g(x; θ0)∥2 ≤ O
(
CgR

1/3m−1/6
√
lnm

)
,

|f(x; θ)− f(x; θ′)− ⟨g(x; θ′), θ − θ′⟩| ≤ O
(
CgR

4/3m−1/6
√
lnm

)
,

where Cg = O(1) is a constant independent of d and m. Moreover, without loss of generality, we
assume Cg ≤ 1.

Proof of Lemma A.1. The proof directly follows from [YJW+20, Lemma C.2] or [CYLW19,
Lemma F.1, F.2].

The following lemma gives an exact characterization of using the network gradient at the initializa-
tion as a feature map when compared to using the NTK kernel.
Lemma A.2 ([ADH+19]). If m = Ω(ϵ−4 ln(1/δ)), then for any x, x′ ∈ X ⊂ Sd−1, with probability
at least 1− δ,

|⟨g(x; θ0), g(x′; θ0)⟩ −Kntk(x, x
′)| ≤ 2ϵ.

A.2 CONCENTRATION INEQUALITIES

The following lemma relates the in-expectation Bellman error to the empirical squared Bellman
error, up to some estimation error that scales logarithmically with K. The logarithmic dependence
on K is crucial to avoid a vacuous bound if we pessimistically use the standard

√
K estimation error.

The key is to exploit the non-negativity of the squared Bellman error and use lemma A.6, which in
turn uses the localization argument [BBM05] to obtain the fast rate in K.
Lemma A.3 (Reduction to least-squares Bellman error). For any h ∈ [H], with probability at least
1− 2δ, we have

Eπ [errh(xh)] ≤
1√
K

√√√√2

K∑
k=1

Cπerr2h(x
k
h) +

64CπH2

3
ln

ln(4KCπH2)

δ
+ 2 +

√
4H ln(1/δ)

K
.

15
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Proof of Lemma A.3. Note that Eπ

[
errh(sh, ah) | sk1

]
for k ∈ [K] are i.i.d. random variables as

sk1
i.i.d.∼ d1 and that |Eπ

[
errh(sh, ah) | sk1

]
| ≤ 2H . Thus, it follows from the tail inequality for sub-

Gaussian variables Eπ

[
errh(sh, ah) | sk1

] i.i.d.∼ subGaussian(2H) that with probability at least 1− δ,

Eπ [errh(sh, ah)] ≤
1

K

∑
k=

Eπ

[
errh(sh, ah) | s1 = sk1

]
+

√
4H ln(1/δ)

K

≤ 1

K

√√√√K

K∑
k=1

{
Eπ

[
errh(sh, ah) | s1 = sk1

]}2
+

√
4H ln(1/δ)

K

≤ 1

K

√√√√K

K∑
k=1

Eπ

[
err2h(sh, ah) | s1 = sk1

]
+

√
4H ln(1/δ)

K
, (2)

where the second inequality uses Cauchy-Schwartz inequality, and the third inequality uses
Jensen’s inequality. Denote the filtration Fk−1 = σ

(
{sk1} ∪ {(skh, akh, rkh)}

k∈[K]
h∈×[H]

)
. Let Zk =

dπ
h(s

k
h,a

k
h)

d
µk
h (skh,a

k
h)
err2h(s

k
h, a

k
h). We have that E[Zk|Fk−1] = Eπ

[
err2h(sh, ah) | s1 = sk1

]
, that Zk is

Fk-measurable (recall that the adaptive behaviour policy µk is Fk-measurable) and that Zk ∈
[0, 4CπH

2]. Thus, it follows from Lemma A.6 that with probability at least 1− δ, we have

K∑
k=1

Eπ

[
err2h(sh, ah) | s1 = sk1

]
=

K∑
k=1

Eπ

[
err2h(sh, ah) | s1 = sk1

]
≤ 2

K∑
k=1

Zk +
64CπH

2

3
ln(ln(4KCπH

2)/δ) + 2. (3)

Combing Equation (2) and Equation (3) via the union bound completes our proof.

The following lemma is the concentration of the self-normalizing process in RKHS.

Lemma A.4 ([CG17, Theorem 1]). Let H be an RKHS defined over X ⊆ Rd. Let {xt}∞t=1 be
a discrete time stochastic process adapted to filtration {Ft}∞t=0. Let {Zk}∞k=1 be a real-valued
stochastic process such that Zk ∈ Fk, and Zk is zero-mean and σ-sub Gaussian conditioned on
Fk−1. Let Ek = (Z1, . . . , Zk−1)

T ∈ Rk−1 andKk be the Gram matrix ofH defined on {xt}t≤k−1.
For any ρ > 0 and δ ∈ (0, 1), with probability at least 1− δ,

ET
k

[
(Kk + ρI)−1 + I

]−1
Ek ≤ σ2logdet [(1 + ρ)I +Kk] + 2σ2 ln(1/δ).

The following lemma is a concentration of self-normalized processes in finite-dimensional Eu-
clidean spaces.

Lemma A.5 (Concentration of self-normalized processes [AYPS11] ). Let {ηt}∞t=1 be a real-valued
stochastic process with corresponding filtration {Ft}∞t=0 (i.e. ηt is Ft-measurable). Assume that
ηt|Ft−1 is zero-mean and R-subGaussian, i.e., E [ηt|Ft−1] = 0, and

∀λ ∈ R,E
[
eληt |Ft−1

]
≤ eλ

2R2/2.

Let {xt}∞t=1 be an Rd-valued stochastic process where xt is Ft−1-measurable and ∥xt∥ ≤ L. Let
Σk = λId +

∑k
t=1 xtx

T
t . Then for any δ > 0, with probability at least 1− δ, it holds for all k > 0

that ∥∥∥∥∥
k∑

t=1

xtηt

∥∥∥∥∥
2

Σ−1
k

≤ 2R2 ln

[
det(Σk)

1/2det(Σ0)
−1/2

δ

]
≤ 2R2

[
d

2
ln

kL2 + λ

λ
+ ln

1

δ

]
.
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The following lemma relates the summation of non-negative random variables to its in-expectation
value, up to some estimation error that scales only logarithmically with the number of terms in the
summation.

Lemma A.6 ([NTYG+22]). Let {Xk} be any real-valued stochastic process adapted to the filtration
{Fk}, i.e. Xk isFk-measurable. Suppose that for any k, Xk ∈ [0, H] almost surely for some H > 0.
For any K > 0, with probability at least 1− δ, we have:

K∑
k=1

E [Xk|Fk−1] ≤ 2

K∑
k=1

Xk +
16

3
H ln(ln(KH)/δ) + 2.

The following lemma is a concentration of the weighted norm of a high-dimension normal variable,
weighted by its covariance matrix.

Lemma A.7. Let X ∼ N (0, aΛ−1) be a d-dimensional normal variable where a is a scalar. There
exists an absolute constant c > 0 such that for any δ > 0, with probability at least 1− δ,

∥X∥Λ ≤ c
√
da ln(d/δ).

For d = 1, c =
√
2.

A.3 LINEAR ALGEBRA

The following lemma relates the difference between two inverse matrices to that of the original
matrices.

Lemma A.8. For any invertible matrices A,B,

∥A−1 −B−1∥2 ≤
∥A−B∥2

λmin(A)λmin(B)
.

Proof of Lemma A.8. We have:

∥A−1 −B−1∥2 = ∥(AB)−1(AB)(A−1 −B−1)∥2 = ∥(AB)−1(ABA−1 −A)∥2
≤ ∥(AB)−1∥2∥ABA−1 −A∥2 = ∥(AB)−1∥2∥ABA−1 −AAA−1∥2
= ∥(AB)−1∥2∥A(B −A)A−1∥2 = ∥(AB)−1∥2∥B −A∥2
≤ λmax(A

−1)λmax(B
−1)∥2∥B −A∥2.

APPENDIX B PROOF OF THEOREM 1

In this appendix, we provide a complete proof of Theorem 1.

B.1 PREPARATION

We first set out stages for the our proof of Theorem 1, including notations and support lemmas. We
use the following notations summarized in Table 1.

17
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xk
h (skh, a

k
h)

Φh [ϕ(skh, a
k
h)]k∈[K] ∈ Rd×K

Λh λI +ΦhΦ
T
h

Ah I − 2ηΛh

κh
λmax(Λh)
λmin(Λh)

ykh rkh + Ṽh+1(s
k
h+1)

yh [ykh]k∈[K] ∈ RK

θ̂h Λ−1
h (Φhyh + λθ0)

Σh,t τ(I −A2t
h )Λ−1

h (I +Ah)
−1

errh(s, a) BhṼh+1(x)− Q̃h(x)

Table 1: Notations used in the setting of low-rank MDPs.

We first present a series of immediate lemmas that shall be used to construct the proof of Theo-
rem 1. The following lemma asserts that the samples {θih}i∈[M ] from the Langevin dynamics are
approximate samples from the data posterior.
Lemma B.1. Conditioned on D, we have

{θih}i∈[M ]
i.i.d.∼ N (AT

h θ0 + (I −AT
h )θ̂h,Σh,T ).

In addition, if we set η = 1
2λmax(Λh)

, we have

τ

(
1− (1− 2

κh
)t
)
Λ−1
h ⪯ Σh,t ⪯ τΛ−1

h .

Proof of Lemma B.1. Consider any sequence {θt}t≥0 such that

θt = θt−1 − η∇L̂h(θt−1) +
√
2ητϵt, where ϵt ∼ N (0, 1),∀t.

We have

∇L̂h(θ) = 2(Λhθ − Φhyh − λθ0).

Thus, we have

θt = θt−1 − η∇L̂h(θt−1) +
√
2ητϵt

= Ahθt−1 + 2η(Φhyh + λθ0) +
√
2ητϵt

= At
hθ0 + 2η

t−1∑
l=0

Al
h (Φhyh + λθ0) +

√
ητ

t−1∑
l=0

Al
hϵt−l

= At
hθ0 + 2η(I −At

h)(I +Ah)
−1(I −Ah)

−1 (Φhyh + λθ0) +
√

2ητ

t−1∑
l=0

Al
hϵt−l

= At
hθ0 + (I −At

h)θ̂h +
√
2ητ

t−1∑
l=0

Al
hϵt−l.

18
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Since {ϵt}t≥0 are mutually independent Gaussian noises, we have

θt ∼ N (At
hθ0 + (I −At

h)θ̂h,Σh,t).

In addition, if we set η = 1
2λmax(Λh)

, we have

τ

(
1− (1− 2

κh
)t
)
Λ−1
h ⪯ Σh,t ⪯ τΛ−1

h .

The following lemma gives upper bounds on the 2-norm of the regularized least-squares minimizer
θ̂h and the parameters learned by the Langevin dynamics {θih}i∈[M ].

Lemma B.2. We have

∥θ̂h∥2 ≤
(H − h+ 1)(1 + ι)K√

λ
.

If we choose θ0 = 0 and ηλ < 1/2, for any i ∈ [M ], with probability at least 1− δ, we have

∥θih∥2 ≤ (1− (1− 2ηλ)T )
(H − h+ 1)(1 + ι)K√

λ
+ c1

√
d

λ
(1 + ln(1/δ))

for some absolute constant c1 > 0.

The following lemma bounds the uncertainty of the regularized least-squares minimizer θ̂h in esti-
mating the Bellman operator.

Lemma B.3. If we choose θ0 = 0 and ηλ < 1/2, then with probability at least 1 − δ, it holds
uniformly for all (h, s, a) ∈ [H]× S ×A that

|BhṼh+1(s, a)− ⟨ϕh(s, a), θ̂h⟩| ≤ γ∥ϕh(s, a)∥Λ−1
h

where

γ := 2H
√
λd+

2H√
λ
+H
√
d
√
ln(1 +K/λ) + 2 ln(1 + 2RK) + 2 ln(2/δ),

R = (1− (1− 2ηλ)T )
(H − h+ 1)(1 + ι)K√

λ
+

√
d

λ
(1 + ln(2M/δ)).

Proof of Lemma B.3. Due to the low-rank MDP assumption in Definition 1, there exists some θ̃h ∈
Rd such that

BhṼh+1(s, a) = ⟨ϕh(s, a), θ̃h⟩, and ∥θ̃h∥2 ≤
√
d(H − h+ 2) ≤ 2H

√
d.

Thus, we have

BhṼh+1(s, a)− ⟨ϕh(s, a), θ̂h⟩ = ϕh(s, a)
T θ̃h − ϕh(s, a)

TΛ−1
h

K∑
k=1

ϕh(x
k
h)(r

k
h + Ṽh+1(s

k
h+1))

= ϕh(s, a)
T θ̃h − ϕh(s, a)

TΛ−1
h

K∑
k=1

ϕh(x
k
h)ϕh(x

k
h)

T θ̃h

+ ϕh(s, a)
TΛ−1

h

K∑
k=1

ϕh(x
k
h)(r

k
h + Ṽh+1(s

k
h+1)− BhṼh+1(x

k
h))

= λϕh(s, a)
TΛ−1

h θ̃h + ϕh(s, a)
TΛ−1

h

K∑
k=1

ϕh(x
k
h)(r

k
h + Ṽh+1(s

k
h+1)− BhṼh+1(x

k
h))
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≤ λ∥ϕh(s, a)∥Λ−1
h
∥θ̃h∥Λ−1

h
+ ∥ϕh(s, a)∥Λ−1

h
∥

K∑
k=1

ϕh(x
k
h)(r

k
h + Ṽh+1(s

k
h+1)− BhṼh+1(x

k
h))∥Λ−1

h

We have

∥θ̃h∥Λ−1
h
≤
√
∥Λ−1

h ∥2∥θ̃h∥2 ≤
√

d

λ
(H − h+ 2).

Now we bound the term L(Ṽh+1) where

L(V ) := ∥
K∑

k=1

ϕh(x
k
h)(r

k
h + V (skh+1)− BhV (xk

h))∥Λ−1
h
,

for any V ∈ {S → R}. Now fix any δ > 0. Consider the event

E =

{
∥θih∥2 ≲ (1− (1− 2ηλ)T )

(H − h+ 1)K√
λ

+

√
d

λ
(1 + ln(2M/δ)),∀i ∈ [M ]

}
.

By Lemma B.2 and the union bound, we have Pr(E) ≥ 1−δ/2. In the rest of our proof, we consider
everything under event E. Let us define

V :=

{
min{max

a∈A
⟨ϕh+1(·, a), θ⟩, H − h}+ : ∥θ∥2 ≲ (1− (1− 2ηλ)T )

(H − h+ 1)(1 + ι)K√
λ

+

√
d

λ
(1 + ln(2M/δ))

}
.

It is easy to verify that for any V ′, V ∈ V , we have

|L(V ′)− L(V )| ≤ 2
K√
λ
(H − h+ 1)(1 + ι)∥V ′ − V ∥∞.

For any fixed V ∈ V , rkh +V (skh+1)−BhV (xk
h) is zero-mean and (H −h+1)(1+ ι)-subGaussian

conditioned on the offline data prior to episode k. Thus, by Lemma A.5, with probability at least
1− δ, we have

L(V ) ≤ (H − h+ 1)(1 + ι)
√
d ln(1 +K/λ) + 2 ln(1/δ).

Since Ṽh+1 ∈ V (under event E), there exists V ′ in the ϵ-cover of V such that ∥Ṽh+1 − V ′∥∞ ≤ ϵ.
By the union bound, with probability 1− δ, we have

L(Ṽh+1) ≤ L(V ′) + |L(Ṽh+1)− L(V ′)|

= sup
V ′∈ϵ-cover of V

L(V ′) +
2K√
λ
(H − h+ 1)(1 + ι)ϵ

≤ (H − h+ 1)(1 + ι)
√
d ln(1 +K/λ) + 2 ln(N(V, ϵ)/δ) + 2K√

λ
(H − h+ 1)(1 + ι)ϵ,

where N(V, ϵ) is the ϵ-covering number of V with respect to norm ∥ · ∥∞. We have

N(V, ϵ) ≤ (1 + 2R/ϵ)d

where R = (1− (1− 2ηλ)T ) (H−h+1)(1+ι)K√
λ

+
√

d
λ (1 + ln(2M/δ)).

Set ϵ = 1/K and combining all pieces using the union bound yields the claim.

The following lemma asserts (approximate) point-wise pessimism, i.e., the Bellman error errh(s, a)
is nearly non-negative for all state-action pair for all timestep h ∈ [H].
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Lemma B.4 (Pessimism). If we set M = ln HS
δ / ln 1

1−Φ(−1) and
√

(1− (1− 1
2κh

)T )τ ≥ γ where

γ is defined in Lemma B.3, then with probability at least 1 − δ, it holds uniformly for all (h, s) ∈
[H]× S that

errh(s, a) ≥ −(1− 2ηλ)THK/
√
λ.

Proof of Lemma B.4. With probability at least 1− δ, for any s ∈ S, we have

Q̃h(s, π̃h(s)) = min{min
i∈[M ]

⟨ϕh(s, π̃h(s)), θ
i
h⟩, (H − h+ 1)(1 + ι)}+

≤ ⟨ϕh(s, π̃h(s)), (I −AT
h )θ̂h⟩ − ∥ϕh(s, π̃h(s))∥Σh

,

Thus, by the union bound, with probability at least 1− δ, it holds uniformly for all h, s that

errh(s, π̃h(s)) = BhṼh+1(s, π̃h(s))− Q̃h(s, π̃h(s))

≥ BhṼh+1(s, π̃h(s))− ⟨ϕh(s, π̃h(s)), (I −AT
h )θ̂h⟩+ ∥ϕh(s, π̃h(s))∥Σh

≥ ⟨ϕh(s, π̃h(s)), θ̂h⟩ − γ∥ϕh(s, π̃h(s))∥Λ−1
h
− ⟨ϕh(s, π̃h(s)), (I −AT

h )θ̂h⟩+ ∥ϕh(s, π̃h(s))∥Σh

≥ ⟨ϕh(s, π̃h(s)), A
T
h θ̂h⟩+

(√
(1− (1− 1

2κh
)T )τ − γ

)
∥ϕh(s, π̃h(s))∥Λ−1

h

≥ −(1− 2ηλ)THK/
√
λ+

(√
(1− (1− 1

2κh
)T )τ − γ

)
∥ϕh(s, π̃h(s))∥Λ−1

h

where the second inequality uses Lemma B.3, the third inequality uses Lemma B.1, and the fourth
inequality uses Lemma B.2.

B.2 PROOF OF THEOREM 1

We are now ready to prove Theorem 1.

Proof of Theorem 1. For notational convenience, we define the following quantities: where

γ(δ) := 2H
√
λd+

2H√
λ
+H
√
d
√
ln(1 +K/λ) + 2 ln(1 + 2R(δ)K) + 2 ln(2/δ),

R(δ) := (1− (1− 2ηλ)T )
(H − h+ 1)(1 + ι)K√

λ
+

√
d

λ
(1 + ln(2M/δ)),

M(δ) := ln
H|S|
δ

/ ln
1

1− Φ(−1)
.

Suppose that we set the parameters as follows:
√
(1− (1− 1

2κh
)T )τ ≥ γ(δ/4), ηλ < 1/2, M =

M(δ/4), ι ≥ (1− 2ηλ)THK/
√
λ.

We start with the error decomposition:

SubOptπ(π̃) ≤
H∑

h=1

Eπ [errh(sh, ah)]−
H∑

h=1

Eπ̃ [errh(sh, ah)] , (4)

where errh(x) := BhṼh+1(x) − Q̃h(x). Consider the following event E = E1 ∩ E2 ∩ E3 ∩ E4,
where

E1 =
{
|BhṼh+1(s, a)− ⟨ϕh(s, a), θ̂h⟩| ≤ γ∥ϕh(s, a)∥Λ−1

h
,∀(s, a, h) ∈ S ×A× [H]

}
,

E2 =
{
errh(s, a) ≥ −(1− 2ηλ)THKλ−1/2,∀(h, s, a) ∈ [H]× S ×A

}
,
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E3 =

{
Eπ [errh(xh)] ≤

1√
K

√√√√2

K∑
k=1

Cπerr2h(x
k
h) +

64CπH2

3
ln

ln(4KCπH2)

δ
+ 2

+

√
4H ln(1/δ)

K
,∀h ∈ [H]

}
,

E4 =

{
⟨ϕh(x

k
h), (I −AT

h )θ̂h − θ̃ih⟩ ≤ ∥ϕh(x
k
h)∥Σh

√
2 ln(KHM/δ)

: ∀(k, h, i) ∈ [K]× [H]× [M ]

}
.

Under E1 ∩ E3, for any (k, h) ∈ [K]× [H], we have

errh(x
k
h) ≤ BhṼh+1(x

k
h)− ⟨ϕh(x

k
h), θ̂h⟩+ max

i∈[M ]
⟨ϕh(x

k
h), (I −AT

h )θ̂h − θ̃ih⟩+ ⟨ϕh(x
k
h), A

T
h θ̂h⟩

≤ (γ + τ
√
2 ln(KHM/δ))∥ϕh(x

k
h)∥Λ−1

h
+ (1− 2ηλ)T

(H − h+ 1)(1 + ι)K√
λ

By Lemma B.1 and Lemma A.7, we have Pr(E4|D) ≥ 1 − δ. Thus, we have Pr(E4) =∑
D Pr(E4|D) Pr(D) ≥ 1 − δ. By Lemma B.3, Lemma B.4, and Lemma A.3, we have Pr(E1) ≥

1− δ, Pr(E2) ≥ 1− δ, and Pr(E3) ≥ 1− δ, respectively. Thus, by the union bound, we have

Pr(E) ≥ 1− 4δ.

Under event E2, we have

Q̃h(s, a) = BhṼh+1(s, a)− errh(s, a)

≤ 1 + (H − h)(1 + ι) + (1− 2ηλ)THK/
√
λ

≤ (H − h+ 1)(1 + ι),

where the first inequality uses Lemma B.4 and the second inequality uses the choice ι ≥ (1 −
2ηλ)THK/

√
λ. Thus, under event E2, we have

Q̃h(·, ·) = min{min
i∈[M ]

⟨ϕh(·, ·), θ̃ih⟩, (H − h+ 1)(1 + ι)}+ = max{min
i∈[M ]

⟨ϕh(·, ·), θ̃ih⟩, 0}.

Hence, under event E1 ∩ E2 ∩ E4, we have

errh(x
k
h) = BhṼh+1(x

k
h)− Q̃h(x

k
h)

= BhṼh+1(x
k
h)−max{min

i∈[M ]
⟨ϕh(x

k
h), θ̃

i
h⟩, 0}

≤ BhṼh+1(x
k
h)− min

i∈[M ]
⟨ϕ(xk

h), θ̃
i
h⟩

= BhṼh+1(x
k
h)− ⟨ϕ(xk

h), θ̂h⟩ − min
i∈[M ]

⟨ϕ(xk
h), θ̃

i
h −AT

h θ0 − (I −AT
h )θ̂h⟩+AT

h (θ̂h − θ0)

≤ (γ +
√

2τ ln(KHM/δ))∥ϕh(x
k
h)∥Λ−1

h
+ (1− 2ηλ)T

(H − h+ 1)(1 + ι)K√
λ

,

where the last inequality uses E1, E2 and E4, and Lemma B.2. Combing with E3, we have that
under E,

Eπ[errh(xh)] ≲

√
Cπ

K
(γ +

√
2τ ln(KHM/δ))

√√√√ K∑
k=1

∥ϕh(xk
h)∥2Λ−1

h

+
√

Cπ(1− 2ηλ)T
(H − h+ 1)(1 + ι)K√

λ
+H

√
Cπ

K
ln

lnKCπH2

δ

+

√
H ln(1/δ)

K
.
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Finally, note that
K∑

k=1

∥ϕh(x
k
h)∥2Λ−1

h

=

K∑
k=1

ϕh(x
k
h)

TΛ−1
h ϕh(x

k
h)

=

K∑
k=1

tr
(
ϕh(x

k
h)

TΛ−1
h ϕh(x

k
h)
)

=

K∑
k=1

tr
(
ϕh(x

k
h)ϕh(x

k
h)

TΛ−1
h

)
= tr

(
K∑

k=1

ϕh(x
k
h)ϕh(x

k
h)

TΛ−1
h

)
= tr((Λh − λI)Λ−1

h )

= tr(I − λΛ−1
h )

= d−
d∑

i=1

λ

λi(Λh)
,

where recall that {λi(Λh)}i∈[d] is the eigenvalues of Λh.

APPENDIX C PROOF OF THEOREM 2

We now construct the full proof of Theorem 2. For convenience, in this appendix, we shall write
E{Lemma x} to denote the event in which the statement of Lemma x holds, and E{Equation (x)}
to denote the event in which Equation (x) holds.

C.1 PREPARATION

GRADIENT DESCENT OF A NEW AUXILIARY LINEAR MODEL AT THE INITIAL PARAMETERS

We consider the linear objective function

L̄lin
h (θ) :=

∑
k∈Ih

(
⟨g(xk

h; θ0), θ⟩ − rkh − Ṽh+1(s
k
h+1)

)2
+ λ∥θ − θ0∥22.

Let θ̄linh ← GD(L̄lin
h , θ0, η, T1) whose update is unrolled as

θ̄linh,t ← θ̄linh,t−1 − η1∇Lh(θ̄h,t−1),∀t ∈ [T1], (5)

where θ̄linh,0 = θ0 and θ̄linh = θ̄linh,T2
. We also define the following notations:

Λh := λI +
∑
k∈Ih

g(xk
h; θh)g(x

k
h; θh)

T ∈ Rdm×dm,

Λ̄h := λI +
∑
k∈Ih

g(xk
h; θ0)g(x

k
h; θ0)

T ∈ Rdm×dm,

Ah := I − 2η2Λh ∈ Rdm×dm,

Gh(θ) := (g(xk
h; θ))k∈Ih

∈ Rdm×K′
,

yh := (rkh + Ṽh+1(s
k
h+1))k∈Ih

∈ RK′
.

ADDITIONAL NOTATIONS

Let θ̂linh and ˆ̄θlinh be the minimizers of Llin
h (θ) and L̄lin

h (θ), respectively, i.e.,

θ̂linh = Λ−1
h

(
G(θ̂h)yh + λθ0

)
and ˆ̄θlinh = Λ̄−1

h (G(θ0)yh + λθ0) . (6)

For convenience, we summarize all notations, old and new, into Table 2.
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C.2 TRAINING DYNAMICS IN THE NEURAL TANGENT KERNEL (NTK) REGIME

In this part, we establish the optimization guarantee of training a neural value function with GD
under the NTK regime. Our analysis builds up on the recent advances in understanding the training
dynamics of (S)GD of overparameterized neural networks through the prism of Neural Tangent
Kernel (NTK) [JGH18] and its application to the analysis of neural UCB [ZLG20]. Though we
partly borrowed the proof flow and some techniques from [ZLG20] for our own proof, the key
distinction of our analysis with that of [ZLG20] is that, due to the different nature of the offline
learning vs the online learning, we need to construct a network as a value predictor in all state-action
pairs, while [ZLG20] only work on the empirical state-action pairs that the online learner acquires.
Thus, we rely on the first-order Taylor approximation to the neural network for all state-action pairs,
a result that is presented in [YJW+20, Lemma C.2] or [CYLW19, Lemma F.1, F.2].

Another key distinction in our setting is that we analyze the general MDP setting, instead of the
contextual bandit setting. The MDP setting gives rise to a distinct challenge of dealing with a data-
dependent regression target, wherein each timestep h ∈ [H], we perform regression on mapping
each (skh, a

k
h) to rkh + Ṽh+1(s

k
h+1), where Ṽh+1 is a value estimate from step h+ 1. If we use up all

offline data to obtain Ṽh+1, then Ṽh+1 depends on (skh, a
k
h). Thus,

E
[
Ṽh+1(s

k
h+1)

]
̸= E

[
(BhṼh+1)(s

k
h, a

k
h)
]
.

To handle this statistical dependence issue, we typically use a uniform convergence argument where
we involve uniformly over all Vh+1 in the function class where Ṽh+1 belongs to. Unfortunately,
the uniform convergence argument does not work for the overparameterized setting. Concretely,
the uniform convergence argument scales the sub-optimality bound with the effective size of the
function class – which scales polynomially with K and thus become vacuous. We completely avoid
this issue by splitting the offline data into H different folds, where each timestep h ∈ [H] uses a
different data fold for estimation. This data splitting technique follows from [NTA23].

In what follows, we present a series of immediate results that culminate into our proof construction
for Theorem 2. We start with the following lemma which indicates that the network weights after
gradient updates tend to stay close to the initialization, under certain conditions.

Lemma C.1. We introduce an additional parameter R = O
(
m1/2 ln−3 m

)
and suppose that

m = Ω
(
d3/2R−1 ln3/2(

√
m/R)

)
,

(η1λ)
−1R8/3m−1/3 lnm ≲ 1,

η1(K
′C2

g + λ/2) ≤ 1/2,

R ≳ λ−1(K ′(H − h+ 1)2(1 + ι)2 + 1)
√
K ′R1/3m−1/6

√
m

+ λ−1K ′CgR
4/3m−1/6

√
lnm+ λ−1

√
K ′H(1 + ι),

where Cg is an absolute constant in Lemma A.1. Then, with probability at least 1−m−2, for any t,
we have

θh,t ∈ B(θ0;R) := {θ ∈ Rmd : ∥θ − θ0∥2 ≤ R}, and

∥θh,t − θ̄linh,t∥2 ≲ λ−1(K ′(H − h+ 1)2(1 + ι)2 + 1)
√
K ′R1/3m−1/6

√
m+ λ−1K ′CgR

4/3m−1/6
√
lnm.

Proof of Lemma C.1. Consider a fixed h ∈ [H]. For simplicity, we define

∆t := θh,t − θ̄linh,t

Gt := (g(xk
h; θh,t))k∈Ih

∈ Rmd×K′

Ht := GtG
T
t ∈ Rmd×md

ft :=
(
f(xk

h; θh,t)
)
k∈Ih

∈ RK′
,
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xk
h (skh, a

k
h)

ykh rkh + Ṽh+1(s
k
h+1)

yh [ykh]k∈[K] ∈ RK

errh(s, a) BhṼh+1(x)− Q̃h(x)

f(x; θ) 1√
m

∑m
i=1 biσ(w

T
i x) defined in Equation (1)

g(x; θ) ∇θf(x; θ)

Λh λI +
∑

k∈Ih
g(xk

h; θh)g(x
k
h; θh)

T ∈ Rdm×dm

Λ̄h λI +
∑

k∈Ih
g(xk

h; θ0)g(x
k
h; θ0)

T ∈ Rdm×dm

Ah I − 2η2Λh ∈ Rdm×dm

Gh(θ) (g(xk
h; θ))k∈Ih

∈ Rdm×K′

Lh(θ)
∑

k∈Ih
(f(xk

h; θ)− rkh − Ṽh+1(s
k
h+1))

2 + λ∥θ − θ0∥22

θh,t θh,t−1 − η1∇Lh(θh,t−1)

θh θh,T1

Llin
h (θ)

∑
k∈Ih

(θT g(xk
h; θh)− rkh − Ṽh+1(s

k
h+1))

2 + λ∥θ − θ0∥22

θlinh,t θlinh,t−1 − η2∇Llin
h (θlinh,t−1)

θlinh θlinh,T2

θlin,ih,t θlin,ih,t−1 − η2∇Llin
h (θlin,ih,t−1) +

√
2ητϵt

θlin,ih θlin,ih,T2

L̄lin
h (θ)

∑
k∈Ih

(
⟨g(xk

h; θ0), θ⟩ − rkh − Ṽh+1(s
k
h+1)

)2
+ λ∥θ − θ0∥22

θ̄linh,t θ̄linh,t−1 − η1∇Lh(θ̄h,t−1)

θ̄linh θ̄linh,T2

Table 2: Notations used in the setting of general MDPs with neural function approximation.

where we drop the dependence on h for notational simplicity. For any θ ∈ Rmd, we also write

Gθ := (g(xk
h; θ))k∈Ih

∈ Rmd×K′
,

fθ :=
(
f(xk

h; θ)
)
k∈Ih

∈ RK′
.

We re-write the GD update in Line 4 of Algorithm 3 and that in Equation (5), respectively, as

θh,t = θh,t−1 − 2η1(Gt−1(ft−1 − yh) + λ(θh,t−1 − θ0)),
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θ̄linh,t = θ̄linh,t−1 − 2η1(G0(G
T
0 (θ̄

lin
h,t−1 − θ0)− yh) + λ(θ̄linh,t−1 − θ0)).

We will prove the lemma by induction with t. The statement of the lemma obviously holds at t = 0,
since θh,0 = θ̄linh,0 = θ0. Assume the lemma statement holds up to some t− 1. We will prove that it
also holds for t. Indeed, let us consider the rest of this proof under event E{Lemma A.1}. We have

∥∆t∥2

=

∥∥∥∥(1− η1λ)∆t−1 − η1
[
G0(ft−1 −GT

0 (θh,t−1 − θ0)) +G0G
T
0 (θh,t−1 − θ̄linh,t−1) + (ft−1 − yh)(Gt−1 −G0)

] ∥∥∥∥
2

≤∥(I − η1(λI +H0))∆t−1∥2︸ ︷︷ ︸
I1

+ η1∥ft−1 − yh∥2∥Gt−1 −G0∥2︸ ︷︷ ︸
I2

+ η1∥G0∥2∥ft−1 −GT
0 (θh,t−1 − θ0)∥2︸ ︷︷ ︸

I3

.

We bound I1, I2 and I3 separately.

Bounding I1. By Lemma A.1, we have

∥H0∥2 ≤ ∥G0∥22 ≤ K ′C2
g .

Now we choose η1 such that

η1(λ+K ′C2
g ) ≤ 1.

With this choice of η1, we have

I1 = ∥(I − η1(λI +H0))∆t−1∥2 ≤ ∥I − η1(λI +H0)∥2 · ∥∆t−1∥2 ≤ (1− η1λ)∥∆t−1∥2,

since η1λI ⪯ η1(λI +H0) ⪯ η1(λ+ ∥G0∥2)I ⪯ η1(λ+K ′C2
g )I ⪯ I .

Bounding I2. We have,

I2 = η1∥ft−1 − yh∥2 · ∥Gt−1 −G0∥2
≤ η1 ∥ft−1 − yh∥2︸ ︷︷ ︸

Lemma C.2

·max
k

√
K ′ ∥g(xk

h; θh,t−1)− g(xk
h; θ0)∥2︸ ︷︷ ︸

approx error, Lemma A.1

,

where the inequality holds due to Cauchy-Schwarz inequality, and we can apply Lemma C.2 and
Lemma A.1 for the first and second term, respectively, due to the induction assumption.

Bounding I3. For bounding I3,

I3 = η1∥G0∥2 · ∥ft−1 −GT
0 (θh,t−1 − θ0)∥2

≤ η1
√
K ′Cg

√
K ′ max

k
|f(xk

h; W̃
i
h,j)− g(xk

h;W0)
T (W̃ i

h,j −W0)|

≤ η1K
′CgR

4/3m−1/6
√
lnm,

where the first inequality holds due to Cauchy-Schwarz inequality and due to that ∥Gh,0∥2 ≤√
K ′Cg and the second inequality holds due to the induction assumption and Lemma A.1. Combin-

ing the bounds of I1, I2, I3 above, we have

∥∆t∥2 ≤ (1− η1λ)∥∆t−1∥2 + I2 + I3.

Recursively applying the inequality above for all j, we have

∥∆t∥2 ≤
I2 + I3
η1λ

. (7)

We have

λ∥θ̄linh,t − θ0∥22 ≤ L̄h(θ̄
lin
h,t) ≤ L̄h(θ0) = ∥yh∥22 ≤ K ′(H − h+ 1 + (H − h)ι)2,

where the first inequality follows from the definition of L̄h and the second inequality follows from
that {L̄h(θ̄

lin
h,t)}t is a non-increasing sequence due to the gradient update to linear regression. Thus,

we have

∥θ̄linh,t − θ0∥2 ≤ λ−1
√
K ′H(1 + ι).
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We have

∥θh,t − θ0∥2 ≤ ∥θh,t − θ̄linh,t∥2 + ∥θ̄linh,t − θ0∥2

≤ I2 + I3
η1λ

+ λ−1
√
K ′H(1 + ι).

The following lemma says that under certain conditions, the network output ft trained by GD tends
to stay close to its regression target yh.

Lemma C.2. Let m = Ω
(
d3/2R−1 ln3/2(

√
m/R)

)
and R = O

(
m1/2 ln−3 m

)
. Suppose that

η1(K
′C2

g + λ/2) ≤ 1/2. Consider any t ∈ [T1]. Suppose that θh,l ∈ B(θ0;R),∀l ∈ [t]. Then, with
probability at least 1−m−2, we have

∥ft − yh∥2 ≲ K ′(H − h+ 1)2(1 + ι)2 + (η1λ)
−1R8/3m−1/3 lnm.

Proof of Lemma C.2. Consider the rest of the proof under event E{Lemma A.1}. Let

et = ft − ft−1 −GT
t−1(θt − θt−1),

eθ = fθ − ft−1 −GT
θ (θ − θt−1).

Since ∥ · ∥22 is 1-smooth, we have

L(θt)− L(θt−1) = ∥ft − yh∥22 − ∥ft−1 − yh∥22 + λ∥θt − θ0∥ − λ∥θt−1 − θ0∥22

≤ 2(ft−1 − yh)
T (ft − ft−1) +

1

2
∥ft − ft−1∥22 + 2λ(θt−1 − θ0)

T (θt − θt−1) +
λ

2
∥θt − θt−1∥22

≤ 2(ft−1 − yh)
T (et +GT

t−1(θt − θt−1)) +
1

2
∥et +GT

t−1(θt − θt−1)∥22

+ 2λ(θt−1 − θ0)
T (θt − θt−1) +

λ

2
∥θt − θt−1∥22

≤ ∇L(θt−1)
T (θt − θt−1) + 2(ft−1 − yh)

T et + ∥et∥22 + ∥GT
t−1(θt − θt−1)∥22 +

λ

2
∥θt − θt−1∥22

≤ −η1(1− η1(K
′C2

g + λ/2))∥∇L(θt−1)∥22 + 2(ft−1 − yh)
T et + ∥et∥22

Since ∥ · ∥22 is 1-strongly convex, for any θ, we have

L(θ)− L(θt−1) ≥ 2(ft−1 − yh)
T (fθ − ft−1) + 2λ(θt−1 − θ0)

T (θ − θt−1) +
λ

2
∥θ − θt−1∥22

= ∇L(θt−1)
T (θ − θt−1) + 2(ft−1 − yh)

T eθ +
λ

2
∥θ − θt−1∥22

≥ − 1

2λ
∥∇L(θt−1)∥22 − 2∥ft−1 − yh∥2 · ∥eθ∥2,

where the last inequality uses the definition of the gradient update of θt, and Lemma A.1 which is
valid due to the condition that θh,j ∈ B(θ0;R), for all l ∈ [t]. Thus, we have

L(θt)− L(θt−1) ≤ 2η1λ(1− η1(K
′C2

g + λ/2))︸ ︷︷ ︸
α

(L(θ)− L(θt−1) + 2∥ft−1 − yh∥2 · ∥eθ∥2)

+ 2(ft−1 − yh)
T et + ∥et∥22

≤ α(L(θ)− L(θt−1) + γ1∥ft−1 − yh∥22 +
1

γ1
∥eθ∥22) + γ2∥ft−1 − yh∥22 +

1

γ2
∥et∥22 + ∥et∥22

≤ α(L(θ)− L(θt−1) + γ1L(θt−1) +
1

γ1
∥eθ∥22) + γ2L(θt−1) +

1

γ2
∥et∥22 + ∥et∥22,
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where the second inequality uses Cauchy-Schwarz inequality for any γ1, γ2 > 0, and the third
inequality uses the fact that ∥ft−1−yh∥22 ≤ L(θt−1). Set θ = θ0, and let e = maxl∈[t] ∥el∥2∨∥eθ0∥2
in the above equation, we have

L(θt) ≤ (1− α+ αγ1 + γ2)L(θt−1) +

(
α

γ1
+

1

γ2
+ 1

)
e2 + αL(θ0).

Now we further set that γ1 = 1
4 and γ2 = α

4 . Then we have

L(θt)− L(θ0) ≤
(
1− α

2

)
(L(θt−1)− L(θ0)) +

(
4α+

4

α
+ 1

)
e2 + αL(θ0)/2.

Now we choose η1 such that η1λ < α < 2 which is satisfied if we choose{
η1λ < 1

1− η1(K
′C2

g + λ/2) ≥ 1/2

Unrolling the recursion above yields

L(θt)− L(θ0) ≤
2

α

((
4α+

4

α
+ 1

)
e2 + αL(θ0)/2

)
= (8 +

8

α2
+

2

α
)e2 + L(θ0).

Thus, we have

∥ft − yh∥2 ≤ L(θt) ≤ 2L(θ0) + (8 +
8

α2
+

2

α
)e2

≲ K ′(H − h+ 1)2(1 + ι)2 + (η1λ)
−1R8/3m−1/3 lnm,

where the last inequality holds due to that L(θ0) = ∥yh∥22 ≤ K(H − h + 1)2(1 + ι)2 and
e ≲ R4/3m−1/6

√
lnm with probability at least 1 − m−2 (due to θh,l ∈ B(θ0, R),∀l ∈ [t] and

Lemma A.1).

The following lemma says that under certain conditions, the weighted version of the gradient of the
network output ∥g(x; θh)∥Λ−1

h
tends to stay close to its counterpart ∥g(x; θ0)∥Λ̄−1

h
at the initializa-

tion.

Lemma C.3. Let

m = Ω
(
d3/2R−1 ln3/2(

√
m/R)

)
,

R = O
(
m1/2 ln−3 m

)
,

(η1λ)
−1R8/3m−1/3 lnm ≲ 1,

η1(K
′C2

g + λ/2) ≤ 1/2,

λ−1(K ′(H − h+ 1)2(1 + ι)2 + 1)
√
K ′R1/3m−1/6

√
m

+ λ−1K ′CgR
4/3m−1/6

√
lnm+ λ−1

√
K ′H(1 + ι) ≲ R.

With probability at least 1−m−2, for any x ∈ Sd−1 and h ∈ [H], we have∣∣∣∣∥g(x; θh)∥Λ−1
h
− ∥g(x; θ0)∥Λ̄−1

h

∣∣∣∣ ≲ λ−1
√
K ′R1/6m−1/12 ln1/4 m+ λ−1/2R1/3m−1/6

√
lnm,

where θh = θh,T1
which is returned after phase I of Algorithm 3.

Proof of Lemma C.3. For simplicity, let us define

G1 = {g(xk
h; θ̂h)}k∈Ih

∈ Rdm×K′
and G0 = {g(xk

h; θ0)}k∈Ih
∈ Rdm×K′

.
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By Lemma C.1, we have θh ∈ B(θ0;R). Under the joint event E{Lemma C.1} ∩ E{Lemma A.1},
for any x and h, we have

∥g(x; θh)∥Λ−1
h
− ∥g(x; θ0)∥Λ̄−1

h
≤ ∥g(x; θh)∥2

√
∥Λ−1

h − Λ̄−1
h ∥2 + ∥g(x; θh)∥Λ̄−1

h
− ∥g(x; θ0)∥Λ̄−1

h

≤ ∥g(x; θh)∥2
√
∥Λ−1

h − Λ̄−1
h ∥2 + ∥g(x; θh)− g(x; θ0)∥Λ̄−1

h

≤ ∥g(x; θh)∥2
√
∥Λ−1

h − Λ̄−1
h ∥2 + ∥g(x; θh)− g(x; θ0)∥2

√
∥Λ̄−1

h ∥2

≤ ∥g(x; θh)∥2

√
∥Λh − Λ̄h∥2

λmin(Λh)λmin(Λ̄h)
+ ∥g(x; θh)− g(x; θ0)∥2

√
∥Λ̄−1

h ∥2

≤ Cg

√
2
√
K ′
√
CgR

1/6m−1/12 ln1/4 m · λ−1 +R1/3m−1/6
√
lnmλ−1/2

where the fourth inequality follows from Lemma A.8, and the last inequality follows from θh ∈
B(θ0;R) and Lemma A.1, and

∥Λh − Λ̄h∥2 = ∥G1G
T
1 −G0G

T
0 ∥2

= ∥G1(G1 −G0)
T + (G1 −G0)G

T
0 ∥2

≤ ∥G1∥2∥G1 −G0∥2 + ∥G1 −G0∥2∥G0∥2
≤ 2
√
K ′Cg

√
K ′R1/3m−1/6

√
m.

C.3 APPROXIMATE POSTERIOR SAMPLING FROM LANGEVIN DYNAMICS

In this part, we show that our algorithm performs an approximate posterior sampling from the data
posterior distribution. For simplicity, we denote θlin,ih = θlin,ih,T2

which is returned by the LMC to
the auxiliary linear model (after Line 14 of Algorithm 3). We also denote θlinh = θlinh,T2

which
is returned by the gradient descent to the auxiliary linear model (after Line 10 of Algorithm 3).
Similar to Lemma B.1, the following lemma shows that the parameter samples {θlin,ih }i∈[M ] from
Langevin dynamics approximate the samples of the data posterior.

Lemma C.4. For any h ∈ [H], we have

{θlin,ih }i∈[M ]
i.i.d.∼ N (θlinh ,Σh)

where

Σh := τ(I −A2T2

h )Λ−1
h (I +Ah)

−1, Ah := I − 2η2Λh,

In addition, we have θlinh = AT2

h θ0 + (I −AT2

h )θ̂linh . Furthermore, if we set

η2 =
1

4λmax(Λh)

then, we have

(1− (1− 1

2κ(Λh)
)T2)τΛ−1

h ⪯ Σh ⪯ τΛ−1
h . (8)

Proof of Lemma C.4. Unroll the recursion in the gradient descent update in Line 9 of Algorithm 3,
we have

θlin,ih,t = θlin,ih,t−1 − η2∇Llin
h (θlin,ih,t−1) +

√
2ητϵt

= θlin,ih,t−1 − 2η2

(
Λhθ

lin,i
h,t−1 −Gh(θh)

T yh − λθ0

)
+
√
2ητϵt

= Ahθ
lin,i
h,t−1 + 2η2

(
Gh(θh)

T yh + λθ0
)
+
√
2ητϵt
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= At
hθ0 + 2η2

t−1∑
l=0

Al
h

(
Gh(θ̂h)

T yh + λθ0

)
+
√
ητ

t−1∑
l=0

Al
hϵt−l

= At
hθ0 + 2η2(I −At

h)(I +Ah)
−1(I −Ah)

−1
(
Gh(θ̂h)

T yh + λθ0

)
+
√
2ητ

t−1∑
l=0

Al
hϵt−l

= At
hθ0 + (I −At

h)θ̂
lin
h +

√
2ητ

t−1∑
l=0

Al
hϵt−l.

Since {ϵt}t∈[T2] are mutually independent Gaussian noises, we have

θlin,ih,T2
∼ N (νh,Σh),

where νh = AT2

h θ0 + (I −AT2

h )θ̂linh , and

Σh = 2η2τ

T2−1∑
t=0

A2t
h = 2η2τ(I −A2T2)(I −Ah)

−1(I +Ah)
−1 = τ(I −A2T2)Λ−1

h (I +Ah)
−1.

Note that θlinh = GD(Llin
h , θ0, η2, T2) = LGD(Llin

h , θ0, η2, T2, τ = 0), we have θlinh = νh.

Now we set η2 such that

η2 =
1

4λmax(Λh)

We define the condition number:

κh :=
λmax(Λh)

λmin(Λh)

0 < η2 ≤
1

2λmax(Λh)
∧ 1

2λ
.

With this choice of η2, we have
0 ⪯ Ah = I − 2η2Λh ⪯ (1− 2η2λmin(Λh))I = (1− 1/(2κh))I,

I ⪯ I +Ah ⪯ 2I,

I ≻ I −A2T2

h ⪰ (1− (1− (2κh)
−1)T2)I.

(9)

Thus, we have

(1− (1− 1

2κh
)T2)τΛ−1

h ⪯ Σh ⪯ τΛ−1
h .

C.4 PESSIMISM

In this part, we show how pessimism is obtained in our approximate posterior sampling framework.
This result is formally stated in the following lemma.
Lemma C.5. Let

m = Ω
(
d3/2R−1 ln3/2(

√
m/R)

)
,

R = O
(
m1/2 ln−3 m

)
,

(η1λ)
−1R8/3m−1/3 lnm ≲ 1,

η1(K
′C2

g + λ/2) ≤ 1/2,

T2 ≥
ln 2

ln(1/(1− 2ηλ))
,
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√
τ ≥ 2γ

M = ln
H|S|
δ

/ ln
1

1− Φ(−1)
,

λ−1(K ′(H − h+ 1)2(1 + ι)2 + 1)
√
K ′R1/3m−1/6

√
m

+ λ−1K ′CgR
4/3m−1/6

√
lnm+ λ−1

√
K ′H(1 + ι) ≲ R,

where γ is defined in Lemma C.8. For any deterministic policy π, with probability at least 1−m−2−
2δ, for all s ∈ S and all h ∈ [H], we have

errh(s, πh(s)) ≥ −R4/3m−1/6
√
lnm− λ−1(K ′H2(1 + ι)2 + 1)

√
K ′R1/3m−1/6

√
m

+ λ−1K ′R4/3m−1/6
√
lnm− (1− 2ηλmax(Λ̄h))

T1λ−1/2K ′H(1 + ι)

− γλ−1
√
K ′R1/6m−1/12 ln1/4 m− γλ−1/2R1/3m−1/6

√
lnm.

Proof of Lemma C.5. Consider the joint even E{Lemma C.7}∩E{Lemma C.7}∩E{Lemma C.8}.
For any x, if f(x; θh) + mini∈[M ]⟨g(x; θh), θlin,ih − θlinh ⟩ < 0, then Q̃h(x) = 0, thus errh(x) =

BhṼh+1(x) − Q̃h(x) = BhṼh+1 ≥ 0 since rh ≥ 0 and Ṽh+1 ≥ 0. Consider the case f(x; θh) +

mini∈[M ]⟨g(x; θh), θlin,ih − θlinh ⟩ ≥ 0. Under the joint event E{Lemma C.7}∩E{Lemma C.7}, for
any x, we have

Q̃h(x) = min{f(x; θh) + min
i∈[M ]

⟨g(x; θh), θlin,ih − θlinh ⟩, (H − h+ 1)(1 + ι)}+

≤ f(x; θh) + min
i∈[M ]

⟨g(x; θh), θlin,ih − θlinh ⟩

≤ f(x; θh)− ∥g(x; θh)∥Σh
,

where the third inequality follows from Lemma C.7. Thus, we have

errh(x) = BhṼh+1(x)− Q̃h(x)

≥ BhṼh+1(x)− f(x; θh) + ∥g(x; θh)∥Σh

≥ ⟨g(x; θ0), θ̂linh − θ0⟩ − γ∥g(x; θ0)∥Λ̄−1
h
− f(x; θh) + ∥g(x; θh)∥Σh

≥ ⟨g(x; θ0), θ̂linh − θ0⟩ − f(x; θh)− γ∥g(x; θ0)∥Λ̄−1
h

+ (1− (1− 2ηλ)T2)τ∥g(x; θh)∥Λ−1
h

≥ ⟨g(x; θ0), θ̂linh − θ0⟩ − f(x; θh)− γ∥g(x; θ0)∥Λ̄−1
h

+ 0.5τ∥g(x; θh)∥Λ−1
h

= ⟨g(x; θ0), θ̂linh − θ0⟩ − f(x; θh)︸ ︷︷ ︸
approx + opt error, Lemma C.7

+ (0.5
√
τ − γ)︸ ︷︷ ︸

≥0, by choice of τ

∥g(x; θ0)∥Λ̄−1
h

+ 0.5
√
τ
(
∥g(x; θh)∥Λ−1

h
− ∥g(x; θ0)∥Λ̄−1

h

)
︸ ︷︷ ︸

Lemma C.3

where the second inequality follows from Lemma C.8, the third inequality follows from Equa-
tion (8), the fourth inequality follows from the choice of T2. Applying Lemma C.7 and Lemma C.3
to the last inequality above completes our proof.

The following lemma characterizes the approximation error and the optimization error of a lin-
ear model ⟨g(x; θ0), ˆ̄θlinh − θ0⟩ constructed from the neural tangent features to the network output
f(x; θh) trained by GD.
Lemma C.6. Let

m = Ω
(
d3/2R−1 ln3/2(

√
m/R)

)
,

R = O
(
m1/2 ln−3 m

)
,

(η1λ)
−1R8/3m−1/3 lnm ≲ 1,
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η1 ≤
1

4λmax(Λ̄h)
,

λ−1(K ′(H − h+ 1)2(1 + ι)2 + 1)
√
K ′R1/3m−1/6

√
m

+ λ−1K ′CgR
4/3m−1/6

√
lnm+ λ−1

√
K ′H(1 + ι) ≲ R.

With probability at least 1−m−2, for any x ∈ Sd−1 and any h ∈ [H], we have

|f(x; θh)− ⟨g(x; θ0), ˆ̄θlinh − θ0⟩| ≲ R4/3m−1/6
√
lnm

+ λ−1(K ′H2(1 + ι)2 + 1)
√
KR1/3m−1/6

√
m+ λ−1K ′R4/3m−1/6

√
lnm

+ (1− 2η1λmin(Λ̄h))
T1λ−1/2K ′H(1 + ι)

where ˆ̄θlinh = Λ̄−1
h (G(θ0)yh + λθ0) defined in Equation (6).

Proof of Lemma C.6. We have

|f(x; θh)− ⟨g(x; θ0), ˆ̄θlinh − θ0⟩| ≤ |f(x; θh)− ⟨g(x; θ0), θh − θ0⟩|+ |g(x; θ0)T (θh − θ̄linh,T1
)|

+ |⟨g(x; θ0), θ̄linh,T1
− ˆ̄θlinh ⟩|

where θ̄linh,T1
is defined in Equation (5). By Lemma C.1, θh ∈ B(θ0;R), thus by Lemma A.1, under

the event E{Lemma A.1}, for any x ∈ Sd−1, we have

|f(x; θh)− g(x; θ0)
T (θh − θ0)| ≤ CgR

4/3m−1/6
√
lnm.

By Lemma C.1, under the event E{Lemma C.1}, we have

∥θh − θ̄linh,T1
∥2 ≲ λ−1(K ′(H − h+ 1)2(1 + ι)2 + 1)

√
K ′R1/3m−1/6

√
m+ λ−1K ′CgR

4/3m−1/6
√
lnm

For bounding the third term, let Āh = I − 2η1Λ̄h. Under the event E{Lemma A.1}, we have

|⟨g(x; θ0), θ̄linh,T1
− ˆ̄θlinh ⟩| ≤ ∥g(x; θ0)∥2 · ∥θ̄linh,T1

− ˆ̄θlinh ∥2

≤ Cg∥θ̄linh,T1
− ˆ̄θlinh ∥2

= Cg∥ĀT1

h (θ0 − ˆ̄θlinh )∥2
≤ Cg(1− 2η1λmin(Λ̄h))

T1∥θ0 − ˆ̄θlinh ∥2
= Cg(1− 2η1λmin(Λ̄h))

T1 · ∥Λ̄−1
h (G(θ0)yh + λθ0)− Λ̄−1

h Λ̄hθ0∥2
= Cg(1− 2η1λmin(Λ̄h))

T1 · ∥Λ̄−1
h

(
G(θ0)yh −G(θ0)G(θ0)

T θ0
)
∥2

= Cg(1− 2η1λmin(Λ̄h))
T1∥Λ̄−1

h G(θ0)yh∥2
≤ Cg(1− 2η1λmin(Λ̄h))

T1λ−1/2K ′CgH(1 + ι),

where the second inequality follows from Lemma A.1, the first equality follows from unrolling
the gradient update linear regression, the third inequality follows from the definition of θ̄linh,T1

is
defined in Equation (5), the fourth equality follows from that g(x; θ0)T θ0,∀x due to the symmetric
initialization of θ0, and the last inequality follows from ∥Λ̄−1

h ∥2 ≤ λ−1, ∥G(θ0)∥2 ≤
√
K ′Cg due

to Lemma A.1, and ∥y2∥2 ≤
√
K ′H(1 + ι).

Altogether, under the joint event E{Lemma C.1}∩E{Lemma A.1}, we conclude our statement via
the union bound.

The following lemma specifies the anti-concentration of Gaussian distributions.

Lemma C.7. Let M = ln H|S|
δ / ln 1

1−Φ(−1) where Φ(·) is the cumulative distribution function of
the standard normal distribution. For any deterministic policy π, with probability at least 1− δ, for
any (s, h) ∈ S × [H], we have

min
i∈[M ]

⟨g(s, π(s); θh), θlin,ih ⟩ ≤ ⟨g(s, π(s); θh), θlinh ⟩ − ∥g(s, π(s); θh)∥Σh
.
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Proof of Lemma C.7. We have

⟨g(s, π(s); θh), θlin,ih − θlinh ⟩ ∼ N (0, ∥g(s, π(s); θh)∥Σh
).

By the anti-concentration of Gaussian distributions, we have

Pr
(
⟨g(s, π(s); θh), θlin,ih − θlinh ⟩ ≤ −∥g(s, π(s); θh)∥Σh

)
= Φ(−1).

Since {θlin,ih }i∈[M ] are mutually independent, with probability at least 1− (1−Φ(−1))M , we have

min
i∈[M ]

⟨g(s, π(s); θh), θlin,ih − θlinh ⟩ ≤ −∥g(s, π(s); θh)∥Σh
.

We set δ = (1− Φ(−1))M to complete the proof.

The following lemma characterizes the estimation error of using the linear model at its mode
⟨g(x; θ0), ˆ̄θlinh − θ0⟩ to estimate the Bellman target (BhṼh+1)(x).

Lemma C.8. Let λ > 1,m = Ω
(
K ′10H8(1 + ι)8 ln(3K ′H/δ)

)
. With probability at least 1 −

m−2 − δ, for any x ∈ Sd−1 and any h ∈ [H], we have

|(BhṼh+1)(x)− ⟨g(x; θ0), ˆ̄θlinh − θ0⟩| ≤
B√
m
(2
√
d+

√
2 ln(3H/δ)) + ξh + γ∥g(x; θ0)∥Λ̄−1

h
,

where

γ ≲ B
√
λ+
√
K ′λ−1(

B√
m
(2
√
d+

√
2 ln(3H/δ)) + ξh)

+H(1 + ι)

√
d̃h ln(1 +K ′/λ) +K ′ lnλ+ 2 ln(3H/δ) + 1.

Proof of Lemma C.8. We have

(BhṼh+1)(x)− ⟨g(x; θ0), ˆ̄θlinh − θ0⟩ = BhṼh+1(x)− ⟨g(x; θ0), θ∗h − θ0⟩︸ ︷︷ ︸
approx error

+ ⟨g(x; θ0), θ∗h − ˆ̄θlinh ⟩︸ ︷︷ ︸
estimation error

,

where the first term is the approximation error and the second term is the estimation error. To bound
the approximation error (the first term), under the event E{Lemma C.9}, we have

|BhṼh+1(x)− ⟨g(x; θ0), θ∗h − θ0⟩| ≤
B√
m
(2
√
d+

√
2 ln(H/δ)) + ξh.

To bound the estimation error (the second term), we have

⟨g(x; θ0), θ∗h − θ0⟩ − ⟨g(x; θ0), ˆ̄θlinh − θ0⟩ = g(x; θ0)
T (θ∗h − θ0)− g(x; θ0)

T Λ̄−1
h

∑
k∈Ih

g(xk
h; θ0)y

k
h

= g(x; θ0)
T (θ∗h − θ0)− g(x; θ0)

T Λ̄−1
h

∑
k∈Ih

g(xk
h; θ0) · (BhṼh+1)(x

k
h)︸ ︷︷ ︸

I1

+ g(x; θ0)
T Λ̄−1

h

∑
k∈Ih

g(xk
h; θ0) ·

[
(BhṼh+1)(x

k
h)− (rkh + Ṽh+1(s

k
h+1))

]
︸ ︷︷ ︸

I2

.

Bounding term I1: Under the joint event E{Lemma C.9} ∩ E{Lemma A.1}, we have

|I1| = |g(x; θ0)T (θ∗h − θ0)− g(x; θ0)
T Λ̄−1

h

∑
k∈Ih

g(xk
h; θ0) · (BhṼh+1)(x

k
h)|

= |λg(x; θ0)Λ̄−1
h (θ∗ − θ0)− g(x; θ0)

T Λ̄−1
h

∑
k∈Ih

g(xk
h; θ0) ·

(
(BhṼh+1)(x

k
h)− g(xk

h; θ0)
T (θ∗h − θ0)

)
|
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≤ λ∥g(x; θ0)∥Λ̄−1
h
· ∥θ∗ − θ0∥Λ̄−1

h

+ ∥g(x; θ0)∥Λ̄−1
h
· ∥
∑
k∈Ih

g(xk
h; θ0) ·

(
(BhṼh+1)(x

k
h)− g(xk

h; θ0)
T (θ∗h − θ0)

)
∥Λ̄−1

h

≤ ∥g(x; θ0)∥Λ̄−1
h

(
λBλ−1/2 +

√
K ′C2

gλ
−1(

B√
m
(2
√
d+

√
2 ln(H/δ)) + ξh)

)
,

where the second equality follows from the definition of Λ̄h, the first inequality follows from the
triangle inequality and that xTAy ≤ ∥xTA1/2∥2∥A1/2y∥2 = ∥x∥A∥y∥A, and the second inequality
follows the inequality ∥x∥A ≤

√
∥A∥2∥x∥2, ∥Λ̄h∥2 ≤ λ−1, Lemma C.9, and ∥g(x; θ0)∥2 ≤ Cg by

Lemma A.1.

Bounding term I2. We have

|I2| = |g(x; θ0)T Λ̄−1
h

∑
k∈Ih

g(xk
h; θ0) ·

[
(BhṼh+1)(x

k
h)− (rkh + Ṽh+1(s

k
h+1))

]
|

≤ ∥g(x; θ0)∥Λ̄−1
h
· ∥
∑
k∈Ih

g(xk
h; θ0) ·

[
(BhṼh+1)(x

k
h)− (rkh + Ṽh+1(s

k
h+1))

]
∥Λ̄−1

h︸ ︷︷ ︸
I3

.

For notational simplicity, we write

ϵkh := (BhṼh+1)(x
k
h)− rkh − Ṽh+1(s

k
h+1),

Eh := [(ϵkh)k∈Ih
]T ∈ RK′

.

We denote Kinit
h := [⟨g(xi

h; θ0), g(x
j
h; θ0)⟩]i,j∈Ih

as the Gram matrix of the empirical NTK kernel
on the data {xk

h}k∈[K]. We denote

G0 :=
(
g(xk

h; θ0)
)
k∈Ih

∈ Rmd×K′
,

Kint
h := GT

0 G0 ∈ RK′×K′
.

Recall the definition of the Gram matrix Kh of the NTK kernel on the data {xk
h}k∈Ih

. It follows
from Lemma A.2 and the union bound that if m = Ω(ϵ−4 ln(3K ′H/δ)) with probability at least
1− δ/3, for any h ∈ [H],

∥Kh −Kinit
h ∥F ≤

√
K ′ϵ. (10)

We now can bound I3. We have

I23 =

∥∥∥∥∥∑
k∈Ih

g(xk
h; θ0)ϵ

k
h

∥∥∥∥∥
2

Λ̄−1
h

= ET
h G

T
0 (λImd +G0G

T
0 )

−1G0Eh

= ET
h G

T
0 G0(λIK′ +GT

0 G0)
−1Eh

= ET
hKinit

h (Kinit
h + λIK)−1Eh

= ET
hKh(Kh + λIK′)−1Eh︸ ︷︷ ︸

I5,estimation error

+ET
h

(
Kh(Kh + λIK′)−1 −Kinit

h (Kint
h + λIK′)−1

)
Eh︸ ︷︷ ︸

I4,approx. error

. (11)

For bounding I4, consider the joint event E{Lemma A.1} ∩ E{Equation (10)}. Under this joint
event, we have

I4 ≤
∥∥Kh(Kh + λIK′)−1 −Kinit

h (Kint
h + λIK′)−1

∥∥
2
∥Eh∥22

=
∥∥(Kh −Kinit

h )(Kh + λIK′)−1 +Kinit
h

(
(Kh + λIK′)−1 − (Kint

h + λIK′)−1
)∥∥

2
∥Eh∥22

≤ ∥Kh −Kinit
h ∥2/λ+ ∥Kinit

h ∥2 · ∥Kh −Kinit
h ∥2/λ2∥Eh∥22

≤
λ+K ′C2

g

λ2
∥Kh −Kinit

h ∥2∥Eh∥22
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≤
λ+K ′C2

g

λ2
K ′H2(1 + ι)2

√
K ′ϵ

= 1 (12)

where the first inequality holds due to ∥x∥A ≤
√
∥A∥2∥x∥2, the second inequality holds due to

the triangle inequality, Lemma A.8, and ∥(Kh + λIK′)−1∥2 ≤ λ−1, the third inequality holds
due to ∥Kinit

h ∥2 ≤ ∥G0∥22 ≤ ∥G0∥2F ≤ K ′C2
g due to Lemma A.1, the fourth inequality holds

due to ∥Eh∥2 ≤
√
K ′H(1 + ι), and Equation (10), and the last inequality holds if we choose

1
ϵ =

λ+K′C2
g

λ2 K ′H2(1 + ι)2
√
K ′ in Equation (10). This choice of ϵ leads to the condition:

m = Ω
(
K10H8(1 + ι)8 ln(3K ′H/δ)

)
. (13)

For bounding I5, as λ > 1, we have

I5 = ET
hKh(Kh + λIK′)−1Eh

≤ ET
h (Kh + (λ− 1)IK)(Kh + λIK′)−1Eh

= ET
h

[
(Kh + (λ− 1)IK′)−1 + IK′

]−1
Eh. (14)

Let σ(·) be the σ-algebra induced by the set of random variables. For any h ∈ [H] and k ∈ Ih =
[(H − h)K ′ + 1, . . . , (H − h+ 1)K ′], we define the filtration

Fk
h = σ

(
{(sth′ , ath′ , rth′)}t≤k

h′∈[H] ∪ {(s
k+1
h′ , ak+1

h′ , rk+1
h′ )}h′≤h−1 ∪ {(sk+1

h , ak+1
h )}

)
which is simply all the data up to episode k + 1 and timestep h but right before rk+1

h and sk+1
h+1 are

generated (in the offline data). Note that for any k ∈ Ih, we have (skh, a
k
h, r

k
h, s

k
h+1) ∈ Fk

h , and

Ṽh+1 ∈ σ
(
{(skh′ , akh′ , rkh′)}k∈Ih′

h′∈[h+1,...,H]

)
⊆ Fk−1

h ⊆ Fk
h .

Thus, for any k ∈ Ih, we have

ϵkh = (BhṼh+1)(x
k
h)− rkh − Ṽh+1(s

k
h+1) ∈ Fk

h .

Recalling our data splitting strategy i ∈ Ih := [(H − h)K ′ + 1, . . . , (H − h + 1)K ′] with K ′ :=
⌊K/H⌋, the key property in our data splitting is that

Ṽh+1 ∈ σ
(
{(skh′ , akh′ , rkh′)}k∈Ih′

h′∈[h+1,...,H]

)
⊆ Fk−1

h .

Thus, conditioned on Fk−1
h , Ṽh+1 becomes deterministic. This implies that

E
[
ϵkh|Fk−1

h

]
=
[
(BhṼh+1)(s

k
h, a

k
h)− rkh − Ṽh+1(s

k
h+1)|Fk−1

h

]
= 0.

Therefore, for any h ∈ [H], {ϵkh}k∈Ih
is adapted to the filtration {Fk

h}k∈Ih
. Applying Lemma A.4

with Zt = ϵht ∈ [−H(1+ ι), H(1+ ι)], σ2 = H2(1+ ι)2, ρ = λ−1, for any δ > 0, with probability
at least 1− δ/3, for any h ∈ [H],

ET
h

[
(Kh + (λ− 1)IK′)−1 + I

]−1
Eh ≤ H2(1 + ι)2logdet (λIK′ +Kh) + 2H2(1 + ι)2 ln(3H/δ)

(15)

Substituting Equation (15) into Equation (14), we have

I5 ≤ H2(1 + ι)2logdet(λIK′ +Kh) + 2H2(1 + ι)2 ln(3H/δ)

= H2(1 + ι)2logdet(IK′ +Kh/λ) +H2(1 + ι)2K ′ lnλ+ 2H2(1 + ι)2 ln(3H/δ)

= H2(1 + ι)2d̃h ln(1 +K ′/λ) +H2(1 + ι)2K ′ lnλ+ 2H2(1 + ι)2 ln(3H/δ), (16)

where the last equation holds due to the definition of the effective dimension.

All together, under the joint event E{Lemma C.9} ∩ E{Lemma A.1} ∩ E{Equation (10)} ∩
E{Equation (15)}, with the choice that

λ > 1,m = Ω
(
K ′10H8(1 + ι)8 ln(3K ′H/δ)

)
,

35



Under review as a conference paper at ICLR 2024

for any x ∈ Sd−1 and any h ∈ [H], we have

|(BhṼh+1)(x)− ⟨g(x; θ0), θ̂linh − θ0⟩| ≤
B√
m
(2
√
d+

√
2 ln(3H/δ)) + ξh + γ∥g(x; θ0)∥Λ̄−1

h
,

where

γ = λBλ−1/2 +
√
K ′C2

gλ
−1(

B√
m
(2
√
d+

√
2 ln(3H/δ)) + ξh)

+H(1 + ι)

√
d̃h ln(1 +K ′/λ) +K ′ lnλ+ 2 ln(3H/δ) + 1

by the union bound, this joint event occurs with probability at least 1−m−2 − δ.

The following lemma characterizes the approximation error between the Bellman target Q̄h(x) and
the functions in the RKHS.

Lemma C.9. Under Assumption 4.1, with probability at least 1 − δ over w1, . . . , wm drawn i.i.d.
from N (0, Id/d), for any h ∈ [H], there exist c1, . . . , cm where ci ∈ Rd and ∥ci∥2 ≤ B

m such that

Q̄h(x) :=

m∑
i=1

cTi x1{wT
i x ≥ 0},

∥BhṼh+1 − Q̄h∥∞ ≤
B√
m
(2
√
d+

√
2 ln(H/δ)) + ξh.

Moreover, Q̄h(x) can be re-written as

Q̄h(x) = ⟨g(x; θ0), θ∗h − θ0⟩

where

θ∗h − θ0 :=
√
m[a1c

T
1 , . . . , amcTm]T ∈ Rmd, and ∥θ∗h − θ0∥2 ≤ B. (17)

Proof of Lemma C.9. Let V⊥ = arg infV ∈Q∗ ∥V − BhṼh+1∥∞. We have

V⊥(x) =

∫
Rd

c(w)Tx1{wTx ≥ 0}dw,

for some c : Rd → Rd such that supw
∥c(w)∥2

p0(w) ≤ B. By approximation by finite sum in [GCL+19],
with probability at least 1− δ, there exist c1, . . . , cm where ci ∈ Rd and ∥ci∥2 ≤ B

m such that

∥V⊥ − Q̄h∥∞ ≤
B√
m
(2
√
d+

√
2 ln(H/δ)),

where

Q̄h(x) :=

m∑
i=1

cTi x1{wT
i x ≥ 0}.

By Assumption 4.1, we have

∥BhṼh+1 − Q̄h∥∞ ≤ ∥BhṼh+1 − V⊥∥∞ + ∥V⊥ − Q̄h∥∞ ≤
B√
m
(2
√
d+

√
2 ln(H/δ)) + ξh.
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C.5 BOUNDS ON THE EMPIRICAL SQUARED BELLMAN RESIDUALS

We bound the empirical squared Bellman residuals errh(xk
h) in the following lemma.

Lemma C.10. Let

m = Ω
(
d3/2R−1 ln3/2(

√
m/R)

)
,

R = O
(
m1/2 ln−3 m

)
,

(η1λ)
−1R8/3m−1/3 lnm ≲ 1,

η1(K
′C2

g + λ/2) ≤ 1/2,

T2 ≥
ln 2

ln(1/(1− 2ηλ))
,

√
τ ≥ 2γ,

M = ln
H|S|
δ

/ ln
1

1− Φ(−1)
,

λ > 1

m = Ω
(
K ′10H8(1 + ι)8 ln(3K ′H/δ)

)
,

λ−1(K ′(H − h+ 1)2(1 + ι)2 + 1)
√
K ′R1/3m−1/6

√
m

+ λ−1K ′CgR
4/3m−1/6

√
lnm+ λ−1

√
K ′H(1 + ι) ≲ R,

where γ is defined in Lemma C.8. Set

ι = R4/3m−1/6
√
lnm+ λ−1(K ′H2(1 + ι)2 + 1)

√
K ′R1/3m−1/6

√
m+ λ−1KR4/3m−1/6

√
lnm

+ (1− 2ηλmax(Λ̄h))
T1λ−1/2K ′H(1 + ι) + γλ−1

√
K ′R1/6m−1/12 ln1/4 m+ γλ−1/2R1/3m−1/6

√
lnm.

With probability at least 1−m−2 − 3δ, for any k, h ∈ Ih × [H], we have

errh(x
k
h) ≲

B√
m
(2
√
d+

√
2 ln(3H/δ)) + ξh + γ∥g(xk

h; θ0)∥Λ̄−1
h

+R4/3m−1/6
√
lnm

+ λ−1(K ′H2(1 + ι)2 + 1)
√
KR1/3m−1/6

√
m+ λ−1K ′R4/3m−1/6

√
lnm

+ (1− 2ηλmax(Λ̄h))
T1λ−1/2K ′H(1 + ι) +

√
2τ ln(MK ′H/δ) · ∥g(xk

h; θ0)∥Λ̄−1
h

+
√
2τ ln(MK ′H/δ) ·

(
λ−1
√
K ′R1/6m−1/12 ln1/4 m+ λ−1/2R1/3m−1/6

√
lnm

)
.

Proof of Lemma C.10. Define the event

E1 =
{
⟨g(xk

h; θh), θ
lin,i
h − θlinh ⟩ ≤

√
2 ln(MK ′H/δ)∥g(xk

h)∥Σh
: ∀(i, k, h) ∈ [M ]× Ih × [H]

}
.

By Lemma C.4, Lemma A.7 and the union bound, we have P (E1) ≥ 1− δ. Now consider the joint
event

E = E1 ∩ E{Lemma C.3} ∩ E{Lemma C.5} ∩ E{Lemma C.6} ∩ E{Lemma C.8}.

The rest of the proof considers under the joint event E. Let us define

ζ := R4/3m−1/6
√
lnm+ λ−1(K ′H2(1 + ι)2 + 1)

√
K ′R1/3m−1/6

√
m+ λ−1KR4/3m−1/6

√
lnm

+ (1− 2η1λmax(Λ̄h))
T1λ−1/2K ′H(1 + ι) + γλ−1

√
K ′R1/6m−1/12 ln1/4 m+ γλ−1/2R1/3m−1/6

√
lnm.

It follows from Lemma C.5 that

Q̃h(x) = BhṼh+1(x)− errh(x) ≤ H − h+ 1 + (H − h)ι+ ζ

≤ H − h+ 1 + (H − h+ 1)ι,
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if we choose ι ≥ ζ.

Thus, we have

Q̃h(x) = min{f(x; θh) + min
i∈[M ]

⟨g(x; θh), θlin,ih − θlinh ⟩, (H − h+ 1)(1 + ι)}+

= max{f(x; θh) + min
i∈[M ]

⟨g(x; θh), θlin,ih − θlinh ⟩, 0}.

Therefore, for any (k, h) ∈ Ih × [H], we have

errh(x
k
h) = BhṼh+1(x

k
h)− Q̃h(x

k
h)

= BhṼh+1(x
k
h)− f(xk

h; θh)− min
i∈[M ]

⟨g(xk
h; θh), θ

lin,i
h − θlinh ⟩

≤ BhṼh+1(x)− f(x; θh) +
√

2 ln(MK ′H/δ) · ∥g(xk
h; θh)∥Σh

= BhṼh+1(x
k
h)− ⟨g(xk

h; θ0),
ˆ̄θlinh − θ0⟩+ ⟨g(xk

h; θ0),
ˆ̄θlinh − θ0⟩ − f(xk

h; θh)

+
√
2 ln(MK ′H/δ) · ∥g(xk

h; θh)∥Σh

≤ BhṼh+1(x
k
h)− ⟨g(xk

h; θ0),
ˆ̄θlinh − θ0⟩+ ⟨g(xk

h; θ0),
ˆ̄θlinh − θ0⟩ − f(xk

h; θh)

+
√

2τ ln(MK ′H/δ) · ∥g(xk
h; θh)∥Λ−1

h

= BhṼh+1(x
k
h)− ⟨g(xk

h; θ0),
ˆ̄θlinh − θ0⟩︸ ︷︷ ︸

Lemma C.8

+ ⟨g(xk
h; θ0),

ˆ̄θlinh − θ0⟩ − f(xk
h; θh)︸ ︷︷ ︸

approx + opt error, Lemma C.6

+
√
2τ ln(MK ′H/δ) · ∥g(xk

h; θ0)∥Λ̄−1
h

+
√
2τ ln(MK ′H/δ) ·

(
∥g(xk

h; θh)∥Λ−1
h
− ∥g(xk

h; θ0)∥Λ̄−1
h

)
︸ ︷︷ ︸

Lemma C.3

where the first inequality holds due event E1, and the second inequality holds due to Equation (8).

The following lemma is the NTK analogue of the elliptical potential lemma in [AYPS11].

Lemma C.11. If λ ≥ 1 and m = Ω(K ′4 ln(K ′H/δ)), then with probability at least 1− δ, for any
h ∈ [H], we have ∑

k∈Ih

∥g(xk
h; θ0)∥2Λ̄−1

h

≤ 2d̃h ln(1 +K ′/λ) + 1.

Proof of Lemma C.11. Define

Λ̄k
h := λI + 1{k ∈ Ih}

k−1∑
i=1

g(xi
h; θ0)g(x

i
h; θ0)

T .

Then we have Λ̄−1
h ⪯ (Λ̄k

h)
−1,∀k ∈ [K]. Thus, we have∑

k∈Ih

∥g(xk
h; θ0)∥2Λ̄−1

h

≤
∑
k∈Ih

∥g(xk
h; θ0)∥2(Λ̄k

h)
−1 .

For any fixed h ∈ [H], let

U = [g(xk
h; θ0)]k∈Ih

∈ Rmd×K′
.

By the union bound, with probability at least 1− δ, for any h ∈ [H], we have∑
k∈Ih

∥g(xh; θ0)∥2(Λk
h)

−1 ≤ 2 ln
det Λ̄h

det(λI)
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= 2logdet

(
I +

∑
k∈Ih

g(xk
h; θ0)g(x

k
h; θ0)

T /λ

)
= 2logdet(I + UUT /λ)

= 2logdet(I + UTU/λ)

= 2logdet(I +Kh/λ+ (UTU −Kh)/λ)

≤ 2logdet(I +Kh/λ) + 2tr
(
(I +Kh/λ)

−1(UTU −Kh)/λ
)

≤ 2logdet(I +Kh/λ) + 2∥(I +Kh/λ)
−1∥F ∥UTU −Kh∥F

≤ 2logdet(I +Kh/λ) + 2
√
K ′∥UTU −Kh∥F

≤ 2logdet(I +Kh/λ) + 1

= 2d̃h ln(1 +K ′/λ) + 1

where the first inequality holds due to λ ≥ C2
g and [AYPS11, Lemma 11], the third equality holds

due to that logdet(I+AAT ) = logdet(I+ATA), the second inequality holds due to that logdet(A+
B) ≤ logdet(A)+ tr(A−1B) as the result of the convexity of logdet, the third inequality holds due
to that tr(A) ≤ ∥A∥F , the fourth inequality holds due to 2

√
K ′∥UTU − Kh∥F ≤ 1 by the choice

of m = Ω(K ′4 ln(K ′H/δ)), Lemma A.2 and the union bound, and the last equality holds due to the
definition of d̃h.

C.6 PROOF OF THEOREM 2

We are now ready to present the proof of Theorem 2.

Proof of Theorem 2. We start with the value difference lemma [JYW21]: For any policy π (includ-
ing stochastic and non-Markovian policies), we have

V π
1 (s1)− V π̃

1 (s1) =

H∑
h=1

Eπ [errh(sh, ah)]−
H∑

h=1

Eπ̃ [errh(sh, ah)]

+

H∑
h=1

Eπ

[
⟨Q̃h (sh, ·) , πh (·|sh)− π̃h (·|sh)⟩

]
︸ ︷︷ ︸

≤0

≤
H∑

h=1

Eπ [errh(sh, ah)]−
H∑

h=1

Eπ̃ [errh(sh, ah)] ,

where the inequality follows from that π̃ is greedy with respect to Q̂h. To bound the first term, we
use Lemma A.3, Lemma C.10, and Lemma C.11. The second term is bounded using Lemma C.5.

We now give the characterization of the hyperparameters in Neural-LMC-PPS that arise in Theo-
rem 2. All together the parameter conditions of Lemma A.3, Lemma C.10, and Lemma C.11, the
parameter conditions are:

m = Ω
(
d3/2R−1 ln3/2(

√
m/R)

)
,

R = O
(
m1/2 ln−3 m

)
,

(η1λ)
−1R8/3m−1/3 lnm ≲ 1,

η1(K
′C2

g + λ/2) ≤ 1/2,

T2 ≥
ln 2

ln(1/(1− 2ηλ))
,

√
τ ≥ 2γ,

M = ln
HS

δ
/ ln

1

1− Φ(−1)
,
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λ > 1,

m = Ω
(
K ′10H8(1 + ι)8 ln(3K ′H/δ)

)
,

M = ln
H|S|
δ

/ ln
1

1− Φ(−1)
,

λ−1(K ′(H − h+ 1)2(1 + ι)2 + 1)
√
K ′R1/3m−1/6

√
m

+ λ−1K ′CgR
4/3m−1/6

√
lnm+ λ−1

√
K ′H(1 + ι) ≲ R,

where

γ ≲ B
√
λ+
√
K ′λ−1(

B√
m
(2
√
d+

√
2 ln(3H/δ)) + ξh)

+H(1 + ι)

√
d̃h ln(1 +K ′/λ) +K ′ lnλ+ 2 ln(3H/δ) + 1,

ι = R4/3m−1/6
√
lnm+ λ−1(K ′H2(1 + ι)2 + 1)

√
K ′R1/3m−1/6

√
m+ λ−1KR4/3m−1/6

√
lnm

+ (1− 2ηλmax(Λ̄h))
T1λ−1/2K ′H(1 + ι) + γλ−1

√
K ′R1/6m−1/12 ln1/4 m

+ γλ−1/2R1/3m−1/6
√
lnm.

It is easy to see that there exists m ≳ poly(K ′, H, d,B, λ, 1/δ), R = Ω(H
√
K ′) and sub-

polynomial in m that satisfy the parameter conditions above.

APPENDIX D EXPERIMENT DETAILS

In this section, we give more details of our experiments in Section 5.

D.1 ALGORITHM DETAILS

We give the detailed accounts of all algorithms we used in our experiment in Section 5:
LinLCB in Algorithm 4, NeuraLCB in Algorithm 5, NeuralGreedy in Algorithm 6, Neural-LMC-
PPS(simplified) in Algorithm 7, and NeuralTS in Algorithm 8.

Several remarks are in order. Neural-LMC-PPS(simplified) in Algorithm 7 is a simplified version
of Neural-LMC-PPS, where the former directly applies Langevin dynamics to obtain approximate
posterior weight samples, without using auxiliary linear models like the original Neural-LMC-
PPS. NeuralTS in Algorithm 8 simply perturbs the value predictor f(·, ·; θih) by an amount of
ϵi∥g(·, ·; θi)∥Λ−1

h
that is scaled with the weighted norm of the network gradient. NeuraLCB in

Algorithm 5 modifies the original NeuraLCB in [NTGNV22] where we use gradient descent instead
of stochastic gradient descent.

Algorithm 4 LinLCB/PEVI [JYW21]

Input: Offline data D = {(skh, akh, rkh)}
k∈[K]
h∈[H], uncertainty multiplier β, regularization parameter λ.

1: Initialize ṼH+1(·)← 0
2: for h = H, . . . , 1 do
3: Λh ←

∑K
k=1 ϕ(s

k
h, a

k
h)ϕ(s

k
h, a

k
h)

T + λI

4: θ̂h ← Σ−1
h

∑K
k=1 ϕh(s

k
h, a

k
h) · (rkh + V̂h+1(s

k
h+1))

5: bh(·, ·)← β · ∥ϕh(·, ·)∥Σ−1
h

.

6: Q̂h(·, ·)← min{⟨ϕh(·, ·), θ̂h⟩ − bh(·, ·), H − h+ 1}+.
7: π̂h ← argmaxπh

⟨Q̂h, πh⟩ and V̂ k
h ← ⟨Q̂k

h, π
k
h⟩.

8: end for
Output: π̂ = {π̂h}h∈[H]
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Algorithm 5 NeuraLCB (a modification of [NTGNV22])

Input: Offline data D = {(skh, akh, rkh)}
k∈[K]
h∈[H], neural networks {f(·, ·; θ) : θ ∈ Θ}, uncertainty

multiplier β, regularization parameter λ, step size η, number of gradient descent steps J
1: Initialize ṼH+1(·)← 0 and initialize f(·, ·;W ) with initial parameter W0

2: for h = H, . . . , 1 do
3: Ŵh ← GD(λ, η, J, {(skh, akh, rkh)}k∈[K], 0,W0) (Algorithm 10)
4: Λh = λI +

∑K
k=1 g(s

k
h, a

k
h; Ŵh)g(x

k
h; Ŵh)

T

5: Compute Q̂h(·, ·)← min{f(·, ·; Ŵh)− β∥g(·, ·; Ŵh)∥Λ−1
h
, H − h+ 1}+

6: π̂h ← argmaxπh
⟨Q̂h, πh⟩ and V̂h ← ⟨Q̂h, π̂h⟩

7: end for
Output: π̂ = {π̂h}h∈[H].

Algorithm 6 NeuralGreedy

Input: Offline data D = {(skh, akh, rkh)}
k∈[K]
h∈[H], neural networks {f(·, ·; θ) : θ ∈ Θ}, step size η,

number of gradient descent steps T
1: Initialize ṼH+1(·)← 0 and initialize f(·, ·;W ) with initial parameter W0

2: for h = H, . . . , 1 do
3: θh ← GD(Lh, θ0, η, T ) (Algorithm 10) where Lh is defined in Line 2 of Algorithm 3.
4: Compute Q̂h(·, ·)← min{f(·, ·; θh), H − h+ 1}+
5: π̂h ← argmaxπh

⟨Q̂h, πh⟩ and V̂h ← ⟨Q̂h, π̂h⟩
6: end for

Output: π̂ = {π̂h}h∈[H].

Algorithm 9 GLD(L(θ), θ0, η, T, τ ): Gradient Langevin dynamics
1: for t = 1 . . . T do
2: θt ← θt−1 − η∇θL(θt−1) +

√
2ητϵt where ϵt ∼ N (0, I)

3: end for
Output: θT

Algorithm 10 GD(L(θ), θ0, η, T ): Gradient descent
1: for t = 1 . . . T do
2: θt ← θt−1 − η∇θL(θt−1)
3: end for

Output: θT

D.2 EXPERIMENTAL SETUP AND TRAINING DETAILS

We give the details of our experimental setup and training of the empirical results presented in
Section 5.

LINEAR MDPS

In this appendix, we provide further details on the experiment setup. We describe in detail a variant
of the hard instance of linear MDPs [MWZG21] used in our experiment. The linear MDP has
S = {0, 1}, A = {0, 1, · · · , 99}, and the feature dimension d = 10. Each action a ∈ [99] =
{1, . . . , 99} is represented by its binary encoding vector ua ∈ R8 with entry being either −1 or
1. The feature mapping ϕ(s, a) is given by ϕ(s, a) = [uT

a , δ(s, a), 1 − δ(s, a)]T ∈ R10, where
δ(s, a) = 1 if (s, a) = (0, 0) and δ(s, a) = 0 otherwise. The true measure νh(s) is given by
νh(s) = [0, · · · , 0, (1 − s) ⊕ αh, s ⊕ αh] where {αh}h∈[H] ∈ {0, 1}H are generated uniformly at
random and ⊕ is the XOR operator. We define θh = [0, · · · , 0, r, 1 − r]T ∈ R10 where r = 0.99.
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Algorithm 7 Neural-LMC-PPS(simplified)

Input: Dataset D = {(skh, akh, rkh)}
k∈[K]
h∈[H], neural networks {f(·, ·; θ) : θ ∈ Θ}, step size η, tem-

perature parameter τ , regularization parameter λ, number of training iterations T , ensemble
size M , clipping factor ι

1: Initialize ṼH+1(·)← 0 and initialize θ0
2: for step h = H,H − 1, . . . , 1 do
3: for i = 1 . . .M do
4: θih ← GLD(Lh, θ0, η, T, τ) (Algorithm 9) where Lh is defined in Line 2 of Algorithm 3.
5: f̃ i

h(·, ·)← f(·, ·; θih)
6: end for
7: Q̃h(·, ·)← min{min

i∈[M ]
f̃ i
h(·, ·), (H − h+ 1)(1 + ι)}+

8: π̃h ← argmaxπh∈Π⟨Q̃h, πh⟩
9: Ṽh(·)← ⟨Q̃h(·, ·), π̃h(·|·)⟩.

10: end for
Output: π̃ = {π̃h}h∈[H].

Algorithm 8 NeuralTS

Input: Dataset D = {(skh, akh, rkh)}
k∈[K]
h∈[H], neural networks {f(·, ·; θ) : θ ∈ Θ}, step size η, tem-

perature parameter τ , regularization parameter λ, number of training iterations T , ensemble
size M , clipping factor ι.

1: Initialize ṼH+1(·)← 0 and initialize θ0
2: for step h = H,H − 1, . . . , 1 do
3: for i = 1 . . .M do
4: θih ← GD(Lh, θ0, η, T ) (Algorithm 10) where Lh is defined in Line 2 of Algorithm 3.
5: Draw ϵi ∼ N (0, σ2)

6: f̃ i
h(·, ·)← f(·, ·; θih) + ϵi∥g(·, ·; θi)∥Λ−1

h
where Λh := λI +

∑K
k=1 g(x

k
h; θh)g(x

k
h; θh)

T

7: end for
8: Q̃h(·, ·)← min{min

i∈[M ]
f̃ i
h(·, ·), (H − h+ 1)(1 + ι)}+

9: π̃h ← argmaxπh∈Π⟨Q̃h, πh⟩
10: Ṽh(·)← ⟨Q̃h(·, ·), π̃h(·|·)⟩.
11: end for
Output: π̃ = {π̃h}h∈[H].

Recall that the transition follows Ph(s
′|s, a) = ⟨ϕ(s, a), νh(s′)⟩ and the mean reward rh(s, a) =

⟨ϕ(s, a), θh⟩. We generated a priori K ∈ {1, . . . , 1000} trajectories using the behavior policy µ,
where for any h ∈ [H] we set µh(0|0) = p, µh(1|0) = 1 − p, µh(a|0) = 0,∀a > 1;µh(0|1) =
p, µh(a|1) = (1− p)/99,∀a > 0, where we set p = 0.6.

We run over K ∈ {1, . . . , 1000} and H ∈ {20, 30, 50, 80}. We set λ = 0.01 for all algorithms. For
LinPER, we grid searched σh = σ ∈ {0.0, 0.1, 0.5, 1.0, 2.0} and M ∈ {1, 2, 10, 20}. For LinLCB,
we grid searched its uncertainty multiplier β ∈ {0.1, 0.5, 1, 2}. The sub-optimality metric is used to
compare algorithms. For each H ∈ {20, 30, 50, 80}, each algorithm was executed for 30 times, and
the averaged results (with std) are reported in Figure 1.

NON-LINEAR CONTEXTUAL BANDITS

In this appendix, we provide in detail the experimental and hyperparameter setup in our experiment.
To predict the value of different actions from the same state s using neural networks, we transform
a state s ∈ Rd into dA-dimensional vectors s(1) = (s, 0, . . . , 0), s(2) = (0, s, 0, . . . , 0), . . . , s(A) =
(0, . . . , 0, s) and train the network to map s(a) to r(s, a) given a pair of data (s, a).

For NeuralGreedy, NeuraLCB, NeuralTS and Neural-LMC-PPS, we use the same neural network
architecture with two hidden layers whose width m = 64, train the network with SGD optimizer
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with learning rate being grid-searched over {0.001, 0.01, 0.05, 0.1} and batch size of 64. For Neu-
raLCB, and LinLCB, we grid-searched β over {0.001, 0.01, 0.1, 1, 5, 10}. For NeuralTS, we grid-
searched σTS ∈ {0.001, 0.01, 0.1, 1, 5, 10}, and M ∈ {1, 10, 20, 50}. For Neural-LMC-PPS, we
grid-searched τ ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 5, 10, 100} and M ∈ {1, 10, 20}. We fixed
the regularization parameter λ = 0.01 for all algorithms and the offline data is generated by a uni-
form behavior policy. To estimate the expected sub-optimality, we randomly obtain 1, 000 novel
samples (i.e. not used in training) to compute the average sub-optimality and keep these same sam-
ples for all algorithms.
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