
Subgraph-Aware Training of Language Models for Knowledge
Graph Completion Using Structure-Aware Contrastive Learning

Anonymous Author(s)∗

Abstract
Fine-tuning pre-trained languagemodels (PLMs) has recently shown
a potential to improve knowledge graph completion (KGC). How-
ever, most PLM-based methods focus solely on encoding textual
information, neglecting the long-tailed nature of knowledge graphs
and their various topological structures, e.g., subgraphs, shortest
paths, and degrees. We claim that this is a major obstacle to achiev-
ing higher accuracy of PLMs for KGC. To this end, we propose a
Subgraph-Aware Training framework for KGC (SATKGC) with two
ideas: (i) subgraph-aware mini-batching to encourage hard negative
sampling and to mitigate an imbalance in the frequency of entity
occurrences during training, and (ii) new contrastive learning to
focus more on harder in-batch negative triples and harder positive
triples in terms of the structural properties of the knowledge graph.
To the best of our knowledge, this is the first study to comprehen-
sively incorporate the structural inductive bias of the knowledge
graph into fine-tuning PLMs. Extensive experiments on three KGC
benchmarks demonstrate the superiority of SATKGC. Our code is
available.1

CCS Concepts
• Computing methodologies→ Knowledge representation
and reasoning.

Keywords
Knowledge Graph Completion, Contrastive Learning, Hard Nega-
tive Sampling
ACM Reference Format:
Anonymous Author(s). 2025. Subgraph-Aware Training of Language Mod-
els for Knowledge Graph Completion Using Structure-Aware Contrastive
Learning. In Proceedings of the ACM Web Conference (WWW ’25). ACM,
New York, NY, USA, 15 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Factual sentences, e.g., Leonardo da Vinci painted Mona Lisa, can
be represented as entities, and relations between the entities. Knowl-
edge graphs treat the entities (e.g., Leonardo da Vinci, Mona Lisa)
as nodes, and the relations (e.g., painted) as edges. Each edge and
its endpoints are denoted as a triple (ℎ, 𝑟, 𝑡), where ℎ, 𝑟 , and 𝑡 are a
head entity, a relation, and a tail entity respectively. Since KGs can
1https://anonymous.4open.science/r/SATKGC-61B0/README.md

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’25, April 28–May 02, 2025, Sydney, Australia
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

Figure 1: False positive (FP) ratio against the distance (i.e.,
length of the shortest path) between head and tail of a FP
triple in KG across different text-based methods.

Figure 2: False positive (FP) ratio against the degree of tail
for a FP triple across different text-based methods.

represent complex relations between entities, they serve as key com-
ponents for knowledge-intensive applications [12, 16, 20, 43, 49].

Despite their applicability, factual relations may be missing in
incomplete real-world KGs, and these relations can be inferred
from existing facts in the KGs. Hence, the task of knowledge graph
completion (KGC) has become an active research topic [16]. Given
an incomplete triple (ℎ, 𝑟, ?), this task is to predict the correct tail 𝑡 .
A true triple (ℎ, 𝑟, 𝑡) in a KG and a false triple (ℎ, 𝑟, 𝑡) which does
not exist in the KG are called positive and negative, respectively. A
negative triple difficult for a KGC method to distinguish from its
corresponding positive triple is regarded as a hard negative triple.

Existing KGC methods are categorized into two approaches. An
embedding-based approach learns embeddings of entities in con-
tinuous vector spaces, but ignores contextualized text information
in KGs, thus being inapplicable to entities and relations unseen in
training [2, 3]. A text-based approach, based on pretrained language
models (PLMs), learns textual representations of KGs, but suffers
from a lack of structural knowledge inherent in KGs [39]. Moreover,
most methods in this approach fail to account for the long-tailed
distribution of entities in KGs, though they can perform KGC even
in the inductive setting2.

2In the inductive setting for KGC, entities in the test set never appear in the training
set.

https://doi.org/XXXXXXX.XXXXXXX
https://anonymous.4open.science/r/SATKGC-61B0/README.md
https://doi.org/XXXXXXX.XXXXXXX

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

Meanwhile, contrastive learning has become a key component
of representation learning [9, 17, 29, 39], but an important aspect
of contrastive learning, i.e., the effect of hard negatives, has so far
been underexplored in KGC.

In this paper, we empirically validate significant relationships
between the structural inductive bias of KGs and the performance
of the PLM-based KGC methods. To demonstrate the limitations
of language models exhibiting competitive performance such as
SimKGC [39] and StAR [38], we investigate the characteristics of
false positive (FP) triples, i.e., false triples ranked higher than a true
triple by the models, on two well-known datasets WN18RR and
FB15k-237. Our analysis draws two observations.

First, the closer the tail and head of a false triple are to each other
in the KG, the more likely the false triple is to be ranked higher than
the corresponding true triple. Figure 1 illustrates the distribution of
distance, i.e., the length of the shortest path, between the head and
tail of a FP triple, where 𝑦-axis represents the FP ratio3 for each
distance. For StAR and SimKGC, the FP ratio dramatically grows as
the distance decreases (see green and red bars in Figure 1). These
findings highlight the importance of considering the proximity
between two entities in a triple to distinguish between true and
false triples.

Second, the higher the degree of the tail in a false triple is, the
more likely that triple is to be ranked higher than the corresponding
true triple. Figure 2 illustrates the distribution for the degree of tails
of FP triples. They are sorted in ascending order of their degrees,
and then are divided into five groups such that each group contains
an equal number of distinct degrees. The 𝑦-axis represents the FP
ratio4 in each degree group. The FP ratio for StAR and SimKGC
increases as the degree of the tail grows (see green and red bars
in Figure 2). This indicates that the existing text-based methods
have difficulty in predicting correct tails for missing triples with
the high-degree tails. Hence, the degree can be taken into account
to enhance the performance of language models.

In this paper, we tackle the above two phenomena5, thereby
significantly reducing the FPs compared to the existing methods
(see blue bars in Figures 1 and 2). For this, we hypothesize that
incorporating the structural inductive bias of KGs into hard negative
sampling and fine-tuning PLMs leads to a major breakthrough in
learning comprehensive representations of KGs.

To this end, we propose a subgraph-aware PLM training
framework for KGC (SATKGC) with three novel techniques:
(i) we sample subgraphs of the KG, and treat triples of each sub-
graph as a mini-batch to encourage hard negative sampling and
to alleviate the negative effects of long-tailed distribution of the
entity frequencies during training; (ii) we fine-tune PLMs via a
novel contrastive learning method that focuses more on harder
negative triples, i.e., negative triples whose heads and tails are close
to each other in the KG, induced by topological bias in the KG; and
(iii) we propose balanced mini-batch loss that mitigates the gap
between the long-tailed distribution of the training set and a nearly

3(the number of FPs with a specific head-to-tail distance) / (the number of pairs of
entities in the KG with the same distance)
4(the average number of FPs whose tail’s degree falls into each group) / (the number
of entities in the KG whose degree falls into each group)
5The trends in Figures 1 and 2 are also confirmed on Wikidata5M.

uniform distribution of each mini-batch. To sum up, we make three
contributions.

• We provide key insights that the topological structure of
KGs is closely related to the performance of PLM-based KGC
methods.
• We propose a new training strategy for PLMs, which not
only effectively samples hard negatives from a subgraph but
also visits all entities in the KG nearly equally in training,
as opposed to the existing PLM-based KGC methods. Based
on the structural properties of KGs, our contrastive learning
enables PLMs to pay attention to difficult negative triples in
KGs, and our mini-batch training eliminates the discrepancy
between the distributions of a training set and a mini-batch.
• We conduct extensive experiments on three KGC bench-
marks to demonstrate the superiority of SATKGC over exist-
ing KGC methods.

2 RELATEDWORK
An embedding-based approach maps complex and structured
knowledge into low-dimensional spaces. This approach computes
the plausibility of a triple using translational scoring functions on
the embeddings of the triple’s head, relation, and tail [3, 10, 32, 53],
e.g., ℎ + 𝑟 ≈ 𝑡 , or semantic matching functions which match latent
semantics of entities and relations [2, 23, 36, 44]. KG-Mixup [30]
proposes to create synthetic triples for a triple with a low-degree
tail. UniGE [21] utilizes both hierarchical and non-hierarchical
structures in KGs. The embedding-based approach exploits the
spatial relations of the embeddings, but cannot make use of texts
in KGs, i.e., the source of semantic relations.

In contrast, a text-based approach learns contextualized rep-
resentations of the textual contents of entities and relations by
leveraging PLMs [4, 7, 18, 39, 40, 42, 47]. Recently, a sequence-
to-sequence model for KGC [48] highlights the growing trend of
leveraging natural language generation models. With the rise of
large language models (LLMs), their application in KGs has signifi-
cantly increased [52]. Despite these advancements, PLMs often lack
awareness of the structural inductive bias inherent in KGs.

A few attempts have been made to utilize the above two ap-
proaches at once. StAR [38] proposes an ensemble model incorpo-
rating an output of a Transformer encoder [37] with a triple score
produced by RotatE [32]. CSProm-KG [5] trains KG embeddings
through the soft prompt for a PLM. Nevertheless, the integration
of structural and textual information in a KG in training has not
yet been fully realized.

Contrastive learning, shown to be effective in various fields
[8, 9, 11, 41, 51], has recently emerged as a promising approach in
the context of KGC [27, 39, 46]. KRACL [34] introduces contrastive
learning into an embedding-based method, particularly through
the use of a graph neural network (GNN), while HaSa [50] applies
contrastive learning to a PLM. HaSa aims to sample hard negatives
which are unlikely to be false negatives by selecting tails of a neg-
ative triple based on the number of 1- and 2-hop neighbors of its
head entity, i.e., the greater the number, the lower the probabil-
ity that the tail is included in the false negative. In contrast, our
contrastive learning method estimates the difficulty of negative
triples by utilizing various length of the shortest path between their

Subgraph-Aware Training of Language Models for Knowledge
Graph Completion Using Structure-Aware Contrastive Learning WWW ’25, April 28–May 02, 2025, Sydney, Australia

Figure 3: Overview of the proposed training framework, which consists of: (i) Random-walk Based Subgraph Sampling (before
training); (ii) Subgraph as a Mini-batch; (iii) Proximity-aware Contrastive Learning; (iv) Frequency-aware Mini-batch Training.

head and tail, while simultaneously mitigating the adverse effects
caused by the long-tailed distribution in KGs. The long-tailed dis-
tribution problem, which reflects class imbalance in data, has been
extensively studied in other domains, particularly computer vision,
where numerous efforts have been made to address this challenge
[15, 19, 28, 33, 54].

Random walk with restart (RWR) [25] and its extension, biased
random walk with restart (BRWR), have been employed in various
domains such as node representation learning [26] and graph tra-
versals [1]. In BRWR, a random walker performs random walks in
a graph from the source node. For each iteration, the walker moves
from the current node 𝑢 to either (i) source with a probability of 𝑝𝑟 ,
or (ii) one of the neighbors of 𝑢 with a probability of 1 − 𝑝𝑟 , where
𝑝𝑟 is a hyperparameter. In case (ii), the probability of selecting
one of the neighbors is decided by a domain-specific probability
distribution, whereas one is selected uniformly at random in RWR.
To our knowledge, we are the first to extract a subgraph of KG via
BRWR to utilize the subgraph as a mini-batch during training.

3 PRELIMINARY
Let G = (E,R,T) denote a KG in which E and R represent a set of
entities and relations, respectively, and T = {(ℎ, 𝑟, 𝑡) |ℎ, 𝑡 ∈ E, 𝑟 ∈
R} is a set of triples where ℎ, 𝑟 , and 𝑡 are a head entity, a relation,
and a tail entity, respectively.
Problem Definition.Given a head ℎ and a relation 𝑟 , the task of
knowledge graph completion (KGC) aims to find the most accurate
tail 𝑡 such that a new triple (ℎ, 𝑟, 𝑡) is plausible in G.
InfoNCE Loss. InfoNCE loss [24] has been widely employed to
learn the representations for audio, images, natural language, and
even for KGs [39, 50]. Given a set𝑋 = {𝑡1, 𝑡2, ..., 𝑡𝑛} of𝑛 tails contain-
ing one positive sample from 𝑝 (𝑡 𝑗 |ℎ, 𝑟) and 𝑛 − 1 negative samples

from the proposal distribution 𝑝 (𝑡 𝑗), InfoNCE loss [39] for KGC is
defined as:

L𝑋 = E𝑋

− log
exp(𝜙 (ℎ, 𝑟, 𝑡))∑

𝑡 𝑗 ∈𝑋
exp(𝜙 (ℎ, 𝑟, 𝑡 𝑗))

 (1)

𝜙 (ℎ, 𝑟, 𝑡) = cos(xℎ𝑟 , x𝑡) (2)

where a scoring function 𝜙 (ℎ, 𝑟, 𝑡) is defined as the cosine similarity
between two representations xℎ𝑟 for ℎ and 𝑡 , and x𝑡 for 𝑡 .

4 METHOD
In this section, we describe a novel PLM fine-tuning framework for
KGC. Figure 3 illustrates the overview of our framework for a given
KG. First, for every triple, a subgraph is extracted around that triple
from the KG before training (Section 4.1). During training, we keep
track of the number of visits for every triple. For each iteration, a
subgraph is selected based on that number, and then all forward and
inverse triples in the subgraph are fetched as a mini-batch B to the
language model (Section 4.2). We adopt the bi-encoder architecture
[39] with two pre-trained MPNets [31] as a backbone. Specifically,
Encoderℎ𝑟 and Encoder𝑡 take the text, i.e., name and description,
of (ℎ, 𝑟) and 𝑡 as input, and produce their embeddings xℎ𝑟 and x𝑡
respectively. We then calculate the cosine similarity between xℎ𝑟
and x𝑡 for every (ℎ, 𝑟) and 𝑡 in the mini-batch, and perform new
contrastive learning equipped with two topology-aware factors
(Section 4.3 and 4.4). The details of the input format are provided in
Appendix A, and the model inference is described in Appendix B.

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

(a) (b)
Figure 4: Example of BRWR-based subgraph sampling; (a)
probability of selecting start entity 𝑠 between ℎ and 𝑡 of a
center triple, where 𝑡 with a lower degree is more likely to
be 𝑠 than ℎ; (b) probability of selecting a neighbor of current
entity 𝑢. A random walker is more likely to move to 𝑣1 than
to 𝑣2 with its degree larger than 𝑣1.

4.1 Random-walk Based Subgraph Sampling
We aim to extract subgraphs from the KG to treat all the triples in
the extracted subgraph as a mini-batch for training. For each triple
in the KG, therefore, we perform BRWR starting from that triple
called a center triple, and the triples visited by BRWR compose
the subgraph before training as follows: (i) either head ℎ or tail
𝑡 of the center triple is selected as the start entity 𝑠 based on an
inverse degree distribution of ℎ and 𝑡 , i.e., |𝑁 (𝑣) |−1

|𝑁 (ℎ) |−1+|𝑁 (𝑡) |−1 , where
𝑣 ∈ {ℎ, 𝑡} and 𝑁 (𝑣) denotes a set of 𝑣 ’s neighbors; (ii) next, we
perform BRWR from 𝑠 until we sample 𝑀 triples where 𝑀 is a
predefined maximum number (e.g., 10,000). For each iteration in
BRWR, a random walker moves from the current node to either 𝑠
with a probability of 𝑝𝑟 or one of the neighbors of the current node
with a probability of 1 − 𝑝𝑟 . We define the probability of selecting
one of 𝑢’s neighbors 𝑣 ∈ 𝑁 (𝑢) as 𝑝𝑣 = |𝑁 (𝑣) |−1∑

𝑣𝑗 ∈𝑁 (𝑢) |𝑁 (𝑣𝑗) |
−1 , which is

a normalized inverse degree distribution of the neighbors. Figures
4a and 4b show the running example of step (i) and an iteration of
step (ii).

In this manner, giving more chances for an entity with a lower
degree to engage in training alleviates the skewed frequency of
entity occurrences throughout training, which in turn enhances
the KGC performance. This claim will be validated in Section 5.5.

4.2 Subgraph as a Mini-batch
We now present a way to select one of the sampled subgraphs,
and utilize that subgraph as a mini-batch, dubbed Subgraph as a
Mini-batch (SaaM). For every iteration, we select the subgraph
whose center triple has been the least frequently visited, to pri-
oritize unpopular and peripheral triples. For this, we count the
number of visits for all triples in the training set T throughout
the training process. The rationale behind this selection will be
elaborated in Section 5.5. Next, we randomly select |B|/2 triples
from the subgraph, and feed to the bi-encoders a mini-batch B of
the selected triples (ℎ, 𝑟, 𝑡) and their inverse triples (𝑡, 𝑟−1, ℎ). For
every positive triple (ℎ, 𝑟, 𝑡) ∈ B, we obtain negative triples (ℎ, 𝑟, 𝑡)
with 𝑡 replaced by |B| − 1 tails 𝑡 of the other triples in B. As per our
observation in Figure 1, these negative triples are likely to be hard
negatives, which will facilitate contrastive learning. As a result, we
end up with iterating the above process, i.e., selecting the subgraph

and feeding the triples in that subgraph, |T |/|B| times for each
epoch.

4.3 Proximity-aware Contrastive Learning
Most PLMs for KGC overlook capturing the proximity between
two entities in a negative triple in the KG, though they capture
semantic relations within the text of triples, as described in the
first observation of Section 1. For effective contrastive learning
for these methods, we incorporate a topological characteristic, i.e.,
the proximity between two entities, of the KG into InfoNCE loss
with additive margin [6, 45] by measuring how hard a negative
triple is in the KG. For each positive triple (ℎ, 𝑟, 𝑡) in a mini-batch
B, we propose loss L (ℎ,𝑟,𝑡) below based on our aforementioned
observation, i.e., entities close to each other are more likely to be
related than entities far away from each other:

L (ℎ,𝑟,𝑡) = − log
exp(𝜙G (ℎ,𝑟,𝑡)−𝛾𝜏)

exp(𝜙G (ℎ,𝑟,𝑡)−𝛾𝜏) +
|𝐵 |−1∑
𝑖=1

exp(𝜙G (ℎ,𝑟,𝑡𝑖)𝜏)
(3)

𝜙G (ℎ, 𝑟, 𝑡𝑖) = cos(xℎ𝑟 , x𝑡𝑖) + 𝛽𝜔ℎ𝑡𝑖 (4)
where 𝛾 is an additive margin, a temperature parameter 𝜏 adjusts
the importance of negatives, a structural hardness factor𝜔ℎ𝑡𝑖 stands
for how hard a negative triple (ℎ, 𝑟, 𝑡𝑖) is in terms of the structural
relation between ℎ and 𝑡𝑖 in G, and 𝛽 is a trainable parameter
that adjusts the relative importance of 𝜔ℎ𝑡𝑖 . We define 𝜔ℎ𝑡𝑖 as the
reciprocal of the distance (i.e., length of the shortest path) between
ℎ and 𝑡𝑖 to impose a larger 𝜔ℎ𝑡𝑖 to the negative triple with a shorter
distance between ℎ and 𝑡𝑖 in G, serving as a hard negative triple.

Since computing the exact distance between every head and
every tail in B may spend considerable time, we calculate the ap-
proximate distance between ℎ and 𝑡𝑖 , i.e., the multiplication of two
distances: (d1) the distance between ℎ and head ℎ𝑐 of the center
triple of B, and (d2) the distance between 𝑡 and ℎ𝑐 . Thus, the dis-
tance from ℎ𝑐 to every entity in B is pre-computed before training,
the multiplication between the two distances is performed in paral-
lel during training, requiring a minimal computational overhead.6

4.4 Frequency-aware Mini-batch Training
For many triples with the same head in the KG, varying only re-
lation 𝑟 in (ℎ, 𝑟, ?) may lead to different correct tails with various
semantic contexts. The text-based KGCmethods may find it difficult
to predict the correct tail for these triples, as their head-relation
encoders may generate less diverse embeddings for (ℎ, 𝑟) due to
much shorter text of relation 𝑟 than entity ℎ.

Furthermore, the frequency of every entity that occurs in a set
T of triples varies; this frequency distribution follows the power
law. However, the text-based methods have shown difficulties in
addressing the discrepancy between this long-tailed distribution
of the KG and the distribution of a mini-batch. Figure 5 shows the
frequency distributions of the original KG, 100 randomly-sampled
mini-batches from T , and those from SaaM, where 𝑦-axis denotes
the frequency ratio of entity occurrences, and entities in 𝑥-axis are
6We conducted experiments using the exact distance and different approximate dis-
tances, e.g., the sum of (d1) and (d2), but the performance gap between all the methods
is very marginal.

Subgraph-Aware Training of Language Models for Knowledge
Graph Completion Using Structure-Aware Contrastive Learning WWW ’25, April 28–May 02, 2025, Sydney, Australia

Figure 5: Frequency distributions of entities for original KG,
100 mini-batches randomly sampled from T , and those ran-
domly sampled by SaaM on WN18RR and FB15k-237. The
entities are sorted in the ascending order of their degrees.

sorted in the ascending order of their degrees in KG. Given ℎ and 𝑡 ,
in fact, KGC can be regarded as the multi-class classification task to
predict a correct tail 𝑡 . From this perspective, severe class imbalance
originating from the long-tail distribution (red lines) in the KG may
result in the less-skewed distribution (green lines) for 100 randomly-
sampled mini-batches from T , due to a limited number of entities
in the mini-batches. In addition, we observe the nearly uniform
distribution for 100mini-batches selected by SaaM (blue lines), since
SaaM is likely to give preference to low-degree entities. Therefore,
we apply the importance sampling scheme to associate the expected
error of L (ℎ, 𝑟, 𝑡) with the long-tailed original domain of the KG:

E𝑝𝑜 (ℎ,𝑟,𝑡)
[
L (ℎ, 𝑟, 𝑡)

]
= E𝑝𝑠 (ℎ,𝑟,𝑡)

[
𝑝𝑜 (ℎ, 𝑟, 𝑡)
𝑝𝑠 (ℎ, 𝑟, 𝑡)

L (ℎ, 𝑟, 𝑡)
]

= E𝑝𝑠 (ℎ,𝑟,𝑡)

[
𝑝𝑜 (𝑡)𝑝 (ℎ, 𝑟 |𝑡)
𝑝𝑠 (𝑡)𝑝 (ℎ, 𝑟 |𝑡)

L (ℎ, 𝑟, 𝑡)
]

:= E𝑝𝑠 (ℎ,𝑟,𝑡)
[
𝜓G (𝑡)L (ℎ,𝑟,𝑡)

]
where 𝑝𝑠 (ℎ, 𝑟, 𝑡) and 𝑝𝑜 (ℎ, 𝑟, 𝑡) are probabilities of sampling (ℎ, 𝑟, 𝑡)
by SaaM and randomly in T respectively. A weighting factor𝜓G (𝑡)
of tail 𝑡 denotes𝑝𝑜 (𝑡)/𝑝𝑠 (𝑡). Assume the degree-proportional 𝑝𝑜 (𝑡) =
|𝑁𝑡 |/2|T | and the nearly-uniform distribution 𝑝𝑠 (𝑡) = 1/|E| where
|T | = 𝑑𝑎𝑣𝑔 |E |/2 with 𝑑𝑎𝑣𝑔 being the average number of neighbors
for every entity. Consequently, 𝑝𝑜 (𝑡)/𝑝𝑠 (𝑡) = |𝑁𝑡 |/𝑑𝑎𝑣𝑔 ∝ |𝑁𝑡 |.

To encourage PLMs to more sensitively adapt to varying rela-
tions for many triples with the identical head and to eliminate the
discrepancy of the two distributions, we propose to reweight the
importance of each sample loss via𝜓G (𝑡) above, so the frequency
distribution of B becomes close to that of T . For each triple in a
mini-batch B in SaaM, mini-batch loss LB is defined as:

LB =
∑
(ℎ,𝑟,𝑡) ∈B 𝜓G (𝑡)L (ℎ,𝑟,𝑡) (5)

dataset #entity #relation #train #valid #test

WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466
Wikidata5M-Trans 4,594,485 822 20,614,279 5,163 5,163
Wikidata5M-Ind 4,579,609 822 20,496,514 6,699 6,894

Table 1: Statistics of datasets.

where 𝜓G (𝑡) is defined as 𝑙𝑜𝑔(|𝑁𝑡 | + 1) where 𝑁𝑡 is a set of 𝑡 ’s
neighbors in the KG7. To sum up, 𝜓G (𝑡) ensures that the triples
with larger-degree tails contribute more significantly to LB .

5 EXPERIMENTS
5.1 Experimental Setup
For evaluation we adopt widely-used KG datasets WN18RR, FB15k-
237 andWikidata5M. Table 1 shows their statistics, and more details
are provided in Appendix D.

For every incomplete triple in the test set, we compute mean re-
ciprocal rank (MRR) and Hits@𝑘 where 𝑘 ∈ {1, 3, 10} as evaluation
metrics based on the rank of the correct entity among all the entities
in the KG.We use the mean of the forward and backward prediction
results as the final performance measure. The hyperparameters of
SATKGC are set based on the experimental results in Appendix F.
Further implementation details are described in Appendix E.

5.2 Main Results
We compare SATKGC with existing embedding-based and text-
based approaches. Table 2 shows the results onWN18RR, and FB15k-
237, and Table 3 shows the results on Wikidata. Due to the page
limit, we present comparison with recent models in these two tables.
Additional comparison results can be found in Appendices K and L.

SATKGC denotes the bi-encoder architectures trained by our
learning framework in Figure 3. SATKGC consistently outperforms
all the existing methods on all the datasets. SATKGC demonstrates
significantly higher MRR and Hits@1 than other baselines, with
Hits@1 improving by 5.03% on WN18RR and 5.28% on FB15k-237
compared to the existing state-of-the-art models.

As shown in Table 3, SATKGC demonstrates its applicability to
large-scale KGs, and achieves strong performance in both induc-
tive and transductive settings.8 SATKGC shows an improvement
of 7.42% in MRR and 10.84% in Hits@1 compared to the existing
state-of-the-art model on Wikidata5M-Ind. On Wikidata5M-Trans,
SATKGC achieves an improvement of 13.97% in MRR and 16.93%
in Hits@1 over the previous best-performing model.9 In the trans-
ductive setting, performance degrades in the order of WN18RR,
Wikidata5M-Trans, and FB15k-237, showing that a higher average
degree of entities tends to negatively affect performance. A more
detailed analysis of performance differences across the dataset is
described in Appendix J.

7Applying logarithm can prevent 𝜓G (𝑡) from growing extremely large for a few
entities with a huge |𝑁𝑡 | , and adding one can prevent 𝜓G (𝑡) from becoming zero
when |𝑁𝑡 | = 1.
8Baselines listed in Table 2 but not in Table 3 could not be evaluated on Wikidata5M
due to out-of-memory for StAR and CSProm-KG, or unreasonably large training time,
i.e., more than 100 hours expected, for the remaining baselines.
9Wikidata5M-Ind shows better performance than Wikidata5M-Trans, because a model
ranks 7,475 entities in the test set for Wikidata5M-Ind while ranking about 4.6 million
entities for Wikidata5M-Trans.

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

Approach WN18RR FB15k-237

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Embedding-based approach

TuckER [2] 0.466 0.432 0.478 0.518 0.361 0.265 0.391 0.538
RotatE [32] 0.471 0.421 0.490 0.568 0.335 0.243 0.374 0.529
KGTuner [53] 0.481 0.438 0.499 0.556 0.345 0.252 0.381 0.534
KG-Mixup [30] 0.488 0.443 0.505 0.541 0.359 0.265 0.395 0.547
UniGE[21]† 0.491 0.447 0.512 0.563 0.343 0.257 0.375 0.523
CompoundE [10] 0.492 0.452 0.510 0.570 0.350 0.262 0.390 0.547
KRACL [34] 0.529 0.480 0.539 0.621 0.360 0.261 0.393 0.548
CSProm-KG [5] 0.569 0.520 0.590 0.675 0.355 0.261 0.389 0.531

Text-based approach

StAR [38] 0.398 0.238 0.487 0.698 0.288 0.195 0.313 0.480
HaSa [50] 0.535 0.446 0.587 0.711 0.301 0.218 0.325 0.482
KG-S2S [4] 0.572 0.529 0.595 0.663 0.337 0.255 0.374 0.496
SimKGC [39] 0.671 0.580 0.729 0.811 0.340 0.252 0.365 0.515
GHN [27]‡ 0.678 0.596 0.719 0.821 0.339 0.251 0.364 0.518

SATKGC (w/o SaaM) 0.673 0.595 0.728 0.813 0.349 0.256 0.367 0.520
SATKGC (w/o PCL, FMT) 0.676 0.608 0.722 0.820 0.355 0.261 0.386 0.537
SATKGC (w/o FMT) 0.680 0.611 0.729 0.823 0.351 0.265 0.389 0.541
SATKGC (w/o PCL) 0.686 0.623 0.740 0.827 0.366 0.272 0.396 0.545
SATKGC 0.694 0.626 0.743 0.833 0.370 0.279 0.403 0.550

Table 2: KGC results for theWN18RR, and FB15k-237 datasets. “PCL” and “FMT” refer to Proximity-aware Contrastive Learning
and Frequency-aware Mini-batch training respectively. The best and second-best performances are denoted in bold and
underlined respectively. †: numbers are from Liu et al. [21] ‡: numbers are from Qiao et al. [27].

Approach Wikidata5M-Trans Wikidata5M-Ind

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Embedding-based approach

TransE [3] 0.253 0.170 0.311 0.392 - - - -
TuckER [2] 0.285 0.241 0.314 0.377 - - - -
RotatE [32] 0.290 0.234 0.322 0.390 - - - -
KGTuner [53] 0.305 0.243 0.331 0.397 - - - -

Text-based approach

DKRL [42] 0.160 0.120 0.181 0.229 0.231 0.059 0.320 0.546
KEPLER [40] 0.212 0.175 0.221 0.276 0.403 0.225 0.517 0.725
BLP-ComplEx [7] - - - - 0.491 0.261 0.670 0.881
BLP-SimplE [7] - - - - 0.490 0.283 0.641 0.868
SimKGC [39] 0.358 0.313 0.376 0.441 0.714 0.609 0.785 0.917

SATKGC 0.408 0.366 0.425 0.479 0.767 0.675 0.815 0.931

Table 3: KGC results for Wikidata5M-Trans (transductive setting) and Wikidata5M-Ind (inductive setting). The results for
embedding-based approach on Wikidata5M-ind are missing as they cannot be used in the inductive setting. Additionally,
BLP-ComplEx [7] and BLP-SimplE [7] results on Wikidata5M-Trans are missing because they are inherently targeted for
inductive KGC.

FB15K-237N
Models MRR Hits@1 Hits@3 Hits@10
KoPA [52] 0.483 0.344 0.559 0.721
SATKGC 0.569 0.450 0.637 0.792

Table 4: KGC results on FB15K-237N. A correct tail is ranked
among 1,000 randomly-selected entities due to the long in-
ference time of KoPA.

To compare our framework employing MPNets with a LLM-
basedmodel, we evaluate the KGC performance of KoPA [52], which

adopts Alpaca [35] fine-tuned with LoRA [14] as its backbone,
on the FB15k-237N dataset [52].10 Since KoPA cannot perform
inference for all queries within a reasonable time, i.e., 111 hours
expected, we rank the correct tail among 1,000 randomly selected
entities for both KoPA and SATKGC. As shown in Table 4, SATKGC
outperforms KoPA on all metrics, demonstrating that LLMs do not
necessarily produce superior results on KGC.

10We adopt FB15k-237N in Table 4 to compare our model with KoPA, because the
official implementation of KoPA provides the pretrained model parameters for not
FB15k-237 but FB15K-237N.

Subgraph-Aware Training of Language Models for Knowledge
Graph Completion Using Structure-Aware Contrastive Learning WWW ’25, April 28–May 02, 2025, Sydney, Australia

WN18RR
Encoders MRR Hits@1 Hits@3 Hits@10 Parameters
MPNet 0.693 0.626 0.747 0.833 220M
BERT-base 0.689 0.621 0.731 0.820 220M
DeBERTa-base 0.689 0.631 0.736 0.832 280M
BERT-large 0.685 0.619 0.723 0.817 680M
DeBERTa-large 0.706 0.638 0.759 0.854 800M

FB15k-237
Encoders MRR Hits@1 Hits@3 Hits@10 Parameters
MPNet 0.370 0.279 0.403 0.550 220M
BERT-base 0.366 0.273 0.400 0.546 220M
DeBERTa-base 0.359 0.274 0.399 0.545 280M
BERT-large 0.339 0.268 0.378 0.532 680M
DeBERTa-large 0.345 0.272 0.389 0.540 800M

Table 5: Performance comparison for different encoders.

5.3 Ablation Study
To demonstrate the contribution of each component of our method,
we compare the results across five different settings, including
SATKGC, as shown in Table 2. In SATKGC (w/o SaaM), instead of
using SaaM, a mini-batch of triples is randomly selected without
replacement, while both Proximity-aware Contrastive Learning
and Frequency-aware Mini-batch training are applied. SATKGC
(w/o PCL, FMT) refers to applying only SaaM and using the original
InfoNCE loss. SATKGC (w/o FMT) applies both SaaM and Proximity-
aware Contrastive Learning, and SATKGC (w/o PCL) applies both
SaaM and Frequency-aware Mini-batch Training. The results show
that SATKGC (w/o SaaM) performs worse than SATKGC, indicating
that substituting SaaM with random sampling significantly hurts
the performance. SATKGC (w/o PCL, FMT) already achieves higher
Hits@1 than other baselines on WN18RR, highlighting that SaaM
alone leads to performance improvement11. Between SATKGC (w/o
PCL) and SATKGC (w/o FMT), SATKGC (w/o PCL) achieves higher
performance, indicating that Frequency-aware Mini-batch Training
contributes more than Proximity-aware Contrastive Learning.

5.4 Performance Across Encoders
To investigate the impact of the encoder architecture and the num-
ber of model parameters, we conduct experiments replacing MP-
Net in SATKGC with BERT-base, BERT-large, DeBERTa-base, and
DeBERTa-large [13]. Table 5 presents the results. SATKGC is highly
compatible with different encoders, showing the competitive per-
formance. DeBERTa-large fine-tuned by SATKGC achieves the best
performance on WN18RR. In addition, an increase in the number
of model parameters may not necessarily result in enhanced perfor-
mance on KGC, e.g., BERT-large on WN18RR, and BERT-large and
DeBERTa-large on FB15k-237 underperform the smaller encoders.

5.5 Comparing Subgraph Sampling Methods
We investigate how model performance varies depending on the
probability distribution 𝑝𝑣 used for neighbor selection in Section
4.1.12 We compare the performance of SATKGC using 𝑝𝑣 in sub-
graph sampling with two variants, one with 𝑝𝑣 replaced by the
uniform distribution (dubbed RWR) and the other with 𝑝𝑣 replaced
by the degree proportional distribution (dubbed BRWR_P). Table
11Performance improvements are also observed when we apply SaaM to embedding-
based RotatE and text-based StAR, as described in Appendix G.
12Recall that in our BRWR algorithm, a random walker selects one of the neighbors 𝑣
of a current node based on the inverse degree distribution 𝑝𝑣 .

WN18RR
Methods MRR Hits@1 Hits@3 Hits@10
RWR 0.690 0.622 0.730 0.825
BRWR 0.694 0.626 0.743 0.833
BRWR_P 0.676 0.615 0.727 0.823
MCMC 0.687 0.609 0.736 0.825

FB15k-237
Methods MRR Hits@1 Hits@3 Hits@10
RWR 0.358 0.269 0.385 0.534
BRWR 0.370 0.279 0.403 0.550
BRWR_P 0.351 0.262 0.383 0.530
MCMC 0.332 0.245 0.362 0.507

Table 6: Experiments comparing subgraph samplingmethods
on WN18RR and FB15k-237.

(a) (b)

Figure 6: (a) Number of occurrences of triples; (b) number
of occurrences of entities. Both are counted throughout the
entire training process for RANDOM and the SaaM variants,
i.e., RWR, BRWR_P, and BRWR.

6 shows the results. The three methods mostly outperform exist-
ing KGC methods in Hits@1, with BRWR performing best and
BRWR_P performing worst. We also employ a Markov chain Monte
Carlo (MCMC) based subgraph sampling method [46], referred to
as MCMC (see details of MCMC in Appendix C). Note that in Table
2, MCMC outperforms other methods for Hits@1 on WN18RR.

To verify why variations in 𝑝𝑣 lead these differences, we con-
duct further analysis. Figures 6a and 6b show the number of visits
of every triple and every entity, respectively, in the training pro-
cess for RANDOM and the SaaM variants, i.e., RWR, BRWR_P, and
BRWR. RANDOM, adopted in all the baselines denotes selecting
a mini-batch of triples at random without replacement. Triples
and entities are sorted by descending frequency. Figure 6a demon-
strates that RANDOM exhibits a uniform distribution, while RWR,
BRWR_P, and BRWR display varying degrees of skewness, with
BRWR being the most skewed and BRWR_P the least. Figure 6b
illustrates that BRWR is the least skewed whereas RANDOM shows
the most skewed distribution. BRWR_P, which employs the degree-
proportional distribution, extracts many duplicate entities in the
subgraphs, leading to themost skewed distribution among the SaaM
variants. As a result, a larger skewness in the distribution of number

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

Figure 7: Percentage of in-batchnegative triples on FB15k-237
according to the range of cosine similarity scores predicted
by SimKGC and SATKGC for different epochs.

Preprocessing Time
Algorithm WN18RR FB15k-237 Wiki5M-Trans Wiki5M-Ind
BRWR 8m 12m 12h 12h
Shortest Path + Degree 7m 10m 7h 7h

Training Time Per Epoch
Model WN18RR FB15k-237 Wiki5M-Trans Wiki5M-Ind
SATKGC 4m 6m 10h 10h
SimKGC [39] 3m 5m 9h 9h
StAR [38] 1h 1h 30m - -

Table 7: The elapsed time required for sampling and the time
per epoch during training.

of visits for triples in turn leads to more equally visiting entities,
thus improving the performance.13

Further analysis reinforces this finding. In FB15k-237, the aver-
age degree of FP triples’ tails is 75 for SATKGC and 63 for SimKGC. A
smaller portion of low-degree tails for SATKGC than for SimKGC in-
dicates that exposure to more low-degree entities 𝑡 in training helps
the model position their embeddings farther from the (ℎ, 𝑟) em-
beddings for negative triples (ℎ, 𝑟, 𝑡), as SATKGC visits low-degree
entities more often during training than RANDOM for SimKGC.14

We examine the structural characteristics on sets 𝑆𝑚 and 𝑆𝑙
of entities in 1, 000 most and least frequent triples, respectively,
visited by BRWR. The entities in 𝑆𝑚 have an average degree of 11.1,
compared to 297.3 for those in 𝑆𝑙 . The betweenness centrality15
averages around 5.2 × 10−5 for 𝑆𝑚 and 8.2 × 10−4 for 𝑆𝑙 . These
observations implies that SaaM prioritizes visiting unpopular and
peripheral triples in KG over focusing on information-rich triples.

6 Analysis
6.1 Analysis on Negative Triples
Figure 7 shows how the cosine similarity distribution of in-batch
negative triples varies depending on the epoch of SimKGC and
SATKGC for FB15k-237. SATKGC encounters consistently more

13The similar trends are shown on WN18RR.
14This is also confirmed in all the other datasets.
15The betweenness centrality of node 𝑣 is the number of shortest paths that pass
through 𝑣 in the graph divided by the total number of shortest paths between all pairs
of nodes, which measures 𝑣’s importance in the graph.

hard negatives with scores from 0.2 to 1.0 than SimKGC, though
the majority of the scores range from -0.2 to 0.2 by the end of
training for both methods.16 We speculate that SATKGC ends up
with distinguishing positives from the hard negatives sampled from
the subgraphs of the KG, as opposed to SimKGC which employs
randomly-sampled easy negatives.

Based on our analysis, only 2.83% and 4.42% of the true triples
ranked within the top 10 by SimKGC drop out of the top 10 for
SATKGC on WN18RR and FB15k-237, respectively. In contrast,
34.87% and 13.03% of the true triples dropping out of the top 10 for
SimKGC are ranked within the top 10 by SATKGC. This indicates
that SATKGC effectively samples hard negatives while reducing
false negatives.

An additional experiment in Appendix I shows how proximity-
aware contrastive learning and frequency-aware mini-batch train-
ing selectively penalize hard negative triples. We also compare the
effectiveness of using negatives fully sampled from SaaM and that
partially sampled from SaaM in Appendix H.

6.2 Runtime Analysis
Running SATKGC incurs a marginal computational overhead, be-
cause (i) sampling subgraphs and (ii) computing distances and de-
grees are performed in advance before training. As shown in Table
7, the computational cost for (i) and (ii) is acceptable, and depends
on the mini-batch size, which can be adjusted. Moreover, the time
complexity for (ii) is acceptable. For each mini-batch 𝐵 of triples, we
run Dijkstra’s single source shortest path algorithm, and thus the
runtime to compute the distance is O(|𝑉 |𝑙𝑜𝑔|𝑉 | + |𝐵 |𝑙𝑜𝑔 |𝑉 |), where
𝑉 is a set of entities in 𝐵.17 Table 7 shows the training time per
epoch for SATKGC, SimKGC [39], and StAR [38]. SATKGC remains
competitive, though it takes slightly more time than SimKGC due
to the computational overhead for (a) computing its loss using the
shortest path length and the degree, (b) counting the occurrences
of visited triples in SaaM, and (c) fetching subgraphs in SaaM.18

7 CONCLUSION
We propose a generic training scheme and new contrastive learn-
ing (CL) for KGC. Harmonizing SaaM using a subgraph of KG as
a mini-batch, and both CL and mini-batch training incorporating
the structural inductive bias of KG in fine-tuning PLMs helps learn-
ing the contextual text embeddings aware of the difficulty in the
structural context of KG. Our findings imply that unequally feeding
triples in training and leveraging the unique characteristics of KG
lead to the effective text-based KGC method, achieving state-of-the-
art performance on the three KG benchmarks.

References
[1] Kian Ahrabian, Aarash Feizi, Yasmin Salehi, William L Hamilton, and

Avishek Joey Bose. 2020. Structure aware negative sampling in knowledge
graphs. arXiv preprint arXiv:2009.11355 (2020).

16This trend is also observed in WN18RR.
17As described in Section 4.3, we do not calculate all-pair shortest paths for every pair
of vertices in𝑉 . To reduce the computational overhead, we compute the approximate
distance by using the shortest path between the head of the center triple in a subgraph
and every tail in that subgraph, which have been already obtained fro Dijkstra’s
algorithm.
18StAR runs out of memory on the Wikidata5M datasets.

Subgraph-Aware Training of Language Models for Knowledge
Graph Completion Using Structure-Aware Contrastive Learning WWW ’25, April 28–May 02, 2025, Sydney, Australia

[2] Ivana Balazevic, Carl Allen, and Timothy Hospedales. 2019. TuckER: Tensor Fac-
torization for Knowledge Graph Completion. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Association
for Computational Linguistics. https://doi.org/10.18653/v1/d19-1522

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. Advances in neural information processing systems 26 (2013).

[4] Chen Chen, Yufei Wang, Bing Li, and Kwok-Yan Lam. 2022. Knowledge Is Flat:
A Seq2Seq Generative Framework for Various Knowledge Graph Completion.
In Proceedings of the 29th International Conference on Computational Linguistics.
4005–4017.

[5] Chen Chen, Yufei Wang, Aixin Sun, Bing Li, and Kwok-Yan Lam. 2023. Dip-
ping PLMs Sauce: Bridging Structure and Text for Effective Knowledge Graph
Completion via Conditional Soft Prompting. In Findings of the Association for Com-
putational Linguistics: ACL 2023, Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki (Eds.). Association for Computational Linguistics, Toronto, Canada,
11489–11503. https://doi.org/10.18653/v1/2023.findings-acl.729

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020.
A Simple Framework for Contrastive Learning of Visual Representations.
arXiv:2002.05709 [cs.LG]

[7] Daniel Daza, Michael Cochez, and Paul Groth. 2021. Inductive Entity Represen-
tations from Text via Link Prediction. In Proceedings of the Web Conference 2021
(Ljubljana, Slovenia) (WWW ’21). Association for Computing Machinery, New
York, NY, USA, 798–808. https://doi.org/10.1145/3442381.3450141

[8] Hongchao Fang, Sicheng Wang, Meng Zhou, Jiayuan Ding, and Pengtao Xie.
2020. CERT: Contrastive Self-supervised Learning for Language Understanding.
arXiv:2005.12766 [cs.CL]

[9] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. Simcse: Simple contrastive
learning of sentence embeddings. arXiv preprint arXiv:2104.08821 (2021).

[10] Xiou Ge, Yun Cheng Wang, Bin Wang, and C.-C. Jay Kuo. 2023. Compounding
Geometric Operations for Knowledge Graph Completion. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.).
Association for Computational Linguistics, Toronto, Canada, 6947–6965. https:
//doi.org/10.18653/v1/2023.acl-long.384

[11] Ayaan Haque, Hankyu Moon, Heng Hao, Sima Didari, Jae Oh Woo, and Patrick
Bangert. 2022. Self-Supervised Contrastive Representation Learning for 3D Mesh
Segmentation. arXiv:2208.04278 [cs.CV]

[12] He He, Anusha Balakrishnan, Mihail Eric, and Percy Liang. 2017. Learning
Symmetric Collaborative Dialogue Agents with Dynamic Knowledge Graph
Embeddings. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 1766–1776.

[13] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2020. De-
berta: Decoding-enhanced bert with disentangled attention. arXiv preprint
arXiv:2006.03654 (2020).

[14] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685 (2021).

[15] Muhammad Abdullah Jamal, Matthew Brown, Ming-Hsuan Yang, Liqiang
Wang, and Boqing Gong. 2020. Rethinking Class-Balanced Methods for
Long-Tailed Visual Recognition from a Domain Adaptation Perspective.
arXiv:2003.10780 [cs.CV] https://arxiv.org/abs/2003.10780

[16] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip. 2021.
A survey on knowledge graphs: Representation, acquisition, and applications.
IEEE transactions on neural networks and learning systems 33, 2 (2021), 494–514.

[17] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and
Diane Larlus. 2020. Hard negative mixing for contrastive learning. Advances in
Neural Information Processing Systems 33 (2020), 21798–21809.

[18] Bosung Kim, Taesuk Hong, Youngjoong Ko, and Jungyun Seo. 2020. Multi-task
learning for knowledge graph completion with pre-trained language models.
In Proceedings of the 28th international conference on computational linguistics.
1737–1743.

[19] Yu Li, Tao Wang, Bingyi Kang, Sheng Tang, Chunfeng Wang, Jintao Li, and Jiashi
Feng. 2020. Overcoming Classifier Imbalance for Long-tail Object Detection with
Balanced Group Softmax. arXiv:2006.10408 [cs.CV] https://arxiv.org/abs/2006.
10408

[20] Danyang Liu, Jianxun Lian, Zheng Liu, Xiting Wang, Guangzhong Sun, and Xing
Xie. 2021. Reinforced anchor knowledge graph generation for news recommenda-
tion reasoning. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 1055–1065.

[21] Yuhan Liu, Zelin Cao, Xing Gao, Ji Zhang, and Rui Yan. 2024. Bridging the Space
Gap: Unifying Geometry Knowledge Graph Embedding with Optimal Transport.
In Proceedings of the ACM on Web Conference 2024 (Singapore, Singapore) (WWW
’24). Association for Computing Machinery, New York, NY, USA, 2128–2137.
https://doi.org/10.1145/3589334.3645565

[22] George A Miller. 1995. WordNet: a lexical database for English. Commun. ACM
38, 11 (1995), 39–41.

[23] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A three-way
model for collective learning on multi-relational data. In Proceedings of the 28th
International Conference on Machine Learning (ICML-11). 809–816.

[24] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[25] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank Citation Ranking : Bringing Order to the Web. In The Web Conference.
https://api.semanticscholar.org/CorpusID:1508503

[26] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[27] Zile Qiao, Wei Ye, Dingyao Yu, Tong Mo, Weiping Li, and Shikun Zhang. 2023.
Improving Knowledge Graph Completion with Generative Hard Negative Min-
ing. In Findings of the Association for Computational Linguistics: ACL 2023, Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Association for Compu-
tational Linguistics, Toronto, Canada, 5866–5878. https://doi.org/10.18653/v1/
2023.findings-acl.362

[28] Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu Zhao, Shuai Yi, and
Hongsheng Li. 2020. Balanced Meta-Softmax for Long-Tailed Visual Recognition.
arXiv:2007.10740 [cs.LG] https://arxiv.org/abs/2007.10740

[29] Joshua David Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. 2021.
Contrastive Learning with Hard Negative Samples. In International Conference
on Learning Representations. https://openreview.net/forum?id=CR1XOQ0UTh-

[30] Harry Shomer,Wei Jin,WentaoWang, and Jiliang Tang. 2023. Toward Degree Bias
in Embedding-Based Knowledge Graph Completion. In Proceedings of the ACM
Web Conference 2023 (WWW ’23). ACM. https://doi.org/10.1145/3543507.3583544

[31] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. [n. d.].
MPNet: Masked and Permuted Pre-training for Language Understanding.
arXiv:2004.09297 [cs.CL]

[32] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. RotatE: Knowl-
edge Graph Embedding by Relational Rotation in Complex Space. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=
HkgEQnRqYQ

[33] Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing
Yin, and Junjie Yan. 2020. Equalization Loss for Long-Tailed Object Recognition.
arXiv:2003.05176 [cs.CV] https://arxiv.org/abs/2003.05176

[34] Zhaoxuan Tan, Zilong Chen, Shangbin Feng, Qingyue Zhang, Qinghua Zheng,
Jundong Li, and Minnan Luo. 2023. KRACL: Contrastive Learning with Graph
Context Modeling for Sparse Knowledge Graph Completion. In Proceedings of
the ACM Web Conference 2023 (Austin, TX, USA) (WWW ’23). Association for
Computing Machinery, New York, NY, USA, 2548–2559. https://doi.org/10.1145/
3543507.3583412

[35] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An
Instruction-following LLaMA model. https://github.com/tatsu-lab/stanford_
alpaca.

[36] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2016. Complex embeddings for simple link prediction. In International
conference on machine learning. PMLR, 2071–2080.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[38] BoWang, Tao Shen, Guodong Long, Tianyi Zhou, YingWang, and Yi Chang. 2021.
Structure-Augmented Text Representation Learning for Efficient Knowledge
Graph Completion. In Proceedings of the Web Conference 2021 (WWW ’21). ACM.
https://doi.org/10.1145/3442381.3450043

[39] Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming Liu. 2022. SimKGC: Simple
Contrastive Knowledge Graph Completion with Pre-trained Language Models.
In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 4281–4294.

[40] Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu,
Juanzi Li, and Jian Tang. 2021. KEPLER: A unified model for knowledge embed-
ding and pre-trained language representation. Transactions of the Association for
Computational Linguistics 9 (2021), 176–194.

[41] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. 2018. Unsupervised
feature learning via non-parametric instance discrimination. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 3733–3742.

[42] Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and Maosong Sun. 2016. Rep-
resentation Learning of Knowledge Graphs with Entity Descriptions. Pro-
ceedings of the AAAI Conference on Artificial Intelligence 30, 1 (Mar. 2016).
https://doi.org/10.1609/aaai.v30i1.10329

[43] Chenyan Xiong, Russell Power, and Jamie Callan. 2017. Explicit semantic ranking
for academic search via knowledge graph embedding. In Proceedings of the 26th
international conference on world wide web. 1271–1279.

[44] Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015.
Embedding Entities and Relations for Learning and Inference in Knowledge
Bases. In Proceedings of the International Conference on Learning Representations

https://doi.org/10.18653/v1/d19-1522
https://doi.org/10.18653/v1/2023.findings-acl.729
https://arxiv.org/abs/2002.05709
https://doi.org/10.1145/3442381.3450141
https://arxiv.org/abs/2005.12766
https://doi.org/10.18653/v1/2023.acl-long.384
https://doi.org/10.18653/v1/2023.acl-long.384
https://arxiv.org/abs/2208.04278
https://arxiv.org/abs/2003.10780
https://arxiv.org/abs/2003.10780
https://arxiv.org/abs/2006.10408
https://arxiv.org/abs/2006.10408
https://arxiv.org/abs/2006.10408
https://doi.org/10.1145/3589334.3645565
https://api.semanticscholar.org/CorpusID:1508503
https://doi.org/10.18653/v1/2023.findings-acl.362
https://doi.org/10.18653/v1/2023.findings-acl.362
https://arxiv.org/abs/2007.10740
https://arxiv.org/abs/2007.10740
https://openreview.net/forum?id=CR1XOQ0UTh-
https://doi.org/10.1145/3543507.3583544
https://arxiv.org/abs/2004.09297
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
https://arxiv.org/abs/2003.05176
https://arxiv.org/abs/2003.05176
https://doi.org/10.1145/3543507.3583412
https://doi.org/10.1145/3543507.3583412
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.1145/3442381.3450043
https://doi.org/10.1609/aaai.v30i1.10329

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

(ICLR) 2015. https://www.microsoft.com/en-us/research/publication/embedding-
entities-and-relations-for-learning-and-inference-in-knowledge-bases/

[45] Yinfei Yang, Gustavo Hernandez Abrego, Steve Yuan, Mandy Guo, Qinlan Shen,
Daniel Cer, Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil. 2019. Improving
multilingual sentence embedding using bi-directional dual encoder with additive
margin softmax. arXiv preprint arXiv:1902.08564 (2019).

[46] Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, and Jie Tang.
2020. Understanding Negative Sampling in Graph Representation Learning.
arXiv:2005.09863 [cs.LG]

[47] Liang Yao, ChengshengMao, and Yuan Luo. 2019. KG-BERT: BERT for knowledge
graph completion. arXiv preprint arXiv:1909.03193 (2019).

[48] Donghan Yu and Yiming Yang. 2023. Retrieval-enhanced generative model for
large-scale knowledge graph completion. In Proceedings of the 46th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
2334–2338.

[49] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.
2016. Collaborative knowledge base embedding for recommender systems. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. 353–362.

[50] Honggen Zhang, June Zhang, and Igor Molybog. 2023. HaSa: Hard-
ness and Structure-Aware Contrastive Knowledge Graph Embedding.
arXiv:2305.10563 [cs.AI]

[51] Junlei Zhang, Zhenzhong Lan, and Junxian He. 2023. Contrastive Learning of
Sentence Embeddings from Scratch. arXiv:2305.15077 [cs.CL]

[52] Yichi Zhang, Zhuo Chen, Wen Zhang, and Huajun Chen. 2023. Making large
language models perform better in knowledge graph completion. arXiv preprint
arXiv:2310.06671 (2023).

[53] Yongqi Zhang, Zhanke Zhou, Quanming Yao, and Yong Li. 2022. KG-
Tuner: Efficient Hyper-parameter Search for Knowledge Graph Learning.
arXiv:2205.02460 [cs.LG]

[54] Jianggang Zhu, Zheng Wang, Jingjing Chen, Yi-Ping Phoebe Chen, and Yu-Gang
Jiang. 2022. Balanced Contrastive Learning for Long-Tailed Visual Recognition.
arXiv:2207.09052 [cs.CV] https://arxiv.org/abs/2207.09052

https://www.microsoft.com/en-us/research/publication/embedding-entities-and-relations-for-learning-and-inference-in-knowledge-bases/
https://www.microsoft.com/en-us/research/publication/embedding-entities-and-relations-for-learning-and-inference-in-knowledge-bases/
https://arxiv.org/abs/2005.09863
https://arxiv.org/abs/2305.10563
https://arxiv.org/abs/2305.15077
https://arxiv.org/abs/2205.02460
https://arxiv.org/abs/2207.09052
https://arxiv.org/abs/2207.09052

Subgraph-Aware Training of Language Models for Knowledge
Graph Completion Using Structure-Aware Contrastive Learning WWW ’25, April 28–May 02, 2025, Sydney, Australia

Figure 8: For each triple (ℎ, 𝑟, 𝑡), the bi-encoders take the name and description of ℎ and 𝑡 along with the text for 𝑟 as input.

A Input Format Details for Encoders
We adopt MPNet [31] as Encoderℎ𝑟 and Encoder𝑡 , and set the max-
imum token length to 50. For each triple ℎ, 𝑟, 𝑡 , we concatenate the
name of ℎ, its textual description, and the name of 𝑟 with a special
symbol [SEP] in between, and treat the concatenation as input for
Encoderℎ𝑟 , while the input for Encoder𝑡 consists the name and
textual description of 𝑡 . As illustrated in Figure 8, given a triple
(Leonardo da Vinci, painted, Mona Lisa), the input to Encoderℎ𝑟 is
the concatenation of [CLS], "Leonardo da Vinci", [SEP], the head’s
description, [SEP], and the relation’s name "painted." The input to
Encoder𝑡 is the concatenation of [CLS], "Mona Lisa", [SEP], and the
tail description.

B Inference
For inference, we calculate the cosine similarity between xℎ𝑟 for a
given (ℎ, 𝑟, ?) and x𝑡 for all entities 𝑡 . Then the tails with the top-k
largest cosine similarities are answers. For a single pair, we need |𝐸 |
forward passes of Encoder𝑡 to obtain x𝑡 for all entities 𝑡 . Given a set
𝑇 of test triples, 2|𝑇 | forward passes of Encoderℎ𝑟 are required to
get xℎ𝑟 for every triple (ℎ, 𝑟, ?) ∈ 𝑇 and its inverse triple (𝑡, 𝑟−1, ?),
thus resulting in 𝑂 (|𝐸 | + |𝑇 |) computation in total.

C Markov Chain Monte Carlo Based Subgraph
Sampling

Inspired by a negative sampling approach [46] based on Markov
chain Monte Carlo (MCMC) in a general graph, we propose a new
method to sample subgraphs from the KG. A negative sampling
distribution should be positively but sublinearly correlated with
the positive sampling distribution, which was validated by Yang
et al. [46]. To include the entities close to a positive triple in the KG
in negative triples, we define the sampling distribution 𝑝𝑛 of the
negative tail 𝑡 as : 𝑝𝑛 (𝑡 |ℎ, 𝑟) ∝ 𝑝𝑑 (𝑡 |ℎ, 𝑟)𝛼 , 0 < 𝛼 < 1, 𝑝𝑑 (𝑡 |ℎ, 𝑟) =

cos(xℎ𝑟 ,x𝑡)∑
𝑒∈𝐸 cos(xℎ𝑟 ,x𝑒) . where𝛼 is a parameter to stabilize the optimization

process, 𝐸 is a set of entities in the KG, and 𝑝𝑑 is the sampling
distribution of the positive tail. Calculating the normalization term
in 𝑝𝑑 (𝑡 |ℎ, 𝑟) is time consuming and almost impossible. Therefore,
we sample a negative tail 𝑡 from 𝑝𝑑 = cos(xℎ𝑟 , x𝑡) by using the

Algorithm 1:MCMC-based Subgraph Sampling
Input: DFS path 𝐷 = {𝑡1, 𝑡2, ..., 𝑡𝑑 }, proposal distribution 𝑞,

number 𝑘 of negative samples, 𝑏𝑢𝑟𝑛_𝑖𝑛 period
Output: negative tails

Initialize current negative node 𝑥 at random
𝑖 ← 0, 𝑆 ← ∅
for each triple 𝑡 in 𝐷 do

Initialize 𝑗 as 0
ℎ, 𝑟 ← head, relation in triple
if 𝑖 ≤ 𝑏𝑢𝑟𝑛_𝑖𝑛 then

𝑖 ← 𝑖 + 1
Sample an entity 𝑦 from 𝑞(𝑦 |𝑥)
Generate 𝑟 ∈ [0, 1] uniformly at random
if 𝑟 ≤ min(1, 𝑐𝑜𝑠 (xℎ𝑟 ,x𝑦)

𝛼

𝑐𝑜𝑠 (xℎ𝑟 ,x𝑥)𝛼
𝑞 (𝑥 |𝑦)
𝑞 (𝑦 |𝑥)) then

𝑥 ← 𝑦

else
while 𝑗 < 𝑘 do

Sample an entity 𝑦 from 𝑞(𝑦 |𝑥)
Add 𝑦 to 𝑆
𝑥 ← 𝑦

𝑗 ← 𝑗 + 1

return 𝑆 ;

Metropolis-Hastings (M-H) algorithm, and randomly select a triple
whose head is 𝑡 .

Algorithm 1 describes the process of sampling a subgraph by
the M-H algorithm. To prepare a mini-batch of triples for SaaM, we
traverse KG using depth-first search (DFS). From each entity 𝑒 ∈ 𝐸,
we perform DFS until we visit 𝑑 triples. For every visited triple
along the DFS path, the triple inherits the probability distribution
𝑝𝑑 from the previous triple in the path, and 𝑘 negative tails 𝑡 are
sampled from this distribution. Then 𝑝𝑑 is updated. The proposal
distribution 𝑞 is defined as a mixture of uniform sampling and
sampling from the nearest 𝑘 nodes with the 0.5 probability each
[46]. Both𝑑 and 𝑘 above are hyperparameters. The𝑑 triples in a DFS
path, the sampled 𝑑 × 𝑘 triples, and their inverse triples compose a
subgraph. We throw away the tails 𝑡 extracted during the burn-in

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

WN18RR

Size MRR Hits@1 Hits@3 Hits@10

512 0.689 0.610 0.737 0.828
1024 0.694 0.626 0.743 0.833
1536 0.690 0.622 0.741 0.828
2048 0.681 0.610 0.732 0.824

FB15k-237

Size MRR Hits@1 Hits@3 Hits@10

1024 0.337 0.250 0.366 0.519
2048 0.352 0.255 0.374 0.525
3072 0.370 0.279 0.403 0.550
4096 0.362 0.270 0.391 0.542

Table 8: The results of investigating the model performance
with respect to the batch size.

period, and use the tails extracted after the period as the heads of
the triples in the subgraph.

D Datasets
In this paper, we use three KGC benchmarks. WN18RR is a sparse
KG with a total of 11 relations and ∼ 41𝑘 entities. WN18RR is the
dataset derived fromWN18, consisting of relations and entities from
WordNet [22]. WN18RR addresses the drawbacks of test set leakage
by removing the inverse relation in WN18. FB15k-237 is a dense KG
with 237 relations. Wikidata5M, a much larger KG than the others,
provides transductive and inductive settings. Wikidata5M-Trans is
for the transductive setting, where entities are shared and triples
are disjoint across training, validation, and test. Wikidata5M-Ind is
for the inductive setting, where the entities and triples are mutually
disjoint across training, validation, and test [40].

E Implementation Details
In our weighted InfoNCE loss, additive margin 𝛾 is set to 0.02. We
select the best performing batch sizes of 1024 from {512, 1024, 1536,
2048} for WN18RR, and Wikidata5M, and 3072 from {1024, 2048,
3072, 4096} for FB15k-237. We set the restart probability 𝑝𝑟 to 1/25
in BRWR. We used six A6000 GPUs and 256G RAM. Training on
WN18RR took 50 epochs, for a total of 4 hours. FB15k-237 took 30
epochs and a total of 3 hours, while Wikidata5M took 2 epochs and
19 hours.

F Hyperparameter Sensitivity
We investigate how restart probability 𝑝𝑟 in BRWR affects model
performance. The hyperparameter 𝑝𝑟 is associated with the length
of the random walk path from the start entity, which in turn influ-
ences the occurrence of duplicate entities in a mini-batch. A longer
path leads to fewer duplicate entities in the mini-batch. Figure 9(a)
illustrates that a lower 𝑝𝑟 value, encouraging a longer random walk
path, leads to higher Hits@1 for WN18RR and FB15k-237. We ana-
lyze the impact of duplicate entities in a mini-batch on the model
performance. In Figure 9(b), more duplicate entities resulting from
higher 𝑝𝑟 negatively impact on the performance, which highlights

WN18RR

Method MRR Hits@1 Hits@3 Hits@10

RotatE[32] 0.471 0.421 0.490 0.568
RotatE+SaaM 0.479 0.433 0.505 0.580

StAR[38] 0.398 0.238 0.487 0.698
StAR+SaaM 0.411 0.261 0.511 0.729

FB15k-237

Method MRR Hits@1 Hits@3 Hits@10

RotatE[32] 0.335 0.243 0.374 0.529
RotatE+SaaM 0.343 0.255 0.389 0.534

StAR[38] 0.288 0.195 0.313 0.480
StAR+SaaM 0.319 0.220 0.334 0.490

Table 9: Performance comparison between original StAR and
StAR+SaaM where StAR+SaaM stands for the StAR model
architecture trained by our training framework SaaM.

Figure 9: (a) Impact of varying restart probabilities on the
model performance. (b) Impact of varying the number of
duplicate entities in a mini-batch on the model performance.

the importance of reducing the duplicates in a mini-batch to avoid
the performance degradation. Additionally, we compare the perfor-
mance of SATKGC on WN18RR and FB15k-237 with varying batch
sizes in Table 8. Based on the results, we select the batch size that
produce the best performance as the default setting for SATKGC.

G Performance of the SaaM Scheme Across
Models

To demonstrate the generality of the SaaM scheme, we conduct
additional experiments by applying the SaaM approach to RotatE,
an embedding-based method, and StAR, a text-based method, to
evaluate their performance on theWN18RR and FB15k-237 datasets.
As shown in Table 9, incorporating the SaaM approach into both
RotatE and StAR results in significant improvements across all
metrics. For instance, on the FB15k-237, StAR + SaaM exhibits a
significant improvement in Hits@1, increasing by 12.8%, from 0.195
to 0.220. These findings illustrate that SaaM is model-agnostic and
highly generalizable, effectively enhancing performance regardless
of the underlying model.

Subgraph-Aware Training of Language Models for Knowledge
Graph Completion Using Structure-Aware Contrastive Learning WWW ’25, April 28–May 02, 2025, Sydney, Australia

Figure 10: The proportion of triples categorized by relation types for the Wikidata5M-Trans, WN18RR, and FB15k-237 datasets,
along with their corresponding Hits@1 performance results.

WN18RR

Method MRR Hits@1 Hits@3 Hits@10

Mixed 0.676 0.610 0.729 0.816
SaaM 0.694 0.626 0.743 0.833

FB15k-237

Method MRR Hits@1 Hits@3 Hits@10

Mixed 0.349 0.253 0.393 0.538
SaaM 0.370 0.279 0.403 0.550

Table 10: Performance comparison between Mixed and SaaM,
where Mixed replaces half of in-batch triples generated by
SaaM with randomly selected triples.

Triples 𝜓G (𝑡)L (ℎ,𝑟,𝑡) L (ℎ,𝑟,𝑡)
total triples 0.2268 0.1571
false positives 0.4987 0.2834

Table 11: Comparison of average loss values on WN18RR for
total triples and false positives in the batch.

H Performance of Hybrid In-Batch Negatives
To evaluate the efficacy of constructing a batch exclusively from
triples in a subgraph (i.e., SaaM), we compare two sampling meth-
ods: SaaM and Mixed. Mixed is a variant that replaces half of the
triples in each mini-batch generated by SaaM with randomly se-
lected triples. Table 10 illustrates the performance of SaaM and
Mixed. Including randomly selected triples degrades performance,
as evidenced by a significant drop in Hits@1, indicating that a
mini-batch composed solely of triples within the subgraph is more
beneficial.

I False Positive Analysis
We aim to demonstrate that our contrastive learning with two
structure-aware factors selectively penalizes hard negative triples.
Table 11 compares 𝜓G (𝑡)L (ℎ,𝑟,𝑡) and L (ℎ,𝑟,𝑡) on average, specifi-
cally for false positives of the existing state-of-the-art model [39]
and for all training triples. In this comparison, L (ℎ,𝑟,𝑡) in Equation
(3) represents the loss with only a structural hardness factor 𝜔ℎ𝑡𝑖
applied, while𝜓G (𝑡)L (ℎ,𝑟,𝑡) in Equation (5) additionally incorpo-
rates a reweighting factor 𝜓G (𝑡). The average loss values for the
false positives are higher than those for all the triples, which indi-
cates that the structure-aware contrastive learning method severely
punishes incorrect predictions for hard negative triples.

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

Approach WN18RR FB15k-237

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Embedding-based approach

SANS [1] 0.216 0.027 0.322 0.509 0.298 0.203 0.331 0.486
TransE [3] 0.239 0.421 0.450 0.510 0.280 0.193 0.372 0.439
DistMult [44] 0.435 0.410 0.450 0.510 0.280 0.195 0.297 0.441
TuckER [2] 0.466 0.432 0.478 0.518 0.361 0.265 0.391 0.538
RotatE [32] 0.471 0.421 0.490 0.568 0.335 0.243 0.374 0.529
KGTuner [53] 0.481 0.438 0.499 0.556 0.345 0.252 0.381 0.534
KG-Mixup [30] 0.488 0.443 0.505 0.541 0.359 0.265 0.395 0.547
UniGE[21]† 0.491 0.447 0.512 0.563 0.343 0.257 0.375 0.523
CompoundE [10] 0.492 0.452 0.510 0.570 0.350 0.262 0.390 0.547
KRACL [34] 0.529 0.480 0.539 0.621 0.360 0.261 0.393 0.548
CSProm-KG [5] 0.569 0.520 0.590 0.675 0.355 0.261 0.389 0.531

Text-based approach

KG-BERT [47] 0.216 0.040 0.298 0.516 0.158 0.019 0.232 0.420
MTL-KGC [18] 0.331 0.203 0.383 0.597 0.267 0.172 0.298 0.458
StAR [38] 0.398 0.238 0.487 0.698 0.288 0.195 0.313 0.480
HaSa [50] 0.535 0.446 0.587 0.711 0.301 0.218 0.325 0.482
KG-S2S [4] 0.572 0.529 0.595 0.663 0.337 0.255 0.374 0.496
SimKGC [39] 0.671 0.580 0.729 0.811 0.340 0.252 0.365 0.515
GHN [27]‡ 0.678 0.596 0.719 0.821 0.339 0.251 0.364 0.518

Ensemble approach

StAR(Self-Adp) [38] 0.520 0.456 0.509 0.707 0.332 0.229 0.387 0.526

SATKGC (w/o SaaM) 0.673 0.595 0.728 0.813 0.349 0.256 0.367 0.520
SATKGC (w/o PCL, FMT) 0.676 0.608 0.722 0.820 0.355 0.261 0.386 0.537
SATKGC (w/o FMT) 0.680 0.611 0.729 0.823 0.351 0.265 0.389 0.541
SATKGC (w/o PCL) 0.686 0.623 0.740 0.827 0.366 0.272 0.396 0.545
SATKGC 0.694 0.626 0.743 0.833 0.370 0.279 0.403 0.550

Table 12: KGC results for the WN18RR, and FB15k-237 datasets. “PCL” and “FMT” refer to Proximity-aware Contrastive
Learning and Frequency-aware Mini-batch Training respectively. The best and second-best performances are denoted in bold
and underlined respectively. †: numbers are from Liu et al. [21] ‡: numbers are from Qiao et al. [27].

J Correlation of Relation Types and
Performances

We investigate the distribution of triples based on their relation
types on Wikidata5M-Trans, WN18RR, and FB15k-237. Figure 10
shows that the proportion of triples with the N-N relation type in-
creases in the order ofWikidata5M-Trans, WN18RR, and FB15k-237,
while the proportion of triples with the N-1 relation type decreases
in the same order. In Table 2 and Table 3, We observe that text-based
methods outperform embedding-based methods in Wikidata and
WN18RR, which have a higher proportion of N-1 relation type and
lower proportion of N-N relation type. In contrast, in FB15k-237,
which has a higher proportion of N-N relation type and a lower pro-
portion of N-1 relation type, embedding-based methods generally
achieve better performance than text-based methods. This perfor-
mance difference between the datasets is larger for a text-based
approach than for an embedding-based approach. We speculate that
this is because the embedding-based approach randomly initializes
the entity and relation embeddings, while the text-based approach
uses contextualized text embeddings obtained from PLMs. For the
N-N relations where multiple tails can be the correct answer for
the same (ℎ, 𝑟) pair, the embeddings of these correct tails should
be similar. However, PLMs take only text as input, being oblivious
of their high similarity. Therefore, these tail embeddings generated

Wikidata5M-Trans
Model MRR Hits@1 Hits@3 Hits@10
ReSKGC 0.396 0.373 0.413 0.437
SATKGC 0.408 0.366 0.425 0.479

Table 13: Performance comparison between SATKGC and
ReSKGC. ReSKGC is a retrieval-augmented generation(RAG)-
based model that performs search on the knowledge graph
rather than learning the knowledge graph itself.

by the PLMs might be far apart from each other, so the (ℎ, 𝑟) em-
bedding is likely to remain in the middle of these tail embeddings
during fine-tuning.

K Entire Main Results
Table 12 presents the results of all baselines compared with ours.

L Peformance Comparison with RAG-based
Model

We additionally conduct performance comparison experiments with
the RAG-based model ResKGC [48]. Since ReSKGC does not have
publicly available source code, we use the performance results
reported directly in the paper. Furthermore, as there are no reported
results for FB15k-237 and WN18RR, we only present the results on

Subgraph-Aware Training of Language Models for Knowledge
Graph Completion Using Structure-Aware Contrastive Learning WWW ’25, April 28–May 02, 2025, Sydney, Australia

Wikidata5M-Trans. As shown in Table 13, SATKGC demonstrates
superior performance across all metrics except for Hits@1. Unlike
SATKGC, ReSKGC is a decoder-based generation model. When
given the head and relation IDs, it converts them into text, retrieves
the most semantically relevant triples from the KG using a retrieval
component such as BM25, and generates the correct tail based on

that information. Therefore, unlike SATKGC, ReSKGC does not
learn the KG directly and only uses it for retrieval, without utilizing
any structural information of the KG. This explains why SATKGC
achieves overwhelmingly better performance, despite both models
having the same number of parameters used during training.

Received 14 October 2024

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	3 PRELIMINARY
	4 METHOD
	4.1 Random-walk Based Subgraph Sampling
	4.2 Subgraph as a Mini-batch
	4.3 Proximity-aware Contrastive Learning
	4.4 Frequency-aware Mini-batch Training

	5 EXPERIMENTS
	5.1 Experimental Setup
	5.2 Main Results
	5.3 Ablation Study
	5.4 Performance Across Encoders
	5.5 Comparing Subgraph Sampling Methods

	6 Analysis
	6.1 Analysis on Negative Triples
	6.2 Runtime Analysis

	7 CONCLUSION
	References
	A Input Format Details for Encoders
	B Inference
	C Markov Chain Monte Carlo Based Subgraph Sampling
	D Datasets
	E Implementation Details
	F Hyperparameter Sensitivity
	G Performance of the SaaM Scheme Across Models
	H Performance of Hybrid In-Batch Negatives
	I False Positive Analysis
	J Correlation of Relation Types and Performances
	K Entire Main Results
	L Peformance Comparison with RAG-based Model

