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ABSTRACT

In class incremental learning, neural networks typically suffer from catastrophic
forgetting. We show that an MLP featuring a sparse activation function and an
adaptive learning rate optimizer can compete with established regularization tech-
niques in the Split-MNIST task. We highlight the effectiveness of the Adaptive
SwisH (ASH) activation function in this context and introduce a novel variant,
Hard Adaptive SwisH (Hard ASH) to further enhance the learning retention.

1 INTRODUCTION

Continual learning presents a unique challenge for artificial neural networks, particularly in the
class incremental setting (Hsu et al., 2019), where a single network must remember old classes that
have left the training set. In this paper I explore an overlooked approach that doesn’t require any
techniques developed specifically for continual learning. For regularization I used only carefully
tuned optimizers with adaptive learning rate such as Adagrad (Duchi et al., 2011). The approach
does not exploit the task structure in any way. This is in contrast to most regularizing continual
learning methods that require either explicit task boundaries such as EWC (Kirkpatrick et al., 2017)
and MAS (Aljundi et al., 2018) or implied task boundaries like Online EWC (Schwarz et al., 2018).
Perhaps closest to my method are the Elephant MLP (Lan & Mahmood, 2023) and SDMLP (Bricken
et al., 2023), but the results here outperform both in Split-MNIST with an arguably simpler method.

Sparse representations have been shown to be effective at reducing forgetting in neural networks
(Srivastava et al., 2013; Shen et al., 2021; Ahmad & Scheinkman, 2019; Lan & Mahmood, 2023).
I continue this pattern and show that combining sparsity with an adaptive learning rate optimizer is
enough to make a conceptually simple but surprisingly effective continual learner.

To make my MLP hidden layer representations sparse, I used an activation function that makes the
majority of the activations zero. Top-K (also known as k-WTA) is the conceptually simplest sparse
activation function and it’s usage in neural networks goes back to at least Makhzani & Frey (2014).
I show that Top-K works well in my setup, but I get better accuracy with my novel Hard Adaptive
Swish (Hard ASH) activation.

2 ASH AND HARD ASH

The Adaptive SwisH (ASH) activation function (Lee et al., 2022), introduced a new way of control-
ling the amount of sparsity of the activations, that is cheaper to compute than the Top-K function.
This is the first study to use ASH for continual learning. The formulation for ASH I use is:

ASH(xi) = xi · S(α · (xi − µX − zk · σX)), X = [x1, x2, . . . , xn]

S is the sigmoid function, µX and σX are the mean and standard deviation of the vector X , α is an
hyperparameter that controls the slope of the sigmoid and zk is a hyperparameter that controls the
amount of sparsity. A higher zk value corresponds to more sparsity in the activations.

2.1 HARD ASH
Lan & Mahmood (2023) theorized that activation functions should be better suited for continual
learning if their gradients are fairly sparse, i.e. the activation function should be flat in most places.
To reduce the gradient flow I replaced the sigmoid function with a hard sigmoid (Courbariaux et al.,
2016) and clip the first xi term to values between 0 and 2. See appendix A.2 for the exact Hard ASH
formula.
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Figure 1: Overall and per-task validation accuracies of a single run of each method. Vertical lines
represent the points in the training where the task changes. Optimizer is Adagrad when not specified.
Best methods slowly lose accuracy on old tasks, but struggle to learn the last task. ReLU forgets
the old tasks even with good optimizer like Adagrad. Meanwhile Hard ASH keeps some old-task
performance even with plain SGD. Variations between runs are small enough to be barely visible.

3 EXPERIMENT

I ran an experiment on 5 task Split-MNIST dataset in the class incremental setting, the hardest
setting of the Split-MNIST, where a single network has to learn all the tasks without task id input
(Hsu et al., 2019). To create the 5 tasks, the MNIST digits are split into 5 sets of 2 classes each and
tasks are trained one after another with no replay of previous inputs. The network architecture was
a simple MLP with one hidden layer of 1000 neurons, as in Bricken et al. (2023). I trained each
network for only 1 epoch to save compute.

The goal of the experiment was to test the effectiveness of various sparse activation functions with
standard optimizers tuned for continual learning. For each (activation function, optimizer) pair
tested, I ran a hyperparameter sweep to find the best final mean accuracy. Before running the sweep,
I manually estimated the best hyperparameters, listed in A.6. Shown in table 1 are the best result for
the main activation functions of the study. For full table of results see A.5.

All of sparse activation functions performed better than all of the non-sparse functions. Hard
ASH was the best in almost every optimizer setup, followed by Top-K and ASH. Adagrad per-
formed the best out of the optimizers tested, followed by RMSprop(Tieleman & Hinton, 2012) and
AdamKingma & Ba (2014). I also ran SGD and SGDM for comparison, but both of these had lower
accuracy than the optimizers with adaptive, per parameter, learning rates.

Table 1: Activation functions with best performance across tested optimizers. Average of 5 runs and
95% C.I. EWC(Kirkpatrick et al., 2017), FlyModel(Shen et al., 2021) and SDMLP+EWC baseline
results are from Bricken et al. (2023) and also use an MLP with a single 1000 neuron hidden layer.

Activation / Method Epochs Mean accuracy Best optimizer

ASH 1 76.4% (±1.4%) Adagrad
Hard ASH 1 78.3% (±1.4%) Adagrad
Top-K 1 76.0% (±1.6%) Adagrad
ReLU 1 49.2% (±7.9%) Adam
EWC 500 61% SGD
SDMLP 500 69% SGD
SDMLP+EWC 500 83% SGDM
FlyModel 1 77% Association rule learning

4 CONCLUSIONS

This study challenges the conventional approaches to continual learning by demonstrating that the
we can get decent results in Split-MNIST even without any continual learning algorithms or task-
related information. Hard ASH performed very well in my experiments. I suggest trying it as a
faster to compute alternative to Top-K, that might also boost accuracy.

Choosing the best optimizer is a hard problem given the amount of options to choose from and
the amount of hyperparameter tuning required for good performance. Schmidt et al. (2021) alone
listed over 100 known algorithms, each of which can optionally be paired with various learning rate
schedules. For now, I recommend Adagrad as a relatively easy to tune default for continual learning.
Appendices A.8 and A.9 provide more insight into optimizer performance.
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A APPENDIX

A.1 REPRODUCIBILITY

The code to reproduce the experiments in this paper is publicly available here:

https://github.com/LesserScholar/hard-ash

Care has been taken to make sure the results are reproducible, including consistent use of JAX keys
and deterministic shuffling of data.

A.2 HARD ASH FORMULA

The formula I used for Hard ASH is:

HardSigmoid(x) =
clip(x+ 3, 0, 6)

6
HardASH(xi) = clip(xi, 0, xmax) ·HardSigmoid(α · (xi − µX − zk · σX))

Where xmax is a hyperparameter that I always set to 2. The formula for hard sigmoid is the one
used in in JAX (jax.nn.hard sigmoid).

Together the clip, the hard sigmoid and a high enough value for α cause most of the activations to be
saturated (at either 0 or 2) and reduce amount of flowing gradients. Intuitively, this means that for
each training example, I only update the incoming and outgoing weights for the activations where
the network is unsure if that particular xi should be on or off.

A.3 NETWORK INITIALIZATION

In all of my tests I used the standard Kaiming initialization (He et al., 2015) for both layers of the
MLP. It is likely that there are more efficient ways to initialize a Hard ASH network that account for
the sparsity in the activations, but those explorations were not included in this study.

A.4 WEIGHT NORMALIZATION

I used weight normalization (Salimans & Kingma, 2016) with a fixed g of 1, only on the first layer
of the MLP. In preliminary testing, weight normalization on the first layer consistently increased
performance of multiple methods by 1 to 2 percentage points. Weight normalization on the second
layer was, in preliminary testing, either net neutral or slightly negative.
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A.5 FULL RESULTS

Tables 2 and 3 show how all the methods and method pairs stacked against one another.

It is noteworthy that all the sparse activation functions kept a decent chunk of their performance
even with basic SGD.

In the full results I tried two different versions of Top-K, subtract and mask. The difference between
the two methods is that in Top-K subtract, the k-th highest value is subtracted from the activations
before masking. In the main text only Top-K subtract is used, since it performs better. Bricken et al.
(2023) also found Top-K subtract to perform better than Top-K mask.

I also tested LWTA(Srivastava et al., 2013; Xiao et al., 2019) which has been suggested as a faster to
compute alternative to Top-K, but found it’s performance to be worse than Top-K subtract or ASH
based functions.

Table 2: Best results for each optimizer. Average of 5 runs and 95% C.I.

Optimizer Mean Accuracy Best Activation Function

Adagrad 78.3% (±1.4%) Hard ASH
RMSprop 77.7% (±1.8%) Hard ASH
Adam 71.6% (±1.6%) Hard ASH
SGDM 66.3% (±3.4%) Top-K Subtract
SGD 52.9% (±5.3%) Hard ASH

Table 3: Full results for all tested activation functions with all tested opti-
mizers. Average of 5 runs and 95% C.I. Poorly performing combinations
were terminated early to save compute and thus have larger error bounds.

Activation Adagrad RMSprop Adam SGDM SGD
ASH 76.4 ± 1.4 75.7 ± 1.2 69.5 ± 2.0 65.0 ± 0.4 52.4 ± 8.6
Hard ASH 78.3 ± 1.4 77.7 ± 1.8 71.6 ± 1.6 65.1 ± 1.6 52.9 ± 7.6
Top-K subtract 76.0 ± 1.6 75.0 ± 2.9 71.5 ± 1.4 66.3 ± 3.5 51.5 ± 10.4
Top-K mask 65.0 ± 4.6 69.7 ± 0.8 67.9 ± 2.4 62.9 ± 3.9 44.1 ± 15.3
LWTA 67.2 ± 2.6 67.1 ± 2.0 64.9 ± 2.2 61.3 ± 4.1 39.9 ± 14.4
ReLU 43.8 ± 10.7 39.7 ± 11.7 49.2 ± 9.7 35.7 ± 2.2 19.8 ± 4.0
SwisH 46.2 ± 9.7 41.4 ± 10.1 49.2 ± 9.7 51.9 ± 2.8 26.5 ± 8.3
Sigmoid 52.4 ± 10.3 44.2 ± 9.7 35.3 ± 8.2 20.8 ± 5.0 15.6 ± 1.0
Hard Sigmoid 56.5 ± 1.2 48.1 ± 11.6 32.0 ± 9.2 19.4 ± 1.4 14.7 ± 0.8

A.6 HYPERPARAMETERS

Tables 4 and 5 list the hyperparameters for each method used in the study.

The optimizer parameters are heavily tuned towards better performance in Split-MNIST. For mo-
mentum optimizers the momentum values were set higher than usual. For RMSprop the decay is set
very high. For Adagrad the initial fill value is set unusually low which makes it’s behavior similar
to RMSprop in the beginning of the training, i.e. the learning rates are very high at the start of the
training.

For Top-K the best k values were 64 and 96, corresponding to sparsity between 94% and 90%. For
LWTA the best amounts of groups were 25 and 50, 97.5% and 95% sparse, respectively. Lee et al.
(2022) shows how to calculate density of ASH based on value of zk. I found that a zk value of
2.0-2.5 yielded the best results, which corresponds roughly to 97-99% sparsity.
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Table 4: Common hyperparameters

Hyperparameter Values

Batch size 64
First layer weight norm True
Second layer weight norm False
Hidden size 1000
Gradient clip 0.01

Table 5: Method Specific Hyperparameters

Method Hyperparameter Values

Activations
Ash α 3.0, 4.0

Zk 2.2, 2.3, 2.4
Hard ASH xmax 2.0

Top-K k 32, 64, 96, 128, 256
LWTA groups 25, 50, 100
Optimizers
RMSprop decay 0.998, 0.999, 0.9991, 0.9992, 0.9993

learning rate 4e-6, 5e-6, 5.5e-6, 6e-6, 8e-6
Adam β1 0.9, 0.95, 0.98, 0.99

β2 0.999, 0.9995
learning rate 8e-6, 1e-5, 1.5e-5

Adagrad learning rate 1e-4, 2e-4, 3e-4
initial value 1e-6

SGD learning rate 3e-4, 4e-4, 5e-4
SGDM momentum 0.99, 0.992, 0.994, 0.996

learning rate 8e-6, 1e-5, 1.5e-5

A.7 PERFORMANCE WITHOUT TASK SPLITS

The continual learning optimized hyperparameters used in the main experiment sweep have been
tuned only for Split-MNIST task. Using such high adaptive learning rate and momentum parameters
is very unusual. To assess how much performance is lost using these settings in typical MNIST
without the task splits, I ran through the same sweep of activation functions and optimizers but
training all classes simultaneously, i.e. with i.i.d. data.

Table 6 shows the results when trained on whole MNIST at once (i.e. with i.i.d. dataset). First sweep
was with the same hyperparameters used in the main experiment, tuned for continual learning, and
second with the optimizer hyperparameters tuned to i.i.d data. In the second case, the much lower
momentum and higher learning rates, allow the model to reach much better accuracy in 1 epoch.

Table 6: Comparison of split task continual learning scenario, i.i.d. with continual learning opti-
mizer and i.i.d with regular optimizer. Average of 5 runs and 95% C.I.

Method Epochs Mean accuracy

Hard ASH /w task splits and Split-MNIST optimizer 1 78.3% (±1.4%)
ReLU i.i.d. dataset and Split-MNIST optimizer 1 91.3% (±2.5%)
ReLU i.i.d. dataset and normal optimizer 1 96.9% (±3.3%)
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A.8 ADAM AND BIAS CORRECTION

In the main text I focused on evaluating existing and well studied optimizers without modifications.
One of the more surprising results was how much worse Adam performed when compared to very
similar RMSprop and Adagrad algorithms. After testing I found that I can boost the Adam perfor-
mance almost to RMSprop level simply by removing bias correction from the algorithm.

Bias correction in Adam adjusts the first and second moment estimates to account for their initial-
ization at zero. This makes the moment estimations more accurate (i.e. unbiased) during the early
optimization steps.(Kingma & Ba, 2014) Unlike Adam, standard implementations of RMSprop do
not use bias correction. RMSprop and biased Adam performing significantly better than standard
Adam suggests to us that the initial very high learning rates given by the biased exponential averag-
ing are important for the final accuracy of the network.

Table 7: Testing Adam performance with bias correction removed. Average of 5 runs and 95% C.I.

Optimizer Mean Accuracy Activation Function

Adam with bias correction 71.6% (±1.5%) Hard ASH
Adam without bias correction 76.7% (±1.5%) Hard ASH

A.9 LEARNING RATE SCHEDULES

In my experiment adaptive learning rate methods did very well, but I did not test learning rate
schedules. Continual learning experiments are often done with constant learning rates, to maintain
plasticity (for more on plasticity see A.10). But the success of Adagrad, RMSprop and biased
Adam suggests that the initial high learning rate is important. Therefore I also tested SGD with
exponential decay schedule and found it to be fairly effective. I got accuracy of 72.4% (±3.2%),
combining Hard ASH with exponentially decaying learning rate with decay of 0.7 every 200 steps,
with starting learning rate of 3.35e− 3. The parameters for exponentially decaying learning rate are
fairly sensitive and much harder to tune than something like Adagrad with a constant learning rate.

A.10 PLASTICITY EXPERIMENT ON PERMUTED MNIST

Of primary concern in continual learning is the so called stability-plasticity dilemma Mermillod
et al. (2013), which highlights the tension between remembering past tasks and learning to perform
on new tasks. As an extreme example, it would be easy to build a learning system that perfectly
remembers the early tasks and then stops learning, simply by setting the learning rate close to 0 after
certain amount of training steps. But this would be against the spirit of continual learning since the
network would completely stop absorbing new knowledge. So the end goal of continual learning is
to build a learning system where the performance on old tasks is stable and it keeps learning new
tasks easily.

To assess the effect that sparsity has on plasticity, I ran another smaller experiment on the permuted
MNIST dataset (Kirkpatrick et al., 2017). In permuted MNIST, each subsequent task in a sequence
of tasks is created by applying a fixed permutation to the pixels of the original MNIST images,
resulting in different, but structurally similar, tasks. Since you can keep applying new permutations
at will, you can keep training on new tasks almost forever.

To test the effectiveness of sparsity on plasticity, I ran this experiment on Hard ASH with different
hyperparameters. The hypothesis tested was that changing the amount of sparsity (modifying zk) or
gradient sparsity (modifying α, steeper alpha curve results in more sparsity in the gradients) would
have an effect on the plasticity of the network.

The experiment was ran for 100 epochs, changing to a new task after every epoch for a total of
100 tasks. Adagrad was chosen as the optimizer since it was the overall best performer in the main
study. Network architecture is the same as in the main experiment, an MLP with a single 1000
neuron hidden layer.
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Figure 2: Latest task and first task validation accuracies when varying zk

Figures 2 and 3 show the accuracy on the latest task right after it’s training is complete (plasticity)
and performance on the very first task through the whole training (stability).

In figure 2, I show the effect of varying zk, i.e. the amount of sparsity in the hidden layer represen-
tation. Latest task accuracy graph shows that varying the amount of sparsity has negligible effect
on plasticity. When zk < 3, the Hard ASH MLP has pretty much same plasticity as baseline ReLU
MLP. When zk ≥ 3, the performance is already worse during the first epoch, but it doesn’t appear
to help much with plasticity.

In the first task accuracy graph we see that the networks ability to retain accuracy on the first task
increases with the amount of sparsity. When zk < 1, the network performs similarly to the baseline
ReLU, but when zk > 1, the performance on the first task falls only slightly during the training of
the 99 subsequent tasks.
In figure 3, I show the effect of varying α or the steepness of the activation slope, i.e. the amount
of sparsity in the gradients. For this experiment, zk was held constant at 1.5. Latest task accuracy
graph shows much of the same as figure 2. Plasticity is the same regardless of the settings and pretty
much matches the baseline ReLU. The stability, or the ability to retain accuracy on the very first
task, increases with α. When α gets very high (e.g. 8, as shown in the graph) there is a notice-
able performance degradation already at the beginning of the training, but no significant benefits to
plasticity.

Thus my conclusion is that representation sparsity alone is not enough to solve plasticity in continual
learning and something extra is required. Instead I can say that sparsity helps with stability without
significant penalty to plasticity. For a more complete continual learner, that overcomes both sides
of stability-plasticity dilemma, we could try to combine sparse representations with a technique that
increases plasticity, such as Continual backprop (Dohare et al., 2022), Shrink and perturb (Ash &
Adams, 2020) or progressive magnitude based pruning with model expansion like in Menick et al.
(2020).
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Figure 3: Latest task and first task validation accuracies when varying α
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