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ABSTRACT

Controlling complex physical systems is a crucial task in science and engineering,
often requiring the balance of control objectives and safety constraints. Recently,
diffusion models have demonstrated a strong ability to model high-dimensional
state spaces, giving them an advantage over recent deep learning and reinforce-
ment learning-based methods in complex control tasks. However, they do not
inherently address safety concerns. In contrast, while safe reinforcement learn-
ing methods consider safety, they typically fail to provide guarantees for satisfy-
ing safety constraints. To address these limitations, we propose Safe Conformal
Physical system control (SafeConPhy), which optimizes the diffusion model with
a provable safety bound iteratively to satisfy the safety constraint. We pre-train a
diffusion model on the training set. Given the calibration set and the specific con-
trol targets, we derive a provable safety bound using conformal prediction. After
iteratively enhancing the safety of the diffusion model with the progressively up-
dated bound, the model’s output can be certified as safe with a user-defined prob-
ability. We evaluate our algorithm on two control tasks: 1D Burgers’ equation
and 2D incompressible fluid. Our results show that our algorithm satisfies safety
constraints, and outperforms prior control methods and safe offline RL algorithms.

1 INTRODUCTION

The control of complex physical systems is critical and essential in many scientific and engineering
fields, including fluid dynamics (Hinze & Kunisch, 2001), nuclear fusion (Edwards et al., 1992),
and mathematical finance (Soner, 2004). In real-world scenarios, controlling such systems often
requires addressing safety concerns (Barros & des Santos, 1998; Argomedo et al., 2013). For ex-
ample, in fluid dynamics, small errors in control can lead to turbulence or structural damage, while
in controlled nuclear fusion, failure to maintain safety constraints could result in catastrophic con-
sequences. Safety, in this context, involves ensuring that the control sequences guide the system to
satisfy pre-defined constraints, thereby mitigating risks and preventing hazardous situations (Daw-
son et al., 2022; Liu et al., 2023a). Notably, safety remains a bottleneck for applying machine learn-
ing to specific scientific and engineering problems, as many machine learning algorithms lack the
mechanisms to guarantee safety constraints in their control outputs. This gap between performance
and safety has become a critical obstacle in deploying machine learning for high-stake applications.

Despite of its importance, the safe control of complex physical systems is challenging. Firstly, to
avoid unacceptable risks, one should prevent algorithms without safety guarantees from interacting
with the environment, restricting us to an offline setting with pre-collected data. However, the
data is often non-optimal and may contain unsafe samples, resulting in a significant gap between
the observed data distribution and the near-optimal, safe distribution (Xu et al., 2022; Liu et al.,
2023a). Secondly, the algorithm must balance the need for high performance with adherence to
safety constraints (Liu et al., 2023a; Zheng et al., 2024).

After many years of research on traditional control algorithms (Li et al., 2006; Protas, 2008), the ad-
vancement of neural networks leads to the emergence of numerous deep learning-based algorithms
(Farahmand et al., 2017; Holl et al., 2020; Hwang et al., 2022). For complex physical systems,
which are highly nonlinear and high-dimensional, the deep learning-based methods achieve out-
standing results (Hwang et al., 2022; Holl et al., 2020; Wei et al., 2024). However, the above deep
learning-based methods generally do not account for safety considerations. Regarding safe offline
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Table 1: Comparison between previous deep learning-based control algorithms and our pro-
posed SafeConPhy. SafeConPhy considers the safety constraints in the control of complex physical
systems, and its safety is certifiable before interacting with the environment.

Methods Complex Physical System Safety Constraint Certifiable
DiffPhyCon (Wei et al., 2024) ✓ ✗ ✗
CDT (Liu et al., 2023b) ✗ ✓ ✗
TREBI (Lin et al., 2023) ✗ ✓ ✗

SafeConPhy (Ours) ✓ ✓ ✓

reinforcement learning (RL), on the one hand, RL methods struggle to optimize long-term control
sequences under the constraints of system dynamics (Wei et al., 2024). On the other hand, recent
TREBI (Lin et al., 2023) and FISOR (Zheng et al., 2024) utilize diffusion models for planning and
theoretically analyzing how to satisfy safety constraints, but they fail to compute the probabilistic
bound of safety costs concretely. This limitation prevents their capability of certifying safety before
testing, which is inconsistent with the goal of satisfying safety constraints using offline data.

To address these problems, we propose Safe Conformal Physical system control (SafeConPhy), an
iterative safety improvement method with a certifiable safety bound. Firstly, in offline settings, the
training data are often sub-optimal and unsafe, exhibiting a significant deviation from the desired
distribution, which is optimal and safe. Inspired by concepts from conformal prediction (Vovk et al.,
2005b; Tibshirani et al., 2019), we estimate the model prediction error under distribution shift based
on a portion of split-out training data (called calibration set) and the specific control targets. With the
estimated prediction error, we compute a probabilistic upper bound of the safety score, and the safety
score for the model’s interaction with the environment will be within the upper bound with a user-
defined probability. Thus, the model’s safety can be certified by verifying whether the upper bound
satisfies the safety constraint. Secondly, we implement a process to improve the model safety by
leveraging the upper bound through guidance and fine-tuning iteratively. The guidance step directs
the model to stochastically generate multiple samples that potentially satisfy the safety constraint,
while the fine-tuning step updates the model by incorporating these samples and the safety bound.
This safety improvement process is iterative and continues until the safety upper bound meets the
safety constraints.

In summary, the advantages of SafeConPhy are highlighted in Table 1. Our main contributions are
as follows: (1) We introduce safety constraints into the deep learning-based control of complex
physical systems, develop two datasets for safe physical system control tasks to evaluate different
methods, and propose the offline algorithm SafeConPhy. (2) Considering the model’s prediction
error, we provide a certifiable upper bound of the safety score and design an iterative safety im-
provement process that uses the upper bound to promote the output distribution becoming more
optimal and safer. (3) We conduct experiments on 1D Burgers’ Equation and 2D incompressible
fluid, whose results demonstrate that SafeConPhy can meet the safety constraints and reach better
control objectives at the same time.

2 RELATED WORK

2.1 CONTROL OF PHYSICAL SYSTEMS

The development of control methods in physical systems is critical across various engineering ar-
eas, including PID (Li et al., 2006), supervised learning (SL) (Holl et al., 2020; Hwang et al., 2022),
reinforcement learning (RL) (Farahmand et al., 2017; Pan et al., 2018; Rabault et al., 2019), and
physics-informed neural networks (PINNs) (Mowlavi & Nabi, 2023). Among these, PID is one of
the earliest and most widely used method (Johnson & Moradi, 2005), known for its simplicity and
effectiveness in regulating physical systems; however, it faces challenges in parameter tuning and
struggles with highly nonlinear or time-varying systems. With the advancement of deep learning, SL
(Holl et al., 2020) has been applied to optimize control sequences through backpropagation over en-
tire trajectories, but it lacks the adaptability to dynamic environments since it is typically trained on
fixed datasets. To overcome the above issue, RL enhances adaptability by leveraging diverse datasets
or interactions with the environment, achieving notable success in controlling physical systems, in-
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cluding fluid dynamics (Novati et al., 2017; Feng et al., 2023), underwater devices (Zhang et al.,
2022; Feng et al., 2024), and nuclear fusion (Degrave et al., 2022). Furthermore, the adjoint method
(Protas, 2008) and PINNs (Mowlavi & Nabi, 2023) are also incorporated in PDE control, but they
require an explicit form of the PDE. Currently, the diffusion model used in physical systems’ control
(Wei et al., 2024) integrates the learning of entire state trajectories and control sequences, enabling
global optimization that incorporates the physical information learned by the model. However, it
does not consider the important cases where safety constraints are required.

2.2 SAFE OFFLINE REINFORCEMENT LEARNING

Recently, the offline setting has attracted attention in the field of safe reinforcement learning (RL), as
it avoids generating dangerous behaviors through direct interaction with the environment (Achiam
et al., 2017; Zhang et al., 2020; Stooke et al., 2020; Liu et al., 2022). CPQ (Xu et al., 2022) is the
first practical safe offline RL method that assigns high costs to OOD and unsafe actions and updates
the value function as well as the policy only with safe actions. COptiDICE (Lee et al., 2022) is
a DICE-based method and corrects the stationary distribution. CDT (Liu et al., 2023b) takes the
decision transformer to solve safe offline RL problems as multi-objective optimization. However,
these methods lack the ability to model high-dimensional state space. More recent methods like
TREBI (Lin et al., 2023) and FISOR (Zheng et al., 2024) solve it through diffusion model planning.
But they do not consider the upper bound of the safety score in a probabilistic sense and differ
significantly from SafeConPhy in terms of the algorithm.

2.3 CONFORMAL PREDICTION

Conformal prediction (Vovk et al., 2005a) is a statistical framework that constructs prediction in-
tervals guaranteed to contain the true label with a specified probability. Its validity could be com-
promised, however, by the violation of the core assumption of exchangeability due to distribution
shifts in real-world scenarios (Chernozhukov et al., 2018; Hendrycks et al., 2018). Recent studies
(Maxime Cauchois & Duchi, 2024) have extended conformal prediction to accommodate various
distribution shifts. For example, Tibshirani et al. (2019) proposed weighted conformal prediction
to handle covariate shift, where training and test data distributions differ. Podkopaev & Ramdas
(2021) introduced reweighted conformal prediction and calibration techniques to address label shift
using unlabeled target data. Adaptive conformal inference (Gibbs & Candes, 2021) provides valid
prediction sets in online settings with unknown, time-varying distribution shifts without relying on
exchangeability. Inspired by previous approaches, SafeConPhy establishes an upper bound on the
confidence level by maintaining a weighted score set. Our method ensures the true safety value for
a given control sequence lies within the bound without requiring additional assumptions about the
model or data distribution, effectively addressing distribution shifts between pre-collected data and
the target distribution.

3 PRELIMINARY

3.1 PROBLEM SETUP

We consider the following safe control problem of complex physical systems:

w∗ = argmin
w

J (u,w) s.t. C(u,w) = 0, s(u) ≤ s0, (1)

where u(t,x) : [0, T ] × Ω 7→ Rdu is the system’s state trajectory with dimension du and w(t,x) :
[0, T ] × Ω 7→ Rdw is the external control signal with dimension dw. They are both defined on the
time range [0, T ] ⊂ R and spatial domain Ω ⊂ RD. J (u,w) is the objective of the control problem,
and C(u,w) = 0 is the physical constraint, such as the partial differential equation. As for the safety
constraint, s(u) is the safety score and s0 is the bound of the safety score. We need to minimize
the control objective while satisfying physical constraints and constraining the safety score to stay
below the bound, which requires a careful balance between safety and performance. However, it is
important to note that safety and performance are not on equal footing, and the pursuit of a better
objective should be built upon ensuring safety.
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Figure 1: Overview of SafeConPhy. First, we pre-train a diffusion model pθ on the training data.
Then, we derive a safety bound to certify that the model satisfies the safety constraints. To satisfy
the safety constraint, we further design a loss function term based on the safety bound to optimize
the diffusion model.

3.2 DIFFUSION MODELS AND DIFFUSION CONTROL

Diffusion models (Ho et al., 2020) learn data distribution from data in a generative way. They
present impressive performance in a broad range of generation tasks. Diffusion models involve
diffusion/denoising processes: the diffusion process q(xk+1|xk) = N (xk+1;

√
αkxk, (1 − αk)I)

corrupts the data distribution p(x0) to a prior distribution N (0, I), and the denoising process
pθ(x

k−1|xk) = N (xk−1;µθ(x
k, k), σkI) makes sampling in a reverse direction. Here k is the

diffusion/denoising step, {αk}Kk=1 and {σk}Kk=1 are the noise and variance schedules. In practice,
a denoising network ϵθ is trained to estimate the noise to be removed in each step. During infer-
ence, the iterative application of ϵθ from the prior distribution could generate a new sample that
approximately follows the data distribution p(x).

Recently, DiffPhyCon (Wei et al., 2024) applies diffusion models to solve the control problem as in
Eq. 1 without the safety constraint s(u) ≤ s0. For brevity, we only summarize its light version. It
transforms the physical constraint to a parameterized energy-based model (EBM) Eθ(u,w) with the
correspondence p(u,w) ∝ exp(−Eθ(u,w)). Then the problem is converted to an unconstrained
optimization over u and w for all physical time steps simultaneously:

u∗,w∗ = argmin
u,w

[Eθ(u,w) + λ · J (u,w)] , (2)

where λ is a hyperparameter. To optimize Eθ, a denoising network ϵθ is trained to approximate
∇u,wEθ(u,w) by the following loss:

L = Ek∼U(1,K),(u,w)∼p(u,w),ϵ∼N (0,I)[∥ϵ− ϵθ(
√
ᾱk[u,w] +

√
1− ᾱkϵ, k)∥22], (3)

where ᾱk :=
∏k

i=1 αi. After ϵθ is trained, Eq. 2 can be optimized by sampling from an initial
sample (uK ,wK) ∼ N (0, I), and iteratively running the following process

(uk−1,wk−1) = (uk,wk)− η
(
ϵθ([u

k,wk], k) + λ∇u,wG(ûk, ŵk
)
+ ξ, ξ ∼ N

(
0, σ2

kI
)

(4)

under the guidance of G = J for k = K,K − 1, ..., 1. Here [ûk, ŵk] is the noise-free estimation of
[u0,w0]. The final sampling step yields the solution w0 for the optimization problem in Eq. 2.

4 METHOD

In this section, we introduce our proposed method SafeConPhy, with its overall framework outlined
in Figure 1. First, in Section 4.1, we briefly outline the overall steps of the algorithm. Next, in
Section 4.2, we explain how conformal prediction is applied to estimate the safety score s under
distribution shift in a probabilistic sense, and theoretically derive the formula for the provable safety
bound s+. Finally, in Section 4.3, we detail the implementation of the entire algorithm. Specifically,
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Algorithm 1 Inference of SafeConPhy
1: Require Calibration set Dcal, training set Dtrain, confidence level α, control objective J (·), safety score

s(·), number of iterations N
2: for n = 1, . . . , N do
3: Compute the weighted score set S̃ with Dcal // Eq. 11
4: Get the quantile Q(1− α; S̃)
5: Sample the control sequence w with guidance G // Eq. 14
6: Compute s+(ũθ(w)) with conditionally sampled ũθ(w) // Eq. 12
7: Take gradient descent step on ∇θLfine-tune // Eq. 15
8: end for
9: Sample the control sequence w with guidance G // Eq. 14

10: return w

we first describe the detailed implementation of this estimation. Additionally, we describe how the
estimated safety score is utilized to modify the distribution of generated control sequences through
guidance and fine-tuning.

4.1 OVERALL PROCEDURES

In this section, we present the workflow of our algorithm as in Figure 1. We set aside a portion of
the original training data as the calibration set Dcal, which will be used later to estimate the model’s
prediction errors. The remaining data, which will be used for actual training, is referred to as the
training data Dtrain. After pre-training with Dtrain as described in Eq. 3, we get the diffusion model
pθ which models the joint distribution of [u,w].

Next, we conduct Iterative Safety Improvement, where we apply the provable safety bound s+
under distribution shift to enhance model safety iteratively. First, the calculation of the safety bound
s+ runs throughout the entire loop. The safety bound basically takes the calibration set to obtain
a corresponding set of model prediction errors (called the score set). Furthermore, we take into
account the distribution shift between the calibration set and data generated based on control targets,
so we apply weighting to the set of model prediction errors to get the weighted score set as Eq. 11.
Then, we use the quantile of this set to represent the error in the model’s predicted safety score.

Second, ‘iterative’ refers to the process where we cyclically use the guidance to generate samples,
and then combine these samples with model prediction errors to fine-tune the model parameters,
thereby improving the model’s safety. Specifically, in each iteration, we sample the control sequence
w under the guidance as described in Eq. 14 containing s+. After getting w, we conditionally
sample ũθ(w) to get the provable safety bound s+(ũθ(w)). And we can now take the fine-tuning
loss Lfine-tune involving the training data Dtrain and also the progressively updated s+(ũθ(w)) as in
Eq. 15 to fine-tune the model parameters θ.

Finally, after several iterations, we use the fine-tuned diffusion model, once again under the influence
of guidance, to generate the control sequences, which serve as the final output of the algorithm. The
complete inference process can be seen in Algorithm 1.

4.2 PROVABLE SAFETY BOUND WITH CONFORMAL PREDICTION

In offline safety control problems, the gap between pre-collected data and the target distribution
exacerbates models’ prediction errors, which can be critical in ensuring safety. To address this issue,
we employ the conformal prediction technique to obtain a provable safety bound, ensuring that
the true safety score is included within this estimate with a provable level of confidence, without
requiring additional assumptions about the model or the data distribution.

Calibration set and score set. To achieve the goal mentioned above, we first set aside a portion
of the training dataset, which is not used for training, as the calibration set Dcal. After training, we
take the calibration set to obtain the score set, which is defined as

S := {|s(ũθ(wi))− s(ui)| : (ui,wi) ∈ Dcal}. (5)

5
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Here ui and wi represent different samples, ũθ(w) is the system state conditioned on control wi

and predicted by the model, and θ is the parameters of the model. The score set can be considered
as recording the estimation errors of the model with respect to the safety score s.

Weighted score set under distribution shift. However, since the data distribution in the calibra-
tion set differs from the final model-generated data distribution used for control, it does not satisfy
the exchangeability1 condition required by conformal prediction (Vovk et al., 2005a; Papadopoulos
et al., 2002; Lei et al., 2016). Intuitively, each sample in the calibration set has a different probability
of appearing in the final data distribution generated by the model, so we further apply weighting to
the elements of the score set.

We define p(u,w) as the distribution of the calibration set. And we let p̃(u,w) be the distribution
of the test data, where w is generated by the model based on the control task and safety constraints,
and u is the true system state obtained from the interaction between the control sequence w and the
environment. According to conformal prediction under covariate shift (Tibshirani et al., 2019), the
calculation of the weights is as follows:

ω(ui,wi) :=
dp̃(ui,wi)

dp(ui,wi)
=

dp̃(wi)dp̃(ui|wi)

dp(wi)dp(ui|wi)
, (6)

where dp denotes the probability density function of distribution p. Since dp̃(ui|wi) and dp(ui|wi)
both represent the physical constraints of the system itself, the weights can be simplified as

ω(ui,wi) =
dp̃(wi)

dp(wi)
. (7)

We note that as described in Eq. 14, wi is generated by the energy-based model under guid-
ance G. In the safe control problems, guidance G encompasses both the control objective and
safety constraints and will be detailed in Section 4.3. With the influence of G, p̃(ui,wi) ∝
exp(−Eθ(ui,wi)− G(ui,wi)) ∝ pθ(ui,wi) exp(−G(ui,wi)), where pθ is distribution learned
by the diffusion model. Thus we obtain

ω(ui,wi) = C
dpθ(ui,wi)e

−G(ui,wi)

dp(ui,wi)
, (8)

where C is a constant. Given that the calibration set and the training dataset follow the same dis-
tribution, and assuming that the impact of the diffusion model’s learning error on the dataset is
sufficiently small relative to the second term e−G(ui,wi), we can approximate the weight as

ω(ui,wi) = Ce−G(ui,wi). (9)
Finally, we normalize the weight and obtain

ω̂(ui,wi) =
Ce−G(ui,wi)∑

(ui,wi)∈Dcal
Ce−G(uj ,wj)

=
e−G(ui,wi)∑

(ui,wi)∈Dcal
e−G(uj ,wj)

. (10)

The weighted score set is then defined as
S̃ := {ω̂(ui,wi)|s(ũθ(wi))− s(wi)| : (ui,wi) ∈ Dcal}. (11)

Upper bound s+ on the confidence level α. For a given control sequence w, we provide an upper
bound s+ below, such that with at least 1−α probability, the true s is smaller than s+. In detail, we
exploit the weighted score set to define the s+ as

s+(ũθ(w)) = s(ũθ(w)) +Q(1− α; S̃), (12)

where Q(1−α; S̃) is Quantile((1−α)(1+ 1
|Dcal| ); S̃) and is still a differentiable function with respect

to θ, and |Dcal| is the cardinality of Dcal. The precise and formal meaning of the probabilistic upper
bound is demonstrated through the following lemma.
Lemma 1. Assume samples (ui,wi) ∼ p in the calibration set are independent, and the test set
(u,w) ∼ p̃ is also independent with the calibration set. Assume p is absolutely continuous with
respect to p̃, s+ is defined as in Eq. 12, then

P[s(u(w)) ≤ s+(ũθ(w))] ≥ 1− α, (13)
where u(w) is the real system state corresponding to the control sequence w, and ũθ(w) is the
system state predicted by the model conditioned on the same control.

1(wi, si)
N
i=1 are exchangeable if, for any permutation σ of J1, NK, P((u1, s1), · · · , (uN , sN )) =

P((uσ(1), sσ(1)), · · · , (uσ(N), sσ(N))), where P is the joint distribution.
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4.3 TARGET CONTROL GENERATION BASED ON ESTIMATED SAFETY

Next, based on the deduced s+, we describe the detailed implementation of modules in SafeConPhy.

Conditionally sample ũθ(w). In our proposed algorithm, we need to sample from the conditional
distribution p(u|w) with the model that learns the joint distribution p(u,w). To achieve this, at
each denoising step of the sampling process, we replace the noisy w in the input of the denoising
network with the actual clean w that serves as the condition (Chung et al., 2023). In fact, this
situation represents a special case of the data distribution that the denoising network encounters
during training, where the u part is noisy, while the w part remains noise-free.

Guidance G. Guidance is the first method we adopt to steer the model’s output toward satisfying
both the control objectives and safety constraints. It plays a role during the sampling process of the
diffusion model. When considering safety, the specific form of our guidance is as follows:

G(u,w) = J (u,w) + γmax[s+(u(w))− s0, 0]. (14)
Note that although we follow the previous symbol s+(u(w)), during sampling, u and w are actu-
ally generated by the diffusion model jointly but not conditionally. The specific denoising step of
implementing guidance follows Eq. 4.

Fine-tuning. The second method for adjusting the output data distribution of the model is fine-
tuning, which achieves the adjustment by optimizing the model parameters θ. Specifically, both
terms in s+, as shown in Eq. 12, are functions of θ. Therefore, it is both reasonable and effective
to compute the gradient of s+ with respect to θ to take the gradient descent step. It is worth noting
that retaining the computation graph for all denoising steps with respect to θ would result in an
unmanageable memory overhead. Therefore, when we need to keep the computation graph during
denoising for gradient calculation, we only retain the computation graph of the final denoising step.

To optimize the safety score and the diffusion loss (referred to Eq. 3) simultaneously, we form the
fine-tune loss Lfine-tune as the weighted sum of both the safety loss Lsafe and diffusion loss Ldiffusion:

Lfine-tune = Lsafe + βLdiffusion

=
∑

w∈Dsampled

max[s+(ũθ(w))− s0, 0]

+ β
∑

(u,w)∈Dtrain

∥ϵ− ϵθ(
√
ᾱk[u,w] +

√
1− ᾱkϵ,u0, k)∥22,

(15)

where w in the first term is from Dsampled sampled according to the guidance described above, (u,w)

in the second term is from the training set Dtrain, k is the denoising step, ϵ ∼ N (0, I), ᾱk :=
∏k

i=1 αi

is the product of noise schedules and [u,w] means the concatenation of u and w.

5 EXPERIMENT

To verify our statements that SafeConPhy can both achieve safety and reach lower control objectives
than other methods, we conduct experiments on safe offline control problems on 1D Burgers’ equa-
tion and 2D incompressible fluid. Besides, to evaluate the quality of safety, for different problems,
we provide several corresponding metrics.

For comparison, we choose imitation learning method Behavior Cloning (BC) (Pomerleau, 1988),
and safe reinforcement learning and imitation learning methods involving BC with safe data filtering
(BC-Safe), Constrained Decision Transformer (CDT) (Liu et al., 2023b) and CDT with safe data
filtering (CDT-Safe), diffusion-based method TREBI (Lin et al., 2023). Note that CDT shows the
best performance in the Offline Safe RL benchmark OSRL (Liu et al., 2023a). In addition, we
combine the physical system control method Supervised Learning (Hwang et al., 2022) with the
Lagrangian approach (Chow et al., 2018) (SL-Lag) to enforce safety constraints. We also apply the
classical control method PID (Li et al., 2006). We provide the anonymous code here.

5.1 1D BURGERS’ EQUATION

Experiment settings. 1D Burgers’ equation is a fundamental equation that governs various physical
systems including fluid dynamics and gas dynamics. Here we follow previous works (Hwang et al.,
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Table 2: Results of 1D Burgers’ equation. Gray: snorm is greater than 1 (unsafe). Black: snorm is
smaller than 1 (safe). Bold: Safe trajectories with lowest J .

Methods J ↓ snorm ↓ Rsample ↓ Rtime ↓ Rpoint ↓
BC 0.0001 1.9954 38% 13% 1.2%
BC-Safe 0.0002 1.9601 14% 3% 0.2%
PID 0.0968 0.5691 0% 0% 0.0%
SL-Lag 0.0115 0.6817 0% 0% 0.0%
CDT 0.0026 1.9220 8% 1% 0.1%
CDT-Safe 0.0021 0.8570 0% 0% 0.0%
TREBI 0.0074 0.7821 0% 0% 0.0%

SafeConPhy (Ours) 0.0011 0.8388 0% 0% 0.0%

Figure 2: Visualizations of the 1D Burgers’ equation. The top row shows the original trajectory
corresponding to the control target, and the bottom row is the trajectory controlled by SafeConPhy.

2022; Mowlavi & Nabi, 2023) and consider the Dirichlet boundary condition along with an external
force w(t, x). This equation is formulated as follows:

∂u(t,x)
∂t = −u(t, x) · ∂u(t,x)

∂x + ν ∂2u(t,x)
∂x2 +w(t, x) in [0, T ]× Ω

u(t, x) = 0 on [0, T ]× ∂Ω

u(0, x) = u0(x) in {t = 0} × Ω,

(16)

where ν denotes the viscosity parameter, while u0 signifies the initial condition. We set ν = 0.01,
T = 1 and Ω = [0, 1]. Given a target state ud(x), the primary control objective J is to minimize
the control error between the final state uT and the target state ud.

J :=

∫
Ω

|u(T, x)− ud(x)|2dx. (17)

Considering the safety constraint s0, the safety score is defined as:

s(u) := sup
(t,x)∈[0,T ]×Ω

{u(t, x)2}. (18)

If s(u) > s0, the state trajectory u is unsafe, and if s(u) ≤ s0, the state trajectory u is safe. The
bound of safety score s0 is set to 0.64 in our experiment. According to this bound, 89.7% of samples
are unsafe among the training set, 90% of samples are unsafe among the calibration set and all of
the samples in the test set are unsafe. More details can be found in Appendix C.1.

To better evaluate whether the set of state trajectories controlled by the model is safe, we define the
normalized safety score:

snorm :=
1

|N1|
∑
i∈N1

s(ui)

s0
+

1

|N2|
∑
i∈N2

s(ui)

s0
, (19)

where N1 = {i | ui ≤ s0}, N2 = {i | ui > s0}. Note that s(u) and s0 are always non-negative. If
the state trajectories are all safe, the score is smaller than 1; If any state trajectory is unsafe, the cost

8
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t = 0 t = 8 t = 16 t = 24 t = 31

Figure 3: Visualization of the 2D incompressible fluid control problem.

is greater than 1. Therefore, when snorm is less than 1, the different algorithms only need to compare
the control objective J .

Additionally, we compute three unsafe rates to assess the safety levels of different methods’ control
results. Rsample denotes the proportion of unsafe trajectories among total trajectories2; Rtime denotes
the proportion of unsafe timesteps among all timesteps; Rpoint denotes the proportion of unsafe
spatial lattice points in all spatial lattice points across all time steps.

Results. In Table 2, We report the results of the control objective J , the safety score snorm and other
safe metrics of different methods. SafeConPhy can meet the safety constraint and achieve the best
control objective at the same time. As shown in Figure 2, given the initial condition and the final state
(control target), SafeConPhy can control a state trajectory that satisfies the safety constraint and con-
trol target. Other methods either suffer from constraint violations or suboptimal objectives. BC and
BC-Safe trained from expert trajectories failed to meet the safety constraints, showing that simple
behavior cloning is not feasible in this control task. SL-Lag attempts to use the Lagrangian method
to balance the control objective and safety, but this coupled training program makes it difficult to
find the right balance, with a poor control error. CDT uses the complex Transformer architecture,
which can achieve low control error, but it needs to filter unsafe data (CDT-Safe) to meet safety con-
straints. The diffusion-based method TREBI sacrifices too much control error to satisfy the safety
constraints, because its error bound is soft.

5.2 2D INCOMPRESSIBLE FLUID

Experiment settings. We then consider the control problems of 2D incompressible fluid, which
follows the Navier-Stokes equation:

∂v
∂t + v · ∇v − ν∇2v +∇p = f,

∇ · v = 0,

v(0,x) = v0(x),

(20)

where v is the velocity, p is the pressure, f is the external force and ν is the viscosity coefficient.

Following previous works (Holl et al., 2020; Wei et al., 2024), the control task we consider is to
maximize the amount of smoke that passes through the target bucket in the fluid flow with obstacles
and openings, while constraining the amount of smoke passing through the dangerous region under
the safety bound. Specifically, referring to Figure 3, the control objective J is defined as the negative
rate of smoke passing through the target bucket located at the center top, while the safety score s
corresponds to the rate of smoke entering the hazardous red region. It is important to note that
there is a trade-off between controlling the flow through the hazardous region and achieving a more
optimal control objective, which imposes higher demands on the algorithm. We set the safety score
bound to s0 = 0.1.

Moreover, this control task is particularly challenging due to its specific setup: not only does it
require indirect control, which means that control can only be applied to the peripheral region, but
the spatial control parameters reach as many as 1,792. As for safety, among all the training data,
53.1% of the samples are unsafe, meaning their safety score s exceeds the bound s0 = 0.1. The
average safety score of the dataset is 0.3215. Other details can be found in Appendix D.1.

Results. We report results of SafeConPhy and baselines in Table 3. Here PID is inapplicable and
SL-Lag fails to achieve reasonable control results. Due to the challenges of the task, no method can
guarantee that all samples meet the safety requirements, so we introduce additional metrics to assess

2If any point in the full trajectory is unsafe, this trajectory is unsafe. So Rsample is the most stringent metric.
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Table 3: 2D incompressible fluid control results. Gray: snorm is greater than 1 (unsafe). Black:
snorm is smaller than 1 (safe). Bold: methods marked in black with lowest J .

Methods J ↓ snorm ↓ max[s− s0, 0] ↓ R ↓
BC -0.7125 7.3402 0.7160 88%
BC-Safe -0.2520 0.3463 0.0330 8%
CDT -0.7133 3.0778 0.2726 34%
CDT-Safe -0.6360 0.5073 0.0292 18%
TREBI -0.6105 0.9096 0.0537 30%

SafeConPhy (Ours) -0.7035 0.6092 0.0380 14%

safety. Here we define the normalized safety score snorm as s/s0 and define R as the rate of unsafe
samples. Additionally, we introduce another metric max[s − s0, 0]. When s does not exceed the
bound s0, this metric is 0. If s exceeds s0, the metric reflects the amount by which it is surpassed.
From the results, we can see that our method successfully keeps snorm below 1, and other safety
metrics are also comparable to other baselines marked in black (snorm ≤ 1). Additionally, among
the methods highlighted in black, SafeConPhy achieves a much lower J than others, even reaching
control performance similar to methods that do not consider safety like BC.

5.3 ABLATION STUDY

Table 4: Results of the ablation study. We compare SafeConPhy with SafeConPhy w/o fine-tuning.

1D 2D
SafeConPhy w/o fine-tuning SafeConPhy w/o fine-tuning

J ↓ 0.0011 0.0006 -0.7035 -0.6105
snorm ↓ 0.8388 2.3743 0.6092 0.9096

We highlight that one key distinction between our framework and previous safe RL methods lies in
the introduction of fine-tuning within Iterative Safety Improvement, which updates the model pa-
rameters based on specific control tasks and safety constraints. To further validate the effectiveness
of our proposed Iterative Safety Improvement, we conduct experiments using a version of SafeCon-
Phy without the fine-tuning component. As shown in the table, without fine-tuning, SafeConPhy
exhibits a significant decline in safety, both in 1D and 2D settings, with the 1D case becoming no-
tably unsafe. This emphasizes the importance and effectiveness of the Iterative Safety Improvement
framework in addressing safety control problems.

6 LIMITATION AND FUTURE WORK

Firstly, both experiments presented in the paper are not real-world experiments. However, our
method is not constrained by specific scenarios, meaning it can be applied to real-world tasks as
well, which is our future work. Secondly, we consider extending this method to other generative
methods that require constraints, not just the diffusion model. Finally, in the future, we will explore
the possibility of developing a stricter bound that sacrifices less accuracy while still ensuring safety.

7 CONCLUSION

In this paper, we have introduced Safe Conformal Physical system control (SafeConPhy), a prob-
abilistic generative method for safe control problems of complex physical systems. Targeting the
meaningful and important offline setting, we provide a provable probabilistic estimate of the safety
score’s upper bound. We then perform guidance and finetuning with this provable safety bound iter-
atively, improving the safety and certifying it with a user-defined probability. Experiment results on
1D Burgers’ equation and 2D incompressible fluid demonstrate that on the basis of satisfying safety
constraints, SafeConPhy is able to achieve a lower control objective. We believe that our method is
beneficial for making machine learning-based physical control safer, improving the trustworthiness
for deploying to the real world.
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A VISUALIZATION OF EXPERIMENT RESULTS

A.1 1D BURGERS’ EQUATION

In this section, we provide additional visualizations of the control results for the 1D Burgers’ equa-
tion, as shown in Figure 4. In these figures, the top row represents the original trajectories corre-
sponding to the control targets, while the bottom row displays the trajectories controlled by SafeCon-
Phy. It can be observed that SafeConPhy successfully controls the trajectories, preventing boundary
violations and guiding them to the desired final state.

Figure 4: Visualization of the 1D Burgers’ equation.

A.2 2D INCOMPRESSIBLE FLUID

Here, we provide additional visualizations of the control problems of 2D incompressible fluid. From
the figures, we can observe that SafeConPhy can successfully control the smoke to avoid the red
hazardous region and reach the target bucket as well.
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t = 0 t = 8 t = 16 t = 24 t = 31

Figure 5: Visualizations of the 2D incompressible fluid control problem..

B ADDITIONAL DETAILS FOR CONFORMAL PREDICTION

Conformal prediction is a flexible framework that provides prediction intervals with guaranteed cov-
erage probabilities for new, unseen data points, under the assumption that the data are exchangeable.

Theoretical Foundations The exchangeability assumption is a cornerstone of conformal prediction.
It requires that the order of the data points does not affect their joint distribution, meaning that any
permutation of the indices yields an identical distribution. In particular, exchangeability holds for
independent and identically distributed (i.i.d.) samples, a common assumption in machine learning
tasks. Ensuring exchangeability guarantees the validity of the prediction intervals constructed using
conformal prediction.
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Implementation Details To implement conformal prediction, the dataset is first split into two sub-
sets: a proper training set (Tr) and a calibration set (Cal). A predictive model µθ is trained on the
training set using a specified learning algorithm A. Once trained, the model generates predictions
for the calibration set. These predictions are used to compute ‘conformity scores’, which measure
the model’s accuracy for each calibration point. Specifically, for each instance i in the calibration
set, the conformity score Si is defined as:

Si = |µθ(Xi)− Yi|, i ∈ Cal.

Additionally, a worst-case score of ∞ is included to account for extreme scenarios.

Then 1 − α quantile q1−α(S) of the set of conformity scores is calculated, where α represents the
desired significance level (e.g., α = 0.05 for 95% confidence interval).

Given a new data point Xn+1, the prediction interval for its corresponding output is calculated as:

Ĉα(Xn+1) = [µθ(Xn+1)− q1−α(S), µθ(Xn+1) + q1−α(S)] .

This interval provides an estimate for the range within which the true value Yn+1 is expected to
lie, with a coverage probability of at least 1 − α. Thus, conformal prediction offers a flexible and
robust method for constructing prediction intervals that account for both the model’s accuracy and
the variability in the data.

Theoretical Guarantees Conformal prediction provides theoretical guarantees for finite samples
(Vovk et al., 2005b; Lei et al., 2016). Specifically, for any new data point, the prediction interval
satisfies the following probabilistic bound:

P (Yn+1 ∈ Ĉα(Xn+1)) ≥ 1− α.

This ensures that the true label Yn+1 will fall within the predicted interval at least 1− α percent of
the time. This framework, based on the assumption of exchangeability, provides a robust method for
generating reliable prediction intervals, even in settings with limited sample sizes.

C ADDITIONAL DETAILS FOR 1D EXPERIMENT

C.1 EXPERIMENT SETTING

Following the previous works (Holl et al., 2020; Wei et al., 2024), we generate the 1D Burgers’
equation dataset. During inference, alongside the control sequence w(t, x), our diffusion model
generates states u(t, x). Our reported evaluation metric J is always computed by feeding the con-
trol w(t, x) into the ground truth numerical solver to get ug.t.(t, x) and computed following Eq.
(17). More importantly, we consider the safety constraint and define the safety score as u2. In our
experiment, the safety bound is fixed at 0.64, and the details of the 1D Burgers’ equation dataset for
safe physical system control problem are listed in Table 5.

Table 5: Details of 1D Burgers’ equation dataset.

Training Set Calibration Set Test Set

Unsafe Trajectories 34,985 900 50
Safe Trajectories 4,015 100 0

C.2 MODEL

The model architecture in this experiment follows the Denoising Diffusion Probabilistic Model
(DDPM) (Ho et al., 2020). For control tasks, we condition on u0, uT and apply guidance to generate
the full trajectories of u[0, T ], f[0,T ] and the safety score s. The hyperparameters for the 2D-Unet
architecture are recorded in Table 6.
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Table 6: Hyperparameters of 2D-Unet architecture in 1D experiment.

Hyperparameter Name Value
Initial dimension 128
Convolution kernel size 3
Dimension multiplier [1,2,4,8]
Resnet block groups 1
Attention hidden dimension 32
Attention heads 4
Number of training steps 200000
DDIM sampling iterations 100
η of DDIM sampling 1

D ADDITIONAL DETAILS FOR 2D EXPERIMENT

D.1 EXPERIMENT SETTING

Following works from Holl et al. (2020) and Wei et al. (2024), we use the package PhiFlow to
generate the 2D incompressible fluid dataset. The control objective and data generation is the same
as before (Wei et al., 2024). The main difference between our data and previous ones is that we
consider the safety constraint here. We define the safety score as the percentage of smoke passing
through a specific region. This reflects the need to limit the amount of pollutants passing through
certain areas in real-world scenarios, such as in a watershed.

We simulate the fluid on a 128×128 grid. The selected hazardous region is [44, 36] × [40, 64].
Since the optimal path for smoke, starting from a left-biased position, is likely to pass through
this hazardous region, this poses a greater challenge for the algorithm: how to balance safety and
achieving a more optimal objective, making this a more difficult problem.

D.2 MODEL

In this paper, the design of the three-dimensional U-net we use is based on the previous work (Ho
et al., 2022). In our experiment, we utilize spatio-temporal 3D convolutions. The U-net consists of
three key components: a downsampling encoder, a central module, and an upsampling decoder.

The diffusion model conditions on the initial density and uses guidance as previous mentioned to to
generate the full trajectories of density, velocity, control, the objective J and the safety score. As J
and s are scalers, we repeat them to match other channels. The hyperparameters for the 3D U-net
architecture are listed in Table 7.

E BASELINES

E.1 CDT

Constraints Decision Transformer (CDT) (Liu et al., 2023b) models control as a multi-task regres-
sion problem, extending the Decision Transformer (DT) (Chen et al., 2021). It sequentially predicts
returns-to-go, costs-to-go, observations, and actions, making actions dependent on previous returns
and costs. The authors propose two techniques to adapt the model for safety-constrained scenarios:

1. Stochastic Policy with Entropy Regularization: This technique aims to reduce the risk of
constraint violations due to out-of-distribution actions. In a deterministic policy, the model
selects a single action based on its learned policy, which may result in unsafe actions when
faced with states not well represented in the training data. By using a stochastic policy, the
model samples actions from a distribution, encouraging the exploration of a wider action
space. Entropy regularization further enforces diversity in the sampled actions, making the
model more robust in uncertain or underrepresented situations. This approach reduces the
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Table 7: Hyperparameters of 3D-Unet architecture in 2D experiments.

Hyperparameter Name Value
Number of attention heads 4
Kernel size of conv3d (3, 3, 3)
Padding of conv3d (1,1,1)
Stride of conv3d (1,1,1)
Kernel size of downsampling (1, 4, 4)
Padding of downsampling (1, 2, 2)
Stride of downsampling (0, 1, 1)
Kernel size of upsampling (1, 4, 4)
Padding of upsampling (1, 2, 2)
Stride of upsampling (0, 1, 1)
Number of training steps 200000
DDIM sampling iterations 100
η of DDIM Sampling 1
Intensity of guidance in control 100
Weight of safety term in guidance 10000

likelihood of selecting unsafe actions when faced with states outside the distribution of the
training set.

2. Pareto-Frontier-Based Data Augmentation: The technique tries to resolve the conflict
between maximizing returns and adhering to safety constraints by leveraging a Pareto-
frontier of the training data. The Pareto-frontier consists of trajectories that provide the
highest possible return under specific safety constraints. Fitting a polynomial to the Pareto-
frontier helps identify conflicting high-return and safety constraint pairs, which are then
used for augmentation. The augmentation generates synthetic trajectories by relabeling safe
trajectories from the Pareto-frontier with higher returns and assigning higher or equal safety
constraints. This encourages the model to imitate the most rewarding, safe trajectories
when the desired return given the safety constraint is infeasible.

In the 2D incompressible fluid experiment, the model fails to extrapolate safe trajectories with higher
returns due to the training data covering a broad range of costs, while the desired cost lies in a
narrow range. The augmentation treats all safe trajectories on the Pareto-frontier equally, without
emphasizing the region of interest. To investigate, we filtered the training data to include only safe
trajectories under the desired safety bound and retrained the model, showing that the data complexity
exceeds CDT’s capacity. This complexity, however, could potentially be addressed by SafeConPhy,
which is indicated in Table 3. We use the official CDT implementation and follow DT guidelines to
sweep desired returns and cost constraints in testing time. In the 1D Burgers experiment, we modify
the control objective from the original mean squared error J between the prediction and target, to
an exponential form exp (−J ). This new objective is bounded within [0, 1], which better aligns
with the reward-maximizing setup in reinforcement learning used by CDT. For the 2D incompress-
ible fluid setup, the state, action, and cost prediction heads each consist of 3-layer MLPs with the
transformer’s hidden dimension as the inner size.

E.2 BC-ALL

The Behavior Cloning (BC) algorithm, introduced by (Pomerleau, 1988), is a foundational tech-
nique in imitation learning. BC is designed to derive policies directly from expert demonstrations,
utilizing supervised learning to associate states with corresponding actions. This method eliminates
the necessity for exploratory steps commonly required in reinforcement learning by replicating the
actions observed in expert demonstrations. One of the significant advantages of BC is that it does not
involve interacting with the environment during the training phase, which streamlines the learning
process and diminishes the demand for computational resources.

In this approach, a policy network is trained using standard supervised learning strategies aimed at
reducing the discrepancy between the actions predicted by the model and those performed by the
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Table 8: Hyperparameters of 1D CDT.

1D Burgers’ All data Safe filtered
State Dimension 256 256
Action Dimension 128 128
Hidden Dimension 1024 1024
Number of Transformer Blocks 2 2
Number of Attention Heads 8 8
Horizon (Sequence Length) 5 5
Learning Rate 1e-4 1e-4
Batch Size 64 64
Weight Decay 1e-5 1e-5
Learning Steps 1,000,000 1,000,000
Learning Rate Warmup Steps 500 500
Pareto-Frontier Fitted Polynomial Degree 0 4
Augmentation Data Percentage 0.3 0.3
Max Augment Reward 10.0 10.0
Min Augment Reward 1.0 1.0
Target Entropy -128 -128
Testing Time Sweep Returns 9.0, 9.9 9.0, 9.9
Testing Time Sweep Costs 0.0, 1.0, 2.0, 3.0 0.0, 1.0, 2.0, 3.0

Table 9: Hyperparameters of 2D CDT.

2D incompressible fluid All data Safe filtered
State Dimension 3×64×64 3×64×64
Action Dimension 2×64×64 2×64×64
Hidden Dimension 512 512
Number of Transformer Blocks 3 3
Number of Attention Heads 8 8
Horizon (Sequence Length) 10 10
Learning Rate 1e-4 1e-4
Batch Size 8 8
Weight Decay 1e-5 1e-5
Learning Steps 1,000,000 1,000,000
Learning Rate Warmup Steps 500 500
Pareto-Frontier Fitted Polynomial Degree 4 4
Augmentation Data Percentage 0.3 0.3
Max Augment Reward 32.0 32.0
Min Augment Reward 1.0 1.0
Target Entropy -(2×64×64) -(2×64×64)
Testing Time Sweep Returns 18.0, 32.0 18.0, 32.0
Testing Time Sweep Costs 0.0, 0.1, 0.2 0.0, 0.1, 0.2

expert in the dataset. The commonly used loss function for this purpose is the mean squared error
between the predicted actions and expert actions. The dataset for training comprises state-action
pairs harvested from these expert demonstrations. In the work, we employ the implementation as
Liu et al. (2023a).

E.3 BC-SAFE

Following the baseline in Liu et al. (2023a), the BC-Safe is fed with only safe trajectories filtered
from the training dataset, satisfies most safety requirements, although with conservative performance
and lower rewards. Others are same as BC-All, except for the safe trajectories.
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E.4 SL-LAG

Hwang et al. (2022) introduces a supervised learning (SL) based method to control PDE systems. It
first trains a neural surrogate model to capture the PDE dynamics, which includes a VAE to compress
PDE states and controls into the latent space and another model to learn the PDE’s time evolution in
the latent space. To obtain the optimal control sequence, SL can compute the gradient ∇wJ , where
J is the control objective and f is the input control sequence. Then iterative gradient optimization
can be executed to improve the control sequence.

To ensure that the optimal control is compatible with the hard constraint in our experiments, we fol-
low Chow et al. (2018) to apply the Lagrange optimization method to the constrained optimization.
Specifically, we iteratively solve the optimization problem below:

max
λ≥0

min
w

J (w) + λ(s(u(w))− c). (21)

We denote the modified SL method SL-Lag.

Table 10: Hyperparameters of network architecture and training for SL-Lag in 1D Burgers’
experiment.

Hyperparameter name Value
Initialization value of w 0.001
Optimizer of w LBFGS
Learning rate of w 0.1
Initialization value of the Lagrange multiplier λ 0
Optimizer of w plain GD
Learning rate of λ 10
Iteration of λ 2
Loss function MSE

E.5 TREBI

In Lin et al. (2023), the diffusion model is adopted for the planning task under safety budgets. It
generates trajectory under safety constraints using classifier-guidance Dhariwal & Nichol (2021) by
adding a safety loss to the reward guidance following Diffuser Janner et al. (2022).

However, the original setting is different from our experiments. In our 1D Burgers’ equation control,
our objective is that a certain state equals the target state, which in-painting diffusion condition
Janner et al. (2022) is more appropriate for. Furthermore, as in our method and in (Wei et al., 2024),
a conditional diffusion model can be learned to tackle the objective more directly. In addition,
TREBI follows the setting in Diffuser where the interaction with the environment is allowed which
in our experiments becomes an MPC method. Note that the reported results of our method do not
involve interaction with the surrogate model (though our method can easily adapted to be an MPC
method). Thus, the results of TREBI in Table 2 and 3 have an unfair advantage.

Therefore, for 1D Burgers’ experiment, we conducted different experiments on TREBI including
(1) planning multiple times with interaction with the surrogate model or (2) planning only once, and
with target state conditioning or target state guidance. The target state guidance + planning multiple
times turned out the best and is reported in Table 2. For 2D smoke control, the target is not a state
constraint but a reward, and the planning multiple-step setting is too computationally expensive. To
this end, we use reward guidance with planning one single time, which is identical to the ablation
study of our method in Table 4. The hyperparameters of the 1D experiment are reported in Table 11,
and those of 2D are the same as reported before.

E.6 PID

Propercentageal Integral Derivative (PID) control (Li et al., 2006) is a versatile and effective method
widely employed in numerous control scenarios. For 1D control task, we mainly implement the PID
baseline adapted from Wei et al. (2024). More detailed configurations can be found in Table 12
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Table 11: Hyperparameters of network architecture and training for TREBI in 1D Burgers’
experiment.

Hyperparameter name Value
Reward guidance intensity 50
Safety guidance intensity 1
Cost budget 0.64
Number of guidance steps 10
Denoising steps 200
Sampling algorithm DDPM
U-Net dimension 64
U-Net dimension mltiplications 1, 2, 4, 8
Planning horizon 8 steps
Optimizer Adam
Learning rate 0.0002
Batch size 16
Loss function MSE

Table 12: Hyperparameters of network architecture and training for ANN PID.

Hyperparameter name Value
Kernel size of conv1d 3
Padding of conv1d 1
Stride of conv1d 1
Activation function Softsign
Batch size 16
Optimizer Adam
Learning rate 0.0001
Loss function MAE
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