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Abstract

Recent research in cross-lingual representation001
learning has focused on offline mapping ap-002
proaches due to their simplicity, computational003
efficacy, and ability to work with minimal par-004
allel resources. However, they crucially de-005
pend on the assumption of embedding spaces006
being approximately isomorphic, which does007
not hold in practice, leading to poorer perfor-008
mance on low-resource and distant language009
pairs. In this paper, we introduce a frame-010
work to learn cross-lingual word embeddings,011
without assuming isometry, for low-resource012
pairs via joint exploitation of a related higher-013
resource language. Both the source and target014
monolingual embeddings are independently015
aligned to the related language, enabling the016
use of offline methods. We show that this ap-017
proach successfully outperforms other meth-018
ods on several low-resource language pairs in019
both bilingul lexicon induction as well as eigen020
value simialrity.021

1 Introduction022

In a world with over 7000 spoken languages, out of023

which nearly 43% are endangered, there is an acute024

need for accurate machine translation systems to025

ensure equal access of resources in a predominantly026

digital world. Although machine translation (MT)027

has shown remarkable progress over the last few028

years, propelled by advances in neural language029

modelling, this success has been mainly confined030

to major world languages. However, a significant031

proportion of languages are endangered or other-032

wise have a very scarce amount of digital resources033

which presents serious challenges for training MT034

systems. To ensure greater accessibility to these035

resources, there is therefore an acute need for MT036

methods that can deal with low-resource languages.037

Rather than traditional expert-guided feature engi-038

neering, neural MT (NMT), like deep neural archi-039

tectures more generally, require notoriously large040

data sets from which to extract features automati- 041

cally in the context of hidden layers; for example 042

with recurrent (Cho et al., 2014; Schmidhuber and 043

Hochreiter, 1997), and attention mechanisms (Bah- 044

danau et al., 2014). It is for this reason that the 045

most impressive results (e.g., (Liu et al., 2020a; 046

Barrault et al., 2019)) come from languages with 047

large scale digital resources (and notably, parallel 048

corpora) with which to train them. This is, however, 049

not the case for most minority languages. 050

Recently, there have been significant improve- 051

ments in semi and completely unsupervised NMT 052

systems; notably with denoising auto-encoders 053

(Cheng, 2019), iterative back-translation (Hoang 054

et al., 2018), and initialisation via weak translation 055

models sharing important cross-lingual informa- 056

tion (Lample et al., 2017). In this work we focus 057

on the third idea, namely Cross-Lingual Word Em- 058

beddings (CLWEs). As CLWEs represent words 059

from multiple languages in a shared vector space, 060

they are key in promoting language sharing across 061

low and high-resource languages which would al- 062

low current systems to overcome the data scarcity 063

problem. Most current methods fall into one of 064

two categories: 1) mapping methods which inde- 065

pendently map monolingual word embeddings by 066

learning a linear transformation matrix to project 067

them into a shared space with very little supervi- 068

sion (Artetxe et al., 2018a; Mikolov et al., 2013) 069

or 2) joint methods which learn word representa- 070

tions jointly using parallel corpora thus requiring a 071

strong cross-lingual signal (i.e. parallel resources). 072

(Gouws et al., 2016; Luong et al., 2015) 073

As mapping methods use transformation matrices 074

to align embedding spaces they make the crucial 075

assumption that, regardless of domain or linguistic 076

differences, these spaces are approximately isomor- 077

phic i.e. they share a similar structure. It has been 078

shown (Søgaard et al., 2018; Vulić et al., 2020) that 079

this assumption does not hold in general and there- 080

fore the benefit of mapping methods requiring little 081
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to no cross-lingual signal in low-resource scenarios082

can no longer be taken advantage of directly.083

In this paper, we address the limitations outlined084

above by proposing an alternative method to learn085

CLWEs for low-resource and distant languages.086

Unlike earlier methods, we combine the benefits087

from both mapping and joint-training methods to088

develop high-quality, isomorphic embeddings. In089

our proposed framework, we maintain the low090

level of supervision as obtained by mapping meth-091

ods while still guarding the isomorphic embed-092

dings achieved by joint-training by independently093

aligning source and target embeddings to a related094

higher-resource language. We apply our method095

in several low-resource settings and conduct eval-096

uations on bilingual lexicon induction and eigen-097

value similarity. Our experiments show that, de-098

spite no additional source-target parallel data, our099

approach outperforms conventional mapping and100

joint-training methods on both evaluation metrics.101

The main contributions of this work can be outlined102

as the following:103

• We introduce a novel framework combin-104

ing mapping and joint methods to learn iso-105

morphic cross-lingual embeddings for low-106

resource language pairs.107

• We successfully employ CLWEs in challeng-108

ing, low-resource scenarios without the use of109

explicit source-target parallel data.110

• We achieve significant gains over state-of-the-111

art methods in both bilingual word induction112

as well as eigenvalue similarity.113

2 Related Work114

Cross-Lingual Word Embeddings CLWEs aim115

to represent words from several languages into a116

shared embedding space which allows for several117

applications in low-resource areas such as trans-118

fer learning (Peng et al., 2021) and NMT (Artetxe119

et al., 2018c). Largely, there are two classes of120

approaches to learn CLWEs: mapping and joint121

methods. While the former aims to map molin-122

gually learnt embeddings together, the latter si-123

multaneously learns both embedding spaces using124

some cross-lingual supervision (i.e. a cross-lingual125

signal). Common approaches to achieve this cross-126

lingual signal come from parallel corpora aligned127

at the word (Luong et al., 2015) or sentence level128

(Gouws et al., 2015). In addition to this, later meth-129

ods proposed the use of comparable corpora (Vulić130

and Moens, 2016) or large bilingual dictionaries 131

(Duong et al., 2016) as a form of supervision. For 132

a more detailed survey of methods and limitations 133

of CLWEs, the reader is referred to (Ruder et al., 134

2019). 135

Offline Mapping As mapping methods map 136

monolingual embedding spaces together, instead 137

of relying on a cross-lingual signal (such as in joint 138

methods) they work by finding a transformation 139

matrix that can be applied to the individual em- 140

bedding spaces. In the case of supervised learn- 141

ing, a large bilingual dictionary would have been 142

used as supervision however (Artetxe et al., 2018b) 143

gets rid of this required via a self-learning strat- 144

egy. Their approach is based on a robust iterative 145

method combined with initialisation heuristics to 146

get state-of-the-art performance using offline map- 147

ping. Most of these methods align spaces using a 148

linear transformation- usually imposing orthogonal- 149

ity constraints- in turn assuming that the underlying 150

structure of these embeddings are largely similar. 151

Several works (Søgaard et al., 2018; Vulić et al., 152

2020) have shown that this assumption does not 153

hold when working with non-ideal scenarios such 154

as low-resource or typologically different language 155

pairs. In order to mitigate this assumption, (Mohi- 156

uddin et al., 2020) learn a non-linear map in a latent 157

space, (Nakashole, 2018) uses maps that are only 158

locally linear, and (Glavaš and Vulić, 2020) pro- 159

pose to learn a separate map for each word. How- 160

ever these are supervised methods, meaning they 161

suffer from limitations of hubbness and isomor- 162

phism as outlined in (Ormazabal et al., 2019). To 163

address these limitations, (Ormazabal et al., 2021) 164

proposes a method in which they fix the target lan- 165

guage embeddings, and learn a new set of embed- 166

dings for the source language that are aligned with 167

them using self-learning. Their method outper- 168

forms current mapping, joint, as well hybrid meth- 169

ods on the MUSE dataset (Conneau et al., 2018). 170

Due to the unavailability of source code, we were 171

not able to directly compare results obtained by 172

their method but as we will report later, our method 173

obtains strong performance across a number of low- 174

resource language pairs. 175

Joint-Training The fundamental limitations of 176

offline methods are not faced by joint-training 177

methods if there is a strong cross-lingual signal 178

available (Ormazabal et al., 2019). In practice, how- 179

ever, we don’t always have access to such forms of 180
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supervision therefore recent works have attempted181

to reduce the supervision level so as to preserve the182

isomorphism achieved by joint methods while still183

being as widely applicable as mapping methods.184

(Lample et al., 2018) use concatenated monolin-185

gual corpora in different languages and learn word186

embeddings over this constructed corpus, using187

identical words as anchor points. Further extend-188

ing their work, (Wang et al., 2020) effectively com-189

bined joint and mapping based methods in their190

framework “joint-align” however their method was191

not tested on distant language low-resource pairs.192

In their work, they use fully unsupervised joint ini-193

tialisation as the first step, vocabulary reallocation194

where they “unshare” some vocabulary to better195

align them, and lastly they perform a refinement196

step using off-the-shelf alignment methods. As our197

experiments will show, we supersede (Wang et al.,198

2020) in BLI across all low-resource language pairs199

considered.200

3 Methodology201

Given two embedding spaces, X and Y , our202

goal is to align them together without any direct203

parallel data between them and without assuming204

orthogonality/structural similarity. In order to do205

this, let us consider a third embedding space, Z, of206

a language related to the source X . Furthermore,207

let there also be sufficient parallel data between208

Y and Z to jointly learn their aligned embedding209

spaces. Our approach first aligns the spaces X and210

Z using an unsupervised offline mapping method211

(Artetxe et al., 2018b). (Vulić et al., 2020) find212

that for typologically similar languages that have213

in-domain monolingual corpora, isomorphism in214

their learnt vector spaces in preserved. To that end,215

due to the linguistic similarities between X and Z216

we may perform offline mapping. Figure 1 shows217

a visualisation of how these two embedding spaces218

are aligned using an induced seed dictionary as per219

(Artetxe et al., 2018b). For further details about220

the offline alignment, the reader is referred to read221

the original paper.222

223

Once the spaces X and Z are aligned, we wish224

to align Y and Z as well. Due to the typological225

differences between the two languages, we can no226

longer assume isometry of their embedding spaces227

therefore can no longer use offline mapping meth-228

ods. However, due to higher-resource nature of229

Z, we have access to parallel corpora between Y230

Figure 1: Toy visualisation of mapped cross lingual em-
bedding spaces with red representing one language and
blue the other

and Z. This allows us to apply joint-training ap- 231

proaches (Luong et al., 2015) to simultaneously 232

learn their embeddings. As found in (Ormazabal 233

et al., 2019), under ideal conditions of having par- 234

allel data, joint-training approaches produce iso- 235

morphic embeddings that perform better than their 236

offline counterparts in bilingual lexicon induction. 237

As shown in Figure 2, we can now produce two 238

embedding spaces, Source aligned to Related and 239

Target aligned to Related while preserving isomor- 240

phism. As a final step in our alignment framework, 241

we use the Z−aligned embedding spaces, X̃ and Ỹ , 242

to induce the final cross-lingual word embedding 243

spaces. Now that both X and Y are projected onto 244

Z, they share structural similarity which permits 245

the use of offline mapping on X̃ and Ỹ . Figure 2 246

shows the complete alignment framework to pro- 247

duced the resultant isomorphic embedding spaces. 248

Figure 2: Visualisation of our proposed alignment
method in context; dotted lines represent lack of par-
allel data between language pairs

Our proposed framework can be summarised in the 249

following steps: 250

1. For a source-target pair, choose a related 251

higher-resource language to the low-resource 252

target such that there is sufficient source- 253

related parallel data. 254

2. Use mapping to align related and target lan- 255

guage into a shared embedding space. Due to 256

their relatedness, these resultant embeddings 257
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(a) Unaligned En,Ne
embeddings

(b) Unaligned Hi,Ne
embeddings

(c) Hi-En aligned using offline
mapping

(d) Ne-En aligned using our
proposal

Figure 3: Embedding Projections using PCA for English-Nepali with Hindi as the related language. Green repre-
sents Nepali and Red represents English/Hindi depending on the figure

remain isomorphic as the assumption in map-258

ping methods hold true.259

3. Use joint training to map related and source260

language into a shared embedding space us-261

ing the higher-resource parallel data between262

them. As this is the highest level of supervi-263

sion possible, we ensure that the embedding264

spaces remain isomorphic.265

4. Lastly, map the aligned-source and aligned-266

target embeddings using unsupervised map-267

ping methods as they are now isometric in268

nature following the alignment to the related269

language for both the source and target.270

This framework uses the low cross-lingual signal271

utilised by mapping techniques while still maintain-272

ing the isomorphism of the resultant embedding273

spaces as in joint approaches. This is achieved274

by exploiting the existing isomorphism between275

embeddings as much as possible by pre-aligning276

the spaces via a pivot-language. However, unlike277

pivot-based MT we do not compound errors across278

embedding spaces due to the final refinement step279

done by mapping the aligned embeddings into their280

shared cross-lingual space. In Figure 3, the embed-281

ding projections have been illustrated for the lan-282

guage pair English-Nepali with Hindi as the related283

language. Before performing any alignment on the284

monolingual embeddings, we note that Nepali and285

Hindi are far more structurally similar than English286

and Nepali as seen by Figures 3a and 3b. Upon287

using offline mapping on Hindi and Nepali em-288

beddings, we obtain a well-aligned cross-lingual289

space as shown in Figure 3c. This allows us to290

construct the final alignment of Nepali and English291

embeddings in Figure 3d.292

With this pipeline, we are able to target a large293

group of low-resource languages which belong294

to higher-resource language families for instance,295

English-Nepali via Hindi. Linguistically, Nepali 296

and Hindi are quite similar as they share the same 297

script and also have 80% of subword tokens in 298

common when using a shared BPE vocabulary of 299

100k subword units (Lample and Conneau, 2019). 300

In this work, we perform experiments on several 301

low-resource language pairs to show the effective- 302

ness of our approach in various language families- 303

specifically we look at Uralic, Indo-European, and 304

Romance languages. 305

Our goal is not to fully replace current methods 306

of learning cross-lingual word representations but 307

to aid them in the area of low-resource languages. 308

As shown by (Ormazabal et al., 2019), depend- 309

ing on the type of resources available as well as 310

the languages considered, different methods can 311

be preferred. While current approaches perform 312

well for several languages and resource levels (Or- 313

mazabal et al., 2021), their performance still leaves 314

room for improvement in the low-resource, typo- 315

logically diverse area. Despite the simplicity of 316

our method, our experiments show that we perform 317

competitively on quality as well as degree of iso- 318

morphism across all low-resource pairs considered. 319

Due to the reliance on a sufficiently resourced re- 320

lated language, our method is not applicable to 321

every low-resource pair however referring to the 322

task of related-language NMT we see that there is 323

indeed a large group of languages that could benefit 324

from this approach. 325

4 Experimental Design 326

In this section we discuss the datasets used, training 327

settings for different configurations used in our 328

experiments, and lastly the evaluation metrics used 329

to assess the embedding spaces produced by our 330

framework. 331
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4.1 Datasets332

In our work, we train CLWEs between English333

and five other low-resource languages: Nepali (ne),334

Finnish (fi), Romanian (ro), Gujarati (gu), and Hun-335

garian (hu). We use Wikipedia dumps for all lan-336

guages and the FLoRes evaluation set (Guzmán337

et al., 2019) for Nepali. In addition to this, we338

use available parallel data between the following339

related language pairs respectively: English-Hindi340

(hi) for Nepali, English-Estonian (et), English-341

Italian (it), English-Hindi (hi) for Gujarati, English-342

Finnish (fi). We obtain the data from IIT Bombay343
1 for En-Hi and from the WMT workshops 2. We344

preprocess all the data using Moses scripts and345

tokenise using BPE, restricting to the 200 most346

frequent tokens. For the Indic languages, we use347

IndicNLP 3 for word segmentation. Table 1 details348

the statistics of the corpus sizes as well as their349

sources. For evaluation, we use the gold-standard350

bilingual dictionary from the MUSE dataset (Con-351

neau et al., 2018) for Finnish and for the remain-352

ing language pairs, we use bilingual dictionaries353

published by (Pavlick et al., 2014). We also use354

the FLoRes evaluation set 4 (Guzmán et al., 2019)355

to conduct all our experiments in English-Nepali356

NMT. As it was the first large-scale effort to pro-357

duce high-quality English-Nepali parallel data, it358

serves as a benchmark evaluation and allows for359

fair comparisons across several baselines.360

Sentences Tokens
Languages
Ne 92.3K 2.8M
Fi 6M 91M
Ro 88.6K 2.28M
Gu 382K 6M
Hu 1M 15M
En 67.8M 2.0B

Table 1: Monolingual Training Corpora sizes

4.2 Training Settings361

Mapping: Using fasttext (Grave et al., 2018)362

with the default parametres 5, we first gather363

1http://www.cfilt.iitb.ac.in/iitb_
parallel/

2http://www.statmt.org
3https://github.com/anoopkunchukuttan/

indic_nlp_library
4https://github.com/facebookresearch/

flores
5We learn 300-dimensional vectors with 10 negative sam-

ples, a sub-sampling threshold of 1e-5 and 5 training iterations

Segments
Language Pairs

Hi-En 1.5M
Et-En 1.7M
It-En 151M
Fi-En 6.2M

Table 2: Parallel Training Corpora sizes

monolingual word embeddings for each of the 364

respective languages. After this, we map the 365

embeddings to a cross-lingual space using VecMap 366

(Artetxe et al., 2018b) in the unsupervised mode 367

as we do not have any bilingual dictionaries. In this 368

mode an initial solution is found using heuristics 369

and iteratively refined. 370

371

Joint Training: To train the embeddings jointly, 372

we use the BiVec tool proposed by (Luong 373

et al., 2015) which is an extension of skip-gram 374

algorithm aiming to predict the context around 375

both the source and target word aligned to a given 376

parallel corpus at the word level. We use the same 377

hyperparameters as in the mapping methods. In 378

both cases, we restrict the vocabulary to the most 379

frequent 200000 words. 380

381

In addition to the mapping and joint-training 382

methods trained as described earlier, we also train 383

Joint Align (Wang et al., 2020). In order to this, we 384

use the official implementation 6 on preprocessed 385

tokenised data. We use the non-contextual model 386

in specific as we are working on non-contextual 387

word embeddings. 388

389

NMT Evaluation: Lastly, as a downstream task 390

we consider supervised NMT for English-Nepali. 391

Using a single GPU, we train several transformer 392

(Vaswani et al., 2017) models with 5 encoder and 5 393

decoder layers where the number of attention heads, 394

embedding dimension and inner-layer dimension 395

are 2, 512 and 2048, respectively in the completely 396

supervised setting. We utilise the OpenNMT li- 397

brary 7 (Klein et al., 2017) and Pytorch (Paszke 398

et al., 2019) to build our models. In addition to the 399

hyperparameter settings optimised in FLoRes, we 400

also employ early stopping with patience 4 using 401

6https://github.com/thespectrewithin/
joint_align

7https://github.com/OpenNMT/OpenNMT-py

5
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https://github.com/anoopkunchukuttan/ indic_nlp_library
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https://github.com/facebookresearch/flores
https://github.com/facebookresearch/flores
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the validation perplexity as the criterion to choose402

the best model and we use the devtest set to eval-403

uate every 1000 training steps. We report BLEU4404

scores (Papineni et al., 2002) on detokenised text405

following standard practice.406

4.3 Evaluation Metrics407

We evaluate our embeddings on two aspects: their408

quality, and the degree of isomorphism achieved409

between the source and target. As in (Ormazabal410

et al., 2019), we measure this by bilingual lexicon411

induction (BLI) and eigenvalue similarity respec-412

tively. Firstly, we induce the word-level transla-413

tions by linking neighbouring source-target word414

translations in the resultant embeddings spaces415

(Nearest Neighbour with cosine similarity) and fi-416

nally evaluate the induced dictionary against the417

English-Nepali bilingual dictionary released by418

(Pavlick et al., 2014) to compute precision scores419

for the BLI task. 8 Next, we measure eigenvalue420

similarity for the embeddings following the proce-421

dure in (Søgaard et al., 2018) on centralised and422

normalised embeddings. We perform the same423

evaluations across different cross-lingual alignment424

methods on all the considered language pairs, par-425

ticularly we report the result of mapped alignment426

in the unsupervised mode (Artetxe et al., 2018c),427

Joint Align (Wang et al., 2020), and lastly our hy-428

brid alignment method. Due to the unavailability of429

the source code, we were not able to report results430

of (Ormazabal et al., 2021) however for compari-431

son we test on the Fi-En language pair for which432

they receive a score of 64.2 (ours 65.2).433

5 Results and Discussion434

In this section, we discuss our main experimental435

results on BLI and eignevalue similarity across436

the chosen language pairs. Furthermore, we also437

conduct ablation tests on our learnt embeddings at438

each step of our framework.439

5.1 BLI440

Results in Table 3 show that our method produces441

higher BLI scores than mapping, joint-training, and442

hybrid methods. In particular, Joint Align per-443

forms poorly on most language pairs, suggesting444

that it is inapplicable in a truly low-resource sce-445

nario. VecMap performs well overall, however,446

8https://cs.brown.edu/people/epavlick/
data.html

our approach performs best by a significant mar- 447

gin. Despite using VecMap and a purely joint- 448

training based approach without any additional 449

source-target supervision, the gains in the scores 450

are substantial. Interestingly, our method performs 451

well even in the case of fi→ en where we use Es- 452

tonian as the related language; Estonian is in fact 453

lower-resource than Finnish, however our perfor- 454

mance suggests that "pivoting" via Estonian was 455

still helpful in learning Finnish-English word em- 456

beddings. Therefore, even if the embeddings learnt 457

in the intermediate stages are not ideal, the struc- 458

tural alignments earned are ultimately helpful in 459

obtaining better source-target embeddings. 460

5.2 Eigenvalue Similarity 461

In eigenvalue similarity, mapping methods perform 462

much worse than joint training (Table 4). This find- 463

ing is in line with the literature (Ormazabal et al., 464

2019), and is explained by the high linguistic di- 465

vergence between English and source languages, 466

resulting in embeddings that are far less isomor- 467

phic. Our hybrid approach performs even better 468

than joint methods and achieved the best eigenvalue 469

similarity score across all langauge pairs, showing 470

that we do indeed obtain isometric embeddings 471

while still not requiring the higher level of super- 472

vision in joint learning approaches. Although our 473

proposed framework does not make any significant 474

changes to the mapping and joint components, the 475

combination of the two cross-lingual approaches 476

leads to better embeddings both in terms of quality, 477

shown by the performance in BLI, as well as struc- 478

ture, shown by the eigenvalue similarity scores. 479

5.3 Downstream Task: Supervised MT 480

To see the improvements afforded by our embed- 481

ding initialisation, we report results on supervised 482

NMT from Nepali (ne) to English (en) by initialis- 483

ing transformer models with embeddings obtained 484

from our framework. In particular, we use the 485

FLoRes evaluation set (Guzmán et al., 2019) to 486

allow for a more accurate representation of the 487

gains in performance. 488

489

As a baseline, we first train a transformer model 490

(Vaswani et al., 2017) with random initialisation 491

(marked No Pretraining in Table 5) following the 492

5-layer fully supervised model (Section 4.2). To 493

further contexualise our results, we also present 494

the Mult. system from FLoRes (Guzmán et al., 495

2019). This setting uses Hindi-English paral- 496

6
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ne→ en fi→ en ro→ en gu→ en hu→ en avg
VecMap (Artetxe et al., 2018b) 52.3 61.9 61.6 45.4 53.2 54.8
Joint Align (Wang et al., 2020) 24.5 31.3 28.2 35.4 26.5 25.2
Ours 58.4 65.2 64.5 48.4 56.3 58.6

Table 3: Precision at 1 scores of proposed method and previous works on BLI (higher is better)

ne→ en fi→ en ro→ en gu→ en hu→ en avg
Mapping (Artetxe et al., 2018b) 205.8 118.2 176.4 189.3 94.5
Joint (Gouws et al., 2016) 48.6 30.3 41.2 42.5 35.6
Ours 37.5 23.4 32.7 33.2 26.6

Table 4: Eigenvalue Similarity Scores (lower is better)

DevTest(↑) Test(↑)
Embedding Scheme
No Pretraining 4.2 4.3
Mult. 6.9 -
Monolingual 5.5 5.2
Mapped 6.4 6.1
Joint 6.3 6.0
Cross-Lingual∗ 7.1 6.9
Shared Embeddings∗ 7.3 7.1
mBART25 7.4 -

Table 5: Tokenized BLEU [%] scores on FLoRes Eval-
uation Set for ne → en- best score is in bold, ours
marked with ∗, higher is better

lel data by concatenating available Nepali data497

with back-translated Hindi allowing for an aug-498

mented dataset. In order to isolate the improve-499

ments earned from cross-lingual word embeddings,500

we further compare monolingual embeddings and501

cross-lingual embeddings. The models marked502

as Cross-Lingual and Shared Embeddings repre-503

sent models initialised with embeddings produced504

by our framework. In these models, we initialise505

the 5-layer transformer models with embeddings506

on the source and target side and in the case of507

Shared Embeddings, we tie the weights to share508

the emebddings across the encoder and decoder509

layers. In the case of Monolingual, we initialise510

the transformer model on the source and target side511

with English and Nepali fasttext embeddings with-512

out any prior alignment. To further understand513

the gains from our framework, we also report re-514

sults by initialising the models with Mapped and515

Joint methods learnt using previously described516

methodology. Lastly, to provide a state-of-the-art517

comparison against our proposed system, we utilise518

mBART25 (Liu et al., 2020b) which pre-trains us- 519

ing multilingual denoising on 25 languages. 520

Our results show that even a baseline supervised 521

model achieves a very poor BLEU score on this 522

task (Table 5). This indicates how challenging 523

English-Nepali is for NMT, therefore improving 524

this baseline result without using additional parallel 525

training data and just a different embedding initial- 526

isation is a difficult task. Between the monolingual 527

and cross-lingual embeddings, there are significant 528

gains in the final NMT system which follows re- 529

sults published in (Lample et al., 2018). In addi- 530

tion to this, amongst the different CLWEs the best 531

performance is observed by our proposal. This 532

is indicative of the higher quality representation 533

as shown by the BLI scores earlier. Furthermore, 534

sharing these embeddings across the encoder and 535

decoder layers lead to more improvements which 536

we can attribute to the larger degree of isomor- 537

phism between the embeddings (allowing for better 538

alignment when shared). Even though our goal 539

is not to surpass state-of-the-art performance but 540

rather to quantify the improvements chieved from 541

our CLWES, our method performs competitively 542

against the mBART setting. It is notable that we 543

train on baseline transformer architectures of 5 lay- 544

ers whereas mBART is pre-trained on a much larger 545

corpus using a 12-layer transformer thus making 546

our method computationally cheaper with similar 547

results. In all cases, mBART, FLoRes, and ours, a 548

significant improvement from random initialisation 549

is achieved when using a careful pre-training sys- 550

tem. Especially in a language pair as difficult as 551

English-Nepali, initialisation is a key component 552

to obtaining good results. 553
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5.4 Ablation Tests554

To study where the improvements of the cross-555

lingual encoding method come from, we conduct556

several ablation tests (results in Table 6), assessing557

the contribution of different embedding schemes to558

the final quality of the embeddings: firstly, we look559

at the initial unaligned monolingual embeddings,560

next we look at the embeddings that are indepen-561

dently aligned to the related language, and lastly we562

look at the emebddings after the final offline map563

has been constructed. These embedding schemes564

allows us to verify the importance of the intermedi-565

ate structural alignments via the related language.566

As expected the unaligned embeddings have a near567

0 BLI score, suggesting that the initial embeddings568

do not have any linking however as the score is still569

non-zero we can attribute this to identical words570

across some language pairs. However, the inter-571

mediate embeddings obtained (Related-Aligned in572

Table 6) have a significant jump in performance573

even though there is no explicit alignment between574

the source and target at this stage. This intermedi-575

ate performance is surprisingly close to the final576

performance obtained by Joint Align as well, which577

suggests that the related-language strategy allows578

for a better understanding of word associations579

even before performing the final step of offline580

mapping.581

BLI Score
Embeddings

Our Method
Unaligned 0.4
Related-Aligned 24.6
Full Alignment 58.6

Offline Mapping
Unaligned 0.4
Mapped 54.8

Joint Align
Unaligned 0.4
Aligned 25.2

Table 6: Ablation Tests on Different Embeddings, re-
porting average Precision @ 1 score

6 Conclusion and Future Work582

In this work, we developed a framework to learn583

cross-lingual word embeddings in low-resource584

scenarios. We addressed limitations of both offline585

as well as joint training methods to develop high586

quality, isomorphic embeddings for several low- 587

resource language pairs. In particular, we main- 588

tain the low cross-lingual signal as required by 589

offline methods while still obtaining structurally 590

sound/isomorphic embeddings as in joint-training 591

based approaches. Our method works by exploiting 592

a higher-resource related-language to jointly learn 593

a cross-lingual space between the related-language 594

and target while also learning a cross-lingual space 595

between the source and the related language using 596

offline mapping. Due to the pre-alignment with a 597

related-language, the resultant cross-lingual spaces 598

are now structurally similar and can be mapped to 599

each other without breaking any orthogonality as- 600

sumption. Whilst our approach does not change the 601

individual components at all, we obtain far superior 602

results in both BLI as well as eigenvalue similarity 603

across all languages. On a high-level, the gains in 604

our method can be attributed to incorporating more 605

linguistic information in the low-resource language 606

via the related language. This would in turn allow 607

for better modelling of the structure of the embed- 608

ding spaces without explicitly requiring additional 609

source-target parallel data. As our ablation tests 610

show, indeed the intermediate embeddings them- 611

selves have some performance gains even though 612

the source and target embeddings are not aligned 613

to each other yet. 614

Future work in this direction would include verify- 615

ing how high-resource the related language needs 616

to be to still see performance gains. In addition to 617

this, we would like to explore how the relatedness 618

of the pivot language affects the performance of the 619

learnt embeddings. Specifically, we would like to 620

discover to what extent isomorphism is preserved 621

in related language pairs- permitting the use of of- 622

fline methods in more distant languages. Studying 623

this would allows us to suggest further generali- 624

sations of our approach to cover a wider range of 625

language families. 626
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