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Abstract

Recent research in cross-lingual representation
learning has focused on offline mapping ap-
proaches due to their simplicity, computational
efficacy, and ability to work with minimal par-
allel resources. However, they crucially de-
pend on the assumption of embedding spaces
being approximately isomorphic, which does
not hold in practice, leading to poorer perfor-
mance on low-resource and distant language
pairs. In this paper, we introduce a frame-
work to learn cross-lingual word embeddings,
without assuming isometry, for low-resource
pairs via joint exploitation of a related higher-
resource language. Both the source and target
monolingual embeddings are independently
aligned to the related language, enabling the
use of offline methods. We show that this ap-
proach successfully outperforms other meth-
ods on several low-resource language pairs in
both bilingul lexicon induction as well as eigen
value simialrity.

1 Introduction

In a world with over 7000 spoken languages, out of
which nearly 43% are endangered, there is an acute
need for accurate machine translation systems to
ensure equal access of resources in a predominantly
digital world. Although machine translation (MT)
has shown remarkable progress over the last few
years, propelled by advances in neural language
modelling, this success has been mainly confined
to major world languages. However, a significant
proportion of languages are endangered or other-
wise have a very scarce amount of digital resources
which presents serious challenges for training MT
systems. To ensure greater accessibility to these
resources, there is therefore an acute need for MT
methods that can deal with low-resource languages.
Rather than traditional expert-guided feature engi-
neering, neural MT (NMT), like deep neural archi-
tectures more generally, require notoriously large

data sets from which to extract features automati-
cally in the context of hidden layers; for example
with recurrent (Cho et al., 2014; Schmidhuber and
Hochreiter, 1997), and attention mechanisms (Bah-
danau et al., 2014). It is for this reason that the
most impressive results (e.g., (Liu et al., 2020a;
Barrault et al., 2019)) come from languages with
large scale digital resources (and notably, parallel
corpora) with which to train them. This is, however,
not the case for most minority languages.

Recently, there have been significant improve-
ments in semi and completely unsupervised NMT
systems; notably with denoising auto-encoders
(Cheng, 2019), iterative back-translation (Hoang
et al., 2018), and initialisation via weak translation
models sharing important cross-lingual informa-
tion (Lample et al., 2017). In this work we focus
on the third idea, namely Cross-Lingual Word Em-
beddings (CLWEs). As CLWEs represent words
from multiple languages in a shared vector space,
they are key in promoting language sharing across
low and high-resource languages which would al-
low current systems to overcome the data scarcity
problem. Most current methods fall into one of
two categories: 1) mapping methods which inde-
pendently map monolingual word embeddings by
learning a linear transformation matrix to project
them into a shared space with very little supervi-
sion (Artetxe et al., 2018a; Mikolov et al., 2013)
or 2) joint methods which learn word representa-
tions jointly using parallel corpora thus requiring a
strong cross-lingual signal (i.e. parallel resources).
(Gouws et al., 2016; Luong et al., 2015)

As mapping methods use transformation matrices
to align embedding spaces they make the crucial
assumption that, regardless of domain or linguistic
differences, these spaces are approximately isomor-
phic i.e. they share a similar structure. It has been
shown (Sggaard et al., 2018; Vuli¢ et al., 2020) that
this assumption does not hold in general and there-
fore the benefit of mapping methods requiring little



to no cross-lingual signal in low-resource scenarios
can no longer be taken advantage of directly.

In this paper, we address the limitations outlined
above by proposing an alternative method to learn
CLWEs for low-resource and distant languages.
Unlike earlier methods, we combine the benefits
from both mapping and joint-training methods to
develop high-quality, isomorphic embeddings. In
our proposed framework, we maintain the low
level of supervision as obtained by mapping meth-
ods while still guarding the isomorphic embed-
dings achieved by joint-training by independently
aligning source and target embeddings to a related
higher-resource language. We apply our method
in several low-resource settings and conduct eval-
uations on bilingual lexicon induction and eigen-
value similarity. Our experiments show that, de-
spite no additional source-target parallel data, our
approach outperforms conventional mapping and
joint-training methods on both evaluation metrics.
The main contributions of this work can be outlined
as the following:

* We introduce a novel framework combin-
ing mapping and joint methods to learn iso-
morphic cross-lingual embeddings for low-
resource language pairs.

* We successfully employ CLWEs in challeng-
ing, low-resource scenarios without the use of
explicit source-target parallel data.

* We achieve significant gains over state-of-the-
art methods in both bilingual word induction
as well as eigenvalue similarity.

2 Related Work

Cross-Lingual Word Embeddings CLWEs aim
to represent words from several languages into a
shared embedding space which allows for several
applications in low-resource areas such as trans-
fer learning (Peng et al., 2021) and NMT (Artetxe
et al., 2018c). Largely, there are two classes of
approaches to learn CLWEs: mapping and joint
methods. While the former aims to map molin-
gually learnt embeddings together, the latter si-
multaneously learns both embedding spaces using
some cross-lingual supervision (i.e. a cross-lingual
signal). Common approaches to achieve this cross-
lingual signal come from parallel corpora aligned
at the word (Luong et al., 2015) or sentence level
(Gouws et al., 2015). In addition to this, later meth-
ods proposed the use of comparable corpora (Vulié

and Moens, 2016) or large bilingual dictionaries
(Duong et al., 2016) as a form of supervision. For
a more detailed survey of methods and limitations
of CLWEs, the reader is referred to (Ruder et al.,
2019).

Offline Mapping As mapping methods map
monolingual embedding spaces together, instead
of relying on a cross-lingual signal (such as in joint
methods) they work by finding a transformation
matrix that can be applied to the individual em-
bedding spaces. In the case of supervised learn-
ing, a large bilingual dictionary would have been
used as supervision however (Artetxe et al., 2018b)
gets rid of this required via a self-learning strat-
egy. Their approach is based on a robust iterative
method combined with initialisation heuristics to
get state-of-the-art performance using offline map-
ping. Most of these methods align spaces using a
linear transformation- usually imposing orthogonal-
ity constraints- in turn assuming that the underlying
structure of these embeddings are largely similar.
Several works (S@gaard et al., 2018; Vuli¢ et al.,
2020) have shown that this assumption does not
hold when working with non-ideal scenarios such
as low-resource or typologically different language
pairs. In order to mitigate this assumption, (Mohi-
uddin et al., 2020) learn a non-linear map in a latent
space, (Nakashole, 2018) uses maps that are only
locally linear, and (Glavas and Vulié, 2020) pro-
pose to learn a separate map for each word. How-
ever these are supervised methods, meaning they
suffer from limitations of hubbness and isomor-
phism as outlined in (Ormazabal et al., 2019). To
address these limitations, (Ormazabal et al., 2021)
proposes a method in which they fix the target lan-
guage embeddings, and learn a new set of embed-
dings for the source language that are aligned with
them using self-learning. Their method outper-
forms current mapping, joint, as well hybrid meth-
ods on the MUSE dataset (Conneau et al., 2018).
Due to the unavailability of source code, we were
not able to directly compare results obtained by
their method but as we will report later, our method
obtains strong performance across a number of low-
resource language pairs.

Joint-Training The fundamental limitations of
offline methods are not faced by joint-training
methods if there is a strong cross-lingual signal
available (Ormazabal et al., 2019). In practice, how-
ever, we don’t always have access to such forms of



supervision therefore recent works have attempted
to reduce the supervision level so as to preserve the
isomorphism achieved by joint methods while still
being as widely applicable as mapping methods.
(Lample et al., 2018) use concatenated monolin-
gual corpora in different languages and learn word
embeddings over this constructed corpus, using
identical words as anchor points. Further extend-
ing their work, (Wang et al., 2020) effectively com-
bined joint and mapping based methods in their
framework “joint-align” however their method was
not tested on distant language low-resource pairs.
In their work, they use fully unsupervised joint ini-
tialisation as the first step, vocabulary reallocation
where they “unshare” some vocabulary to better
align them, and lastly they perform a refinement
step using off-the-shelf alignment methods. As our
experiments will show, we supersede (Wang et al.,
2020) in BLI across all low-resource language pairs
considered.

3 Methodology

Given two embedding spaces, X and Y, our
goal is to align them together without any direct
parallel data between them and without assuming
orthogonality/structural similarity. In order to do
this, let us consider a third embedding space, Z, of
a language related to the source X. Furthermore,
let there also be sufficient parallel data between
Y and Z to jointly learn their aligned embedding
spaces. Our approach first aligns the spaces X and
Z using an unsupervised offline mapping method
(Artetxe et al., 2018b). (Vuli¢ et al., 2020) find
that for typologically similar languages that have
in-domain monolingual corpora, isomorphism in
their learnt vector spaces in preserved. To that end,
due to the linguistic similarities between X and Z
we may perform offline mapping. Figure 1 shows
a visualisation of how these two embedding spaces
are aligned using an induced seed dictionary as per
(Artetxe et al., 2018b). For further details about
the offline alignment, the reader is referred to read
the original paper.

Once the spaces X and Z are aligned, we wish
to align Y and Z as well. Due to the typological
differences between the two languages, we can no
longer assume isometry of their embedding spaces
therefore can no longer use offline mapping meth-
ods. However, due to higher-resource nature of
Z, we have access to parallel corpora between Y
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Figure 1: Toy visualisation of mapped cross lingual em-
bedding spaces with red representing one language and
blue the other

and Z. This allows us to apply joint-training ap-
proaches (Luong et al., 2015) to simultaneously
learn their embeddings. As found in (Ormazabal
et al., 2019), under ideal conditions of having par-
allel data, joint-training approaches produce iso-
morphic embeddings that perform better than their
offline counterparts in bilingual lexicon induction.
As shown in Figure 2, we can now produce two
embedding spaces, Source aligned to Related and
Target aligned to Related while preserving isomor-
phism. As a final step in our alignment framework,
we use the Z —aligned embedding spaces, XandV,
to induce the final cross-lingual word embedding
spaces. Now that both X and Y are projected onto
Z, they share structural similarity which permits
the use of offline mapping on X and Y. Figure 2
shows the complete alignment framework to pro-
duced the resultant isomorphic embedding spaces.
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Figure 2: Visualisation of our proposed alignment
method in context; dotted lines represent lack of par-
allel data between language pairs

Our proposed framework can be summarised in the
following steps:

1. For a source-target pair, choose a related
higher-resource language to the low-resource
target such that there is sufficient source-
related parallel data.

2. Use mapping to align related and target lan-
guage into a shared embedding space. Due to
their relatedness, these resultant embeddings



(a) Unaligned En,Ne
embeddings

(b) Unaligned Hi,Ne
embeddings

(c) Hi-En aligned using offline (d) Ne-En aligned using our

mapping proposal

Figure 3: Embedding Projections using PCA for English-Nepali with Hindi as the related language. Green repre-
sents Nepali and Red represents English/Hindi depending on the figure

remain isomorphic as the assumption in map-
ping methods hold true.

3. Use joint training to map related and source
language into a shared embedding space us-
ing the higher-resource parallel data between
them. As this is the highest level of supervi-
sion possible, we ensure that the embedding
spaces remain isomorphic.

4. Lastly, map the aligned-source and aligned-
target embeddings using unsupervised map-
ping methods as they are now isometric in
nature following the alignment to the related
language for both the source and target.

This framework uses the low cross-lingual signal
utilised by mapping techniques while still maintain-
ing the isomorphism of the resultant embedding
spaces as in joint approaches. This is achieved
by exploiting the existing isomorphism between
embeddings as much as possible by pre-aligning
the spaces via a pivot-language. However, unlike
pivot-based MT we do not compound errors across
embedding spaces due to the final refinement step
done by mapping the aligned embeddings into their
shared cross-lingual space. In Figure 3, the embed-
ding projections have been illustrated for the lan-
guage pair English-Nepali with Hindi as the related
language. Before performing any alignment on the
monolingual embeddings, we note that Nepali and
Hindi are far more structurally similar than English
and Nepali as seen by Figures 3a and 3b. Upon
using offline mapping on Hindi and Nepali em-
beddings, we obtain a well-aligned cross-lingual
space as shown in Figure 3c. This allows us to
construct the final alignment of Nepali and English
embeddings in Figure 3d.

With this pipeline, we are able to target a large
group of low-resource languages which belong
to higher-resource language families for instance,

English-Nepali via Hindi. Linguistically, Nepali
and Hindi are quite similar as they share the same
script and also have 80% of subword tokens in
common when using a shared BPE vocabulary of
100k subword units (Lample and Conneau, 2019).
In this work, we perform experiments on several
low-resource language pairs to show the effective-
ness of our approach in various language families-
specifically we look at Uralic, Indo-European, and
Romance languages.

Our goal is not to fully replace current methods
of learning cross-lingual word representations but
to aid them in the area of low-resource languages.
As shown by (Ormazabal et al., 2019), depend-
ing on the type of resources available as well as
the languages considered, different methods can
be preferred. While current approaches perform
well for several languages and resource levels (Or-
mazabal et al., 2021), their performance still leaves
room for improvement in the low-resource, typo-
logically diverse area. Despite the simplicity of
our method, our experiments show that we perform
competitively on quality as well as degree of iso-
morphism across all low-resource pairs considered.
Due to the reliance on a sufficiently resourced re-
lated language, our method is not applicable to
every low-resource pair however referring to the
task of related-language NMT we see that there is
indeed a large group of languages that could benefit
from this approach.

4 Experimental Design

In this section we discuss the datasets used, training
settings for different configurations used in our
experiments, and lastly the evaluation metrics used
to assess the embedding spaces produced by our
framework.



4.1 Datasets

In our work, we train CLWEs between English
and five other low-resource languages: Nepali (ne),
Finnish (fi), Romanian (ro), Gujarati (gu), and Hun-
garian (hu). We use Wikipedia dumps for all lan-
guages and the FLoRes evaluation set (Guzmdan
et al., 2019) for Nepali. In addition to this, we
use available parallel data between the following
related language pairs respectively: English-Hindi
(hi) for Nepali, English-Estonian (et), English-
Italian (it), English-Hindi (hi) for Gujarati, English-
Finnish (fi). We obtain the data from IIT Bombay
! for En-Hi and from the WMT workshops 2. We
preprocess all the data using Moses scripts and
tokenise using BPE, restricting to the 200 most
frequent tokens. For the Indic languages, we use
IndicNLP 3 for word segmentation. Table 1 details
the statistics of the corpus sizes as well as their
sources. For evaluation, we use the gold-standard
bilingual dictionary from the MUSE dataset (Con-
neau et al., 2018) for Finnish and for the remain-
ing language pairs, we use bilingual dictionaries
published by (Pavlick et al., 2014). We also use
the FLoRes evaluation set * (Guzman et al., 2019)
to conduct all our experiments in English-Nepali
NMT. As it was the first large-scale effort to pro-
duce high-quality English-Nepali parallel data, it
serves as a benchmark evaluation and allows for
fair comparisons across several baselines.

Sentences Tokens
Languages
Ne 92.3K 2.8M
Fi 6M 91M
Ro 88.6K  2.28M
Gu 382K 6M
Hu 1M 15M
En 67.8M 2.0B

Table 1: Monolingual Training Corpora sizes

4.2 Training Settings

Mapping: Using fasttext (Grave et al., 2018)
with the default parametres >, we first gather

1http://www.cfilt.iitb.ac.in/iitb_
parallel/

2http://www.statmt.org

*https://github.com/anocopkunchukuttan/
indic_nlp_library

*https://github.com/facebookresearch/
flores

SWe learn 300-dimensional vectors with 10 negative sam-
ples, a sub-sampling threshold of 1e-5 and 5 training iterations

Segments
Language Pairs

Hi-En 1.5M
Et-En 1.7M
It-En 151M
Fi-En 6.2M

Table 2: Parallel Training Corpora sizes

monolingual word embeddings for each of the
respective languages. After this, we map the
embeddings to a cross-lingual space using VecMap
(Artetxe et al., 2018b) in the unsupervised mode
as we do not have any bilingual dictionaries. In this
mode an initial solution is found using heuristics
and iteratively refined.

Joint Training: To train the embeddings jointly,
we use the BiVec tool proposed by (Luong
et al., 2015) which is an extension of skip-gram
algorithm aiming to predict the context around
both the source and target word aligned to a given
parallel corpus at the word level. We use the same
hyperparameters as in the mapping methods. In
both cases, we restrict the vocabulary to the most
frequent 200000 words.

In addition to the mapping and joint-training
methods trained as described earlier, we also train
Joint Align (Wang et al., 2020). In order to this, we
use the official implementation ¢ on preprocessed
tokenised data. We use the non-contextual model
in specific as we are working on non-contextual
word embeddings.

NMT Evaluation: Lastly, as a downstream task
we consider supervised NMT for English-Nepali.
Using a single GPU, we train several transformer
(Vaswani et al., 2017) models with 5 encoder and 5
decoder layers where the number of attention heads,
embedding dimension and inner-layer dimension
are 2, 512 and 2048, respectively in the completely
supervised setting. We utilise the OpenNMT li-
brary 7 (Klein et al., 2017) and Pytorch (Paszke
et al., 2019) to build our models. In addition to the
hyperparameter settings optimised in FLoRes, we
also employ early stopping with patience 4 using

®https://github.com/thespectrewithin/
joint_align
"https://github.com/OpenNMT/OpenNMT-py
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the validation perplexity as the criterion to choose
the best model and we use the devtest set to eval-
uate every 1000 training steps. We report BLEU4
scores (Papineni et al., 2002) on detokenised text
following standard practice.

4.3 Evaluation Metrics

We evaluate our embeddings on two aspects: their
quality, and the degree of isomorphism achieved
between the source and target. As in (Ormazabal
et al., 2019), we measure this by bilingual lexicon
induction (BLI) and eigenvalue similarity respec-
tively. Firstly, we induce the word-level transla-
tions by linking neighbouring source-target word
translations in the resultant embeddings spaces
(Nearest Neighbour with cosine similarity) and fi-
nally evaluate the induced dictionary against the
English-Nepali bilingual dictionary released by
(Pavlick et al., 2014) to compute precision scores
for the BLI task. ® Next, we measure eigenvalue
similarity for the embeddings following the proce-
dure in (Sg@gaard et al., 2018) on centralised and
normalised embeddings. We perform the same
evaluations across different cross-lingual alignment
methods on all the considered language pairs, par-
ticularly we report the result of mapped alignment
in the unsupervised mode (Artetxe et al., 2018c),
Joint Align (Wang et al., 2020), and lastly our hy-
brid alignment method. Due to the unavailability of
the source code, we were not able to report results
of (Ormazabal et al., 2021) however for compari-
son we test on the Fi-En language pair for which
they receive a score of 64.2 (ours 65.2).

5 Results and Discussion

In this section, we discuss our main experimental
results on BLI and eignevalue similarity across
the chosen language pairs. Furthermore, we also
conduct ablation tests on our learnt embeddings at
each step of our framework.

5.1 BLI

Results in Table 3 show that our method produces
higher BLI scores than mapping, joint-training, and
hybrid methods. In particular, Joint Align per-
forms poorly on most language pairs, suggesting
that it is inapplicable in a truly low-resource sce-
nario. VecMap performs well overall, however,

$https://cs.brown.edu/people/epavlick/
data.html

our approach performs best by a significant mar-
gin. Despite using VecMap and a purely joint-
training based approach without any additional
source-target supervision, the gains in the scores
are substantial. Interestingly, our method performs
well even in the case of fi — en where we use Es-
tonian as the related language; Estonian is in fact
lower-resource than Finnish, however our perfor-
mance suggests that "pivoting" via Estonian was
still helpful in learning Finnish-English word em-
beddings. Therefore, even if the embeddings learnt
in the intermediate stages are not ideal, the struc-
tural alignments earned are ultimately helpful in
obtaining better source-target embeddings.

5.2 Eigenvalue Similarity

In eigenvalue similarity, mapping methods perform
much worse than joint training (Table 4). This find-
ing is in line with the literature (Ormazabal et al.,
2019), and is explained by the high linguistic di-
vergence between English and source languages,
resulting in embeddings that are far less isomor-
phic. Our hybrid approach performs even better
than joint methods and achieved the best eigenvalue
similarity score across all langauge pairs, showing
that we do indeed obtain isometric embeddings
while still not requiring the higher level of super-
vision in joint learning approaches. Although our
proposed framework does not make any significant
changes to the mapping and joint components, the
combination of the two cross-lingual approaches
leads to better embeddings both in terms of quality,
shown by the performance in BLI, as well as struc-
ture, shown by the eigenvalue similarity scores.

5.3 Downstream Task: Supervised MT

To see the improvements afforded by our embed-
ding initialisation, we report results on supervised
NMT from Nepali (ne) to English (en) by initialis-
ing transformer models with embeddings obtained
from our framework. In particular, we use the
FLoRes evaluation set (Guzman et al., 2019) to
allow for a more accurate representation of the
gains in performance.

As a baseline, we first train a transformer model
(Vaswani et al., 2017) with random initialisation
(marked No Pretraining in Table 5) following the
5-layer fully supervised model (Section 4.2). To
further contexualise our results, we also present
the Mult. system from FLoRes (Guzmén et al.,
2019). This setting uses Hindi-English paral-
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ne—en fi—en

ro—en gu—en hu—en avg

VecMap (Artetxe et al., 2018b) 52.3
Joint Align (Wang et al., 2020) 24.5
Ours 58.4

61.9
31.3
65.2

61.6 45.4 532 54.8
28.2 354 26.5 25.2
64.5 48.4 56.3 58.6

Table 3: Precision at 1 scores of proposed method and previous works on BLI (higher is better)

ne—en fi—+en ro—en gu—en hu—en avg
Mapping (Artetxe et al., 2018b) 205.8 118.2 176.4 189.3 94.5
Joint (Gouws et al., 2016) 48.6 30.3 41.2 42.5 35.6
Ours 37.5 234 32.7 33.2 26.6
Table 4: Eigenvalue Similarity Scores (lower is better)
DevTest(T) Test(?) mBART25 (Liu et al., 2020b) which pre-trains us-
Embedding Scheme ing multilingual denoising on 25 languages.
No Pretraining 4.2 4.3
Mult. 6.9 -
Monolingual 5.5 5.2
Mapped 6.4 6.1 Our results show that even a baseline supervised
Joint 6.3 6.0 model achieves a very poor BLEU score on this
Cross-Lingualsx 7.1 6.9 task (Table 5). This indicates how challenging
Shared Embeddingsx 7.3 7.1 English-Nepali is for NMT, therefore improving
mBART?25 7.4 - this baseline result without using additional parallel

Table 5: Tokenized BLEU [%] scores on FLoRes Eval-
uation Set for ne — en- best score is in bold, ours
marked with *, higher is better

lel data by concatenating available Nepali data
with back-translated Hindi allowing for an aug-
mented dataset. In order to isolate the improve-
ments earned from cross-lingual word embeddings,
we further compare monolingual embeddings and
cross-lingual embeddings. The models marked
as Cross-Lingual and Shared Embeddings repre-
sent models initialised with embeddings produced
by our framework. In these models, we initialise
the 5-layer transformer models with embeddings
on the source and target side and in the case of
Shared Embeddings, we tie the weights to share
the emebddings across the encoder and decoder
layers. In the case of Monolingual, we initialise
the transformer model on the source and target side
with English and Nepali fasttext embeddings with-
out any prior alignment. To further understand
the gains from our framework, we also report re-
sults by initialising the models with Mapped and
Joint methods learnt using previously described
methodology. Lastly, to provide a state-of-the-art
comparison against our proposed system, we utilise

training data and just a different embedding initial-
isation is a difficult task. Between the monolingual
and cross-lingual embeddings, there are significant
gains in the final NMT system which follows re-
sults published in (Lample et al., 2018). In addi-
tion to this, amongst the different CLWEs the best
performance is observed by our proposal. This
is indicative of the higher quality representation
as shown by the BLI scores earlier. Furthermore,
sharing these embeddings across the encoder and
decoder layers lead to more improvements which
we can attribute to the larger degree of isomor-
phism between the embeddings (allowing for better
alignment when shared). Even though our goal
is not to surpass state-of-the-art performance but
rather to quantify the improvements chieved from
our CLWES, our method performs competitively
against the mBART setting. It is notable that we
train on baseline transformer architectures of 5 lay-
ers whereas mBART is pre-trained on a much larger
corpus using a 12-layer transformer thus making
our method computationally cheaper with similar
results. In all cases, mBART, FLoRes, and ours, a
significant improvement from random initialisation
is achieved when using a careful pre-training sys-
tem. Especially in a language pair as difficult as
English-Nepali, initialisation is a key component
to obtaining good results.



5.4 Ablation Tests

To study where the improvements of the cross-
lingual encoding method come from, we conduct
several ablation tests (results in Table 6), assessing
the contribution of different embedding schemes to
the final quality of the embeddings: firstly, we look
at the initial unaligned monolingual embeddings,
next we look at the embeddings that are indepen-
dently aligned to the related language, and lastly we
look at the emebddings after the final offline map
has been constructed. These embedding schemes
allows us to verify the importance of the intermedi-
ate structural alignments via the related language.
As expected the unaligned embeddings have a near
0 BLI score, suggesting that the initial embeddings
do not have any linking however as the score is still
non-zero we can attribute this to identical words
across some language pairs. However, the inter-
mediate embeddings obtained (Related-Aligned in
Table 6) have a significant jump in performance
even though there is no explicit alignment between
the source and target at this stage. This intermedi-
ate performance is surprisingly close to the final
performance obtained by Joint Align as well, which
suggests that the related-language strategy allows
for a better understanding of word associations
even before performing the final step of offline

mapping.

BLI Score
Embeddings
Our Method
Unaligned 0.4
Related-Aligned 24.6
Full Alignment 58.6
Offline Mapping
Unaligned 0.4
Mapped 54.8
Joint Align
Unaligned 0.4
Aligned 25.2

Table 6: Ablation Tests on Different Embeddings, re-
porting average Precision @ 1 score

6 Conclusion and Future Work

In this work, we developed a framework to learn
cross-lingual word embeddings in low-resource
scenarios. We addressed limitations of both offline
as well as joint training methods to develop high

quality, isomorphic embeddings for several low-
resource language pairs. In particular, we main-
tain the low cross-lingual signal as required by
offline methods while still obtaining structurally
sound/isomorphic embeddings as in joint-training
based approaches. Our method works by exploiting
a higher-resource related-language to jointly learn
a cross-lingual space between the related-language
and target while also learning a cross-lingual space
between the source and the related language using
offline mapping. Due to the pre-alignment with a
related-language, the resultant cross-lingual spaces
are now structurally similar and can be mapped to
each other without breaking any orthogonality as-
sumption. Whilst our approach does not change the
individual components at all, we obtain far superior
results in both BLI as well as eigenvalue similarity
across all languages. On a high-level, the gains in
our method can be attributed to incorporating more
linguistic information in the low-resource language
via the related language. This would in turn allow
for better modelling of the structure of the embed-
ding spaces without explicitly requiring additional
source-target parallel data. As our ablation tests
show, indeed the intermediate embeddings them-
selves have some performance gains even though
the source and target embeddings are not aligned
to each other yet.

Future work in this direction would include verify-
ing how high-resource the related language needs
to be to still see performance gains. In addition to
this, we would like to explore how the relatedness
of the pivot language affects the performance of the
learnt embeddings. Specifically, we would like to
discover to what extent isomorphism is preserved
in related language pairs- permitting the use of of-
fline methods in more distant languages. Studying
this would allows us to suggest further generali-
sations of our approach to cover a wider range of
language families.
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