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Abstract
Large Language Models (LLMs) enhanced001
with external contexts, such as through002
retrieval-augmented generation (RAG), often003
face challenges in handling imperfect evidence.004
They tend to over-rely on external knowledge,005
making them vulnerable to misleading and un-006
helpful contexts. To address this, we propose007
the concept of context-robust LLMs, which can008
effectively balance internal knowledge with009
external context, similar to human cognitive010
processes. Specifically, context-robust LLMs011
should rely on external context only when lack-012
ing internal knowledge, identify contradictions013
between internal and external knowledge, and014
disregard unhelpful contexts. To achieve this015
goal, we introduce Grft, a lightweight and016
plug-and-play gated representation fine-tuning017
approach. Grft consists of two key compo-018
nents: a gating mechanism to detect and filter019
problematic inputs, and low-rank representa-020
tion adapters to adjust hidden representations.021
By training a lightweight intervention function022
with only 0.0004% of model size on fewer023
than 200 examples, Grft can effectively adapts024
LLMs towards context-robust behaviors.025

1 Introduction026

Providing large language models(LLMs) with ex-027

ternal related contexts can improve their factual028

accuracy and reliability (Gao et al., 2023; Lewis029

et al., 2020; Fan et al., 2024). Techniques such030

as retrieval-augmented generation(RAG) (Lewis031

et al., 2020) has gained widespread application032

including healthcare (Amugongo et al., 2024), le-033

gal services (Wiratunga et al., 2024), and financial034

analysis (Setty et al., 2024).035

However, this approach faces significant chal-036

lenges when dealing with imperfect evidence.037

LLMs tend to over-rely on external knowledge,038

making them vulnerable to misleading or inaccu-039

rate information in the retrieved context. Zou et al.040

(2024); Deng et al. (2024) demonstrated that con-041

textual misinformation can mislead LLMs even042

when they possess the correct knowledge internally. 043

Besides, Yoran et al.; Fang et al. (2024) demon- 044

strate that a substantial portion of retrieved con- 045

texts, while semantically related to the query, can 046

be unhelpful or irrelevant for answering the ques- 047

tion, leading to degraded LLM performance. 048

Compared to LLMs, humans demonstrate 049

greater robustness when processing external in- 050

formation by carefully weighing it against their 051

internal knowledge to reach reasoned conclusions 052

(Hollister et al., 2017). This capability, often re- 053

ferred to as contextual reasoning or knowledge 054

integration, is critical for ensuring reliable and 055

accurate responses in real-world applications. For 056

example, when presented with text claiming "Paris 057

was the capital of France until 2020 when it moved 058

to Marseille," people can reason "Based on my 059

knowledge, Paris is France’s capital, though this 060

source claims it’s Marseille." Similarly, when given 061

irrelevant context about French cuisine while an- 062

swering a capital city question, people naturally 063

ignore the context and rely on their internal knowl- 064

edge. To match this capability, a context-robust 065

LLM is desired to have similar cognitive processes 066

as shown in Fig 1. 067

As discussed in previous works (Wang et al., 068

2024; Yoran et al.), LLMs can benefit from external 069

contexts when they lack the knowledge to answer 070

a question. This suggests an expected strategy for 071

LLMs to utilize external contexts: LLMs should 072

rely on external context only when lacking in- 073

ternal knowledge (the “Unknown” case in Fig 1). 074

When internal knowledge exists, they can carefully 075

balance external and internal knowledge to pro- 076

vide more objective and thoughtful answers(Chen 077

et al., 2024). For example, as shown in Fig 1, when 078

encountering knowledge that matches with its in- 079

ternal beliefs, a context-robust LLM will use both 080

sources to formulate its response. While faced with 081

contradictory evidence, it is to identify the contra- 082
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Figure 1: Comparison between current LLMs and our
developed context-robust LLMs in this work. Ans(I)
refers to responses based on internal knowledge, while
Ans(E) refers to responses based on external context.
Current LLMs primarily rely on external sources for
responses, whereas our context-robust LLM carefully
balances contextual information with its internal knowl-
edge to provide more reliable responses.

diction and present both answers1. Similarly, if083

unhelpful contexts are presented, a context-robust084

LLM is expected to identify and ignore such con-085

texts, relying solely on its internal knowledge to086

generate an answer(Yoran et al.). However, cur-087

rent LLMs do not naturally exhibit these behaviors.088

Therefore, in this work, we aim to adapt LLMs’089

behaviors following the process in Fig 1 when han-090

dling retrieved-context.091

Adapting LLMs to exhibit these behaviors092

presents tremendous challenges. Previous stud-093

ies, such as (Zeng et al., 2024b), have shown094

that training-free methods—such as adding sys-095

tem prompts, in-context learning, or using Chain-096

of-Thought (CoT) prompting to guide models in097

balancing internal and external contexts—are far098

from reliable. Another approach is to fine-tune the099

LLM to teach it the desired behavior. However,100

direct end-to-end training of model parameters typ-101

ically requires extensive training time and large102

datasets, which is not always feasible in real world,103

and limited examples may be insufficient to teach104

the LLM towards context-robust behaviors as we105

show later in Table 1.106

In contrast, we aim to develop both data-efficient107

and training-efficient methods that intrinsically108

adapt LLMs to context-robust behaviors. Zeng109

1Users can choose to use Ans(I) or Ans(E) based on their
needs. For instance, for knowledge updating, they might
choose Ans(E), while for addressing misinformation, they
might prefer Ans(I).

et al. (2024b) show that LLMs’ representations 110

exhibit intrinsic distinct patterns when processing 111

contradictory, matched, helpful, or unhelpful in- 112

puts. Furthermore, Zou et al. (2023); Wu et al. 113

(2024a) demonstrate that intervening in LLMs’ hid- 114

den layer representations can effectively modify 115

their behavior patterns and improve task perfor- 116

mance using only a few samples. These findings 117

motivate us to leverage representation adaptation 118

to achieve the desired behaviors. It is particularly 119

suitable to achieve our goal because it intrinsi- 120

cally relates to how the model processes external 121

contexts(Zeng et al., 2024b) (e.g., contradictory, 122

unhelpful, or matched), enabling precise control 123

over behavior. Additionally, it provides efficient, 124

lightweight adaptation with minimal computational 125

overhead and data requirements(Wu et al., 2024b). 126

In our work, we propose a gated representa- 127

tion fine-tuning pipeline Grft to enhance LLMs’ 128

robustness to retrieved contexts. Grft introduces 129

a lightweight, plug-and-play intervention for 130

LLMs’ hidden layer representations. It consists of 131

two components: (1) a gate mechanism that detects 132

"abnormal" inputs and determines if intervention 133

is needed, and (2) low-rank representation adapters 134

that adjust hidden representations within a linear 135

subspace. Using fewer than 200 training questions, 136

we end-to-end train Grft (0.0004% of model param- 137

eters). Experimental results demonstrate that Grft 138

effectively improves LLM performance with mis- 139

leading and unhelpful contexts while maintaining 140

performance on helpful contexts. 141

2 Related Work 142

Robustness issues of RAG. Although integrating 143

external contexts is a common practice to enhance 144

the quality and relevance of Large Language Mod- 145

els (LLMs), recent studies have revealed significant 146

drawbacks associated with this approach. Research 147

by Ren et al. (2023); Wang et al. (2023a); Ni et al. 148

(2024); Liu et al. (2024); Wang et al. (2023b); Asai 149

et al. highlights that current LLMs struggle to accu- 150

rately assess the relevance of questions and deter- 151

mine whether retrieval is necessary. Additionally, 152

studies such as (Zeng et al., 2024a; Zou et al., 2024; 153

Deng et al., 2024; Xie et al.) indicate that LLMs 154

tend to over-rely on external contexts, even when 155

these contexts conflict with their internal knowl- 156

edge. Furthermore, the inclusion of unhelpful or 157

irrelevant contexts can significantly degrade LLM 158

performance, as noted by (Yoran et al.; Fang et al., 159

2024; Chen et al., 2024; Sawarkar et al., 2024; 160

2



...

...

Grft Output

Contradictory/
Unhelpful

Context

Question

Re-query

Question

LLM+Grft

Inference

LLM

Grft Process  Grft

Re-query 
Output

Optional

Intervention
(W,B,R)

Figure 2: An overview of Grft

Wang et al., 2024; Zeng et al., 2024b; Liu et al.,161

2024; Zhao et al., 2024).162

Representation Engineering and fine-tuning163

on LLMs. Recently, a line of research indicates164

that LLMs’ hidden representations contains rich in-165

formation and can be utilized to efficiently modify166

model behaviors. For example, (Zou et al., 2023;167

Zeng et al., 2024b; Lin et al., 2024; Zheng et al.,168

2024) demonstrates that the representations of large169

language models (LLMs) exhibit distinct patterns170

when processing contrasting concepts such as hon-171

esty and dishonesty, harmful and harmless, helpful172

and helpfulness. Besides, Zou et al. (2023) also173

show the principal directions in low-dimensional174

spaces derived from these representations can be175

leveraged to control the behavior of LLMs. Re-176

cently, Wu et al. (2024b) proposed ReFT, a tech-177

nique to train interventions on LLM representa-178

tions, enabling efficient control of model behavior179

for downstream tasks with minimal parameters.180

3 Method181

In this section, we present our Grft design. Sec-182

tion 3.1 introduces the Problem Setting, followed183

by an overview of Grft in Section 3.2. We then184

detail Grft’s two main components: the gate func-185

tion (Section 3.3) and intervention (Section 3.4).186

Finally, we describe parameter updating (Section187

3.5) and the inference (Section 3.6).188

3.1 Problem Setting189

Our goal is to obtain an context-robust LLM190

which can generate context-robust responses as191

illustrated in Fig 1. In particular, we expect the192

context-robust LLM satisfies the following: 193

(a) Rely on external information when it lacks 194

internal knowledge. 195

(b) Use either internal or external knowledge 196

when they match. 197

(c) Identify and resolve contradictions by provid- 198

ing both answers when external context con- 199

flicts with internal knowledge. 200

(d) Ignore unhelpful contexts and rely solely on 201

internal knowledge when necessary. 202

To achieve this, our method utilizes training data 203

si = {xi, yi, zi}, where each sample consists of: 204

• An input xi = {ci ∥ qi}, where ci is the given 205

context (contradictory, unhelpful, matched, or 206

helpful) and qi is the question (known or un- 207

known to the LLM); 208

• A desired output yi that follows the logic of a 209

context-robust LLM, as described above; 210

• A gate label zi indicating whether intervention 211

is necessary. For cases (a) and (b), zi = 0 212

since the original LLM already exhibits the 213

desired behavior. For cases (c) and (d), zi = 1 214

as the LLM does not naturally produce the 215

required behavior. 216

To achieve the above goal, we propose and train 217

an intervention function, Grft(·), on the internal 218

representations of LLMs, so that the LLM can 219

better distinguish matched/contradictory/unhelp- 220

ful/helpful contexts as in Fig. 1. In the following, 221

we introduce the details of the proposed Grft. 222

3.2 An Overview of Grft 223

As shown in Fig. 2, in the Grft training stage, 224

we aim to train a Grft intervention function that is 225

composed of 2 components: a gate function that 226

evaluates the input hl and decides whether the in- 227

put context needs representation intervention, and 228

an intervention component that projects and inter- 229

venes LLMs’ representation in a low rank space. 230

The overall intervention function can be expressed 231

as follows: 232

Grft(hl) = hl + Gate(hl) · Intervention(hl) (1) 233

In the following subsections, we will provide a 234

detailed explanation of each component including 235

Gate(hl) and Intervention(hl). 236

While in the inference stage, our method in- 237

troduces two approaches for LLM+Grft: Grft di- 238

rectly generates robust outputs using Grft interven- 239

tions, while Grft-requery enhances reliability by 240

re-querying the LLM when outputs indicate contra- 241

dictions or unhelpful contexts. 242
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3.3 Gate Function243

The Gate function is designed to evaluate whether244

the context is abnormal and potentially requires245

intervention. It takes the hidden representation hl246

of the LLM as input and outputs a scalar value247

ranging from 0 to 1, which controls the degree of248

intervention. In the context of contextual question249

answering, as illustrated in Fig. 1, we consider250

inputs to be “normal” when the LLM itself lacks251

knowledge about the input query and the provided252

context matchs with the LLM’s internal knowledge.253

In such cases, the LLM’s inherent behavior is suffi-254

cient to produce the correct answer, and we expect255

the Gate function to output a low value. Conversely,256

if the LLM encounters a question for which it pos-257

sesses knowledge but the external context is either258

contradictory or unhelpful, an intervention is nec-259

essary to ensure that the LLM exhibits context-260

robust behavior. In such scenarios, we expect the261

Gate function to produce a high value. In our study,262

we primarily utilize the sigmoid function as the263

Gate function due to its ability to smoothly map264

inputs to the desired range of 0 to 1. The Gate265

Function is formally defined as:266

Gate(hl) = σ(Wghl + bg) (2)267

where hl ∈ Rd is the input hidden representation268

with dimensionality d, Wg ∈ R1×d is a learnable269

weight matrix, bg ∈ R is a learnable bias term, and270

σ(·) is the Sigmoid activation function.271

The output Gate(hl) serves as a gating signal:272

when it is close to 1, a strong intervention is re-273

quired, while a value close to 0 indicates that little274

to no intervention is needed, allowing the model275

to rely primarily on its intrinsic behavior. This276

mechanism enables an adaptive balance between277

the model’s original output and external interven-278

tions, ensuring robust performance across diverse279

contexts.280

3.4 Intervention281

The intervention component aims to learn an inter-282

vention on LLMs’ representations in low dimen-283

sion space towards a more reliable answer.284

Intervention(hl) = R⊤(Whl + b−Rhl) (3)285

where W and R are low-rank matrixs and b is a286

bias vector that matches the dimensionality of Whl287

. The above term is also used in original ReFT (Wu288

et al., 2024b) methods. It implements a low-rank289

fine-tuning mechanism through dimensional pro-290

jection. The linear transformation Whl + b maps291

the representation to a new space, while Rhl per- 292

forms a low-rank projection. Their difference is 293

then projected back through R⊤ before being mul- 294

tiplied by the gate value and added to the input. 295

The key difference between Grft and ReFT lies in 296

the introduction of the Gate (hl), which regulates 297

the extent of intervention. 298

3.5 Parameter Updatating 299

Loss Function. The final loss function consists 300

of two components: a standard supervised fine- 301

tuning loss and a gate supervision loss: 302

Ltotal = LFT(ŷi, yi) + Lgate(Gate(hi
l), zi) (4) 303

where LFT is the standard cross-entropy loss be- 304

tween model outputs ŷi and ground-truth yi, and 305

Lgate is computed using binary cross-entropy loss 306

to supervise the gate values: 307

Lgate =zi log(Gate(hi
l))

+ (1− zi) log(1− Gate(hi
l))

(5) 308

where zi represents the binary label indicating 309

whether intervention is needed for the i-th sample, 310

and B is the number of samples in the batch. 311

Training. The learnable parameters in Grft in- 312

clude the gating mechanism parameters (Wg,bg) 313

and the intervention process parameters (W,b,R). 314

During training, we freeze the base model parame- 315

ters and only update these learnable parameters 316

through backpropagation. This approach intro- 317

duces minimal computational overhead since these 318

parameters constitute only a tiny fraction of the full 319

model’s parameter count. 320

3.6 Grft Inference and Requery. 321

As shown in Figure 2, we design two strate- 322

gies to utilize the LLM with Grft interventions 323

(LLM+Grft). The first strategy, denoted as Grft, 324

directly prompts LLM+Grft with questions and 325

contexts to generate more robust outputs. The sec- 326

ond strategy, Grft-requery, focuses on reliable 327

knowledge recall: when the Grft output contains 328

indicators such as "CONTRADICTORY" or "UN- 329

HELPFUL," we re-query the original LLM and 330

replace the internal answer ans(I) in the template 331

"Based on what I know, ans(I)" with the LLM’s 332

answer. This re-querying process is optional, as 333

it requires querying the model twice. In Section 4, 334

we compare this approach with other methods that 335

also involve multiple queries during inference. 336
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Training Examples

Unknown Question
Unknown Question: Which country recently became the first to legalize the use of autonomous
vehicles on public roads nationwide?

(a). Helpful Contexts: Germany became the first country to fully legalize autonomous vehicles
on public roads nationwide with the Autonomous Driving Act passed in 2021
Answer: Based on the information, {Germany is the first country first to legalize the use

autonomous vehicles.} Gate label: 0

known Question
Known Question : What is Sacramento the capital of?

(b). Matched Contexts : Sacramento has been the capital of California since 1854
Answer : {Sacramento is the capital of California.} Gate label : 0

(c). Contradictory Contexts : Sacramento is the capital of Harding County
Answer : This context is CONTRADICTORY with my own knowledge, Based on
what I know, {Sacramento is the capital of California.} However, based on the context,

{Sacramento is the capital of Harding County.} Gate label: 1

(d). Unhelpful Contexts : Great Wall is located in Beijing, China.
Answer : The context is NOT HELPFUL to the question. Based on what I know,
{Sacramento is the capital of California.} Gate label : 1

Figure 3: Training Examples.

4 Experiment337

In this section, we conduct extensive experiments338

to validate the effectiveness of our methods. Due339

to the space limitation, the ablation studies on dif-340

ferent layer interventions and training sample re-341

quirement can be found in Appendix A.1.342

4.1 Experimental Settings343

Model and Baselines. In our experiments, we344

primarily employ the Llama-2-7B-Chat model as345

our main generation model, supplemented by re-346

sults from Llama-3-8B-Instruct, which are detailed347

in Appendix A.2.348

We conduct comprehensive comparisons of349

our methods against various training-based and350

prompting-based approaches. For training-based351

methods, we compare our approach with both full352

fine-tuning and LoRA fine-tuning, using the same353

training dataset. For prompting-based methods, we354

evaluate our methods against three commonly used355

strategies: (1) incorporating system instructions to356

explicitly guide the model in balancing external357

knowledge with its internal beliefs, (2) utilizing358

zero-shot Chain-of-Thought (CoT) prompting to359

encourage step-by-step reasoning for more thought-360

ful responses (Wei et al., 2022), and (3) applying in-361

context learning by providing the LLM with exam-362

ples that yield more reliable answers (). Addition-363

ally, we compare our methods with Astute RAG,364

a technique that involves multi-round prompting 365

to help the LLM elicit and select between inter- 366

nal and external knowledge to answer questions 367

(Wang et al., 2024). Besides, we also report the 368

performance of Grft without gate function(Grft- 369

W/O Gate), and Grft with gate function but does 370

not involve gate loss in training(Grft-W/O train- 371

ing). More details on these baseline methods are 372

provided in Appendix A.3. 373

Dataset. We primarily utilize a subset of Conflic- 374

tQA (Xie et al.) as this benchmark provides both 375

matched and contradictory evidence and answer to 376

each question. Each sample consists of a PopQA 377

(Mallen et al., 2023) question, the correct short 378

and long evidence matched with the question, and 379

ChatGPT-generated contradictory long and short 380

evidence. To determine whether the LLM knows 381

the question or not, i.e., Known/Unknown in Fig- 382

ure 3, for each qi, we prompt the LLM three times. 383

If the LLM correctly answers the question in all 384

three attempts, we classify the qi as a Known ques- 385

tion. Conversely, if the LLM fails to provide the 386

correct answer in all three attempts, we assume that 387

the LLM lacks knowledge about the question and 388

classify it as an unknown question. We obtain 5587 389

unknown questions and 1391 known questions for 390

Llama-2-Chat-7B. Besides, for each known ques- 391

tion, we randomly select one right matched context 392
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from other questions as the unhelpful random con-393

text and retrieve several pieces of evidence from394

the Wikipedia database, selecting the one with the395

highest retrieval score that does not contain the cor-396

rect answer as the unhelpful distracted context. We397

randomly selected 100 known questions and 100398

unknown questions for training.399

Training Data Construction. As illustrated in400

the training examples in Figure 3, there are four401

types of training samples. (a). Unknown pairs:402

If the LLM lacks knowledge (Unknown Question403

in Figure 3), the gate label zi is 0, and the out-404

put yi corresponds to the correct answer. We ran-405

domly choose one of the short or long right con-406

texts provided in the benchmark as unhelpful con-407

text ci. (b)Matched samples: When the context408

matches with its own knowledge(Known Question409

⇒ Matched Contexts in Figure 3). The gate label410

zi is set to 0, and the ground truth output yi corre-411

sponds to the correct answer to the question. We412

randomly choose one of the short and long matched413

contexts provided by (Xie et al.) as matched con-414

text ci. (c) Contradictory samples: if the con-415

text ci contradicts the LLM’s internal knowledge416

(Known Question ⇒ Contradictory in Figure 3),417

The gate label zi is set to 1, yi follows the follow-418

ing template: identify the conflict and provide an419

objective answer that combines internal knowledge420

{ans(I)} and external knowledge {ans(E)} . We421

utilize the ground truth output as {ans(I)} and the422

external evidence based answer provided in the423

benchmark as {ans(E)}. We randomly choose one424

of the short and long contradictory contexts pro-425

vided in the benchmark as contradictory context426

ci. (d). Unhelpful pairs: if the LLM knows the427

answer but the context is unhelpful (Known Ques-428

tion ⇒ Unhelpful in Figure 3), the gate label zi429

is set to 1, and the output yi should indicate the430

context’s lack of usefulness and respond based on431

the model’s own knowledge {ans(I)} . We utilize432

the ground truth output as {ans(I)}. We randomly433

choose one of the random and distracted contexts434

provided in the benchmark as unhelpful context ci.435

In the training process, we choose the rank r = 4,436

batch size B = 5 and optimize for 100 rounds.437

4.2 Main Results438

In this subsection, we evaluate the performance439

of Grft and baselines. For known queries, we test440

model accuracy under different conditions by pro-441

viding contradictory (long and short), unhelpful442

(random and distracted), and aligned (long and443

short) contexts alongside the question. For un- 444

known queries, we evaluate performance using 445

helpful (long and short) contexts. We categorize 446

contradictory and unhelpful contexts as “noisy in- 447

puts” since they can harm LLM performance, while 448

aligned and helpful contexts are labeled as “normal 449

inputs” as they do not degrade performance. 450

4.2.1 Performance on abnormal inputs 451

Contradictory contexts. As shown in Table 452

1 (column “Contradictory"), we first observe that 453

providing LLMs with contradictory evidence sig- 454

nificantly harms performance. Even when the LLM 455

itself has the correct answer, the accuracy drops 456

to only 34.55% (short) and 25.33% (long). Addi- 457

tionally, while some training-free methods slightly 458

improve performance (e.g., 41.83% (short) and 459

36.02% (long) with CoT), the results remain far 460

from reliable. Moreover, training-based methods 461

(FT-Full and FT-LoRA) do not show substantial 462

improvements over the original LLM. This may be 463

because directly updating the LLM’s parameters 464

with a limited number of samples is insufficient to 465

teach the model the desired behavior. 466

In contrast to the baseline methods, our meth- 467

ods show superior effectiveness, with Grft achiev- 468

ing the highest performance: 60.88% (short con- 469

texts) and 61.19% (long contexts), outperforming 470

the original LLM by 26.33% and 34.86%, respec- 471

tively. This highlights Grft’s ability to teach the 472

LLM more robust answering behavior, some cases 473

are shown in Appendix A.5 Re-querying further 474

boosts performance to 82.49% and 88.15%, signifi- 475

cantly exceeding Astute RAG, which also queries 476

the model multiple times. These results suggest 477

that Grft enables the LLM to effectively detect con- 478

tradictions between internal and external answers. 479

Unhelpful contexts. As in Table 1 (column “Un- 480

helpful"), when LLMs are provided with random 481

contexts (irrelevant to the query) or distracted con- 482

texts (superficially relevant but lacking the correct 483

answer), we observe significant performance degra- 484

dation. Even when the LLM itself possesses the 485

correct knowledge, accuracy drops to 53.14% (ran- 486

dom) and 44.62% (distracted). Training-free meth- 487

ods, such as ICL and CoT, prove ineffective, with 488

system prompts yielding less than 1% improve- 489

ment. Similarly, training-based baselines show 490

minimal gains (less than 3%), highlighting the lim- 491

itations of directly updating model parameters. 492

Compared to the other methods, our method 493

demonstrate substantial improvements, with Grft 494
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Table 1: Results on Different Query Types (%)

Method
Known queries Unknown queries

Contradictory Unhelpful
Matched

Helpful Context
Short Long Random Distracted Short Long

LLM 34.55 25.33 53.14 44.62 99.26 97.27 97.09
ICL 21.07 23.01 22.77 24.94 80.79 80.81 92.00
CoT 41.83 36.02 42.68 36.25 99.04 98.32 95.23
System Prompt 35.48 25.56 53.68 44.85 91.87 96.85 95.72
FT-Llama-Lora 31.68 27.42 52.21 47.25 97.68 95.52 89.79
FT-Llama-Full 32.68 26.94 54.08 47.28 95.29 96.29 93.08
Astute-RAG 59.60 46.70 72.56 69.80 93.60 72.88 86.73
Grft-W/O Gate 60.42 45.39 72.99 67.70 94.13 89.03 88.36
Grft-W/O Loss 41.05 36.48 72.30 68.09 98.14 92.36 90.17
Grft 60.88 61.19 73.22 68.86 99.07 98.23 97.03
Gtft-requery 82.49 88.15 97.68 98.46 99.38 97.30 96.99

achieving 73.22% (+20.08%) on random contexts495

and 68.86% (+24.24%) on distracted contexts, val-496

idating its effectiveness. After re-querying, per-497

formance rises to 97.98% and 98.46%, surpassing498

Astute RAG by 25.12% and 29.66%. These results499

indicate that Grft nearly identifies all unhelpful500

queries, though it may occasionally fail to recall its501

own answer without re-querying.502

4.2.2 Performance on normal inputs503

Matched contexts. When providing LLMs with504

contexts that matched with their existing knowl-505

edge, both external and internal data can yield506

high accuracy. As shown in Table 1 (column507

"Matched"), LLMs achieve near-perfect accuracy508

(99.26%) when provided with matched contexts.509

Other baselines also demonstrate satisfactory per-510

formance, although we observe some degrada-511

tion with methods such as system prompts, Chain-512

of-Thought (CoT), and Astute-RAG. This sug-513

gests that these methods may inadvertently mis-514

lead LLMs in such cases. Additionally, Grft-W/O515

gate exhibits a 5% performance degradation, likely516

due to unnecessary interventions being applied517

to the representations. In contrast, our Grft and518

Grft-requery methods maintain high performance,519

achieving 99.07% and 99.38% accuracy, respec-520

tively. This underscores the effectiveness of our521

gate design in preserving performance while avoid-522

ing unnecessary interventions.523

Unknown queries with helpful contexts. When524

providing questions that the LLM cannot answer525

on its own, helpful contexts enable the LLM to526

leverage external information effectively. In such527

cases, we expect the LLM to achieve high accu-528

racy. As shown in Table 1(column "(column “Con-529

tradictory")"), the LLM achieves excellent perfor- 530

mance (97.27% for short and 97.09% for long 531

contexts) when the correct context is provided. 532

However, some baselines exhibit significant per- 533

formance degradation. For instance, ICL achieves 534

only 80% accuracy on helpful short contexts, likely 535

because the LLM is misled by in-context examples 536

and fails to fully utilize external evidence. Simi- 537

larly, FT-LoRA and FT-Full show reduced accu- 538

racy (89.79%, -5.30% and 93.08%, -4.01%, respec- 539

tively) on helpful long contexts, indicating that 540

direct fine-tuning can impair the LLM’s ability to 541

leverage helpful contexts. Astute RAG performs 542

the worst, suffering performance losses of 24.39% 543

(short) and 10.36% (long), as it first prompts the 544

LLM without context, introducing incorrect an- 545

swers that degrade performance when external evi- 546

dence is later provided. 547

Among representation-based methods, Grft- 548

W/O Gate and Grft-W/O loss improve performance 549

on “noisy" inputs but degrade performance on help- 550

ful contexts, achieving only 89.03% (short) and 551

88.36% (long) for Grft-W/O Gate, and 92.36% 552

(short) and 90.17% (long) for Grft-W/O loss. This 553

is because minimal intervention is needed for help- 554

ful contexts, and unnecessary interventions in these 555

methods lead to performance degradation. In con- 556

trast, our Grft and Grft-requery methods maintain 557

performance comparable to the original LLM, vali- 558

dating the effectiveness of our gate design, which 559

distinguishes between normal and noisy inputs and 560

avoids excessive intervention in such cases. 561

4.3 Gate Value analysis 562

To validate the effectiveness of our gate design, 563

we visualize the average gate values across all test 564
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queries for different contexts in Figure 4. As shown,565

the gate value is significantly high for noisy in-566

puts: it exceeds 0.7 for contradictory contexts and567

approaches 1 for unhelpful contexts with known568

queries. This demonstrates that the intervention569

mechanism is successfully activated for most noisy570

inputs. In contrast, for normal inputs—such as571

aligned contexts and unknown queries with help-572

ful contexts—the average gate value remains be-573

low 0.3, indicating minimal intervention is applied574

to the representation, thereby preserving perfor-575

mance.576

Table 2: Comparison of different fine-tuning methods.

Method Parameters Percentage

Full-FT 6.74B 100%
LoRA (r=4) 2.1M 0.0311%

ReFT(Grft-W/O Gate) (r=4) 32.8K 0.0005%
GrFT (r=4) 36.9K 0.0005%

Cont. Unhelpful Align Unknown
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Figure 4: Gate value on different contexts
4.4 Parameters Comparison577

We compare the trainable parameters of our Grft578

method with baseline methods in Table 2. Grft579

demonstrates high parameter efficiency, utilizing580

only 0.0005% of the parameters required by Full-581

FT and 1.6% of those used by LoRA-FT. Compared582

to ReFT, our method introduces a minimal 4.1K583

additional parameters (for the gate function) while584

achieving significantly more stable performance,585

as evidenced in Table 1. This parameter efficiency586

allows the adaptation to be conducted in a resource-587

effective manner.588

4.5 Generazation performance589

To validate the generalization ability of our meth-590

ods, we report the performance of Grft and Grft-591

requery—trained on ConflictQA—against other592

baselines on unseen datasets. Specifically, we eval-593

uate the generalization ability on contradictory con-594

texts using COUNTERFACT (Meng et al., 2022),595

a distinct dataset. We selected a subset of 1,000596

samples from COUNTERFACT that Llama-7B-597

Chat can answer correctly. For each sample, we598

Table 3: Results on Knowns.QA and NQ (%)

Method
Knowns.QA NQ

Misleading Right Unhelpful Random
LLM 42.24 93.56 52.47 38.84
ICL 14.32 77.21 21.89 11.50
CoT 47.61 94.57 40.20 34.07
System Prompt 45.82 96.18 55.62 49.15
Astute-RAG 51.43 87.94 60.39 68.74
FT-Llama-Lora 37.47 90.45 36.29 45.32
FT-Llama-Full 43.15 91.23 42.35 47.98
ReFT-Llama-Gate 62.52 95.11 62.18 62.95
ReFT-Gate-re-query 75.78 97.61 83.13 82.20

provided both contradictory and correct contexts 599

alongside the question to the model and measured 600

its performance. For the generalization on unhelp- 601

ful contexts, we utilized a 1200 subset of NQ (Nat- 602

ural Questions) that Llama-7B-Chat can answer. 603

We paired these questions with random contexts 604

from other NQ questions and distracted contexts 605

constructed by Cuconasu et al. (2024a). 606

As shown in Table 3, we observe that Grft 607

consistently enhances LLMs’ performance when 608

handling contradictory and unhelpful inputs. On 609

COUNTERFACT, Grft achieves an accuracy of 610

62.52% on contradictory inputs, which is 20.28% 611

higher than using the LLM directly. Furthermore, 612

Grft-requery improves accuracy to 75.78%, out- 613

performing Astute-RAG by 24.35%. On the NQ 614

dataset (where Llama-7B-Chat knows the answers), 615

Grft demonstrates performance improvements of 616

9.71% (distracted contexts) and 24.11% (random 617

contexts) compared to the original LLM. Addi- 618

tionally, Grft-requery achieves high accuracies of 619

83.13% (unhelpful contexts) and 82.20% (random 620

contexts). These results indicate that Grft effec- 621

tively captures the intrinsic patterns of noisy inputs 622

and exhibits strong transferability. 623

5 Conclusion 624

In this paper, we present Grft, a lightweight gated 625

representation fine-tuning approach to enhance 626

LLMs’ contextual robustness. Through training a 627

lightweight intervention function (parameters only 628

accounting for 0.0004% of model size) on fewer 629

than 200 samples, Grft effectively adapts LLMs to 630

exhibit context-robust behaviors: relying on ex- 631

ternal context only when necessary, identifying 632

contradictions and give integrated answers, and 633

ignoring unhelpful contexts. Experimental results 634

demonstrate that Grft significantly improves LLMs’ 635

robustness to imperfect contexts while maintaining 636

their original capabilities, providing a practical so- 637

lution for real-world applications where handling 638

imperfect evidence is crucial. 639
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6 Limitations640

In this work, we primarily focus on enhancing641

LLMs’ context-robust performance when process-642

ing single context-question pairs. Our current643

approach demonstrates effectiveness in improv-644

ing contextual understanding, though there remain645

promising directions for future exploration. Specif-646

ically, we aim to investigate more sophisticated647

relationships, both internal and external, between648

different contexts to further enhance model perfor-649

mance. While our experimental evaluation centers650

on Llama-2-7B and Llama-3-8B-instruct, we plan651

to extend our analysis to a broader range of models652

to validate the generalizability of our approach and653

identify potential model-specific optimizations.654
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A Appendix 843

A.1 ablation studies 844
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Figure 5: Ablation study on i-th layer intervention
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Figure 6: Ablation study on number of training queries

In this section, we conduct ablation studies on the intervention effect on different layers and the minimal 845

requirement of training samples. 846

Intervention on different layers. To explore which layers the intervention is effective to enhance 847

the robustness performance, we plot the performance on test set under various situations(Contradictory, 848

Unhelpful, aligned, unknown) with layers in Fig 5. As we can observe, doing intervention on the early 849

layers is more effective (earlier than 15th layers). This may be because the internal knowledge is likely to 850

be stored on middle layer MLPs(Meng et al., 2022), and thus it’s essential to change the representation in 851

the early stage to help retrieve internal information. In contrast, if doing the intervention on later layers, 852

the internal information is not likely to be retrieved and thus the performance on noisy query can not be 853

effectively improved. 854

Training sample requirement. In this section, we investigate the minimal training data requirement 855

to achieve reasonable performance. In our main experiments, we utilize N1 = 100 known queries and 856

N2 = 100 unknown queries (totaling 200 queries and 400 samples) to train the intervention parameters. 857

To explore the impact of reduced training data, we now vary the number of queries, using only N1 = n0 858

known queries and N2 = n0 unknown queries for training. We vary n0 from 10 to 100. The results are 859

shown in Figure 6. 860

We observe that even with fewer samples (e.g., n0 = 60), the model achieves stable and satisfactory 861

performance. Furthermore, using as few as n0 = 20 known and unknown training queries still improves 862

performance compared to the original LLMs. These findings highlight the efficiency of our approach in 863

leveraging limited training data to enhance model performance. 864

A.2 Results on Llama-8B-Instruct 865

In this section, we also present the results of Grft on the Llama-8B-Instruct model. We adhere to the 866

experimental settings outlined in Section 4.1. For Llama-8B-Instruct, we obtained 2,190 known and 4,429 867
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unknown queries. We randomly sampled 100 known and 100 unknown queries to train the intervention868

functions on layer 0 (as it consistently delivers stable performance across all cases) and evaluated the869

performance on the remaining test set. As shown in Table 4, both Grft and Grft-requery significantly870

improve the model’s performance on noisy inputs while maintaining its effectiveness on matched contexts871

and unknown queries. This further validates the robustness and generalizability of Grft across different872

models.873

Table 4: Llama-3 results.

Method
Known queries Unknown queries

Contradictory Unhelpful
Matched

Helpful Context
Short Long Random Distracted Short Long

LLM 26.47 26.99 51.67 39.62 99.67 96.89 97.52
ICL 29.19 27.89 25.31 24.78 97.66 96.10 97.69
CoT 30.81 26.08 19.00 19.00 99.57 99.28 96.28
System Prompt 36.36 35.02 59.19 47.08 98.37 89.33 98.08
Astute-RAG 53.44 46.55 69.80 73.66 94.50 81.66 81.46
FT-Llama-Lora 32.08 30.18 26.09 25.89 93.28 94.32 96.03
FT-Llama-Full 31.98 29.02 27.19 24.96 95.03 95.26 94.39
ReFT(Training) 40.08 43.05 62.03 69.01 93.02 91.18 89.07
ReFT-Gate-W/O loss 39.33 44.07 63.06 68.85 95.90 92.09 91.05
ReFT-Gate 54.11 52.25 70.86 66.36 98.04 95.99 97.49
ReFT-Gate-re-query 69.47 78.18 82.02 96.03 99.71 95.38 97.51

A.3 Baseline Details874

Prompts used for ICL, CoT and System prompts. We detail our prompts for ICL, CoT and system875

prompts in Fig 7.876

Lora fine-tuning and Full finetuning We fine-tuned Llama-2-7b-chat-hf using LoRA with configu-877

rations: rank=4, alpha=8, dropout=0.05, targeting q_proj and v_proj modules. The model was trained878

for 100 epochs with a batch size of 4, learning rate of 4e-4, and under bfloat16 precision. We fine-tuned879

Llama-2-7b-chat-hf using full-parameter tuning with learning rate of 1e-5, batch size of 1, and 100 epochs.880

Training optimizations include gradient accumulation steps of 8, gradient checkpointing, fused AdamW881

optimizer, and warmup ratio of 0.03. The model uses bfloat16 precision.882

Astute-RAG. The Astute-RAG approach posits that externally retrieved knowledge may contain irrele-883

vant, misleading, or even malicious information, which could adversely affect the performance of LLMs.884

This method iteratively integrates internal and external knowledge, ultimately determining the final output885

of the LLMs based on the reliability of the information.886

Specifically, this method contains three stages: generate initial context, consolidate knowledge, and887

generate final answer. The Astute-RAG approach initially extracts key internal information about the input888

question. The generated internal knowledge will be integrated with the retrieved external information,889

with all sources explicitly annotated. The initial context follows this structure: "Own memory: {internal890

knowledge}\n External Retrieval: {retrieved knowledge}". This initial context undergoes t− 1 iterations891

in the consolidation stage. Each iteration generates a new context by leveraging the initial context and the892

last generated context. In the final stage, the generated contexts are used to produce the final answer with893

the highest credibility score. The prompt utilized is shown in Figure 8.894

A.4 Dataset description.895

In our experiments, we primarily utilize the ConflictQA dataset, with COUNTERFACT and NQ datasets896

for generalization studies. The ConflictQA dataset combines questions from PopQA (Mallen et al., 2023)897

with both aligned and contradictory evidence. Each sample contains a question paired with concise and898

detailed supporting evidence, as well as ChatGPT-generated contradictory evidence in both short and899

long forms. The COUNTERFACT dataset (Meng et al., 2022) provides questions with matched and900

contradictory answers, making it suitable for evaluating model performance on contradictory contexts.901
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Prompts

System Prompt
System: You are an AI assistant specialized in answering questions via a two-stage evaluation
process. First check if you can answer the question with your knowledge. If uncertain, use the
provided context. If you have relevant knowledge, evaluate the context: use both sources if aligned,
explicitly state conflicting perspectives if they disagree, or ignore irrelevant context and answer
from your knowledge alone.

User: Context: {context} Question: {question}

In-Context Learning
System: You are a helpful assistant.

User: Here are some examples:
Case 1 - No Internal Knowledge: Context: Eleanor Davis is a cartoonist who has published graphic
novels like "The Hard Tomorrow". Question: What is Eleanor Davis’s occupation? I don’t have
confident knowledge about Eleanor Davis, so I’ll rely on the context: Eleanor Davis is a cartoonist
who publishes graphic novels.
Case 2 - Contradicting Knowledge: Context: Eleanor Davis works as a marketing manager for a
cosmetic company in New York City. Question: What is Eleanor Davis’s occupation? This context
CONTRADICTS my knowledge. I know Eleanor Davis is a cartoonist and illustrator. However,
the context claims she is a marketing manager.
Case 3 - Aligned Knowledge: Context: Eleanor Davis is an American cartoonist and illustrator
who creates comic works for both adolescent and adult audiences. Question: What is Eleanor
Davis’s occupation? The context ALIGNS with my knowledge - Eleanor Davis is a cartoonist and
illustrator.
Case 4 - Irrelevant Context: Context: Eleanor before her—Eleanor of Normandy, an aunt of
William the Conqueror, lived a century earlier. Question: What is Eleanor Davis’s occupation?
The context is NOT HELPFUL. Based on my knowledge, Eleanor Davis is a cartoonist and
illustrator.
Now please answer: Context: {context} Question: {question}

Chain-of-Thought
System: You are a helpful assistant.

User: Context: {context} Question: {question}
Think step by step: 1. Knowledge Check: Do I have reliable information about this topic in my
internal knowledge? What specifically do I know? 2. Context Analysis: - If I don’t know: What
information does the context provide to answer this question? - If I do know: Compare context
with my knowledge for alignment or conflicts 3. Evaluation: - Does context match my knowledge?
- Does it contradict what I know? - Is it relevant to answering the question? 4. Response Strategy:
- Unknown topic: Use context - Aligned knowledge: Use either source - Conflicting information:
Present both perspectives - Irrelevant context: Use my knowledge only

Figure 7: Three prompting approaches with their respective system and user prompts.

For unhelpful context evaluation, we use a subset of the Natural Questions (NQ) dataset (?) following 902

Cuconasu et al. (2024b). For each NQ question, we select the highest-ranked distractor context and a 903

randomly chosen golden passage from another question as unhelpful context. 904

A.5 Grft Answer Examples 905

In Fig 9, we show some output examples of Grft when encountering contradictory and unhelpful contexts, 906

we can observe in these examples, that Grft successfully adapts LLM to our desired context-robust 907

behaviors. 908
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Prompts

Stage 1: Generate Internal Knowledge
Generate a document that provides accurate and relevant information to answer the given question.
If the information is unclear or uncertain, explicitly state ’I don’t know’ to avoid any hallucinations.

Question: {question} Document

Stage 2: Consolidate the Knowledge
Task: Consolidate information from both your own memorized documents and externally retrieved
documents in response to the given question.

* For documents that provide consistent information, cluster them together and summa-
rize the key details into a single, concise document.
* For documents with conflicting information, separate them into distinct documents, ensuring
each captures the unique perspective or data.
* Exclude any information irrelevant to the query.
For each new document created, clearly indicate:
* Whether the source was from memory or an external retrieval.
* The original document numbers for transparency.

Initial Context: {initial context}
Last Context: {last context}
Question: question
New Context:

Stage 3: Generate Final Answer
Task: Answer a given question using the consolidated information from both your own memorized
documents and externally retrieved documents.

Step 1: Consolidate information
* For documents that provide consistent information, cluster them together and summarize the key
details into a single, concise document.
* For documents with conflicting information, separate them into distinct documents, ensuring
each captures the unique perspective or data.
* Exclude any information irrelevant to the query
For each new document created, clearly indicate:
* Whether the source was from memory or an external retrieval.
* The original document numbers for transparency.

Step 2: Propose Answers and Assign Confidence
For each group of documents, propose a possible answer and assign a confidence score based on
the credibility and agreement of the information.

Step 3: Select the Final Answer
After evaluating all groups, select the most accurate and well-supported answer.
Highlight your exact answer within <ANSWER> your answer </ANSWER>.

Initial Context: {initial context}
Consolidated Context: {last context}
Question: {question}
Answer:

Figure 8: Prompts of Astute-RAG
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Model Outputs

Contradictory Context Responses
Question 1: What type of movie is Flightplan?
Response: This context CONTRADICTS my existing knowledge. Based on what I know,
Flightplan is a thriller film . However, based on the context, Flightplan is movie action .

Question 2: Where is Karahasanlı located?
Response: This context CONTRADICTS my existing knowledge. Based on what I know,
Karahasanlı is located in Turkey . However, based on the context, Karahasanlı is in fr .

Question 3: What is Old Persian?
Response: This context CONTRADICTS my existing knowledge. Based on what I know,
Old Persian is an ancient language that was spoken in ancient Persia, which is now modern-day Iran .

However, based on the context, Old Persian is in British North America .

Unhelpful Context Responses
Question 4: What is Scooter Braun’s occupation?
Response: The context is NOT HELPFUL to the question. Based on what I know,
Scooter Braun’s occupation is talent manager and entrepreneur .

Question 5: Who is Pathit Pisitkul?
Response: The context is NOT HELPFUL to the question. Based on what I know,
Pathit Pisitkul is a Thai actor and model .

Question 6: Who is Nicholas Sanduleak?
Response: The context is NOT HELPFUL to the question. Based on what I know,
Nicholas Sanduleak is an astronomer .

Figure 9: Model responses for contradictory and unhelpful contexts, where green indicates model’s internal

knowledge and blue indicates context-based information.
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