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Abstract

Medical object detection revolves around discov-
ering and rating lesions and other objects, with
the most common way of measuring performance
being FROC (Free-response Receiver Operating
Characteristic), which calculates sensitivity at
predefined thresholds of false positives per case.
However, in a diagnosis or screening setting not
all lesions are equally important, because small
indeterminate lesions have limited clinical signifi-
cance, while failing to detect and correctly clas-
sify high risk lesions can potentially hinder clini-
cal prognosis and treatment options. It is therefore
cardinal to correctly account for this risk imbal-
ance in the way machine learning models are de-
veloped and evaluated. In this work, we propose
risk-adjusted FROC (raFROC), an adaptation of
FROC that constitutes a first step on reflecting the
underlying clinical need more accurately. Experi-
ments on two different breast cancer datasets with
a total of 1535 lesions in 1735 subjects showcase
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the clinical relevance of the proposed metric and
its advantages over traditional evaluation methods.
Additionally, by utilizing a risk-adjusted adapta-
tion of focal loss (raFocal) we are able to improve
the raFROC results and patient-level performance
of nnDetection, a state-of-the-art medical object
detection framework, at no expense of the regular
FROC.

1. Introduction
In automatic diagnosis systems, discovery and rating of
suspicious lesions in MR images is commonly formulated
as an object detection task (Ayatollahi et al., 2021; Maicas
et al., 2019; 2017; Gubern-Mérida et al., 2015). FROC
(Free-response Receiver Operating Characteristic), which is
calculated as the mean of sensitivity at predefined numbers
of false positives per case, is the standard measure of per-
formance (Reinke et al., 2022; Setio et al., 2017; Ayatollahi
et al., 2021; Maicas et al., 2019; Baumgartner et al., 2021).

FROC and other detection metrics, as well as the losses used
to train machine learning (ML) models, treat all objects as
equally important. However, small indeterminate lesions
often have lower clinical significance, while failing to de-
tect and correctly classify high risk lesions can potentially
hinder clinical prognosis and treatment options (Sopik &
Narod, 2018). Additionally, if lower risk lesions are more
prevalent the model can become biased towards them dur-
ing training. Therefore, there is a disconnect between the
underlying clinical need and the way models are optimized
and evaluated, which can hinder clinical performance, make
measuring scientific progress harder, and hamper clinical
translation of ML (Maier-Hein et al., 2022).

Tumor size is one of the indicators of clinical prognosis in
Breast Cancer (BC) and constitutes one of the three factors
of the TNM (Tumor, Nodes, Metastasis) staging system
(Cserni et al., 2018), which is widely used to categorize
breast tumors and other carcinomas. Accordingly, the re-
lationship between tumor size and mortality risk has been
extensively studied (Sopik & Narod, 2018; Verschraegen

1



Risk-adjusted Training and Evaluation for Medical Object Detection in Breast Cancer MRI

et al.), enabling the usage of tumor size as a characteristic
of clinical significance for tumors and model predictions.

There are examples of methods that have taken similar con-
cerns into account. Net benefit (Vickers et al., 2016) is
an approach for evaluating classification models that sets
an exchange rate between finding positive cases and per-
forming unneeded biopsies. Also, in object detection, the
non-medical COCO challenge (Lin et al., 2014) presents av-
erage precision results for small, medium, and large objects,
alongside the total overall score. However, when applied to
medical problems this size-stratified analysis suffers from
various shortcomings. It requires selection of size thresh-
olds, assumes that risk is uniform in each size range, utilizes
different prediction probability thresholds for determining
the number of false positives in each range, and can not
result in a single score which can be compared. There is a
need for more accurate and straightforward accounting of
risk in medical object detection evaluation.

In this work, we present an adapted version of FROC, named
raFROC (“risk-adjusted” FROC), that accounts for the risk
differences between objects in medical object detection,
bringing the evaluation metric closer to the needs of diagno-
sis and screening. Additionally, we analyze the performance
of nnDetection (Baumgartner et al., 2021), a state-of-the-
art medical object detection method built on Retina U-Net
(Jaeger et al., 2020), using raFROC and compare it to other
pre-existing metrics, in two BC datasets with different lesion
size distributions and acquisition protocols, totaling 1535
lesions in 1735 subjects. Lastly, by utilizing a basic risk-
adjusted adaptation of focal loss (raFocal), we are able to
show that it is possible to get improvements in the raFROC
results and patient-level performance, at no expense of the
regular FROC.

2. Methodology
2.1. Risk-adjusted FROC (raFROC)

The FROC plot shows sensitivity at certain manually de-
fined thresholds of false positives per case (commonly FPPI
- False Positives Per Image) and constitutes the base for
raFROC. To account for risk in raFROC, true positive (TP)
predictions and ground truth samples are weighted by a
weight w ∈ [0, 1] pertaining to the associated risk, thus
resulting in a risk-adjusted sensitivity. False positive (FP)
predictions are in turn weighted by (1−w), due to the desire
to minimize unneeded biopsies and the lower value of low
risk lesions, resulting in a risk-adjusted number of FPs (see
Fig. 1). A TP prediction that has double the risk of another
one will be given double the weight during evaluation, or
vice versa for a FP. Since FROC is understood as sensitivity
at manually defined thresholds of FPs per case, raFROC can
be understood as approximating high-risk object sensitivity
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Risk-adjusted analysis
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Figure 1. Example of the different weighting of objects in the cal-
culation of the raFROC (risk-adjusted Free-response Receiver Op-
erating Characteristic) metric. Red and blue represent different
models.

at manually defined thresholds of low-risk FPs per case.
Similarly to FROC, the final raFROC score is calculated by
averaging the weighted sensitivities at all pre-defined FPPI
thresholds (Dalmış et al., 2018; Niemeijer et al., 2011; Setio
et al., 2017).

2.2. Risk-adjusted focal loss function (raFocal)

Focal loss (Lin et al., 2020) is a widely used loss function for
training one stage detectors in the natural image processing
domain. We propose a corresponding loss where focal loss
is adapted to account for risk (raFocal). To that end, we
asymmetrically adjust the loss for a risk-adapted class, a
class for which the risk calculation applies. Detection often
uses sigmoid binary classification and thus each class can be
adapted independently. Loss for other potential foreground
classes is left untouched and the methodology below only
applies to the risk-adapted class.

Let y ∈ {±1} indicate sufficient IoU (Intersection-over-
Union) with a ground truth object (with y=−1 indicating
the background class). The risk-adjusted weight wt ∈ [1, 2]
of a prediction is then calculated by:

wt =

{
1 + wgt, if y = 1

2− wpred, if y = −1

where wgt ∈ [0, 1] is the risk of the matching ground truth
box and wpred ∈ [0, 1] is the risk of the prediction box.

Thus, if the prediction is assigned to a ground truth box,
the loss gets weighted by a value that increases as the risk
of the ground truth box becomes larger. Conversely, for
a prediction assigned to the background class, the value
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increases as the risk calculated for the prediction decreases.

The calculation for raFocal loss for the risk-adapted class
finally becomes:

raFocal(pt) = −wtα(1− pt)
γ log(pt)

where pt ∈ [0, 1] is the model’s estimated probability for
the ground-truth class, α and γ are the focal loss hyperpa-
rameters.

2.3. Risk estimation

In order to calculate risk for a lesion we incorporate the
following function. It was calculated to be the 3rd degree
polynomial fit of reported 15-year BC mortality based on
lesion size in millimeters, in a multi-year study involving
819,647 patients (Sopik & Narod, 2018), which was the
largest study available in an effort to minimize potential
biases.

risk(size) = 2.28 · 10−7 · size3 − 8.75 · 10−5 · size2

+ 1.23 · 10−2 · size+ 1.37 · 10−3

Fig. 2 shows the risk function alongside the data distribution.
For use in this work, risk is normalized to [0, 1] by dividing
by 0.641, the highest value in the [0, 150] mm range of the
study.

While this function pertains to BC, similar functions can be
constructed for other domains, potentially including other
risk factors. The function can also be refined in the future if
more epidemiological data are released.

3. Experiments
3.1. Data

University Hospital (UH) dataset. The ethics committee of
Friedrich-Alexander-University (FAU) Erlangen-Nürnberg
approved this study and waived the need for written in-
formed consent. Inclusion critiria were acquisitions with full
diagnostic protocol that included DWI (Diffusion Weight-
ing Imaging) sequences acquired with the b-values b=50,
750, 1500 s/mm2, using 1.5T and 3.0T MRI. The dataset
comprises 818 patients and included examinations were ac-
quired between November 2017 and January 2020. Lesions
were segmented in DWI sequences as a consensus (one
board certified radiologist supervising one medical student).
Histopathologically proven malignant lesions account for
618 lesions in 268 cases, while 1003 lesions in 373 cases
were kept as a benign class to aid the model.
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Figure 2. Absolute frequencies of malignant tumor sizes, alongside
the associated 15-year mortality risk of each size. The University
Hospital dataset is DW-MRI and Duke is DCE-MRI. Size is de-
fined as the max axial detection box side.

Duke dataset. Publicly available (Saha et al., 2022; 2018;
Clark et al., 2013), pre-operative dynamic contrast enhanced
MRI, including 917 cases with 917 lesions (randomly se-
lected independent test set: 230 images / 230 lesions). Sub-
traction images were used, in which the pre-contrast image
was subtracted from the second post-contrast image.

3.2. Experimental setup

nnDetection was used as the development framework.
Model parameters were optimized solely using focal loss
and FROC. 8 epochs were found to perform best with 2500
batches per epoch and a learning rate of 0.01. The standard
nnDetection augmentation pipeline was used. Focal loss
hyperparameters α=0.75 and γ=1 were used (from values
in [0.25, 0.75] and {1, 2} respectively). In order to assess
the validity of the proposed loss and metric, we perform the
following experiments:

Empirically confirm shortcomings of FROC to motivate
raFROC. We assume two hypothetical models, where one
is equivalent to detecting only small lesions and another
to detecting only large ones. To achieve that, we pick a
size threshold that splits the lesions into two buckets as
evenly as possible. The two hypothetical models are able
to predict lesions only from their respective bucket. We
investigate whether there is a difference in patient-level
sensitivity and risk-adjusted object-level sensitivity. This
experiment is performed in the UH dataset, which contains
both pathological and non-pathological cases.

Performance of proposed loss using traditional evalua-
tion metrics. We evaluate by means of aggregating 5-fold
cross validation results for the UH dataset and dedicated test
set for the Duke dataset. The methods used are:
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• FROC analysis for all datasets.

• Size-stratified FROC analysis for all datasets using
the above-mentioned COCO method (Lin et al., 2014),
where for a certain object size range, ground truth ob-
jects with size outside the range as well as non match-
ing predictions with size outside the range are dis-
carded prior to the calculation. 20mm was chosen as
the size range cut-off, because it constitutes the cut-off
between T1 and T2 in the TNM staging system (Cserni
et al., 2018).

• Patient-level AUC (Area Under Curve) and patient-
level AP (Average Precision) for the UH dataset that
has both pathological and non-pathological cases.

Performance of proposed loss using the proposed evalu-
ation metric. The hypothesis is that raFocal will perform
better than focal loss, especially for the UH dataset where
there is an abundance of small lesions. We are also looking
to gain insights on the risk-adjusted performance using the
evaluation performed with the traditional methods and show-
case that raFROC is a simpler approach with less overhead
and pitfalls.

3.3. Results

Empirically confirm shortcomings of FROC to motivate
raFROC. We chose a size threshold of 12mm, in order to
split the ground truth malignant lesions into two buckets
as evenly as possible, which resulted in 302 lesions in the
small lesion size bucket and 316 in the large one. We as-
sume two hypothetical models, where the first one detects
all of the small lesions and the second all the large ones.
These models have similar object-level sensitivities, 0.49
and 0.51, as they are able to detect a similar amount of ma-
lignant lesions. However, the diagnostic value of the two
models differs, as smaller lesions are often accompanied
by larger ones in the same patient and because there can be
multiple small lesions per patient. The small lesion model
can achieve a patient-level sensitivity of only 0.55, com-
pared to 0.82 for the large lesion one. As such, the large
lesion model would be preferable in a diagnostic setting.
The risk-adjusted object-level sensitivity that raFROC uses
is able to reflect this difference by using increased weights
for larger lesions, coming out as 0.24 and 0.76 respectively.
Fig. 3 summarizes the result.

Performance of proposed loss using traditional evalua-
tion metrics. Fig. 4 shows the results of the FROC analysis.

• For the UH dataset, the raFocal model performs
slightly better at the object-level in lower thresholds.
The higher sensitivity of the focal model at 1 FP/case
in the 20+mm plot is misleading, as this happens for a
very low prediction probability threshold (0.025) which

Higher patient-level predictive ability of large high-risk lesions

Hypothetical model predicting all small lesions
Object-level Sensitivity: 0.49
Patient-level Sensitivity: 0.55
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Object-level Sensitivity: 0.51
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Figure 3. Summary of the different predictive ability of lesion sizes
in the experiment on the University Hospital data, where all lesions
are divided into two buckets depending on their size and two hypo-
thetical models are assumed that predict only from the respective
bucket. Multiple lesions can belong to a single patient.

is not relevant, as it is lower than the largest threshold
used in the overall FROC plot at 8 FPs/case (0.039).
On the patient level, the raFocal model achieves 0.86
AUC and 0.77 AP compared to 0.84 AUC and 0.70
AP for the focal model (p=0.006 significant difference
between AUC scores using the DeLong method (Sun &
Xu, 2014)), meaning that the raFocal model was more
capable of detecting pathological cases.

• For the Duke dataset, the analysis shows improvement
in all FROC plots. However, upon closer inspection,
most of the benefit in the overall FROC performance
comes from the 20+mm range and the two plots fol-
low a similar pattern. That is because the probability
thresholds used for the overall FROC curve produce
very similar number of 0-20mm TPs. In fact, the largest
difference is in the lowest threshold, where focal loss
actually has more 0-20mm TPs, 24 vs 20, something
not visible in the 0-20mm plot.

Performance of proposed loss using the proposed eval-
uation metric. The results (Fig. 5) indicate that raFocal
shows improvements in raFROC compared to focal loss,
especially for the UH dataset, where there is more variance
in the lesion sizes. This is in accordance with the increase in
the patient-level metrics observed and the slight increase in
0-20mm lesion performance for the lower thresholds. The
improvement in the Duke dataset stems from better large
lesion performance, as indicated by the size-stratified anal-
ysis. raFROC is able to incorporate components from all
pre-existing evaluation techniques, while keeping results
simple and reflecting a more accurate risk model, regardless
of the underlying properties of the dataset.
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Figure 4. Performance of the proposed loss function (raFocal) us-
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is the regular FROC (Free-response Receiver Operating Character-
istic), while the next two rows comprise the size-stratified FROC
analysis with the method used in COCO.
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Figure 5. Performance of the proposed loss function (raFocal) us-
ing the proposed evaluation metric, raFROC (risk-adjusted Free-
response Receiver Operating Characteristic).

3.4. Discussion

In this work, we propose a risk-adjusted approach to training
and evaluating medical object detection models using DW
and DCE MRI breast cancer datasets.

While FROC is a useful metric for evaluation in medical
object detection, it can only speak to a model’s ability in
detecting objects, without any other consideration regard-
ing the dataset distribution, patient-level performance, and
risk disparities between objects. Size-stratified FROC, as
used in COCO (Lin et al., 2014), can potentially showcase
differences in model performance for different object size
ranges, but it comes with the limitations discussed above
and can sometimes even be misleading by showing results
of prediction probability thresholds that are not applicable.
Separate probability thresholds for each range are not pos-
sible, as the method allows for predictions to be counted
as correct if matching, regardless of size. Patient-level met-
rics can be of similar importance. However, they add new
parameters to the decision process, making it difficult to
decide between two potential models if, e.g., one of them
has higher FROC and the other higher AUC. Risk-adjusted
FROC is able to incorporate aspects of all aforementioned
metrics and is situated closer to the underlying clinical need,
as it is augmented by well established adverse clinical out-
come data and can pave the way for incorporating more risk
and clinical pathway considerations into medical machine
learning.

Adequate loss functions are required to represent the ad-
dressed problem and data, thereby accounting for any im-
balances. If a dataset has many small lesions, the model
can be lead to try capture more of them at the expense of
larger ones. The proposed raFocal loss constitutes a first
example methodology for bringing risk considerations into
the loss calculation for BC analysis. Additionally, given that
having multiple high risk large lesions in a single case is
quite common, raFocal can reflect patient-level performance
alongside object-level performance, which was previously
missing during model training.

Utilizing only lesion size is one of the limitations of this
study; it is however a first step in the right direction. Size is
one of the important factors influencing prognosis and there
is currently a lack of additional well-established risk factors
provided by MR imaging alone. The moderate performance
of the neural network in the UH dataset could be seen as
another limitation of our work. It can however be explained
by the large amount of 1003 small benign lesions, often
present in cases where there are also malignant lesions, in
non contrast-enhanced MRI.
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4. Conclusion
This work showcases how to realize risk-adjusted model
training and validation in medical object detection. Ac-
counting for clinical risk and outcome is very important in
a medical diagnosis setting compared to other domains,
because it allows balancing the trade off between false
positive findings and missing pathologies, significantly in-
fluencing the clinical outcome of the individual patient.
The method presented brings model evaluation and train-
ing loss closer to that need and is a better approach than
size stratification. Source code for raFROC and raFocal
loss is publicly available on https://github.com/
MIC-DKFZ/imlh-icml-detection-tools.
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A. Patient-level Predictive Ability of Lesion Sizes Results Summary

Table 1. Summary of experiment: Empirically confirm shortcomings of FROC to motivate raFROC.

NUMBER OF LESIONS OBJECT SENS PATIENT SENS RISK-ADJUSTED SENS

SMALL LESION BUCKET 302 0.49 0.55 0.24
LARGE LESION BUCKET 316 0.51 0.82 0.76

B. Loss Comparison Results Summary

Table 2. Summary of focal and raFocal loss results in the two datasets.

UNIVERSITY HOSPITAL DUKE

LOSS AUC AP FROC RAFROC FROC RAFROC

FOCAL 0.84 0.70 0.497 0.598 0.830 0.878
RAFOCAL 0.86 0.77 0.517 0.645 0.852 0.906
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