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ABSTRACT

We present a novel learning framework for cloth deformation by embedding virtual
cloth into a tetrahedral mesh that parametrizes the volumetric region of air surround-
ing the underlying body. In order to maintain this volumetric parameterization
during character animation, the tetrahedral mesh is constrained to follow the body
surface as it deforms. We embed the cloth mesh vertices into this parameterization
of three-dimensional space in order to automatically capture much of the nonlinear
deformation due to both joint rotations and collisions. We then train a convolutional
neural network to recover ground truth deformation by learning cloth embedding
offsets for each skeletal pose. Our experiments show significant improvement over
learning cloth offsets from body surface parameterizations, both quantitatively and
visually, with prior state of the art having a mean error five standard deviations
higher than ours. Without retraining, our neural network generalizes to other body
shapes and T-shirt sizes, giving the user some indication of how well clothing might
fit. Our results demonstrate the efficacy of a general learning paradigm where
high-frequency details can be embedded into low-frequency parameterizations.

1 INTRODUCTION

Cloth is particularly challenging for neural networks to model due to the complex physical processes
that govern how cloth deforms. In physical simulation, cloth deformation is typically modeled via
a partial differential equation that is discretized with finite element models ranging in complexity
from variational energy formulations to basic masses and springs, see e.g. Baraff & Witkin (1998);
Bridson et al. (2002; 2003); Grinspun et al. (2003); Baraff et al. (2003); Selle et al. (2008). Mimicking
these complex physical processes and numerical algorithms with machine learning inference has
shown promise, but still struggles to capture high-frequency folds/wrinkles. PCA-based methods
De Aguiar et al. (2010); Hahn et al. (2014) remove important high variance details and struggle
with nonlinearities emanating from joint rotations and collisions. More recently, Gundogdu et al.
(2019); Santesteban et al. (2019); Patel et al. (2020); Jin et al. (2020) leverage body skinning
Magnenat-Thalmann et al. (1988); Lander (1998); Lewis et al. (2000) to capture some degree of
the nonlinearity; the cloth is then represented via learned offsets from a co-dimension one skinned
body surface. Building on this prior work, we propose replacing the skinned co-dimension one body
surface parameterization with a skinned (fully) three-dimensional parameterization of the volume
surrounding the body.

We parameterize the three-dimensional space corresponding to the volumetric region of air sur-
rounding the body with a tetrahedral mesh. In order to do this, we leverage the work of Lee et al.
(2018; 2019), which proposed a number of techniques for creating and deforming such a tetrahedral
mesh using a variety of skinning and simulation techniques. The resulting kinematically deforming
skinned mesh (KDSM) was shown to be beneficial for both hair animation/simulation Lee et al.
(2018) and water simulation Lee et al. (2019). Here, we only utilize the most basic version of the
KDSM, assigning skinning weights to its vertices so that it deforms with the underlying joints similar
to a skinned body surface (alternatively, one could train a neural network to learn more complex
KDSM deformations). This allows us to make a very straightforward and fair comparison between
learning offsets from a skinned body surface and learning offsets from a skinned parameterization of
three-dimensional space. Our experiments showed an overall reduction in error of approximately
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50% (see Table 2 and Figure 8) as well as the removal of visual/geometric artifacts (see e.g. Figure 9)
that can be directly linked to the usage of the body surface mesh, and thus we advocate the KDSM
for further study. The neural network we trained for a particular body can also be used to infer
cloth with unique wrinkle patterns on different body shapes and T-shirt sizes without retraining (see
supplemental material). In order to further illustrate the efficacy of our approach, we show that
the KDSM is amenable to being used with recently proposed works on texture sliding for better
three-dimensional reconstruction Wu et al. (2020b) as well as in conjunction with networks that use a
postprocess for better physical accuracy in the L∞ norm Geng et al. (2020) (see Figure 10).

In summary, our specific contributions are: 1) a novel three-dimensional parameterization for
virtual cloth adapted from the KDSM, 2) an extension (enabling plastic deformation) of the KDSM to
accurately model cloth deformation, and 3) a learning framework to efficiently infer such deformations
from body pose. The mean error of the cloth predicted in Jin et al. (2020) is five standard deviations
higher than the mean error of our results.

2 RELATED WORK

Cloth: Data-driven cloth prediction using deep learning has shown significant promise in recent
years. To generate clothing on the human body, a common approach is to reconstruct the cloth and
body jointly Alldieck et al. (2018a;b); Xu et al. (2018); Alldieck et al. (2019a;b); Habermann et al.
(2019); Natsume et al. (2019); Saito et al. (2019); Yu et al. (2019); Bhatnagar et al. (2019); Onizuka
et al. (2020); Saito et al. (2020). In such cases, human body models such as SCAPE Anguelov
et al. (2005) and SMPL Loper et al. (2015) can be used to reduce the dimensionality of the output
space. To predict cloth shape, a number of works have proposed learning offsets from the body
surface Guan et al. (2012); Neophytou & Hilton (2014); Pons-Moll et al. (2017); Lahner et al. (2018);
Yang et al. (2018); Gundogdu et al. (2019); Santesteban et al. (2019); Patel et al. (2020); Jin et al.
(2020) such that body skinning can be leveraged. There are a variety of skinning techniques used
in animation; the most popular approach is linear blend skinning (LBS) Magnenat-Thalmann et al.
(1988); Lander (1998). Though LBS is efficient and computationally inexpensive, it suffers from
well-known artifacts addressed in Kavan & Žára (2005); Kavan et al. (2007); Jacobson & Sorkine
(2011); Le & Hodgins (2016). Since regularization often leads to overly smooth cloth predictions,
additional wrinkles/folds can be added to initial network inference results Popa et al. (2009); Mirza
& Osindero (2014); Robertini et al. (2014); Lahner et al. (2018); Wu et al. (2020b); Patel et al.
(2020). Most recently, Patel et al. (2020) parameterized cloth as a submesh of the SMPL body mesh
and decomposed cloth deformation into low-frequency and high-frequency components. However,
this parameterization limits cloth to be bound by the topology of SMPL, and the high-frequency
folds/wrinkles added by the network are not constrained to match those in the ground truth data. In
contrast, our method allows one to predict cloth deformation independent of a predefined PCA basis,
and using Geng et al. (2020) ensures that folds/wrinkles are physically consistent.

3D Parameterization: Parameterizing the air surrounding deformable objects is a way of treating
collisions during physical simulation Sifakis et al. (2008); Müller et al. (2015); Wu & Yuksel (2016).
For hair simulation in particular, previous works have parameterized the volume enclosing the head
or body using tetrahedral meshes Lee et al. (2018; 2019) or lattices Volino & Magnenat-Thalmann
(2004; 2006). These volumes are animated such that the embedded hairs follow the body as it
deforms enabling efficient hair animation, simulation, and collisions. Interestingly, deforming a
low-dimensional reference map that parameterizes high-frequency details has been explored in
computational physics as well, particularly for fluid simulation, see e.g. Bellotti & Theillard (2019).

3 SKINNING A 3D PARAMETERIZATION

We generate a KDSM using red/green tetrahedralization Molino et al. (2003); Teran et al. (2005a) to
parameterize a three-dimensional volume surrounding the body. Starting with the body in the T-pose,
we surround it with an enlarged bounding box containing a three-dimensional Cartesian grid. As
is typical for collision bodies in computer graphics Bridson et al. (2003), we generate a level set
representation separating the inside of the body from the outside (see e.g. Osher & Fedkiw (2002)).
See Figure 1a. Next, a thickened level set is computed by subtracting a constant value from the
current level set values (Figure 1b). Then, we use red/green tetrahedralization as outlined in Molino
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et al. (2003); Teran et al. (2005a) to generate a suitable tetrahedral mesh (Figure 1c). Optionally, this
mesh could be compressed to the level set boundary using either physics or optimization, but we
forego this step because the outer boundary is merely where our parameterization ends and does not
represent an actual surface as in Molino et al. (2003); Teran et al. (2005a).

Skinning weights are assigned to the KDSM using linear blend skinning (LBS) Magnenat-Thalmann
et al. (1988); Lander (1998), just as one would skin a co-dimension one body surface parameterization.
In order to skin the KDSM so that it follows the body as it moves, each vertex vk is assigned a nonzero
weight wkj for each joint j it is associated with. Then, given a pose θ with joint transformations
Tj(θ), the world space position of each vertex is given by vk(θ) =

∑
j wkjTj(θ)v

j
k where vjk is

the untransformed location of vertex vk in the local reference space of joint j. See Figure 1d.
Importantly, it can be quite difficult to significantly deform tetrahedral meshes without having some
tetrahedra invert Irving et al. (2004); Teran et al. (2005b); thus, we address inversion and robustness
issues/details in Section 5.

(a) (b) (c) (d)

Figure 1: We build a tetrahedral mesh surrounding the body to parameterize the enclosed three-
dimensional space. First, a level set representation of the body (a) is generated and subsequently
thickened (b) to contain the clothing worn on the body. Then, we use red/green tetrahedralization
Molino et al. (2003); Teran et al. (2005a) to create a tetrahedral mesh (c) from the thickened level
set. This tetrahedral mesh is skinned to follow the body as it moves (d). Note that the tetrahedral
mesh surrounds the whole upper body to demonstrate that this parameterization can also be used for
long-sleeve shirts.

4 EMBEDDING CLOTH IN THE KDSM

In continuum mechanics, deformation is defined as a mapping from a material space to the world
space, and one typically decomposes this mapping into purely rigid components and geometric strain
measures, see e.g. Bonet & Wood (1997). Similar in spirit, we envision the T-pose KDSM as the
material space and the skinned KDSM as being defined by a deformation mapping to world space
for each pose θ. As such, we denote the position of each cloth vertex in the material space (i.e.
T-pose, see Figure 2a) as umo

i . We embed each cloth vertex umo
i into the tetrahedron that contains

it via barycentric weights λmo

ik , which are only nonzero for the parent tetrahedron’s vertices. Then,
given a pose θ, a cloth vertex’s world space location is defined as ui(θ) =

∑
k λ

mo

ik vk(θ) so that it is
constrained to follow the KDSM deformation, assuming linearity in each tetrahedron (see Figure 2b).
Technically, this is an indirect skinning of the cloth with its skinning weights computed as a linear
combination of the skinning weights of its parent tetrahedron’s vertices, and leads to the obvious
errors one would expect (see e.g. Figure 3, second row).

The KDSM approximates a deformation mapping for the region surrounding the body. This ap-
proximation could be improved via physical simulation (see e.g. Lee et al. (2018; 2019)), which
is computationally expensive but could be made more efficient using a neural network. However,
the tetrahedral mesh is only well suited to capture deformations of a volumetric three-dimensional
space and as such struggles to capture deformations intrinsic to codimension one surfaces/shells
including the bending, wrinkling, and folding important for cloth. Thus, we take further motivation
from constitutive mechanics (see e.g. Bonet & Wood (1997)) and allow the cloth vertices to move
in material space (the T-pose) akin to plastic deformation. That is, we use plastic deformation in
the material space in order to recapture elastic deformations (e.g. bending) lost/recovered when
embedding cloth into a tetrahedral mesh. These elastic deformations are encoded as a pose-dependent
plastic displacement for each cloth vertex, i.e. di(θ); then, the pose-dependent, plastically deformed
material space position of each cloth vertex is given by umi (θ) = umo

i + di(θ).
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(a) (b)

Figure 2: One can embed the cloth into the T-pose
KDSM (a) and fix this embedding as the KDSM
deforms (b). However, this results in undesired
artifacts in the cloth (see e.g. Figure 3, second
row).

Given a pose θ, umi (θ) will not necessarily
have the same parent tetrahedron or barycen-
tric weights as umo

i ; thus, a new embedding is
computed for umi (θ) obtaining new barycentric
weights λmik(θ). Using this new embedding, the
position of the cloth vertex in pose θ will be
ui(θ) =

∑
k λ

m
ik(θ)vk(θ). Ideally, if the di(θ)

are computed correctly, ui(θ) will agree with the
ground truth location of cloth vertex i in pose θ.
The second row of Figure 4 shows cloth in the
material space T-pose plastically deformed such
that its skinned location in pose θ (Figure 4, first
row) well matches the ground truth shown in the
first row of Figure 3. Learning di(θ) for each
vertex can be accomplished in exactly the same
fashion as learning displacements from the skinned body surface mesh, and thus we use the same
approach as proposed in Jin et al. (2020). Afterwards, an inferred di(θ) is used to compute umi (θ)
followed by λmik(θ), and finally ui(θ). Addressing efficiency, note that only the vertices of the parent
tetrahedra of um(θ) need to be skinned, not the entire tetrahedral mesh.

(a)

(b)

Figure 3: (a) The ground truth cloth and (b) skinning the cloth using a fixed tetrahedral embedding.
Note how poorly this naive embedding of the cloth into the KDSM matches the ground truth
(especially as compared to a more sophisticated embedding using our plastic deformation as shown
in Figure 4).

(a)

(b)

Figure 4: (a) The hybrid cloth embedding method (see Section 5) produces cloth u(θ) that closely
matches the ground truth shown in the first row of Figure 3. (b) This is accomplished, for each pose,
by plastically deforming the cloth in material space (the T-pose) before embedding it to follow the
deformation of the KDSM.

In order to compute each training example (θ, d(θ)), we examine the ground truth cloth in pose θ,
i.e. uGT (θ). For each cloth vertex uGT

i (θ), we find the deformed tetrahedron it is located in and
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compute barycentric weights λGT
ik (θ) resulting in uGT

i (θ) =
∑

k λ
GT
ik (θ)vk(θ). Then, that vertex’s

material space (T-pose) location is given by umi (θ) =
∑

k λ
GT
ik (θ)vmk where vmk are the material

space (T-pose) positions of the tetrahedral mesh (which are the same for all poses, and thus not a
function of θ). Finally, we define di(θ) = umi (θ)− umo

i .

5 INVERSION AND ROBUSTNESS

Unfortunately, the deformed KDSM will generally contain both inverted and overlapping tetrahedra,
both of which can cause a ground truth cloth vertex uGT

i (θ) to be contained in more than one deformed
tetrahedron, leading to multiple candidates for umi (θ) and di(θ). Although physical simulation can be
used to reverse some of these inverted elements Irving et al. (2004); Teran et al. (2005b) as was done
in Lee et al. (2018; 2019), it is typically not feasible to remove all inverted tetrahedra. Additionally,
overlapping tetrahedra occur quite frequently between the arm and the torso, especially because the
KDSM needs to be thick enough to ensure that it contains the cloth as it deforms.

Before resolving which parent tetrahedron each vertex with multiple potential parents should be
embedded into, we first robustly assemble a list of all such candidate parent tetrahedra as follows.
Given a deformed tetrahedral mesh v(θ) in pose θ, we create a bounding box hierarchy acceleration
structure Hahn (1988); Webb & Gigante (1992); Barequet et al. (1996); Gottschalk et al. (1996); Lin
& Gottschalk (1998) for the tetrahedral mesh built from a slightly thickened bounding box around
each tetrahedron. Then given a ground truth cloth vertex, uGT

i (θ), we robustly find all tetrahedra
containing (or almost containing) it using a minimum barycentric weight of −ε with ε > 0. We prune
this list to remove tetrahedra that may be subject to numerical precision errors that could cause a
vertex to erroneously be identified as inside multiple or no tetrahedra. This is done by first sorting the
tetrahedra on the list based on their largest minimum barycentric weight, i.e. preferring tetrahedra the
vertex is deeper inside. Starting with the first tetrahedron on the sorted list, we identify the face across
from the vertex with the smallest barycentric weight and prune all of that face’s vertex neighbors (and
thus face/edge neighbors too) from the remainder of the list. Then, the next (non-deleted) tetrahedron
on the list is considered, and the process is repeated, etc.

Method 1: Any of the parent tetrahedra that remain on the list may be chosen to obtain training exam-
ples with zero error as compared to the ground truth, although different choices lead to higher/lower
variance in d(θ) and thus higher/lower demands on the neural network. To establish a baseline, we
first take the naive approach of randomly choosing umi (θ) when multiple candidates exist. This can
lead to high variance in d(θ) and subsequent ringing artifacts during inference. See Figure 5.

(a) (b) (c)

Figure 5: (a) shows a training example where
overlapping tetrahedra led to cloth torso vertices
being embedded into arm tetrahedra, resulting
in high variance in d(θ). Although there are
various ad hoc approaches for remedying this
situation, it is difficult to devise a robust strat-
egy in complex regions such as the armpit. (b)
shows that the ground truth uGT (θ) is still cor-
rectly recovered in spite of this high variance
in um(θ) and d(θ); however, (c) shows that this
high variance leads to spurious ringing oscilla-
tions during subsequent inference.

Method 2: Aiming for lower variance in the training data, we leverage the method of Jin et al. (2020)
where UV texture space and normal direction offsets from the skinned body surface are calculated for
each pose θ in the training examples. These same offsets can be used in any pose, since the UVN
coordinate system is still defined (albeit deformed) in every pose. Thus, we utilize these UVN offsets
in our material space (T-pose) in order to define um(θ) and subsequently d(θ). In particular, given
the shrinkwrapped cloth in the T-pose, we apply UVN offsets corresponding to pose θ. Although this
results in lower variance than that obtained from Method 1, the resulting d(θ) do not exactly recover
the ground truth cloth uGT (θ). See Figure 6.

5



Under review as a conference paper at ICLR 2021

(a) (b) (c)

Figure 6: (a) shows the result obtained using
Method 2 to compute um(θ) in material space
(the T-pose) for a pose θ. (b) shows the result
obtained using this embedding to compute u(θ)
as compared to the ground truth uGT (θ) (c). Al-
though the variance in um(θ) and d(θ) is lower
than that obtained using Method 1, the training
examples now contain errors (shown with a heat
map) when compared to the ground truth.

Hybrid Method: When a vertex has only one candidate parent tetrahedron, Method 1 is used. When
there is more than one candidate parent tetrahedron, we choose the parent that gives an embedding
closest to the result of Method 2 (in the T-pose) as long as the disagreement is below a threshold (1
cm). As shown (for a particular training example) in Figure 7a, this can leave a number of potentially
high variance vertices undefined. Aiming for smoothness, we use the Poisson morph from Cong
et al. (2015) to morph from the low variance results of Method 2 to the partially-defined cloth mesh
shown in Figure 7a, utilizing the already defined/valid vertices as Dirichlet boundary conditions. See
Figure 7b. Although smooth, the resulting predictions may contain significant errors, and thus we
only validate those that are within a threshold (1 cm) of the results of Method 2. See Figure 7c. The
Poisson equation morph guarantees smoothness, while only utilizing the morphed vertices close to
the results of Method 2 limits errors (as compared to the ground truth) to some degree. This process
is repeated until no newly newly morphed vertices are within the threshold (1 cm). At that point,
the remaining vertices are assigned their morphed values despite any errors they might contain. See
Figure 7d.

(a) (b) (c) (d)

Figure 7: (a) Subset of vertices for which some choice of a parent tetrahedron using Method 1
reasonably agrees with Method 2. (b) The rest of the mesh can be filled in with the 3D morph
proposed in Cong et al. (2015). (c) Subset of vertices from (b) that reasonably agree with Method 2.
(d) Final result of our hybrid method (after repeated morphing).

6 EXPERIMENTS

Figure 8: Histogram of average vertex er-
rors over every example in the test dataset.

Dataset Generation: We use the cloth dataset from Jin
et al. (2020), which consists of T-shirt meshes corre-
sponding to about 10,000 poses for a particular body Wu
et al. (2020a). For each pose, the cloth was simulated
on the scanned body, taking into account gravity, elastic
and damping forces, and collision, contact and friction
forces. We applied an 80-10-10 split to obtain train-
ing, validation, and test datasets, respectively. Table 1
compares the maximum L2 and L∞ norms as compared
to the ground truth for each of the three methods used
to generate training examples. While Method 1 min-
imizes cloth vertex errors, the resulting d(θ) contains
high variance. Method 2 has significant vertex errors,
but significantly lower variance in d(θ). We leverage the advantages of both using the hybrid method.

Network Training: We adapt the network architecture from Jin et al. (2020) for learning the
displacements d(θ), i.e. by storing the displacements d(θ) as pixel-based cloth images for the front
and back sides of the T-shirt. Given joint transformation matrices of shape 1 × 1 × 90 for pose θ,
the network applies transpose convolution, batch normalization, and ReLU activation layers. The
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Method Max Vertex Error Avg Vertex Error Max ||∆d|| Avg ||∆d||
Method 1 8.9× 10−6 9.8× 10−7 136.5 9.35
Method 2 12.7 0.549 14.9 0.75

Hybrid Method 11.6 0.021 14.7 0.79

Table 1: Dataset generation analysis (in cm). To measure variance in d(θ), we calculate the change in
d(θ) between any two vertices that share an edge in the triangle mesh, denoted by ∆d(θ).

output of the network is 128 × 128 × 6, where the first three dimensions represent the predicted
displacements for the front side of the T-shirt, and the last three dimensions represent those for the
back side. We train with an L2 loss on the difference between the ground truth displacements d(θ)

and network predictions d̂(θ), using the Adam optimizer Kingma & Ba (2014) with a 10−3 learning
rate in PyTorch Paszke et al. (2017).

Network Vertex Error

Jin et al. (2020) 1.19± 0.20
KDSM (Method 1) 1.06± 0.63
KDSM (Method 2) 0.78± 0.17

KDSM (Hybrid) 0.52± 0.12

Table 2: Test dataset, average vertex errors (cm).

Network Volume Error

Jin et al. (2020) 2991± 715
KDSM (Hybrid) 194± 161

Table 3: Test dataset, average volume errors (cm3).

Network Inference: From the network output
d̂(θ), we define ûm(θ) = umo + d̂(θ), which is
then embedded into the material space (T-pose)
tetrahedral mesh and subsequently skinned to
world space to obtain the cloth mesh prediction
û(θ). Table 2 summarizes the network inference
results on the test dataset (not used in training).
While all three methods detailed in Section 5
outperform the method proposed in Jin et al.
(2020), the hybrid method achieved the lowest
average vertex error and standard deviation. Fig-
ure 8 shows histograms of the average vertex
error over all examples in the test dataset for the
hybrid method and Jin et al. (2020). Note that
the mean error of Jin et al. (2020) is five standard
deviations above the mean of the hybrid method.
Table 3 shows the errors in volume enclosed by
the cloth (after capping the neck/sleeves/torso).
There are significant visual improvements as well, see e.g. Figure 9. In addition, we evaluate the
hybrid method network on a motion capture sequence from cmu and compare the inferred cloth to
the results in Jin et al. (2020). The hybrid method is able to achieve greater temporal consistency;
see the supplemental video. To demonstrate the efficacy of our approach in conjunction with other
approaches, we apply texture sliding from Wu et al. (2020b) and the physical post process from Geng
et al. (2020) to the results of the hybrid method network predictions, see Figure 10.

7 DISCUSSION

In this paper, we presented a framework for learning cloth deformation using a volumetric parameter-
ization of the air surrounding the body. This parameterization was implicitly defined via a tetrahedral
mesh that was skinned to follow the body as it animates, i.e. KDSM. A neural network was used
to predict offsets in material space (the T-pose) such that the result well matched the ground truth
after skinning the KDSM. The cloth predicted using the hybrid method detailed in Section 5 exhibits
half the error as compared to state-of-the-art; in fact, the mean error from Jin et al. (2020) is five
standard deviations above the mean resulting from our hybrid approach. Our results demonstrate that
the KDSM is a promising foundation for learning virtual cloth and potentially for hair and solid/fluid
interactions as well. Moreover, the KDSM should prove useful for treating cloth collisions, multiple
garments, and interactions with external physics.

The KDSM intrinsically provides a more robust parameterization of three-dimensional space, since
it contains a true extra degree of freedom as compared to the degenerate co-dimension one body
surface. In particular, embedding cloth into a tetrahedral mesh has stability guarantees that do not
exist when computing offsets from the body surface. See Figure 11. We believe that the significant
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(a) uGT

(b) û

(c) Jin et al.

Figure 9: Test dataset example predictions (b) compared to the ground truth cloth in (a) and the
results from Jin et al. (2020) in (c). Regularization can smooth the body surface offsets predicted
using Jin et al. (2020) and as such reveals the underlying body shape, e.g. the belly button (indicated
with a red square).

(a) (b) (c)

Figure 10: Given the hybrid method network prediction in (a), we apply texture sliding from Wu et al.
(2020b) and the physics postprocess from Geng et al. (2020) as shown in (b), compared to the ground
truth (c). The shown example is the same as in Figure 14 of Wu et al. (2020b).

decrease in network prediction errors is at least partially attributable to increased stability from using
a volumetric parameterization.

(a) (b)

Figure 11: (a) Embedding cloth in a tetrahedral
mesh guarantees that each transformed vertex
will remain inside and thus be bounded by the
displacement of its parent tetrahedron. (b) How-
ever, no such bounds exist when the cloth is
defined via UVN offsets from the body surface,
since angle perturbations of the surface cause
the cloth to move along an arclength C = ψr
where even small ψ can lead to large C for large
enough r.
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A MODIFIED BODY SHAPES AND CLOTHING SIZES

We demonstrate that our network trained to infer cloth on a particular body, e.g. from Wu et al.
(2020a), can be used for other body parameterizations and body shapes without retraining. Using the
trained hybrid method network (see Section 6), the inferred T-shirt for a given pose is transferred to
the SMPL body model Loper et al. (2015) as follows. First, we generate a skinned KDSM for the
SMPL body as described in Section 3. Next, we transfer the T-pose cloth mesh to the SMPL body in
the T-pose via quasistatic simulation. Then, for any skeletal pose, KDSM embedding offsets for the
cloth on the SMPL body are inferred using the trained network. See Figure 13. The cloth can also be
scaled to different sizes depending on user preference. See Figure 14.

Figure 13: The network inferred cloth for the body from Wu et al. (2020a) can be transferred to the
SMPL body model with any given pose and shape. Column 1 corresponds to Wu et al. (2020a), and
columns 2-4 correspond to thinner, template, and thicker SMPL bodies, respectively. Note that the
cloth exhibits unique wrinkling patterns depending on body shape, as expected.
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Figure 14: The network inferred cloth can be resized based on user preference without network
retraining. The size of the T-shirt increases from left to right for three different poses.
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