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Abstract. Kidney and Kidney tumor segmentation from CT scans has tremendous potential to help 

doctors in early diagnosis and localization of tumor, its size and type and for making timely treatment 

plans. However, considering the nature and volume of data, it is difficult and time consuming to train 

on such CT scans. In this paper, we propose enhancements to the 3D U-Net model to incorporate Spatial 

and Channel Attention in order to improve the identification and localization of segmentation structures 

by learning on spatial context. When compared with Residual U-Net model with greater depth and more 

feature maps, our Spatial and Channel Attention enhanced U-Net with less depth and feature maps 

performed significantly better on validation and training set when trained under similar conditions. 
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1   Introduction 

Manually identifying tumors from CT scans is a tedious and time-consuming process. It is also a difficult task as there 

can be inconsistencies in proper segmentation even by experienced practitioners. In some cases, the boundaries of 

lesions can also be unclear in CT scan images and the images can also have poor contrast and structure definition. To 

help solve these issues, many computer vision based deep learning methods have been proposed and developed which 

are trained to segment and/or classify such lesions. One of the most popular models for such tasks is U-Net [1] which 

can be modified for 3D convolutions and with residual units as proposed in [2]. Furthermore, the size of such imaging 

modalities can be huge, thus making it difficult to train on all the data. So proper data preprocessing and manipulation 

can also play an important role in making the training efficient and viable and make the model more robust to drift in 

data. 

In this paper, we enhance the basic U-Net by including visual attention introduced in [3] with 3D convolutions. 

Attention blocks help our model train more effectively by refining the features with the help of a global attention map. 

Combination of attention mechanism with U-Net has previously been explored in [4]. [5] introduced Squeeze and 

excite mechanism which is advantageous for channel refinement as used in works such as [6] with variations of 

attention mechanism across spatial and channel dimensions and [7] with project and excite blocks for segmentation 

of volumetric medical scans. Models with attention have previously been used for Kits19 [8] dataset in works such as 

[9] which use attention modules at the end of their model for final refinement of features. In this paper, we use 

architecture is similar to [10] which uses spatial and channel attention separately for fine and sparse features. We also 

trained a standard U-Net with residual blocks for comparison and found that our spatial and channel attention enhanced 

U-Net performed better on training and validation sets, that too with less number of epochs. We also resample our 

data, especially along the z-axis to effectively increase the number of training image slices per volume. In order to 

reduce training time on constrained resources, we use Nvidia Clara SmartCache [11] to improve training times without 

loading the entire dataset to cpu memory. The following sections describe in detail the data methods and the custom 

deep learning U-Net model used in our challenge submission. 

2   Methods 



In this section we discuss the data split for training, preprocessing steps and data augmentations from the point of view 

of generalizability, and finally the custom U-Net model along with the details about attention blocks. 

2.1   Training and Validation Data 

Our submission made use of the official KiTS21 training set alone. For segmentation masks, we have used 

“aggregated_AND” based final masks to train our model. We have refrained from using data from other similar studies 

and instead use data augmentation techniques to adapt the segmentation model for better generalizability. The data 

was split in a 90:10 ratio for training and validation respectively. The data is randomly shuffled before creating the 

validation split. The final submission uses a model trained on the entire training set. 

2.2   Preprocessing 

The number of slices for each volume sample is different and the number of slices can also be high enough to consume 

all available resources during training. To avoid such a scenario, we resample the data to 2x1.62x1.62 mm to have the 

same voxel spacing across the patient image volumes. The lower spacing along the z-axis increases the number of 

training slices per patient and thus helps generalizability. We further clean the data by keeping only the body structures 

in frame by cropping the foreground. The final cropped data is further divided in chunks of 64x128x128 volumes for 

training and evaluation. For training Residual U-Net, we divide the cropped data in chunks of 64x160x160 to capture 

higher spatial information. 

The intensity values vary based on physical properties of structures and thus we remove unnecessary values 

corresponding to structures like bone and air by clipping to range (-80, 305). Then the clipped values are rescaled 

between 0 and 1 for all images. 

In order to improve training times and prevent crashes by cpu memory bottleneck, we use the Nvidia Clara SmartCache 

dataset loader. We set the cache rate = 0.4 and replace rate = 0.5. This ensures sufficient data is cached in memory for 

training while replacing 50% of cached data at each step without caching the entire dataset and choking the cpu 

memory. 

2.3   Data Augmentations 

In order to make the model generalizable, we introduce variance in data using data augmentation techniques. To 

introduce spatial variance, we use 3D Elastic deformation with a probability of 0.5. The parameters for 3D elastic 

deformation are: sigma (smoothness factor) = (5,8); magnitude = (50,150); translate = (10,10,5) in pixels; rotate = 

(5,5,180) in degrees, scale = (0.1, 0.1, 0.1) in proportion of image size. This augmentation introduces variation in 

shape of structures while maintaining spatial information. 

For introducing perceptual or intensity variations, we use random intensity shift with maximum intensity offset value 

of 0.1. We also use Gaussian noise with mean = 0 and standard deviation = 0.1. Both of the intensity-based 

augmentations are applied with probability of 0.25 individually. 

2.4   Proposed Method 

Following the success of U-Net models and its variants, we have decided to use the U-Net model with 3D Convolution 

blocks as our base architecture. Our base architecture has 3 encoding and 3 decoding blocks with a bottleneck block 

in between. Fig. 1 (A) describes the architecture used in our submission. The number of feature maps for encoder 

blocks are (32,64,128), followed by 128 feature maps for the bottleneck block. The feature maps from skip connections 

are stacked in decoding blocks resulting in feature maps (256, 128, 64). All the encoding and decoding blocks have 

kernel size of 3x3x3 and stride value as 2, except for bottleneck block with kernel size of 3x3x3 and stride value 1, 

and the final output conv layer with kernel size 1x1x1 and stride value 1. To enhance this base model, we have added 

Spatial attention and Channel attention modules, as introduced in [12] in an architecture similar to [10] which was 

proposed for 2D segmentation tasks.  

Spatial Attention block: The spatial attention block is responsible for identifying where the useful information is 

present in the image, by utilizing the inter-spatial relationships of the image features. Fig. 1 (B) describes the spatial 



attention block used in our proposed approach. The spatial attention block uses mean and max operations along 

channel dimension followed by 3D conv (7x7x7) to identify region of interest and multiply the attention map with 

output of preceding 3D Conv + ADN (Attention+Dropout+Norm) block to filter out location of important features. 

Channel Attention block: Instead of focusing on where the important feature is, the channel attention block identifies 

what is useful in a given image. Fig. 1 (C) describes the channel attention block used in our approach. The channel 

attention block uses mean and max values across spatial dimensions followed by a conv block to identify what is 

important in a given volume. 

 

Fig. 1: (A) describes the enhanced U-Net architecture used in our submission. (B) represents the working of Spatial Attention 

Block. (C) represents the working of Channel Attention Block. (B) and (C) includes the interaction of attention mechanism with 

preceding blocks in the U-Net. 



Our implementation is similar to model architecture of [10]. We have added Spatial attention to the first encoding and 

last decoding blocks having the largest dimensions. We have added channel attention to the bottleneck layer. The 

depth and number of feature maps of our enhanced U-Net has been limited due to resource constraints but can be 

increased to further improve the results. 

2.5   Residual U-Net for Comparison 

We also train a residual 3D U-Net to compare performance of our proposed model. The residual U-Net is similar to 

[13], however the number of features maps are different (16,32,64,128,256). The absence of attention blocks allows 

for a greater number of encoding-decoding blocks with more number of feature maps. Also, as compared to 

64x128x128 patch size used for training our proposed model, we increase the size of patches to 64x160x160 for 

residual U-Net to increase the spatial information per patch 

2.6   Implementation and Training 

The model is implemented in pytorch using MONAI [11] framework. Both the models output 4 channels 

corresponding to 4 classes including the background. For training we have used DiceCE loss which is a combination 

of Dice and Cross Entropy loss functions. We have used AdamW optimizer with a learning rate of 10e-4. Both models 

are trained for 300 epochs for comparison and the final submission is made using our proposed model which is trained 

for 500 epochs on Nvidia P100 gpu with 16GB vram and 24GB cpu ram. Validation is performed at the end of each 

epoch using the overall dice score as metric. Each epoch takes ~1.5 minutes and the whole model completes 500 

epochs in ~13 hours. 

2.7   Inference Procedure 

For final inference, since the model is trained on 64x128x128 sized chunks of input volume, we use sliding window 

inference with overlap = 0.8. The high overlap value increases the inference time but also improves the segmentation 

results. The 4 channeled output is converted to 1 channel by using maximum probability of segmented classes. And 

finally, the voxel spacing of the segmented volumes are restored to original spacing of the input volume by inverse 

transform. 

3   Results 

Here we provide the comparative results of our proposed model with residual U-Net based on training and validation 

set. We provide overall dice and structure specific dice scores. Finally, we also provide the dice scores on the test set 

as provided by kits21 evaluation system. Table I shows the performance of our proposed model and Residual U-Net 

on validation and complete training set after 300 epochs. Our approach outperformed Residual U-Net by margin or 

~0.2 in mean Dice score on both validation and training sets. 

Table I: Dice score for individual classes and mean across classes of our approach compared with Residual U-Net on validation 

and complete training set after 300 epochs. 

 Set Kidney Tumor Cyst Mean 

Residual U-Net 
Validation Set 

0.901 0.456 0.273 0.543 

Our approach 
0.952 0.665 0.656 0.757 

Residual U-Net Complete 

Training Set 

0.901 0.480 0.270 0.550 

Our approach 
0.937 0.683 0.523 0.714 

 

 



 
Fig. 2: Visualization of predicted segmentation map and corresponding label for an image from validation set. 

Fig. 2 shows the segmentation results corresponding to a volume from validation set of our proposed model after 300 

epochs. As it can be seen, the results do not suffer from jagged/rough edges from resampling the input volume. 

 

The results on the test set of KiTS21 are summarized in Table II. 
 

Table II: Dice score for individual classes and mean across classes of our approach on test set. 

 Kidney Tumor Cyst Mean 

Our approach Awaiting    

 

4   Conclusion 

In this paper, we propose an enhancement for existing 3D U-Net model using attention-based blocks. The model we 

have used is a modified version of U-Net with spatial and channel attention modules. We preprocess and augment the 

data to improve the generalizability of our segmentation model. We compare our architecture (Mean Dice: 0.757) with 

Residual U-Net (Mean Dice: 0.543) architecture and show that our proposed architecture, which is inferior in depth 

and number of feature maps as compared to Residual U-Net, manages to outperform the Residual U-Net by significant 

margin on validation set after being trained for similar number of epochs. Our proposed approach has potential to 

improve results by further increasing the depth and number of feature maps and using a larger sized chunks to improve 

spatial context. 
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