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Abstract

This paper studies a family of estimators based on
noise-contrastive estimation (NCE) for learning
unnormalized distributions. The main contribu-
tion of this work is to provide a unified perspec-
tive on various methods for learning unnormal-
ized distributions, which have been independently
proposed and studied in separate research com-
munities, through the lens of NCE. This unified
view offers new insights into existing estimators.
Specifically, for exponential families, we estab-
lish the finite-sample convergence rates of the
proposed estimators under a set of regularity as-
sumptions, most of which are new.

1. Introduction
Unnormalized distributions, also known as energy-based
models, arise in various applications, such as generative
modeling, density estimation, and reinforcement learning;
we refer an interested reader to a comprehensive overview
paper (Song & Kingma, 2021) and references therein. Such
distributions capture complex dependencies and provide
representational flexibility, making them attractive in fields
ranging from statistical physics to machine learning. De-
spite their widespread use, estimating parameters within
these models poses significant challenges due to the in-
tractability of their normalization constants.

In this paper, we consider the problem of parameter estima-
tion for unnormalized distributions, through the lens of the
noise-contrastive estimation (NCE) framework (Gutmann &
Hyvärinen, 2012). Our contributions are as follows:

1. As variants of the f -NCE (Pihlaja et al., 2010) (Sec. 1.2),
we study a family of NCE-based estimators, the α-
centered NCE (α-CentNCE; Sec. 2.1) and f -conditional
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NCE (f -CondNCE; Sec. 2.2). With this unifying view
on different estimators, we clarify previously unrecog-
nized and/or potentially misleading connections among
existing estimators proposed for learning unnormalized
distributions, as well as provide unified analysis.

2. Specifically, via the lens of α-CentNCE, we reveal that
several different estimators for learning unnormalized
distributions can be connected and unified, including
MLE (Fisher, 1922), MC-MLE (Geyer, 1994), and Glob-
alGISO (Shah et al., 2023) as special instances. A local
version of centered NCE estimators subsumes pseudo
likelihood (Besag, 1975) and interaction screening objec-
tives (ISO) (Vuffray et al., 2016; 2021; Ren et al., 2021;
Shah et al., 2021a), which were proposed for learning
exponential families corresponding to Markov random
fields (MRFs).

3. For f -CondNCE, we show that, in contrast to the original
claim in (Ceylan & Gutmann, 2018), the behavior of the
f -CondNCE estimator does not converge to the score
matching (SM) estimator (Hyvärinen, 2005) in a small
noise regime. In fact, we show that the variance of f -
CondNCE diverges in the vanishing noise regime, if the
number of conditional samples is not sufficiently large.

4. As a concrete consequence of such connections, we es-
tablish the finite-sample convergence guarantees of the
proposed estimators for learning bounded exponential
family distributions, by building upon the analysis of
GlobalGISO by (Shah et al., 2023). To the best of our
knowledge, such guarantees are the first of the type for
almost all the NCE estimators considered in this paper.

1.1. Related Work

While the celebrated maximum likelihood estimator (MLE),
advocated by Fisher (1922), is arguably the de facto stan-
dard for parameter estimation problems, it is not directly
applicable for high-dimensional unnormalized distributions
due to the computational intractability of calculating the nor-
malization constant. Several methods have been proposed
as alternatives, including MLE with Monte-Carlo approxi-
mation of partition function (MC-MLE) (Geyer, 1994; Riou-
Durand & Chopin, 2018; Jiang et al., 2023), score match-
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Lnce
f (ϕθ; qd, qn) ≜ Eqn(x)

[
∆f

( qd(x)

νqn(x)
,
ϕθ(x)

νqn(x)

)]
− Eqn(x)

[
f
( qd(x)

νqn(x)

)]
(1)

= −1

ν
Eqd(x)[f

′(ρθ(x))] + Eqn(x)[ρθ(x)f
′(ρθ(x))− f(ρθ(x))]. (2)

ing (Hyvärinen, 2005; 2007; Song et al., 2020; Liu et al.,
2022; Pabbaraju et al., 2023), NCE (Gutmann & Hyvärinen,
2012; Pihlaja et al., 2010; Gutmann & Hirayama, 2011; Cey-
lan & Gutmann, 2018; Uehara et al., 2018; Chehab et al.,
2022; 2023), contrastive divergence (Hinton, 2002), among
many other techniques. A comprehensive overview of these
methods can be found in (Song & Kingma, 2021).

For exponential families, there is a specialized literature,
with a focus on learning undirected graphical models such
as MRFs. In a pioneering work (Besag, 1975), Besag pro-
posed the so-called pseudo likelihood estimator, which can
be understood as a local counterpart of MLE. A recent and
representative line of recent work includes ISO, GISO, and
ISODUS, based on an estimation principle called interac-
tion screening (Vuffray et al., 2016; 2021; Ren et al., 2021;
Shah et al., 2021a). More broadly, for exponential family in
general, Shah et al. (2021b), and in a follow-up work with
refinement in (Shah et al., 2023), studied a variant of the
interaction screening objective for training a general expo-
nential family without a local structure, which we refer to as
GlobalGISO in this paper. We emphasize that these estima-
tors have been proposed and analyzed in several different
communities, and the literature lacks on a comprehensive
understanding how different estimators can be compared.
In this paper, our primary goal is to provide a unifying view
on these different principles for learning unnormalized dis-
tributions in a unified way via the NCE principle (Gutmann
& Hyvärinen, 2012; Pihlaja et al., 2010).

1.2. Preliminaries: f -Noise-Contrastive Estimation

We consider an unnormalized density model {ϕθ(x) : θ ∈
Θ} for a d-dimensional random vector x with support X ⊂
Rd, where θ ∈ Rp is a parameter and Θ ⊂ Rp is the
set of feasible parameters. Our goal is to find the best
θ ∈ Θ so that ϕθ(x) is closest possible to the data generating
distribution qd(x). We consider the well-specified case,
where there exists θ⋆ ∈ Θ such that ϕθ⋆(x) ∝ qd(x).
We start the investigation with an extension of the original
NCE (Gutmann & Hyvärinen, 2012), which we call f -NCE.
This family of estimators was first derived in (Pihlaja et al.,
2010) in a rather convoluted way. Here, we introduce them
as an instance of Bregman divergence minimization for
density ratio estimation (DRE) (Sugiyama et al., 2012),
in which way the consistency of the resulting estimator is

straightforward.

The idea of NCE is to train the model ϕθ(x), so that it
can be used to discriminate samples of the data distribution
qd(x) from samples of a noise (or reference) distribution
qn(x). A necessary condition for discrimination is that the
support of qn, i.e., supp(qn), subsumes the support of qd(x),
i.e., supp(qd). Hence, we define the (scaled) model density
ratio ρθ(x) ≜

ϕθ(x)
νqn(x)

for a hyperparameter ν > 0, and we

wish to fit this to the underlying density ratio qd(x)
νqn(x)

. For a
differentiable function h : Z → R with Z ⊂ Rk, we define
and denote the Bregman divergence as

∆h(z, z
′) ≜ h(z)− h(z′)− ⟨∇h(z′), z− z′⟩

for z, z′ ∈ Z , which is the approximation error of the first-
order Taylor approximation of h(z) at z′. For a given strictly
convex function f : R≥0 → R and a reference distribution
qn(x), we propose the f -NCE objective as in Eq. (1). The
intermediate expression in Eq. (1) is used as a conceptual
device to derive the final objective in Eq. (2). We define the
f -NCE estimator as a minimizer of the objective function:

θncef (qd, qn) ∈ argmin
θ∈Θ
Lnce
f (ϕθ; qd, qn).

Given data samples x1, . . . , xnd
drawn from qd(x) and noise

samples x′1, . . . , x
′
nn

from qn(x), the empirical estimator is
θncef (q̂d, q̂n), where q̂d and q̂n denote the corresponding em-
pirical distributions. We remark that directly inheriting the
property of the Bregman divergence, the f -NCE objective
is invariant to adding or subtracting a linear function and
translation by constants; see Appendix B.1.1 for a formal
statement.

By constructing the f -NCE objective in terms of a Breg-
man divergence, we can easily prove that the objective is
consistent in the population limit, which we call Fisher con-
sistency, provided that the generating function f is strictly
convex and the model is well-specified.

Proposition 1.1 (f -NCE: Fisher consistency). Let
f : R≥0 → R be a strictly convex function and assume
supp(qd) ⊂ supp(qn). If there exists θ⋆ such that ϕθ⋆(·) =
qd(·), then ϕθncef (qd,qn)(·) = qd(·).
Remark 1.1. Since the original family of unnormalized
distributions {ϕθ(x) : θ ∈ Θ} may not contain normalized
distributions, we consider an augmented family ϕθ(x) ≜
ecϕθ(x) for θ ≜ (θ, c) for c > 0 for f -NCE. Then, we
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Table 1. Examples of the NCE objective. Recall that θ ≜ (θ, ν) ∈ Θ× R.

Name Generator function f(ρ) NCE objective Lnce
f (θ)

Log (Gutmann & Hyvärinen, 2012) flog(ρ) ≜ ρ log ρ− (ρ+ 1) log(ρ+ 1) − 1
ν
Eqd [log

ρθ
ρθ+1

]− Eqn [log
1

ρθ+1
]

Asymmetric power (α) fα(ρ) ≜
ρα−1

α(α−1)
for α /∈ {0, 1} 1

1−α
Eqd [(

qn
ϕθ

)1−α] + 1
α
Eqn [(

ϕθ

qn
)α]

Asymmetric inverse log f0(ρ) ≜ lim
α↓0

fα(ρ) = − log ρ Eqd [
qn
ϕθ

] + Eqn [log
ϕθ

qn
]

Asymmetric log f1(ρ) ≜ lim
α↑1

(fα(ρ) +
ρ−1
α−1

) = ρ log ρ Eqd [log
qn
ϕθ

] + Eqn [
ϕθ

qn
]

assume that {ϕθ(x) : θ ∈ Θ × R} is well-specified, i.e.,
there exists c⋆ ∈ R and θ⋆ such that qd(·) = ec

⋆

ϕθ⋆(·).
Hereafter, θ denotes the augmented parameter, where θ
without an underline denotes the original parameter.

We consider the examples of f in Table 1 as the canonical
examples; each f (or the corresponding f -NCE objective)
is named based on its correspondence to a proper scoring
rule (Gneiting & Raftery, 2007). It is easy to check that ν
does not affect the objective function for the case of power
scores fα(ρ), and we thus set ν = 1 in this case. We
note that in the DRE literature, a similar objective based on
the generator function f1(ρ) is known as Kullback–Leibler
Importance Estimation Procedure (Sugiyama et al., 2008).

2. Two Variants of NCE
In this section, we introduce two variants of the f -NCE
framework: α-centered NCE and f -conditional NCE.

2.1. α-Centered NCE

Consider the asymmetric power generator function fα(ρ)
for α ∈ R (with ν = 1); see the second row of Table 1. We
will introduce a transformation called α-centering in Eq. (3),
which normalizes a given parametric model ϕθ(x) in an α-
and qn-dependent manner. Applying the normalized model
to fα-NCE (i.e., NCE induced by the asymmetric power
score) results in a new variant of NCE. In Sec. 3.1, we show
that this variant provides a unified view on several existing
estimators, seemingly different at a first glance.

We define a normalized model of ϕθ(x) called the α-
centered model as

ϕ̃θ;α(x) ≜
ϕθ(x)

Zα(θ)
, where (3)

Zα(θ) ≜

{
Eqn(x)[(

ρθ(x)
qn(x)

)α]1/α if α ̸= 0,

exp(Eqn(x)[log
ρθ(x)
qn(x)

]) if α = 0.

Note that Z0(θ) = limα↓0 Zα(θ). Applying the fα-NCE
objective to the α-centered model, we define

Lcent
α (θ; qd, qn) ≜ Lnce

fα (ϕ̃θ;α; qd, qn)

(2)
=

Eqd [ρ̃
α−1
θ;α (x)]

1− α
(3)
=

Eqd [ρ
α−1
θ (x)](Eqn [ραθ (x)])

1−α
α

1− α ,

which we call the α-CentNCE objective. Here, note that
the second term in the fα-NCE objective becomes con-
stant, since we design the α-centered model such that
Eqn [ρ̃αθ;α(x)] = 1. Note that the expectation with respect
to the reference distribution qn is embedded in the normal-
ization term of the new model. In Table 2, we provide a
side-by-side comparison between fα-NCE and α-CentNCE
objectives for α ∈ {0, 12 , 1}.
We define the α-CentNCE estimator as a minimizer of the
objective function:

θcentα (qd, qn) ∈ argmin
θ∈Θ
Lcent
α (ϕθ; qd, qn).

In this case, since any multiplicative scaling to ϕθ(x) is
canceled out in the centered model in Eq. (3), the Fisher
consistency follows even when the model is well-specified
up to a constant, unlike the strict well-specifiedness required
in Proposition 1.1.

Proposition 2.1 (α-CentNCE: Fisher consistency). Let α ∈
R. Assume supp(qd) ⊂ supp(qn). If there exists θ⋆ and c >
0 such that cϕθ⋆(·) = qd(·), then ϕθcentα (qd,qn)(·) ∝ qd(·).

2.2. f -Conditional NCE

In the NCE literature, it is known that the noise distribution
qn must be carefully chosen to guarantee good convergence
of the resulting estimator, generally considered hard in prac-
tice (Chehab et al., 2022). Alternatively, Ceylan & Gutmann
(2018) proposed a new framework called the conditional
NCE (CondNCE), where the idea is to draw noisy samples
conditioned on the data samples. CondNCE was further
justified via a connection to the score matching framework
of Hyvärinen (2005). In this paper, we clarify the connec-
tion to score matching (in Sec. 3.2), and establish the first
finite-sample convergence rate of this estimator (in Sec. 4).

Here, we introduce f -CondNCE, a general CondNCE frame-
work for a convex function f . The idea is same as f -NCE:
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Table 2. Special cases of the fα-NCE and α-CentNCE objectives. The view on the estimators highlighted in blue and boldface via
α-CentNCE are new; see Theorem 3.2.

Objectives α = 0 α = 1
2

α = 1

fα-NCE
Eqd [

qn
ϕθ

] + Eqn [log
ϕθ

qn
]

(InvIS
(Pihlaja et al., 2010))

2(Eqd [
√

qn
ϕθ

] + Eqn [
√

ϕθ

qn
])

(eNCE
(Liu et al., 2021))

Eqd [log
qn
ϕθ

] + Eqn [
ϕθ

qn
]

(Importance Sampling (IS)
(Pihlaja et al., 2010; Riou-Durand & Chopin, 2018))

α-CentNCE Eqd [
qn
ϕθ

]e
Eqn [log

ϕθ
qn

]

(GlobalGISO
(Shah et al., 2023))

2Eqd [
√

qn
ϕθ

]Eqn [
√

ϕθ

qn
]

Eqd [log
qn
ϕθ

] + logEqn [
ϕθ
qn
]

(MLE (Fisher, 1922),
MC-MLE (Geyer, 1994; Jiang et al., 2023))

we aim to minimize the Bregman divergence between two
density ratios with respect to f . In this case, instead of
the noise distribution qn, we consider a channel (condi-
tional distribution) π(y|x), and aim to contrast the joint
distributions qd(x)π(y|x) vs. qd(y)π(x|y). Comparing
to qd(x) vs. qn(x) in the standard NCE, the contrast is
self-referential in the sense that the data distribution qd ap-
pears on the both sides. Let ρθ(x, y) ≜ ϕθ(x)π(y|x)

ϕθ(y)π(x|y) be
the model density ratio in this case, implicitly assuming
ν = 1. We define the generalized conditional NCE objec-
tive Lcond

f (ϕθ; qd, π) as in Eq. (4), where the last equality
follows from ρθ(y, x) = ρθ(x, y)

−1. For further simplicity,
we focus on symmetric channels, i.e., π(y|x) = π(x|y), in
which case the ratio simplifies to ρθ(x, y) = ϕθ(x)

ϕθ(y)
. For

supp(qd) = X = Rd, canonical examples are (i) a Gauss-
ian noise π(y|x) = N (y;x, σ2I) and (ii) a uniform noise
over a ℓs-norm ball or sphere for some s ≥ 1. We define
the f -CondNCE estimator as a minimizer of the objective:

θcondf (qd, π) ∈ argmin
θ∈Θ
Lcond
f (ϕθ; qd, π).

Similar to α-CentNCE, the Fisher consistency follows even
when the model is well-specified up to a constant as any
multiplicative scaling to ϕθ(x) is cancelled out.
Proposition 2.2 (f -CondNCE: Fisher consistency). Let
f be a strictly convex function. Let π(y|x) be a
conditional distribution such that supp(qd(x)π(y|x)) =
supp(qd(y)π(x|y)). If there exists a unique θ⋆ and c > 0
such that cϕθ⋆(·) = qd(·), then ϕθcondf (qd,π)

(·) ∝ qd(·).

In practice, given nd samples {(xi)}nd
i=1 drawn i.i.d. from

qd(x) and conditional samples {yij}Kj=1 conditionally in-
dependent from π(y|xi) for each i, we let Lcond

f (ϕθ; q̂d, π̂)
denote the corresponding empirical objective with a slight
abuse of notation.

3. Connecting the Dots
In this section, we explain how the estimators introduced
in the previous section unify and generalize the existing
estimators and provide new theoretical insights.

3.1. MLE, MC-MLE, and GlobalGISO as Limiting
Instances of Centered NCE

As alluded to above, α-CentNCE estimators interpolate be-
tween MLE (Fisher, 1922) (α = 1) and GlobalGISO (Shah
et al., 2023) (α = 0, specifically for exponential fam-
ily), provided that Zα(θ) can be computed analytically, i.e.,
without estimation. In the case of estimating Zα(θ) with
samples, α-CentNCE objective recovers MC-MLE (Geyer,
1994) when α = 1. We formally summarize the connections
in the next statement and Table 2.

Theorem 3.1 (α-CentNCE subsumes MLE and Global-
GISO). The following holds:

1. (α = 0: GlobalGISO) For an exponential family ϕθ(x),
if X is bounded and qn(x) is a uniform distribution over
X , the 0-CentNCE objective L̃0(θ; qd, qn) is equivalent
to GlobalGISO (Shah et al., 2021b).

2. (α = 1: MLE) If Z1(θ) is assumed to be computable for
each θ, the 1-CentNCE objective L̃1(θ; q̂d, qn) is equiva-
lent to MLE (Fisher, 1922).

3. (α = 1: MC-MLE) If Z1(θ) = Eqn [
ϕθ(x)
qn(x)

] is estimated
with empirical noise distribution q̂n(x), the 1-CentNCE
objective L̃1(θ; q̂d, q̂n) is equivalent to MC-MLE (Geyer,
1994).

Remark 3.1. Note that the connection between GlobalGISO
and MLE can be made for the case when Zα(θ) is assumed
to be computable for any θ. At one extreme when α = 1,
in which case the objective boils down to that of MLE, it is
clear that Z1(θ) = Eqn [

ϕθ(x)
qn(x)

] =
∫
ϕθ(x)dx becomes the

standard partition function. In the other extreme case where
α → 0, if ϕθ(x) = exp(⟨θ, ψ(x)⟩) is an exponential fam-
ily, computing Z0(θ) boils down to computing Eqn(x)[ψ(x)]
since Z0(θ) ∝ exp(⟨θ,Eqn [ψ]⟩). For a special choice of qn
(e.g., uniform distribution) and ψ (e.g., polynomial and si-
nusoidal functions), this term can be computed analytically,
as concretely illustrated by (Shah et al., 2023). We also
provide an alternative theoretical view of the 0-CentNCE
objective as a certain KL divergence minimization problem,
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Lcond
f (ϕθ; qd, π) ≜ Eqd(y)π(x|y)

[
∆f

(qd(x)π(y|x)
qd(y)π(x|y)

,
ϕθ(x)π(y|x)
ϕθ(y)π(x|y)

)]
− Eqd(x)π(y|x)

[
f
(qd(x)π(y|x)
qd(y)π(x|y)

)]

= Eqd(x)π(y|x)
[
−f ′(ρθ(x, y)) + ρθ(y, x)f

′(ρθ(y, x))− f(ρθ(y, x))
]
. (4)

generalizing the justification for GlobalGISO given in (Shah
et al., 2023); see Theorem B.1.

Next, we provide a result connecting fα-NCE and α-
CentNCE estimators, under the assumption that we have an
optimization oracle that finds the global minima of a given
objective.

Theorem 3.2 (fα-NCE and α-CentNCE estimators are
equivalent). For a set A ⊂ Θ × R in the augmented pa-
rameter space, let A|Θ ≜ {θ : (θ, ν) ∈ A for some ν ∈ R}
denote the subset corresponding to Θ. Then,

argmin
θ=(θ,ν)∈Θ×R

Lnce
fα (θ; q̂d, q̂n)

∣∣∣
Θ
= argmin

θ∈Θ
Lcent
α (θ; q̂d, q̂n).

Remark 3.2. We remark that, for α = 1, Riou-Durand &
Chopin (2018) proposed to convert the MC-MLE objective
by the inverse of the 1-centering operation, which they call
the Poisson transform (Barthelmé & Chopin, 2015), into
the f1-NCE objective, which they call the importance sam-
pling (IS) objective. In this view, our α-centering can be
understood as the inverse of the generalized Poisson trans-
form. Via the equivalence, Riou-Durand & Chopin (2018)
analyzed the asymptotic property of MC-MLE by studying
the f1-NCE. Similarly, one can analyze the statistical prop-
erty of GlobalGISO (with any valid choice of qn beyond the
uniform distribution) when Z0(θ) is estimated with samples
from qn(x) via analyzing the f0-NCE objective.

3.2. Revisiting the Connection Between CondNCE and
Score Matching

Ceylan & Gutmann (2018) argued that for a continuous
domain X , the original CondNCE objective is related to the
score matching objective of Hyvärinen (2005), justifying
the consistency of CondNCE. Here, we demonstrate that
this interpretation can be misleading in a realistic setting
with finite samples. To revisit this connection, we further
restrict the type of channels to πϵ(y|x) parameterized by
a parameter ϵ > 0, such that y ∼ πϵ(y|x) is equivalent to
y = x+ ϵv for some v ∼ qs(·) with zero mean and identity
covariance, i.e., Eqs [v] = 0 and Eqs [vv⊺] = Id. With this
simplification, we denote the objective function as

Lcond
f (ϕθ; qd, qs; ϵ)

≜ Eqd(x)qs(v)
[
−f ′(ρθ(x, y))
+ ρθ(y, x)f

′(ρθ(y, x))− f(ρθ(y, x))
]
,

where y ≜ x+ ϵv. Then, we show that the f -CondNCE ob-
jective behaves as the score matching objective (Hyvärinen,
2005) in the limit of ϵ→ 0. Formally:

Theorem 3.3 (Asymptotic behavior of population
f -CondNCE for small ϵ). The population f -CondNCE ob-
jective can be written as

Lcond
f (ϕθ; qd, qs; ϵ) = −f(1) + f ′′(1)Lsm(ϕθ; qd)ϵ

2 + o(ϵ2),

where

Lsm(ϕθ; qd) ≜ Eqd(x)
[
tr(∇2

x log ϕθ(x))+
1

2
∥∇x log ϕθ(x)∥2

]

denotes the (population) score matching (SM) objec-
tive (Hyvärinen, 2005).

This statement generalizes the result in (Ceylan & Gutmann,
2018) for flog-CondNCE to f -CondNCE for any f . Below,
we explain why this statement may be misleading as the
f -CondNCE estimator with ϵ → 0 does not behave like
the SM estimator. To correctly understand the behavior,
we need to consider the empirical f -CondNCE objective
function that defines the empirical estimator, instead of the
population objective.

Theorem 3.4 (Asymptotic behavior of empirical
f -CondNCE for small ϵ). The empirical f -CondNCE
objective can be written as

Lcond
f (ϕθ; q̂d, q̂s) = −f(1)

+ 2f ′′(1)Eq̂d(x)q̂s(v)[∇x log ϕθ(x)⊺v]ϵ
+ f ′′(1)Lssm(ϕθ; q̂d, q̂s)ϵ

2 + o(ϵ2).

Here, we define the empirical sliced SM (SSM) objec-
tive (Song et al., 2020)

Lssm(ϕθ; q̂d, q̂s)

≜ Eq̂d(x)q̂s(v)
[
v⊺∇2

x log ϕθ(x)v +
1

2
(v⊺∇x log ϕθ(x))2

]
.

Remark 3.3. Since we assume that qs(v) has zero mean,
Theorem 3.3 readily follows as a corollary of Theorem 3.4,
as the O(ϵ) term will converge to 0 in the population limit
of qs. In a finite-sample regime, however, the dominating
term of the f -CondNCE objective becomes the O(ϵ) term,
i.e., as ϵ→ 0, we have

1

ϵ

L̂cond
f (ϕθ; q̂d, q̂s) + f(1)

2f ′′(1)
→ Eq̂d(x)[∇x log ϕθ(x)]⊺Eq̂s(v)[v].
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Thus, the f -CondNCE objective is dominated by this statisti-
cal noise term when ϵ≪ 1 with fixed sample size of v ∼ qs,
and thus too small ϵ should be avoided in stark contrast
to the proposed justification in (Ceylan & Gutmann, 2018).
We revisit this degrading behavior after the finite-sample
guarantee of f -CondNCE in Remark 4.3.

It is worth noting, however, that Eq̂s [v] gets more concen-
trated around 0 as the number of slicing vectors increases.
Therefore, one could consider a carefully chosen ϵ as a
function of the number of slicing vectors and distribution-
dependent quantities, so that 1

ϵEq̂d(x)q̂s(v)[∇x log ϕθ(x)⊺v]
still vanishes as the number of slicing vectors increases. In
this way, the f -CondNCE estimator might be still consistent
with small ϵ, emulating the behavior of SSM.

Simulation. To demonstrate this behavior, we considered
a simple synthetic setup, where the data generating distri-
bution is N (µ, 1) with µ = 1. With a conditional noise
distribution π(y|x) = N (y|x, ϵ2I) with varying ϵ, we plot
the derivatives of the empirical objective of the original
CNCE with varying K ∈ {1, 4, 16, 64}, where the sample
size isN = 104. As shown in Figure 1, the empirical deriva-
tives characterize the mean fairly closely when ϵ ≥ 10−2

or when ϵ is small and K is large. This simple 1D Gauss-
ian example clearly shows the undesirable behavior of the
CNCE objective when ϵ is small. More in-depth study on
the effect of ϵ and K for high-dimensional problems is left
as a future work.

4. Finite-Sample Analysis
In this section, we provide finite-sample guarantees of reg-
ularized versions of the aforementioned NCE estimators,
specifically assuming an exponential family distribution
model ϕθ(x) = exp(⟨θ, ψ(x)⟩). Here, θ ∈ Rp denotes the
natural parameter, ψ : X → Rp denotes the natural statistics,
and p denotes the number of parameters. In what follows,
we assume both well-specifiedness and identifiability, i.e.,
there exists a unique θ⋆ ∈ Θ such that ϕθ⋆(·) ∝ qd(·).
Below, we establish the parametric error rate O(n−1/2) of
convergence for the regularized NCE estimators. The proofs
adapt the analysis in (Shah et al., 2023) for GlobalGISO,
which in turn built upon (Negahban et al., 2012; Vuffray
et al., 2016; 2021; Shah et al., 2021b). We note in passing
that the non-regularized NCE estimators can also be ana-
lyzed, but we can only prove a suboptimal rate of O(n−1/4)
by following the existing analysis in (Shah et al., 2021b).

Following (Shah et al., 2023), we are specifically interested
in the case where the statistics are bounded and so is the
parameter space. We note that the bounded statistics may not
be too restrictive, as in many practical scenarios the domain

1

0

1
×10 6

= 10 10

K = 1 K = 4 K = 16 K = 64

1

0

1
×10 6

= 10 8

1

0

1
×10 6

= 10 6

2

0

2

×10 6

= 10 4

5

0

5
×10 4

= 10 2

5 0 5
2

0= 100

5 0 5 5 0 5 5 0 5

Figure 1. Derivatives of the empirical CondNCE objective with
varying ϵ ∈ {10−10, . . . , 100} and K ∈ {1, 4, 16, 64} for 1D
Gaussian data with true mean µ = 1.0 (vertical dashed red lines)
and a conditional noise distribution π(y|x) = N (y|x, ϵ2I).

X may naturally be truncated during data acquisition (Liu
et al., 2022).
Assumption 4.1 (Bounded maximum norm of ψ).
supx∈X ∥ψ(x)∥∞ ≤ ψmax for some ψmax > 0.
Assumption 4.2 (Bounded parameter space). For some
constant r > 0, supθ∈ΘR(θ) ≤ r.

We note that the gradient and Hessian of the f -NCE objec-
tive can be written as

∇L̂nce
f (θ) =

1

ν
Eq̂d [ψξ

(1)
nce,f,d(ρθ)] + Eq̂n [ψξ

(1)
nce,f,n(ρθ)],

∇2L̂nce
f (θ) =

1

ν
Eq̂d [ψψ⊺ξ

(2)
nce,f,d(ρθ)] + Eq̂n [ψψ⊺ξ

(2)
nce,f,n(ρθ)],

where the functions ξ(i)nce,f,r(ρ) for i ∈ {1, 2} and r ∈
{d, n} are defined in the leftmost column of Table 3; see
Lemma B.3.

Our analysis relies on the boundedness of the model density
ratio ρθ ∈ (ρmin, ρmax). In each result, we clarify the defi-
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nition of the worst-case density ratios (ρmin, ρmax). These
ratios affect the convergence rate through the following
quantities:

b
(2)
nce,f,r ≜ inf

ρ∈(ρmin,ρmax)
|ξ(2)nce,f,r(ρ)| and

B
(i)
nce,f,r ≜ sup

ρ∈(ρmin,ρmax)

|ξ(i)nce,f,r(ρ)| for i ∈ {1, 2},
(5)

where r ∈ {d, n}. We remark that these quantities differ for
each estimator. For the canonical choices of f(ρ), i.e., log
and asymmetric power, these quantities are explicitly given
in Table 3.

Let R : Θ → R≥0 be a norm over Θ, and R∗ : Θ → R≥0

be its dual norm. Define

γ1;2 ≜ sup
θ∈4Θ\{0}

∥θ∥1
∥θ∥2

, (6)

γR∗;∞ ≜ sup
θ∈Rk\{0}

R∗(θ)

∥θ∥max
, (7)

γR;2 ≜ sup
θ∈Θ\{0}

R(θ)
∥θ∥2

. (8)

Here 4Θ ≜ {4θ : θ ∈ Θ}. These quantities capture the
geometry of the normR(·) imposed on the parameter space
Θ, and appear in the convergence rates.

Theorem 4.1 (f -NCE: finite-sample guarantee). Pick a
strictly convex function f : R+ → R. Define

(ρmin, ρmax) ≜
(

inf
x∈X ,θ∈Θ×R

ρθ(x), sup
x∈X ,θ∈Θ×R

ρθ(x)
)

and define the quantities in Eq. (5) accordingly. For r ∈
{d, n}, define

λncemin,r ≜ λmin(Eqr [ψψ⊺]).

Let θ̂nce,Rf,nd,nn
be such that

θ̂nce,Rf,nd,nn
∈ argmin

θ∈Θ

{
Lnce
f (θ; q̂d, q̂n) + λnd,nnR(θ)

}

for some λnd,nn > 0. Then, for any ∆ > 0 and δ ∈ (0, 1),
there exists a choice of λnd,nn such that ∥θ̂nce,Rf,nd,nn

− θ⋆∥2 ≤
∆ with probability ≥ 1 − δ, provided that for each r ∈
{d, n},

nr = Ω

(
max

{
(B

(1)
nce,f,r)

2γ2R;2γ
2
R∗;∞ψ

2
max

∆2(ν−1b
(2)
nce,f,dλ

nce
min,d + b

(2)
nce,f,nλ

nce
min,n)

2
,

γ41;2ψ
4
max

(λncemin,r)
2

}
log

p2

δ

)
.

Remark 4.1. To the best of our knowledge, this result is the
first finite-sample convergence rate for f -NCE estimators.

We state the finite-sample statement with a minimal set of as-
sumptions, along with the bounded statistics and parameter
space assumptions. While achieving the parametric rate of
convergence O(n−1/2) is appealing, to have non-vacuous
rates, however, we need all the quantities in the sample com-
plexity expression to be within a range bounded away from
0 or∞. More concretely, if we further assume that the dual
norm of the statistic supx∈X R∗(ψ(x)) ≤ τ is bounded for
some constant τ > 0, it is easy to check that the worst-case
density ratios are bounded as (ρmin, ρmax) ⊂ (e−rτ , erτ )
for f -NCE, where r is defined to be the diameter of Θ mea-
sured in the norm R(·); see Assumption 4.2. We note that
the worst-case density ratios affect the quantities in Eq. (5)
polynomially for the canonical examples in Table 3, which
in turn affect the sample complexity polynomially. Hence,
the leading constant grows exponentially in r and d sim-
ilar to (Shah et al., 2021b; 2023). This remark remains
valid for the following two statements for α-CentNCE and
f -CondNCE, as the worst-case density ratio bounds depend
similarly on r and τ . We also remark that the minimum
eigenvalue conditions are typically assumed in the exist-
ing finite-sample analysis (Vuffray et al., 2016; Shah et al.,
2021b; 2023), while (Shah et al., 2021a) establishes an
explicit lower bound on the minimum eigenvalue for node-
wise-sparse Gaussian MRFs.

Theorem 4.2 (α-CentNCE: finite-sample guarantee). Pick
α ∈ R. Define

(ρmin, ρmax) ≜
(

inf
x∈X ,θ∈Θ

ρ̃θ;α(x), sup
x∈X ,θ∈Θ

ρ̃θ;α(x)
)

and define the quantities in Eq. (5) for f = fα accordingly.

Let ρ̃αθ⋆;α(x) ≜
(
qd(x)

qn(x)
)α

Eqn [(
qd
qn

)α]
, and let

λcentmin,d ≜ λmin(Eqd [(ψ − Eqn [ψρ̃αθ⋆;α])(ψ − Eqn [ψρ̃αθ⋆;α])⊺]),

λcentmin,n ≜ λmin(Eqn [ψψ⊺ρ̃αθ⋆;α]− Eqn [ψρ̃αθ⋆;α]Eqn [ψρ̃αθ⋆;α]⊺).

Let θ̂cent,Rα,nd
be such that

θ̂cent,Rα,nd
∈ argmin

θ∈Θ

{
Lcent
α (θ; q̂d, qn) + λnd

R(θ)
}

for some λnd
> 0. Define ψmax,α ≜ ψmax +

∥Eqn [ψρ̃αθ⋆;α]∥max. Then, for any ∆ > 0 and δ ∈ (0, 1),
there exists a choice of λnd

such that ∥θ̂cent,Rf,nd
− θ⋆∥2 ≤ ∆

with probability ≥ 1− δ, provided that

nd = Ω

(
max

{
(B

(1)
nce,fα,d

)2γ2R;2γ
2
R∗;∞ψ

2
max,α

∆2(b
(2)
nce,fα,d

)2{(1− α)λcentmin,d + αλcentmin,n}2
,

γ41;2ψ
4
max,α

(λcentmin,d)
2

}
log

p2

δ

)
.
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Table 3. Definitions of ξ(i)nce,f,r(ρ) for i ∈ {1, 2} and r ∈ {d, n} for example generator functions f .

Definitions Log Asymmetric power

f(ρ) flog(ρ) fα(ρ)

ξ
(1)
nce,f,d(ρ) ≜ −ρf ′′(ρ) − 1

ρ+1
−ρα−1

ξ
(1)
nce,f,n(ρ) ≜ ρ2f ′′(ρ) ρ

ρ+1
ρα

ξ
(2)
nce,f,d(ρ) ≜ ρgf (ρ)

ρ
(ρ+1)2

(1− α)ρα−1

ξ
(2)
nce,f,n(ρ) ≜ ρ2(f ′′(ρ)− gf (ρ))

ρ
(ρ+1)2

αρα

(B
(1)
nce,f,d, B

(1)
nce,f,n) (1, 1) (ρα−1

min , ραmax)

(B
(2)
nce,f,d, B

(2)
nce,f,n) (1, 1) (|1− α|ρα−1

min , |α|ραmax)

(b
(2)
nce,f,d, b

(2)
nce,f,n) (κ, κ), where κ ≜ ρmin

(ρmin+1)2
∧ ρmax

(ρmax+1)2
(|1− α|ρα−1

max , |α|ραmin)

Remark 4.2 (Special cases). For α = 0, this result gener-
alizes the finite-sample analysis of GlobalGISO of (Shah
et al., 2023) beyond when qn is the uniform distribution. For
α = 1, we establish the convergence rate of the MLE, which
we believe to be the first result of this kind.

For the CondNCE estimator, we consider K = 1, i.e., we
have {(xi, yi)}nd

i=1 ∼ qd(x)π(y|x) for simplicity.
Theorem 4.3 (f -CondNCE: finite-sample guarantee). Pick
a strictly convex function f : R+ → R. Define

ρmin ≜ inf
(x,y)∈supp(qd(x)π(y|x)),θ∈Θ

ρθ(x, y),

ρmax ≜ sup
(x,y)∈supp(qd(x)π(y|x)),θ∈Θ

ρθ(x, y).

and define the quantities in Eq. (5) accordingly. Let

λcondmin,d ≜ λmin(Eqd(x)π(y|x)[(ψ(x)−ψ(y))(ψ(x)−ψ(y))⊺]).

Let θ̂cond,Rf,nd
be such that

θ̂cond,Rf,nd
∈ argmin

θ∈Θ

{
Lcond
f (θ; q̂d, π̂) + λnd

R(θ)
}

for some λnd
> 0. Then, for any ∆ > 0 and δ ∈ (0, 1),

there exists a choice of λn such that ∥θ̂cond,Rf,nd
− θ⋆∥2 ≤ ∆

with probability ≥ 1− δ, provided that

nd = Ω

(
max

{
(B

(1)
cond,f,d +B

(1)
cond,f,n)

2γ2R;2γ
2
R∗;∞ψ

2
max

∆2(b
(2)
cond,f,d + b

(2)
cond,f,n)

2(λcondmin )
2

,

γ41;2ψ
4
max

(λcondmin )
2

}
log

p2

δ

)
.

Here, b
(2)
cond,f,r and B

(i)
cond,f,r are defined similar to

Eq. (5), where the infimum and supremum are taken over
( ρmin

ρmax
, ρmax

ρmin
) in place of (ρmin, ρmax).

Remark 4.3 (Behavior of f -CondNCE in a small-ϵ regime).
As alluded to in Sec. 3.2, the undesirable behavior of f -
CondNCE with small ϵ can be also seen from the sam-
ple complexity, since the minimum eigenvalue λcondmin,d ≈

ϵ2λmin(Eqd(x)[∇xψ(x)∇xψ(x)⊺]) → 0 as ϵ → 0. In The-
orem C.3 in Appendix, we establish that the asymptotic
covariance of the estimator is V̌cond

f ≜ Ǐ−1
f Čf Ǐ−1

f , where

Ǐf ≜ Eqd,π(x,y)[ρ
2
θ⋆f

′′(ρθ⋆)(ψ(x)− ψ(y))(ψ(x)− ψ(y))⊺],
Čf ≜ Eqd,π(x,y)[ξ

(1)
cond,f (ρθ⋆)

2(ψ(x)− ψ(y))(ψ(x)− ψ(y))⊺],

where we let qd,π(x, y) ≜ qd(x)π(y|x). For a channel
y ∼ π(y|x) defined as y = x+ ϵv as in Sec. 3.2, it is easy
to check that limϵ→0

1
ϵ2 Ǐf = Eqd(x)[∇xψ(x)∇xψ(x)⊺] =

limϵ→0
1
ϵ2 Čf . Hence, in the small-ϵ regime, the asymptotic

covariance of the f -CondNCE also behaves as V̌cond
f ≈

1
ϵ2Eqd(x)[∇xψ(x)∇xψ(x)⊺], and hence blows up as ϵ→ 0.
These observations are consistent to Theorem 3.4.

Proof Sketch. Our finite-sample analysis of the regularized
NCE estimators follows closely that of Shah et al. (2023),
which relies on the seminal result of (Negahban et al., 2012)
for regularized M-estimators:

Theorem 4.4 (Negahban et al., 2012, Corollary 1). Let
z1, . . . , zN be i.i.d. samples drawn from a distribution p(z).
Let hθ(z) be a convex and differentiable function parame-
terized by θ ∈ Θ. Let L̂n(θ) ≜ 1

n

∑n
i=1 hθ(zi) denote the

empirical objective function. Define

θ̂n ∈ argmin
θ

{
L̂n(θ) + λnR(θ)

}
, (9)

where λn is a regularization penalty andR : Θ→ R≥0 is a
norm over Θ. Let θ⋆ ∈ argminθ Ep(z)[hθ(z)]. Assume that

1. The regularization penalty λn satisfies λn ≥
2R∗(∇θL̂n(θ⋆)), where R∗ : Θ∗ → R≥0 is a dual
norm ofR over the dual space Θ∗;

2. The empirical objective θ 7→ L̂n(θ) satisfies a re-
stricted strong convexity condition at θ = θ⋆ with
curvature κ > 0, i.e., ∆L̂n(θ)

(θ, θ⋆) ≥ κ∥θ − θ⋆∥22.

8
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Then, the estimator θ̂n in Eq. (9) satisfies

∥θ̂n − θ⋆∥2 ≤ 3
λn
κ
γR;2.

To ensure the first condition with λn sufficiently small, we
show that, with high probability, the gradient of the em-
pirical objective is sufficiently small, using Hoeffding’s
inequality under Assumption 4.1. For the second condition,
we show that the lowest eigenvalue of the Hessian of the
empirical objective is lower bounded, again by Hoeffding’s
inequality invoking Assumption 4.1 and the positivity of
the minimum eigenvalues of some second moment matri-
ces. Combining the two high-probability events by a union
bound completes the proof.

Simulation. We include a preliminary simulation result
of some NCE estimators in Appendix G. We leave a more
thorough empirical investigation on the estimators in this
paper for high-dimensional problems as a future work.

5. Discussion and Conclusion
Beyond Bounded Exponential Families. An intriguing
question is whether we can relax the boundedness assump-
tion on ψ(x), making our estimators applicable beyond
bounded (or truncated) exponential families. Here, we high-
light what we need to modify in the proofs to extend the
validity beyond this assumption, using f -NCE estimators as
an example. As sketched above, the proof of Theorem 4.1
consists of two parts: (1) the concentration of the gradient
of the empirical objective around 0, at the true parameter
θ⋆ (Proposition D.1) and (2) the restricted strong convexity
(anti-concentration of the Hessian) of the empirical objec-
tive, around the true parameter θ⋆ (Proposition D.2). In-
voking the uniform bound via the worst-case density ratios,
we apply Hoeffding’s inequality using the boundedness of
the max-norm of ψ(x). For unbounded sufficient statistics,
we need a technique to handle the concentration behaviors,
without worst-case density ratios bounded away from 0 and
∞. For example, if the exponential family distribution is
sub-Gaussian and the sufficient statistics are polynomials,
one could use the sub-Weibull concentration bounds.

Local Versions of NCE-based Estimators. So far, we take
a global approach to learning the parameter θ by treating it
as a single object. In the context of exponential families, this
is beneficial when exploiting a global structure on θ such as
a bounded maximum norm, a bounded Frobenius norm, or a
bounded nuclear norm when θ is matrix-shaped (Shah et al.,
2023). However, for exponential families corresponding
to a node-wise sparse Markov random fields (MRFs), the
structure to be exploited is inherently local. Specifically, in
node-wise-sparse MRFs, the conditional distribution of each
node given all the other nodes can be expressed by number
of parameters which scale with the maximum-degree of
the MRF, which is assumed to be much smaller than the

dimension. In such scenarios, it is convenient to learn the
conditional distribution for each node rather than learning
the joint distribution over all nodes. There exists a long line
of work on this approach, e.g., see (Besag, 1975; Vuffray
et al., 2016; 2021; Shah et al., 2021a; Ren et al., 2021), a
representative of which is the pseudo likelihood estimator of
Besag (1975). Maybe not very surprisingly at this point, if
we apply the NCE framework in a local manner, it provides
a unifying view on all of the aforementioned works. We
defer a detailed discussion to Appendix E.

Optimization Complexity. So far, we have focused on
the statistical properties of the proposed estimators. Now,
we make a few comments regarding the optimization com-
plexity as concluding remarks. The first-order important
property regarding optimization is the convexity of the ob-
jective functions with respect to the natural parameter θ. In
Appendix F.1, we characterize a sufficient condition for the
convexity of f -NCE, α-CentNCE, as well as f -CondNCE.
Specifically, we show that flog and fα for α ∈ [0, 1] result
in convex objectives. Somewhat surprisingly, a counterex-
ample of convex f which cannot guarantee convexity of the
objective function is fα(ρ) for α ̸∈ [0, 1].

In the optimization community, a recent line of work (Liu
et al., 2021; Lee et al., 2023) studied the optimization land-
scape of the original NCE objective and showed that the
landscape can be arbitrarily flat even for a scalar Gauss-
ian mean estimation. This is mainly due to the unbounded
and light-tailed nature of Gaussian distributions. Under the
boundedness assumption, we prove in Appendix F.2 that the
empirical f -NCE objective function, for example, is smooth
with probability 1. Then, from (Agarwal et al., 2010, Theo-
rem 1), and the restricted strong convexity (Proposition D.2),
a projected gradient descent algorithm has a globally ge-
ometric rate of convergence. A recent work (Jiang et al.,
2023) analyzed the optimization landscape of MC-MLE and
proposed an optimization algorithm with efficient optimiza-
tion complexity guarantee together with a strong empirical
result, missing the connection to the original work (Geyer,
1994) and its statistical properties analyzed in (Riou-Durand
& Chopin, 2018). Building on top of our work and (Jiang
et al., 2023) could be an exciting future direction at the
intersection of statistical and optimization complexity for
learning unnormalized distributions.

Conclusion. We hope that this work offers a unifying per-
spective on both existing estimators and those yet to be
discovered, and that it contributes to a more systematic
understanding of the trade-off between statistical and op-
timization complexity in the context of efficient learning
with unnormalized distributions. As emphasized through-
out the paper, further investigation is warranted to better
understand the empirical behavior of different estimators in
high-dimensional settings.
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A. Glossary
For a reference, we provide a summary of notations in Table 4.

B. Basic Properties
In what follows, we use Euler’s notation and Lagrange’s notation for derivatives. First, we remark the derivatives of the
Bregman divergence with respect to the second argument:

∆f (x, y) = f(x)− f(y)− f ′(y)(x− y),
∂y∆f (x, y) = (y − x)f ′′(y),
∂yy∆f (x, y) = f ′′(y) + yf ′′′(y)− xf ′′′(y),

∂yy∆f (x, y)|x=y = f ′′(y).

Further, since we consider exponential family distributions, we have

∂θiρθ = ρθψi and ∂θiθjρθ = ρθψiψj .

Lemma B.1. For a three-times differentiable function f , let gf (ρ) = −(ρf ′′′(ρ) + f ′′(ρ)).

∂θiθj∆f (ρ
∗, ρθ) = ψiψjρθ{(ρθf ′′′(ρθ) + f ′′(ρθ))(ρθ − ρ∗) + ρθf

′′(ρθ)}
= ψiψjρθ(ρθ(f

′′(ρθ)− gfρθ)) + ρ∗gfρθ)).
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Table 4. Summary of notations.

Notation Definition Description

X ⊂ Rd domain of x
Θ ⊂ Rp domain of θ

ρθ(x)
ϕθ(x)
νqn(x)

(scaled) density ratio
∆h(z, z

′) h(z)− h(z′)−∇zh(z′)⊺(z − z′) Bregman divergence of h : RD → R

θncef (qd, qn) ∈ argmin
θ∈Θ
Lnce
f (ϕθ; qd, qn) f -NCE estimator (population)

θcentα (qd, qn) ∈ argmin
θ∈Θ
Lcent
α (ϕθ; qd, qn) α-CentNCE estimator (population)

θcondf (qd, π) ∈ argmin
θ∈Θ
Lcond
f (ϕθ; qd, π) f -CondNCE estimator (population)

θncef (q̂d, q̂n) ∈ argmin
θ∈Θ
Lnce
f (ϕθ; q̂d, q̂n) f -NCE estimator (empirical)

θcentα (q̂d, qn) ∈ argmin
θ∈Θ
Lcent
α (ϕθ; q̂d, qn) α-CentNCE estimator (empirical)

θcondf (q̂d, π̂) ∈ argmin
θ∈Θ
Lcond
f (ϕθ; q̂d, π̂) f -CondNCE estimator (empirical)

R(·) a norm over Θ
R∗(·) a dual norm over Θ∗

ρmin minimum density ratio
ρmax maximum density ratio

B.1. f -NCE

Recall

L̂nce
f (θ) ≜ Lnce

f (ϕθ; q̂d, q̂n) = −
1

ν
Eq̂d [f ′(ρθ)] + Eq̂n [ρθf ′(ρθ)− f(ρθ)].

B.1.1. INVARIANCE

We define an equivalent class of generator functions f that yield the same NCE objective. For a function fo, let Fnce(fo) ≜
{f : Lnce

f ∼ Lnce
fo
}, where the notation ∼ denotes that the two objective functions are equivalent up to constants, i.e., there

exist A,B ∈ R such that Lnce
f (ϕθ; qd, qn) ≡ ALnce

fo
(ϕθ; qd, qn) +B.

Lemma B.2. If f ∈ Fnce(fo), (ρ 7→ af(ρ) + bρ+ c) ∈ Fnce(fo) for any a, b, c ∈ R.

B.1.2. DERIVATIVES

Lemma B.3 (NCE: derivatives).

∇θL̂nce
f (θ) =

1

ν
Eq̂d [−ρθf ′′(ρθ)∇θ log ρθ] + Eq̂n [ρ2θf ′′(ρθ)∇θ log ρθ],

∇2
θL̂nce

f (θ) =
1

ν
Eq̂d [(−ρθf ′′(ρθ)− ρ2θf ′′′(ρθ))∇θ log ρθ∇⊺

θ log ρθ − ρθf ′′(ρθ)∇2
θ log ρθ]

+ Eq̂n [(2ρ2θf ′′(ρθ) + ρ3θf
′′′(ρθ))∇θ log ρθ∇⊺

θ log ρθ + ρ2θf
′′(ρθ)∇2

θ log ρθ].

In particular, we have

∇θLnce
f (θ⋆) = E[∇θL̂nce

f (θ⋆)] = 0,

∇2
θLnce

f (θ⋆) =
1

ν
Eqd

[
ρθ⋆f

′′(ρθ⋆)∇θ log ρθ⋆∇⊺
θ log ρθ⋆

]
.

For an exponential family model ϕθ(x) = exp(⟨θ, ψ(x)⟩), we have

∇θL̂nce
f (θ) =

1

ν
Eq̂d [ψξ

(1)
nce,f,d(ρθ)] + Eq̂n [ψξ

(1)
nce,f,n(ρθ)],

13
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∇2
θL̂nce

f (θ) =
1

ν
Eq̂d [ψψ⊺ξ

(2)
nce,f,d(ρθ)] + Eq̂n [ψψ⊺ξ

(2)
nce,f,n(ρθ)],

where

ξ
(1)
nce,f,d(ρ) = −ρf ′′(ρ),
ξ
(1)
nce,f,n(ρ) = ρ2f ′′(ρ),

ξ
(2)
nce,f,d(ρ) = ρgf (ρ),

ξ
(2)
nce,f,n(ρ) = ρ2(f ′′(ρ)− gf (ρ))

In particular, if qd(x) ≡ ϕθ⋆(x) for some θ⋆,

∇θLnce
f (θ⋆) = E[∇θL̂nce

f (θ⋆)] = 0,

∇2
θLnce

f (θ⋆) = E[∇2
θL̂nce

f (θ⋆)] =
1

ν
Eqd [ψψ⊺f ′′(ρθ⋆)] = Eqn [ψψ⊺ρθ⋆f

′′(ρθ⋆)].

B.2. α-CentNCE

Recall that

r̃θ;α(x) =
rθ(x)

(Eqn [rαθ (x)])
1
α

and

L̃α(θ) ≜ L̃α(θ; qd, qn) ≜
1

1− αEqd [r̃
α−1
θ;α (x)] =

1

1− αEqd [r
α−1
θ (x)](Eqn [rαθ (x)])

1−α
α .

B.2.1. DERIVATIVES

It is easy to check that

Lemma B.4.

∇θ log r̃θ;α = ψ − Eqn [ψr̃αθ;α],
∇2
θ log r̃θ;α = −α{Eqn [ψψ⊺r̃αθ;α]− Eqn [ψr̃αθ;α]Eqn [ψr̃αθ;α]⊺}.

B.2.2. AN ALTERNATIVE INTERPRETATION OF GLOBALGISO

Consider an unnormalized model {ϕθ(x) : θ ∈ Θ}. For a data distribution qd(x), to which we have sample access, assume
that there exists θ∗ ∈ Θ such that ϕθ∗(x) ∝ qd(x). Let qn(x) be a reference distribution which makes Eqn [log ϕθ(x)] exist
for any θ ∈ Θ. We define a “centered” unnormalized model

ϕ̃θ(x) ≜
ϕθ(x)

eEqn [log ϕθ(x)]

and denote its partition function as Z̃(θ) ≜
∫
ϕ̃θ(x) dx. We remark that

Eqn [log ϕ̃θ(x)] = Eqn [log ϕθ(x)]− Eqn [log ϕθ(x)] = 0. (10)

We then define an objective for distribution learning as

Lgiso(θ) ≜ Eqd
[ qn(x)
ϕ̃θ(x)

]
.

If ϕθ(x) = exp(⟨θ, ψ(x)⟩ is an exponential family distribution over a compact support X and qn(x) is the uniform
distribution over X , then it boils down to the objective function studied by (Shah et al., 2021b).

14
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Fisher Consistency To understand the property of the objective, we introduce another unnormalized model

ξθ1,θ2(x) ≜
ϕ̃θ1(x)

ϕ̃θ2(x)
qn(x),

and denote its partition function and the normalized distribution as

Z(θ1, θ2) ≜
∫
ξθ1,θ2(x) dx and qθ1,θ2(x) ≜

ξθ1,θ2(x)

Z(θ1, θ2)
.

We can then show that

Theorem B.1.
logLgiso(θ) = D(qn∥qθ∗,θ)− log Z̃(θ∗).

As an immediate corollary, we can prove the Fisher consistency of the objective function.

Corollary B.1 (Fisher consistency). Let θ⋆ ∈ argminθ Lgiso(θ). Then, ϕθ⋆(x) ∝ qd(x) for x ∈ supp(qn).

The proof of Theorem B.1 readily follows from the following lemmas.

Lemma B.5.
Lgiso(θ) =

Z(θ∗, θ)

Z̃(θ∗)
.

Proof. Consider

Lgiso(θ) ≜
∫
qd(x)

qn(x)

ϕ̃θ(x)
dx

=

∫
ϕ̃θ∗(x)

Z̃(θ∗)

qn(x)

ϕ̃θ(x)
dx

=
1

Z̃(θ∗)

∫
ϕ̃θ∗(x)

ϕ̃θ(x)
qn(x) dx

=
Z(θ∗, θ)

Z̃(θ∗)
.

Lemma B.6. For any θ1, θ2 ∈ Θ,
D(qn∥qθ1,θ2) = logZ(θ1, θ2).

Proof. Consider

D(qn∥qθ1,θ2) = Eqn
[
log

qn(x)

qθ1,θ2(x)

]

= Eqn
[
logZ(θ1, θ2) + log

ϕ̃θ2(x)

ϕ̃θ1(x)

]

= logZ(θ1, θ2).

Here, in the last equality, we use the fact that log ϕ̃θ(x) is centered under qn(x), as alluded to earlier in Eq. (10).

B.2.3. PROOF OF THEOREM 3.1

Theorem 3.1 (α-CentNCE subsumes MLE and GlobalGISO). The following holds:

1. (α = 0: GlobalGISO) For an exponential family ϕθ(x), if X is bounded and qn(x) is a uniform distribution over X , the
0-CentNCE objective L̃0(θ; qd, qn) is equivalent to GlobalGISO (Shah et al., 2021b).
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2. (α = 1: MLE) If Z1(θ) is assumed to be computable for each θ, the 1-CentNCE objective L̃1(θ; q̂d, qn) is equivalent to
MLE (Fisher, 1922).

3. (α = 1: MC-MLE) If Z1(θ) = Eqn [
ϕθ(x)
qn(x)

] is estimated with empirical noise distribution q̂n(x), the 1-CentNCE objective

L̃1(θ; q̂d, q̂n) is equivalent to MC-MLE (Geyer, 1994).

Proof. When α→ 1, the centering becomes the standard normalization, i.e.,

ϕ̃θ;1(x) ≜ lim
α→1

ϕθ(x)

(Eqn [(
ϕθ(x)
qn(x)

)α])1/α
=

ϕθ(x)

Eqn [
ϕθ(x)
qn(x)

]
,

and thus the objective becomes equivalent to the MC-MLE objectives:

L̃1(θ; qd, qn) = Eqd(x)
[
log

1

ϕ̃θ;1(x)

]
= Eqd(x)

[
log

1

ϕθ(x)

]
+ logEqn

[ϕθ(x)
qn(x)

]
.

When Z1(θ) = Eqn [
ϕθ(x)
qn(x)

] = Z(θ) is assumed to be computable, this becomes equivalent to MLE.

When α→ 0, the centering becomes

ϕ̃θ;0(x) ≜ lim
α→0

ϕθ(x)

(Eqn [(
ϕθ(x)
qn(x)

)α])1/α
=

ϕθ(x)

eEqn(x)[log
ϕθ(x)

qn(x)
]

and the objective becomes

L̃0(θ; qd, qn) = Eqd(x)
[ qn(x)

ϕ̃θ;0(x)

]
= Eqd(x)

[ qn(x)
ϕθ(x)

]
eEqn(x)[log

ϕθ(x)

qn(x)
]. (11)

In particular, for the exponential family, we have

logZ0(θ) ≜ Eqn(x)
[
log

ϕθ(x)

qn(x)

]
= ⟨θ, ψ̄q⟩ − Eqn(x)[log qn(x)],

where ψ̄q ≜ Eqn(x)[ψ(x)], and thus the objective becomes

L̃0(θ; qd, qn) = Eqd(x)[qn(x) exp(⟨θ, ψ(x)− ψ̄q⟩)]

modulo additive and multiplicative constants. When the underlying domain X is assumed to be bounded, we can set qn(x)
as the uniform distribution over X . In this case, the NCE objective boils down to the global generalized interactive screening
objective (GlobalGISO) studied by Shah et al. (2021b).

To provide a comprehensive view, we summarize the connections in terms of the objective functions that correspond to the
unified estimators in Table 5.

B.2.4. PROOF OF THEOREM 3.2

Theorem 3.2 (fα-NCE and α-CentNCE estimators are equivalent). For a set A ⊂ Θ × R in the augmented parameter
space, let A|Θ ≜ {θ : (θ, ν) ∈ A for some ν ∈ R} denote the subset corresponding to Θ. Then,

argmin
θ=(θ,ν)∈Θ×R

Lnce
fα (θ; q̂d, q̂n)

∣∣∣
Θ
= argmin

θ∈Θ
Lcent
α (θ; q̂d, q̂n).

Proof. On one hand, we first note that ν 7→ Lnce
fα

(θ; q̂d, q̂n) is convex, and for each θ, the minimizer ν∗α(θ) of the centered
objective satisfies

eν
∗(θ) =

Eq̂d [r
α−1
θ ]

Eq̂n [rαθ ]
.

16



A Unified View on Learning Unnormalized Distributions via Noise-Contrastive Estimation

Table 5. Existing estimators as special instances of NCE estimators.

Existing estimators Corresponding NCE objective

MLE (Fisher, 1922) Lcent
1 (θ; q̂d, qn)

GlobalGISO (Shah et al., 2023) Lcent
0 (θ; q̂d, qn)

MC-MLE (Geyer, 1994; Jiang et al., 2023) Lcent
1 (θ; q̂d, q̂n)

IS (Pihlaja et al., 2010; Riou-Durand & Chopin, 2018) Lnce
f1

(θ; q̂d, q̂n)

eNCE (Liu et al., 2021) Lnce
f 1

2

(θ; q̂d, q̂n)

Pseudo likelihood (Besag, 1975) Lcent
1 (θ; q̂d, qn) (local)

GISO (Vuffray et al., 2016; 2021), ISODUS (Ren et al., 2021) Lcent
0 (θ; q̂d, qn) (local)

Moreover,
∇θLnce

fα (θ; q̂d, q̂n) = −eν(α−1)Eq̂d [r
(α−1)
θ ∇θ log rθ] + eναEq̂n [rαθ∇θ log rθ],

so that the fα-NCE estimator θ̂
nce

fα (q̂d, q̂n) = (θ̂ncefα (q̂d, q̂n), ν̂
nce
fα

(q̂d, q̂n)) satisfies

Eq̂n [rαθ∇θ log rθ]Eq̂d [rα−1
θ ] = Eq̂n [rαθ ]Eq̂d [r

α−1
θ ∇θ log rθ]. (12)

On the other hand, we have

∇θLcent
α (θ; q̂d, q̂n) = −Eq̂d [rα−1

θ ∇θ log rθ](Eq̂n [rαθ ])
1−α
α + Eq̂d [r

α−1
θ ](Eq̂n [rαθ ])

1−2α
α Eq̂n [rαθ∇θ log rθ],

which implies that the α-CentNCE estimator θ̂centα (qd, qn) is also a root of Eq. (12). This establishes the desired equivalence.

B.3. f -CondNCE

B.3.1. DERIVATIVES

We first note that

Lemma B.7.

∇rθ(x, y) = rθ(x, y)∇θ log rθ(x, y),

∇r−1
θ (x, y) = − 1

r2θ(x, y)
∇rθ(x, y) = −

1

rθ(x, y)
∇θ log rθ(x, y).

In particular, for an exponential family distribution ϕθ(x) = exp(⟨θ, ψ(x)⟩), we have

∇θ log ρθ(x, y) = ψ(x)− ψ(y),
∇2
θ log ρθ(x, y) = 0.

Lemma B.8 (Conditional NCE: derivatives). Let ρθ(x, y) ≜ ρθ for a shorthand.

∇θLcond
f (θ) = Eqd(x)π(y|x)[(ρθf

′′(ρθ) + ρ−2
θ f ′′(ρ−1

θ ))∇θ log ρθ],
∇2
θLcond

f (θ) = Eqd(x)π(y|x)[(−ρθf ′′(ρθ)− ρ2θf ′′′(ρθ))∇θ log ρθ∇⊺
θ log ρθ − ρθf ′′(ρθ)∇2

θ log ρθ

+ (2ρ−2
θ f ′′(ρ−1

θ ) + ρ−3
θ f ′′′(ρ−1

θ ))∇θ log ρθ∇⊺
θ log ρθ + ρ−2

θ f ′′(ρ−1
θ )∇2

θ log ρθ].

For an exponential family distribution ϕθ(x) = exp(⟨θ, ψ(x)⟩), we have

∇θLcond
f (θ) = Eqd(y)π(x|y)[(ψ(x)− ψ(y))ξ

(1)
cond,f (ρθ(x, y))],

∇2
θLcond

f (θ) = Eqd(y)π(x|y)[(ψ(x)− ψ(y))(ψ(x)− ψ(y))⊺ξ
(2)
cond,f (ρθ(x, y))],

17



A Unified View on Learning Unnormalized Distributions via Noise-Contrastive Estimation

where

ξ
(1)
cond,f (ρ) ≜ ρ−1f ′′(ρ−1) + ρ2f ′′(ρ) = −ξ(1)nce,f,d(ρ

−1) + ξ
(1)
nce,f,n(ρ),

ξ
(2)
cond,f (ρ) ≜ ρ−1gf (ρ

−1) + ρ2(f ′′(ρ)− gf (ρ)) = ξ
(2)
nce,f,d(ρ

−1) + ξ
(2)
nce,f,n(ρ).

In particular,

∇θLcond
f (θ⋆) = 0,

∇2
θLcond

f (θ⋆) = Eqd(y)π(x|y)[(ψ(x)− ψ(y))(ψ(x)− ψ(y))⊺ρ2θf ′′(ρθ)].

B.3.2. PROOF OF THEOREM 3.4

Theorem 3.4 (Asymptotic behavior of empirical f -CondNCE for small ϵ). The empirical f -CondNCE objective can be
written as

Lcond
f (ϕθ; q̂d, q̂s) = −f(1)

+ 2f ′′(1)Eq̂d(x)q̂s(v)[∇x log ϕθ(x)⊺v]ϵ
+ f ′′(1)Lssm(ϕθ; q̂d, q̂s)ϵ

2 + o(ϵ2).

Here, we define the empirical sliced SM (SSM) objective (Song et al., 2020)

Lssm(ϕθ; q̂d, q̂s)

≜ Eq̂d(x)q̂s(v)
[
v⊺∇2

x log ϕθ(x)v +
1

2
(v⊺∇x log ϕθ(x))2

]
.

Proof. Let Ĉf (θ, ϵ) ≜ L̂cond
f (ϕθ; q̂d, q̂s). Note that

Ĉf (θ, ϵ) = Eq̂d(x)q̂s(v)[−f ′(r) + r−1f ′(r−1)− f(r−1)],

where we set r = ϕθ(x)
ϕθ(x+ϵv)

as a shorthand notation. Since by chain rule we have ∂
∂ϵ log r = −∇x log ϕθ(x + ϵv)⊺v, we

have

∂

∂ϵ
Ĉf (θ, ϵ) = Eq̂d(x)q̂s(v)

[
∇x log ϕθ(x+ ϵv)⊺v

(
rf ′′(r) +

1

r2
f ′′

(1
r

))]
,

and

∂2

∂ϵ2
Ĉf (θ, ϵ) = Eq̂d(x)q̂s(v)

[
v⊺∇2

x log ϕθ(x+ ϵv)v
(
rf ′′(r) +

1

r2
f ′′

(1
r

))

+ (∇x log ϕθ(x+ ϵv)⊺v)2
(
rf ′′(r) + r2f ′′′(r)− 2

r2
f ′′

(1
r

)
− 1

r4
f ′′′

(1
r

))]
.

Hence,

Ĉf (θ, ϵ)
∣∣∣
ϵ=0

= −f(1),
∂

∂ϵ
Ĉf (θ, ϵ)

∣∣∣
ϵ=0

= 2f ′′(1)Eq̂d(x)q̂s(v)[∇x log ϕθ(x)⊺v],
∂2

∂ϵ2
Ĉf (θ, ϵ)

∣∣∣
ϵ=0

= f ′′(1)
(
2Eq̂d(x)q̂s(v)[v

⊺∇2
x log ϕθ(x)v] + Eq̂d(x)q̂s(v)[(∇2

x log ϕθ(x)
T v)2]

)

= 2f ′′(1)L̂ssm(ϕθ; q̂d, q̂s).

Plugging these to the second-order Taylor approximation of ϵ 7→ Ĉf (θ, ϵ) around ϵ = 0, i.e.,

Ĉf (θ, ϵ) = Ĉf (θ, ϵ)
∣∣∣
ϵ=0

ϵ+
∂

∂ϵ
Ĉf (θ, ϵ)

∣∣∣
ϵ=0

ϵ+
1

2

∂2

∂ϵ2
Ĉf (θ, ϵ)

∣∣∣
ϵ=0

ϵ2 + o(ϵ2),

concludes the proof.
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C. Asymptotic Guarantees
We can establish the asymptotic consistency and normality of the estimators. Though we present the results for exponential
family models for simplicity, one can derive the asymptotic covariances for general unnormalized models and generalize the
results. All the proofs are straightforward from the application of standard M-estimation theory, see, e.g., (Van der Vaart,
2000), so we omit the proofs.

C.1. f -NCE

Theorem C.1 (f -NCE: asymptotic guarantee). Let θ̂
nce

f ;nd,nn
≜ (θ̂ncef ;nd,nn

, ĉncef ;nd,nn
) be a solution of

θ̂
nce

f ;nd,nn
∈ arg min

θ∈Θ×R
L̂nce
f (θ).

Let nn ≜ βnd for some β > 0. If L̂nce
f (θ)

p→ Lnce
f (θ) as nd → ∞ uniformly over θ ∈ Θ × R, θ̂

nce

f ;nd,nn

p→ (θ⋆, c⋆) as

nd →∞. Further, if θ⋆ ∈ int(Θ), we have
√
nd(θ̂

nce
f ;nd,nn

− θ⋆) d→ N (0,Vnce
f ), where we define Vnce

f ≜ I−1
f CfI−1

f ,

If ≜ Eqd [ρθ⋆f ′′(ρθ⋆)ψψ
⊺],

Cf ≜ Eqd
[(

1 +
ν

β
ρθ⋆

)
ρ2θ⋆f

′′(ρθ⋆)
2ψψ⊺

]
−

(
1 +

1

β

)
Eqd [ρθ⋆f ′′(ρθ⋆)ψ]Eqd [ρθ⋆f ′′(ρθ⋆)ψ]⊺,

for ψ(x) ≜ [ψ(x); 1]⊺ ∈ Rp+1, provided that If is invertible. In particular, the asymptotic covariance Vnce
f satisfies

Vnce
f ⪰ Vnce

flog
, or equivalently Vnce

f − Vnce
flog

is a PSD matrix, for any f .

This result has been known, but we present a rephrased version here to contextualize our contribution. The asymptotic
convergence beyond exponential family was established in (Gutmann & Hyvärinen, 2012) for flog-NCE and in (Pihlaja et al.,
2010; Uehara et al., 2018) for f -NCE. The optimality of flog was established in (Uehara et al., 2018). It was independently
proved that the original flog-NCE estimator asymptotic covariance not larger than that of the f1-NCE estimator (and thus
the MC-MLE estimator), which they call the IS estimator, in Loewner order (Riou-Durand & Chopin, 2018). In the same
paper, the asymptotic guarantee for the flog-NCE and IS estimators was shown for a general unnormalized distribution
under a non-i.i.d. setting in (Barthelmé & Chopin, 2015).

C.2. α-CentNCE

Theorem C.2 (CentNCE: asymptotic guarantee). Assume that any expectation over qn in the α-CentNCE objective can be
computed for any θ without samples from qn. Let θ̂centα;nd

be a solution of

θ̂centα;nd
∈ argmin

θ∈Θ
Lcent
α (θ; q̂d, qn).

If Lcent
α (θ; q̂d, qn)

p→ Lcent
α (θ; qd, qn) as nd →∞ uniformly over θ ∈ Θ, θ̂centα;nd

p→ θ⋆ as nd →∞. Further, if θ⋆ ∈ int(Θ),

we have
√
nd(θ̂

cent
α;nd
− θ⋆) d→ N (0,Vcent

α ), where we define Vcent
α ≜ Ĩ−1

α C̃αĨ−1
α ,

Ĩα ≜ (1− α)Eqd [r̃α−1
θ⋆;α(ψ − Eqn [r̃αθ⋆;αψ])(ψ − Eqn [r̃αθ⋆;αψ])⊺]

+ αEqd [r̃
α−1
θ⋆;α](Eqn [r̃

α
θ⋆;αψψ

⊺]− Eqn [r̃αθ⋆;αψ]Eqn [r̃αθ⋆;αψ]⊺),

C̃α ≜ Eqd [r̃
2(α−1)
θ⋆;α (ψ − Eqn [r̃αθ⋆;αψ])(ψ − Eqn [r̃αθ⋆;αψ])⊺],

provided that Ĩα is invertible. Here, note that r̃αθ⋆;α(x) =
(
qd(x)

qn(x)
)α

Eqn [(
qd
qn

)α]
.

In particular, this result recovers the asymptotic convergence of MLE for α = 1, and generalizes the analysis of GlobalGISO
of (Shah et al., 2023) beyond when qn is the uniform distribution.

C.3. f -CondNCE

Theorem C.3 (f -CondNCE: asymptotic guarantee). Let θ̂condf ;nd
be a solution of

θ̂condf ;nd
∈ argmin

θ∈Θ
L̂cond
f (θ).
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If L̂cond
f (θ)

p→ Lcond
f (θ) as nd → ∞ uniformly over θ ∈ Θ, θ̂condf ;nd

p→ θ⋆ as nd → ∞. Further, if θ⋆ ∈ int(Θ), we have
√
nd(θ̂

cent
f ;nd
− θ⋆) d→ N (0, V̌cond

f ), where we define V̌cond
f ≜ Ǐ−1

f Čf Ǐ−1
f ,

Ǐf ≜ Eqd(x)π(y|x)[ρ
2
θ⋆f

′′(ρθ⋆)(ψ(x)− ψ(y))(ψ(x)− ψ(y))⊺],
Čf ≜ Eqd(x)π(y|x)[ξ

(1)
cond,f (ρθ⋆)

2(ψ(x)− ψ(y))(ψ(x)− ψ(y))⊺],

provided that Ǐf is invertible. Here, ρθ = ρθ(x, y) and ξ(1)cond,f (ρ) ≜ ρ−1f ′′(ρ−1) + ρ2f ′′(ρ).

D. Finite-Sample Guarantees
For the finite-sample analysis of the regularized NCE estimators, we invoke the result of Negahban et al. (2012):

Theorem 4.4 (Negahban et al., 2012, Corollary 1). Let z1, . . . , zN be i.i.d. samples drawn from a distribution p(z). Let
hθ(z) be a convex and differentiable function parameterized by θ ∈ Θ. Let L̂n(θ) ≜ 1

n

∑n
i=1 hθ(zi) denote the empirical

objective function. Define

θ̂n ∈ argmin
θ

{
L̂n(θ) + λnR(θ)

}
, (9)

where λn is a regularization penalty andR : Θ→ R≥0 is a norm over Θ. Let θ⋆ ∈ argminθ Ep(z)[hθ(z)]. Assume that

1. The regularization penalty λn satisfies λn ≥ 2R∗(∇θL̂n(θ⋆)), whereR∗ : Θ∗ → R≥0 is a dual norm ofR over the
dual space Θ∗;

2. The empirical objective θ 7→ L̂n(θ) satisfies a restricted strong convexity condition at θ = θ⋆ with curvature κ > 0,
i.e., ∆L̂n(θ)

(θ, θ⋆) ≥ κ∥θ − θ⋆∥22.

Then, the estimator θ̂n in Eq. (9) satisfies

∥θ̂n − θ⋆∥2 ≤ 3
λn
κ
γR;2.

D.1. f -NCE

Theorem 4.1 (f -NCE: finite-sample guarantee). Pick a strictly convex function f : R+ → R. Define

(ρmin, ρmax) ≜
(

inf
x∈X ,θ∈Θ×R

ρθ(x), sup
x∈X ,θ∈Θ×R

ρθ(x)
)

and define the quantities in Eq. (5) accordingly. For r ∈ {d, n}, define

λncemin,r ≜ λmin(Eqr [ψψ⊺]).

Let θ̂nce,Rf,nd,nn
be such that

θ̂nce,Rf,nd,nn
∈ argmin

θ∈Θ

{
Lnce
f (θ; q̂d, q̂n) + λnd,nnR(θ)

}

for some λnd,nn > 0. Then, for any ∆ > 0 and δ ∈ (0, 1), there exists a choice of λnd,nn such that ∥θ̂nce,Rf,nd,nn
− θ⋆∥2 ≤ ∆

with probability ≥ 1− δ, provided that for each r ∈ {d, n},

nr = Ω

(
max

{
(B

(1)
nce,f,r)

2γ2R;2γ
2
R∗;∞ψ

2
max

∆2(ν−1b
(2)
nce,f,dλ

nce
min,d + b

(2)
nce,f,nλ

nce
min,n)

2
,

γ41;2ψ
4
max

(λncemin,r)
2

}
log

p2

δ

)
.
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We need to show two properties. First, the empirical gradient ∇θL̂nce
f (θ) is nearly zero at θ = θ⋆ with high probability

(Proposition D.1). Second, the empirical Hessian ∇2
θL̂nce

f (θ) has a strictly positive curvature (i.e., exhibiting restricted
strong convexity) at θ = θ⋆ with high probability (Proposition D.2).

Proposition D.1 (Vanishing gradient). (cf. (Shah et al., 2021b, Proposition F.1).) Assume Assumption 4.1. For any
δ ∈ (0, 1), ϵ > 0,

∥∇θL̂nce
f (θ⋆)∥max ≤ ϵ

with probability ≥ 1− δ, if nr ≥
2ψ2

max(B
(1)
nce,f,r)

2

ϵ2 log 2p
δ for each r ∈ {d, n}.

Proof. Recall from Lemma B.3 that

∇θL̂nce
f (θ) = −1

ν
Eq̂d [ψρθf ′′(ρθ)] + Eq̂n [ψρ2θf ′′(ρθ)].

Therefore, we have
E[∂θiL̂nce

f (θ⋆)] = ∂θiLnce
f (θ⋆) = 0.

Since |ψi(x)ξ(1)nce,f,d(ρθ(x))| ≤ ψmaxB
(1)
nce,f,d and |ψi(x)ξ(1)nce,f,d(ρθ(x))| ≤ ψmaxB

(1)
nce,f,n, by Hoeffding’s inequality and

union bound, we have

P(| ∂θiL̂nce
f (θ⋆)| ≥ ϵ) ≤ 2 exp

(
− ndϵ

2

2ψ2
max(B

(1)
nce,f,d)

2

)
+ 2 exp

(
− nnϵ

2

2ψ2
max(B

(1)
nce,f,n)

2

)
= δ,

if nd ≥
2ψ2

max(B
(1)
nce,f,d)

2

ϵ2 log 2
δ and nn ≥

2ψ2
max(B

(1)
nce,f,n)

2

ϵ2 log 2
δ . By taking a union bound over p different coordinates of θ, we

conclude the proof.

Lemma D.1. (cf. (Shah et al., 2021a, Lemma E.1)) Assume Assumption 4.1. Let r be either qd or qn. For any ϵ2 > 0,

max
ij
|Er̂[ψiψj ]− Er[ψiψj ]| ≤ ϵ2,

with probability ≥ 1− δ2, if

nr ≥
2ψ4

max

ϵ22
log

2p2

δ2
.

Proof. Since |ψi(x)ψj(x)| ≤ ψ2
max is a bounded random variable, by Hoeffding’s inequality, we have

Pr{|Er̂[ψiψj ]− Er[ψiψj ]| > ϵ2} ≤ 2 exp
(
− nrϵ

2
2

2ψ4
max

)

Taking a union bound over i, j ∈ [p] leads to the desired bound.

Recall that for a function h : Θ→ R, the Bregman divergence is defined as

∆h(θ, θo) ≜ h(θ)− h(θo)− ⟨∇θh(θo), θ − θo⟩.

Proposition D.2 (Restricted strong convexity). (cf. (Shah et al., 2021a, Proposition E.1)) Under Assumption 4.1,

∆L̂nce
f
(θ, θ⋆) ≥ 1

4

(b(2)nce,f,d

ν
λmin,d + b

(2)
nce,f,nλmin,n

)
∥θ − θ⋆∥22

with probability ≥ 1− δ, if nr ≥ 8γ4
1;2ψ

4
max

λ2
min,r

log 4p2

δ for each r ∈ {d, n}.
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Proof. By the intermediate value theorem, there exists ξ ∈ {tθ + (1− t)θ⋆ : t ∈ [0, 1]} such that

∆L̂nce
f
(θ, θ⋆) = L̂nce

f (θ)− L̂nce
f (θ⋆)− ⟨∇θL̂nce

f (θ⋆), θ − θ⋆)

=
1

2
(θ − θ⋆)⊺∇2

θL̂nce
f (ξ)(θ − θ⋆).

Here, note that ξ depends on q̂d and q̂n. Let z ≜ ⟨ψ(x), θ − θ⋆⟩.

(θ − θ⋆)⊺∇2
θL̂nce

f (ξ)(θ − θ⋆) = 1

ν
Eq̂d [z2ρξgf (ρξ)] + Eq̂n [z2ρ2ξ(f ′′(ρξ)− gf (ρξ)]

≥
b
(2)
nce,f,d

ν
Eq̂d [z2] + b

(2)
nce,f,nEq̂n [z

2]

= (θ − θ⋆)⊺
(b(2)nce,f,d

ν
Eq̂d [ψψ⊺] + b

(2)
nce,f,nEq̂n [ψψ

⊺]
)
(θ − θ⋆).

We can lower bound the quadratic form as follows. The first term can be lower bounded as

(θ − θ⋆)⊺Eq̂d [ψψ⊺](θ − θ⋆)
= (θ − θ⋆)⊺(Eq̂d [ψψ⊺]− Eqd [ψψ⊺] + Eqd [ψψ⊺])(θ − θ⋆)
=

∑

ij

(θ − θ⋆)i(Eq̂d [ψiψj ]− Eqd [ψiψj ])(θ − θ⋆)j + (θ − θ⋆)⊺Eqd [ψψ⊺](θ − θ⋆)

≥ −
∑

ij

|θi − θ⋆i | · |Eq̂d [ψiψj ]− Eqd [ψiψj ]| · |θj − θ⋆j | + λmin,d∥θ − θ⋆∥22

(a)

≥ −ϵ2∥θ − θ⋆∥21 + λmin,d∥θ − θ⋆∥22
(b)

≥ −ϵ2γ21;2∥θ − θ∗∥22 + λmin,d∥θ − θ⋆∥22
=

1

2
λmin,d∥θ − θ⋆∥22

with probability ≥ 1− δ′ if nd ≥ 2ψ4
max

ϵ22
log 2p2

δ′ with ϵ2 =
λmin,d

2γ2
1;2

. Here, we apply Lemma D.1 in (a), and use the definition

of γ1;2 to bound ∥θ − θ⋆∥1 ≤ γ1;2∥θ − θ⋆∥2 in (b).

Hence, by a union bound with δ′ = δ/2, with probability ≥ 1− δ, we have

∆L̂nce
f
(θ, θ⋆) ≥ 1

4

(b(2)nce,f,d

ν
λmin,d + b

(2)
nce,f,nλmin,n

)
∥θ − θ⋆∥22,

if nd ≥ 8γ4
1;2ψ

4
max

λ2
min,d

log 4p2

δ and nn ≥ 8γ4
1;2ψ

4
max

λ2
min,n

log 4p2

δ .

Proof of Theorem 4.1. First, note that

R∗(∇θL̂nce
f (θ⋆)) ≤ γR∗;∞∥∇θL̂nce

f (θ⋆)∥max

by definition of γR∗;∞. Then, by Proposition D.1, we have ∥∇θL̂nce
f (θ⋆)∥max ≤ ϵ with probability ≥ 1− δ1, if

nr ≥
2(B

(1)
nce,f,r)

2ψ2
max

ϵ2
log

2p

δ1

for each r ∈ {d, n}. Given that this event occurs, R∗(∇θL̂nce
f (θ⋆)) ≤ γR∗;∞ϵ, and thus we set λn ← 2γR∗;∞ϵ to satisfy

the first condition in Theorem 4.4.

Now, given λn ≥ 2R∗(∇θL̂nce
f (θ⋆)), (Negahban et al., 2012, Lemma 1) implies that R(θ̂nce,Rf,nd,nn

− θ⋆) ≤ 4R(θ⋆), i.e.,
θ̂nce,Rf,nd,nn

− θ⋆ ∈ 4Θ. Then, by Proposition D.2, we have

∆L̂nce
f
(θ, θ⋆) ≥ κ∥θ − θ⋆∥22
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with probability ≥ 1− δ2 if nr ≥ 8γ4
1;2ψ

4
max

λ2
min,r

log 4p2

δ2
for each r ∈ {d, n}, where

κ =
1

4

(b(2)nce,f,d

ν
λmin,d + b

(2)
nce,f,nλmin,n

)
.

Now, by taking a union bound with δ1 = δ2 = δ/2, with probability ≥ 1− δ, we have

∥θ − θ⋆∥2 ≤
3λnγR;2

κ
=

6γR∗;∞γR;2

κ
ϵ = ∆

with ϵ← ∆κ
6γR∗;∞γR;2

, provided that

nr ≥ max
{72(B

(1)
nce,f,r)

2γ2R;2γ
2
R∗;∞ψ

2
max

∆2κ2
log

4p

δ
,
8γ41;2ψ

4
max

λ2min,r

log
8p2

δ

)

= max
{ 1152(B

(1)
nce,f,r)

2γ2R;2γ
2
R∗;∞ψ

2
max

∆2(ν−1b
(2)
nce,f,dλmin,d + b

(2)
nce,f,nλmin,n)2

log
4p

δ
,
8γ41;2ψ

4
max

λ2min,r

log
8p2

δ

}

= Ω
(
max

{ (B
(1)
nce,f,r)

2γ2R;2γ
2
R∗;∞ψ

2
max

∆2(ν−1b
(2)
nce,f,dλmin,d + b

(2)
nce,f,nλmin,n)2

,
γ41;2ψ

4
max

λ2min,r

}
log

p2

δ

)

for each r ∈ {d, n}.

D.2. α-CentNCE

Lemma D.2 (α-CentNCE: derivatives).

∇θL̃α(θ) = Eqd [−r̃α−1
θ;α ∇θ log r̃θ;α],

∇2
θL̃α(θ) = Eqd [r̃

α−1
θ;α ((1− α)∇θ log r̃θ;α∇θ log r̃⊺θ;α −∇2

θ log r̃θ;α)].

Define

C̃α,nd
≜ Cov(

√
nd∇θ ˆ̃Lα(θ⋆))

for nd ≥ 1. Then, C̃α,nd
= C̃α for any nd ≥ 1, where

C̃α ≜ Eqd [r̃
2(α−1)
θ⋆;α ∇θ log r̃θ⋆;α∇θ log r̃⊺θ⋆;α].

We also define

Ĩα ≜ ∇2
θL̃α(θ⋆) = Eqd [r̃

α−1
θ⋆;α((1− α)∇θ log r̃θ⋆;α∇θ log r̃

⊺
θ⋆;α −∇2

θ log r̃θ⋆;α)].

Proof. From Lemma B.4, we have

∂θi
ˆ̃Lα(θ) =

1

(1− α)Eq̂d [∂θi r̃
α−1
θ;α ]

= −Eq̂d [r̃α−2
θ;α ∂θi r̃θ;α]

= −Eq̂d [r̃α−1
θ;α (ψi − Eqn [ψir̃αθ;α])].

From this derivative expression, the computation is straightforward.

Corollary D.1 (GISO: derivatives).

∇θL̃0(θ) = Eqd [−r̃−1
θ;0(ψ − Eq[ψ])],

∇2
θL̃0(θ) = Eqd [r̃

−1
θ;0(ψ − Eq[ψ])(ψ − Eq[ψ])⊺],

C̃0 = Eqd [r̃
−2
θ⋆;0(ψ − Eq[ψ])(ψ − Eq[ψ])⊺],

Ĩ0 = Eqd [r̃
−1
θ⋆;0(ψ − Eq[ψ])(ψ − Eq[ψ])⊺].

23



A Unified View on Learning Unnormalized Distributions via Noise-Contrastive Estimation

Proof. From Proposition D.2,

∇θL̃0(θ) = Eqd [−r̃−1
θ;0∇θ log r̃θ;0],

∇2
θL̃0(θ) = Eqd [r̃

−1
θ;0(∇θ log r̃θ;0∇θ log r̃

⊺
θ;0 −∇2

θ log r̃θ;0)],

C̃0 = Eqd [r̃
−2
θ⋆;0∇θ log r̃θ⋆;0∇θ log r̃

⊺
θ⋆;0],

Ĩ0 = Eqd [r̃
−1
θ⋆;0(∇θ log r̃θ⋆;0∇θ log r̃

⊺
θ⋆;0 −∇2

θ log r̃θ⋆;0)].

Since

r̃θ;0 =
exp(⟨θ, ψ − Eq[ψ]⟩)

q(x)
e−Eq [log q],

∇θ log r̃θ;0 = ψ − Eq[ψ],
∇2
θ log r̃θ;0 = 0,

the quantities can be further simplified as stated.

Corollary D.2 (MLE: derivatives).

∇θL̃1(θ) = Eqd [−∇θ log pθ],
∇2
θL̃1(θ) = Eqd [−∇2

θ log pθ],

C̃1 = Eqd [∇θ log pθ⋆∇θ log p⊺θ⋆ ],
Ĩ1 = Eqd [−∇2

θ log pθ⋆ ].

Theorem 4.2 (α-CentNCE: finite-sample guarantee). Pick α ∈ R. Define

(ρmin, ρmax) ≜
(

inf
x∈X ,θ∈Θ

ρ̃θ;α(x), sup
x∈X ,θ∈Θ

ρ̃θ;α(x)
)

and define the quantities in Eq. (5) for f = fα accordingly. Let ρ̃αθ⋆;α(x) ≜
(
qd(x)

qn(x)
)α

Eqn [(
qd
qn

)α]
, and let

λcentmin,d ≜ λmin(Eqd [(ψ − Eqn [ψρ̃αθ⋆;α])(ψ − Eqn [ψρ̃αθ⋆;α])⊺]),

λcentmin,n ≜ λmin(Eqn [ψψ⊺ρ̃αθ⋆;α]− Eqn [ψρ̃αθ⋆;α]Eqn [ψρ̃αθ⋆;α]⊺).

Let θ̂cent,Rα,nd
be such that

θ̂cent,Rα,nd
∈ argmin

θ∈Θ

{
Lcent
α (θ; q̂d, qn) + λnd

R(θ)
}

for some λnd
> 0. Define ψmax,α ≜ ψmax + ∥Eqn [ψρ̃αθ⋆;α]∥max. Then, for any ∆ > 0 and δ ∈ (0, 1), there exists a choice

of λnd
such that ∥θ̂cent,Rf,nd

− θ⋆∥2 ≤ ∆ with probability ≥ 1− δ, provided that

nd = Ω

(
max

{
(B

(1)
nce,fα,d

)2γ2R;2γ
2
R∗;∞ψ

2
max,α

∆2(b
(2)
nce,fα,d

)2{(1− α)λcentmin,d + αλcentmin,n}2
,

γ41;2ψ
4
max,α

(λcentmin,d)
2

}
log

p2

δ

)
.

Proposition D.3 (Vanishing gradient). (cf. (Shah et al., 2021b, Proposition F.1).) Assume Assumption 4.1. For any
δ ∈ (0, 1), ϵ > 0,

∥∇θL̃α(θ⋆)∥max ≤ ϵ

with probability ≥ 1− δ, if nd ≥
2r

2(α−1)
min,α (ψmax+∥Eqn [ψr̃

α
θ⋆;α]∥max)

2

ϵ2 log 2p
δ .
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Proof. Recall from Lemma D.2 that

∇θ ˜̂Lα(θ) = Eq̂d [−r̃α−1
θ;α ∇θ log r̃θ;α] = −Eq̂d [ψr̃α−1

θ;α ] + Eq̂d [r̃
α−1
θ;α ]Eqn [ψr̃αθ;α],

and it is easy to check that

E[∇θ ˜̂Lα(θ⋆)] = ∇θL̃α(θ⋆) = −Eqd [ψr̃α−1
θ⋆;α] + Eqd [r̃

α−1
θ⋆;α]Eqn [ψr̃

α
θ⋆;α] = 0.

Since |r̃α−1
θ⋆;α(ψi(x)− Eqn [ψir̃αθ⋆;α])| ≤ rα−1

min,α(ψmax + ∥Eqn [ψr̃αθ⋆;α]∥max), by Hoeffding’s inequality, we have

P(| ∂θi ˜̂Lα(θ⋆)| ≥ ϵ) ≤ 2 exp
(
− ndϵ

2

2r
2(α−1)
min,α (ψmax + ∥Eqn [ψr̃αθ⋆;α]∥max)2

)
= δ,

if nd ≥
2r

2(α−1)
min,α (ψmax+∥Eqn [ψr̃

α
θ⋆;α]∥max)

2

ϵ2 log 2
δ . By taking a union bound over p different coordinates of θ, we conclude the

proof.

Proposition D.4 (Restricted strong convexity). (cf. (Shah et al., 2021a, Proposition E.1)) Under Assumption 4.1, we have

∆ ˆ̃Lα
(θ, θ⋆) ≥ r̃α−1

max,α

{1

2
(1− α)λcentmin,d + αλcentmin,n

}
∥θ − θ⋆∥22,

with probability ≥ 1− δ, if nd ≥ 8γ4
1;2(ψmax+∥Eqn [ψr̃

α
θ⋆;α]∥max)

4

(λcent
min,d)

2 log 2p2

δ .

Proof. By the intermediate value theorem, there exists ξ ∈ {tθ + (1− t)θ⋆ : t ∈ [0, 1]} such that

∆ ˆ̃Lα
(θ, θ⋆) = ˆ̃Lα(θ)− ˆ̃Lα(θ⋆)− ⟨∇θ ˆ̃Lα(θ⋆), θ − θ⋆)

=
1

2
(θ − θ⋆)⊺∇2

θ
ˆ̃Lα(ξ)(θ − θ⋆).

Define ψ̃ ≜ Eqn [ψr̃αθ;α] and ψ̃ψ⊺ ≜ Eqn [ψψ⊺r̃αθ;α] for shorthand notation. Here, note that ξ depends on q̂d. Recall from
Lemma D.2 that

∇2
θ
ˆ̃Lα(θ) = Eq̂d [r̃

α−1
θ;α ((1− α)∇θ log r̃θ;α∇θ log r̃⊺θ;α −∇2

θ log r̃θ;α)]

= (1− α)Eq̂d [r̃α−1
θ;α (ψ − ψ̃)(ψ − ψ̃)⊺] + αEq̂d [r̃

α−1
θ;α ](ψ̃ψ⊺ − ψ̃ψ̃

⊺
).

Let z ≜ ⟨ψ(x), θ − θ⋆⟩.

(θ − θ⋆)⊺∇2
θ
ˆ̃Lα(ξ)(θ − θ⋆)

= (1− α)Eq̂d [r̃α−1
ξ;α ((θ − θ⋆)⊺(ψ − ψ̃))2] + αEq̂d [r̃

α−1
ξ;α ](θ − θ⋆)⊺(ψ̃ψ⊺ − ψ̃ψ̃

⊺
)(θ − θ⋆)

≥ (1− α)r̃α−1
max,αEq̂d [((θ − θ⋆)⊺(ψ − ψ̃))2] + αr̃α−1

max,αλ
cent
min,n∥θ − θ⋆∥2

= r̃α−1
max,α{(1− α)(θ − θ⋆)⊺Eq̂d [(ψ − ψ̃)(ψ − ψ̃)⊺](θ − θ⋆) + αλcentmin,n∥θ − θ⋆∥2}.

We can lower bound the first term as follows.

(θ − θ⋆)⊺Eq̂d [(ψ − ψ̃)(ψ − ψ̃)⊺](θ − θ⋆)
(a)

≥ −ϵ2∥θ − θ⋆∥21 + λcentmin,d∥θ − θ⋆∥22
(b)

≥ −ϵ2γ21;2∥θ − θ∗∥22 + λcentmin,d∥θ − θ⋆∥22
=

1

2
λcentmin,d∥θ − θ⋆∥22
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with probability ≥ 1− δ if nd ≥ 2(ψmax+∥Eqn [ψr̃
α
θ⋆;α]∥max)

4

ϵ22
log 2p2

δ with ϵ2 =
λcent
min,d

2γ2
1;2

. Here, we apply Hoeffding’s inequality

similar to Lemma D.1 in (a), and use the definition of γ1;2 to bound ∥θ − θ⋆∥1 ≤ γ1;2∥θ − θ⋆∥2 in (b). Hence, with
probability ≥ 1− δ, we have

∆ ˆ̃Lα
(θ, θ⋆) ≥ r̃α−1

max,α

{1

2
(1− α)λcentmin,d + αλcentmin,n

}
∥θ − θ⋆∥22,

provided that nd ≥ 8γ4
1;2(ψmax+∥Eqn [ψr̃

α
θ⋆;α]∥max)

4

(λcent
min,d)

2 log 2p2

δ .

Proof of Theorem 4.2. First, note that

R∗(∇θ ˆ̃Lα(θ⋆)) ≤ γR∗;∞∥∇θ ˆ̃Lα(θ⋆)∥max

by definition of γR∗;∞. Then, by Proposition D.3, we have ∥∇θ ˆ̃Lα(θ⋆)∥max ≤ ϵ with probability ≥ 1− δ1, if

nd ≥
2r

2(α−1)
min,α (ψmax + ∥Eqn [ψr̃αθ⋆;α]∥max)

2

ϵ2
log

2p

δ1
.

Given that this event occurs, R∗(∇θ ˆ̃Lα(θ⋆)) ≤ γR∗;∞ϵ, and thus we set λn ← 2γR∗;∞ϵ to satisfy the first condition in
Theorem 4.4.

Now, given λn ≥ 2R∗(∇θ ˆ̃Lα(θ⋆)), (Negahban et al., 2012, Lemma 1) implies that R(θ̂cent,Rα,nd
− θ⋆) ≤ 4R(θ⋆), i.e.,

θ̂cent,Rα,nd
− θ⋆ ∈ 4Θ. Then, by Proposition D.2, we have

∆L̂nce
f
(θ, θ⋆) ≥ κ∥θ − θ⋆∥22

with probability ≥ 1− δ2 if nd ≥ 8γ4
1;2(ψmax+∥Eqn [ψr̃

α
θ⋆;α]∥max)

4

(λcent
min,d)

2 log 2p2

δ , where

κ = r̃α−1
max,α

{1

2
(1− α)λcentmin,d + αλcentmin,n

}
≥ 1

2
r̃α−1
max,α{(1− α)λcentmin,d + αλcentmin,n}.

Now, by taking a union bound with δ1 = δ2 = δ/2, with probability ≥ 1− δ, we have

∥θ − θ⋆∥2 ≤
3λnγR;2

κ
=

6γR∗;∞γR;2

κ
ϵ = ∆

with ϵ← ∆κ
6γR∗;∞γR;2

, provided that

nr ≥ max
{72r

2(α−1)
min,α (ψmax + ∥Eqn [ψr̃αθ⋆;α]∥max)

2γ2R;2γ
2
R∗;∞

∆2κ2
log

2p

δ
,
8γ41;2(ψmax + ∥Eqn [ψr̃αθ⋆;α]∥max)

4

(λcentmin,d)
2

log
4p2

δ

)

≥ max
{1152r

2(α−1)
min,α (ψmax + ∥Eqn [ψr̃αθ⋆;α]∥max)

2γ2R;2γ
2
R∗;∞

∆2r̃
2(α−1)
max,α {(1− α)λcentmin,d + αλcentmin,n}2

log
2p

δ
,
8γ41;2(ψmax + ∥Eqn [ψr̃αθ⋆;α]∥max)

4

(λcentmin,d)
2

log
4p2

δ

)

= Ω
(
max

{r2(α−1)
min,α (ψmax + ∥Eqn [ψr̃αθ⋆;α]∥max)

2γ2R;2γ
2
R∗;∞

∆2r̃
2(α−1)
max,α {(1− α)λcentmin,d + αλcentmin,n}2

,
γ41;2(ψmax + ∥Eqn [ψr̃αθ⋆;α]∥max)

4

(λcentmin,d)
2

}
log

p2

δ

)
.

D.3. f -CondNCE

Theorem 4.3 (f -CondNCE: finite-sample guarantee). Pick a strictly convex function f : R+ → R. Define

ρmin ≜ inf
(x,y)∈supp(qd(x)π(y|x)),θ∈Θ

ρθ(x, y),
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ρmax ≜ sup
(x,y)∈supp(qd(x)π(y|x)),θ∈Θ

ρθ(x, y).

and define the quantities in Eq. (5) accordingly. Let

λcondmin,d ≜ λmin(Eqd(x)π(y|x)[(ψ(x)− ψ(y))(ψ(x)− ψ(y))⊺]).

Let θ̂cond,Rf,nd
be such that

θ̂cond,Rf,nd
∈ argmin

θ∈Θ

{
Lcond
f (θ; q̂d, π̂) + λnd

R(θ)
}

for some λnd
> 0. Then, for any ∆ > 0 and δ ∈ (0, 1), there exists a choice of λn such that ∥θ̂cond,Rf,nd

− θ⋆∥2 ≤ ∆ with
probability ≥ 1− δ, provided that

nd = Ω

(
max

{
(B

(1)
cond,f,d +B

(1)
cond,f,n)

2γ2R;2γ
2
R∗;∞ψ

2
max

∆2(b
(2)
cond,f,d + b

(2)
cond,f,n)

2(λcondmin )
2

,

γ41;2ψ
4
max

(λcondmin )
2

}
log

p2

δ

)
.

Here, b(2)cond,f,r and B(i)
cond,f,r are defined similar to Eq. (5), where the infimum and supremum are taken over ( ρmin

ρmax
, ρmax

ρmin
) in

place of (ρmin, ρmax).

Proposition D.5 (Vanishing gradient). (cf. (Shah et al., 2021b, Proposition F.1).) Assume Assumption 4.1. For any
δ ∈ (0, 1), ϵ > 0,

∥∇θL̂cond
f (θ⋆)∥max ≤ ϵ

with probability ≥ 1− δ, if nd ≥
8ψ2

max(B
(1)
nce,f,d+B

(1)
nce,f,n)

2

ϵ2 log 2p
δ .

Proof. Recall from Lemma B.8 that

∇θLcond
f (θ) = Eqd(y)π(x|y)[(ψ(x)− ψ(y))(−ξ

(1)
nce,f,d(ρ

−1
θ ) + ξ

(1)
nce,f,n(ρθ))],

and it is easy to check that
E[∇θL̂cond

f (θ⋆)] = ∇θLcond
f (θ⋆) = 0.

Since

|(ψi(y)− ψi(x))(−ξ(1)nce,f,d(ρ
−1
θ (x, y)) + ξ

(1)
nce,f,n(ρ

−1
θ (x, y)))|

≤ |(ψi(y)− ψi(x))ξ(1)nce,f,d(ρ
−1
θ (x, y))| + |(ψi(y)− ψi(x))ξ(1)nce,f,n(ρθ(x, y))|

≤ 2ψmax(B
(1)
cond,f,d +B

(2)
cond,f,n),

by Hoeffding’s inequality and union bound, we have

P(| ∂θiL̂nce
f (θ⋆)| ≥ ϵ) ≤ 2 exp

(
− ndϵ

2

8ψ2
max(B

(1)
cond,f,d +B

(1)
cond,f,n)

2

)
= δ,

if nd ≥
8ψ2

max(B
(1)
cond,f,d+B

(1)
cond,f,n)

2

ϵ2 log 2
δ . By taking a union bound over p different coordinates of θ, we conclude the

proof.

Proposition D.6 (Restricted strong convexity). (cf. (Shah et al., 2021a, Proposition E.1)) Under Assumption4.1,

∆L̂cond
f

(θ, θ⋆) ≥ 1

2
(b

(2)
cond,f,d + b

(2)
cond,f,n)λ

cond
min ∥θ − θ⋆∥22,

with probability ≥ 1− δ, if nd ≥ 128γ4
1;2ψ

4
max

(λcond
min)

2 log 2p2

δ .
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Proof. By the intermediate value theorem, there exists ξ ∈ {tθ + (1− t)θ⋆ : t ∈ [0, 1]} such that

∆L̂cond
f

(θ, θ⋆) = L̂cond
f (θ)− L̂cond

f (θ⋆)− ⟨∇θL̂cond
f (θ⋆), θ − θ⋆)

=
1

2
(θ − θ⋆)⊺∇2

θL̂cond
f (ξ)(θ − θ⋆).

Here, note that ξ depends on q̂d(x)π̂(y|x). Let z ≜ ⟨ψ(x)− ψ(y), θ − θ⋆⟩.

(θ − θ⋆)⊺∇2
θL̂cond

f (ξ)(θ − θ⋆) = Eq̂d(x)π̂(y|x)[(ξ
(2)
nce,f,d(ρ

−1
ξ ) + ξ

(2)
nce,f,n(ρξ))z

2]

≥ (b
(2)
cond,f,d + b

(2)
cond,f,n)Eq̂d(x)π̂(y|x)[z

2]

= (b
(2)
cond,f,d + b

(2)
cond,f,n)(θ − θ⋆)⊺Eq̂d(x)π̂(y|x)[(ψ(x)− ψ(y))(ψ(x)− ψ(y))⊺](θ − θ⋆).

We can lower bound the quadratic form as follows. The first term can be lower bounded as

(θ − θ⋆)⊺Eq̂d(x)π̂(y|x)[(ψ(x)− ψ(y))(ψ(x)− ψ(y))⊺](θ − θ⋆)
(a)

≥ −ϵ2∥θ − θ⋆∥21 + λcondmin ∥θ − θ⋆∥22
(b)

≥ −ϵ2γ21;2∥θ − θ∗∥22 + λcondmin ∥θ − θ⋆∥22
=

1

2
λcondmin ∥θ − θ⋆∥22

with probability ≥ 1− δ if nd ≥ 32ψ4
max

ϵ22
log 2p2

δ with ϵ2 =
λcond
min

2γ2
1;2

. Here, we apply Hoeffding’s inequality as in Lemma D.1

in (a), and use the definition of γ1;2 to bound ∥θ − θ⋆∥1 ≤ γ1;2∥θ − θ⋆∥2 in (b).

Hence, with probability ≥ 1− δ, we have

∆L̂cond
f

(θ, θ⋆) ≥ 1

2
(b

(2)
cond,f,d + b

(2)
cond,f,n)λ

cond
min ∥θ − θ⋆∥22,

if nd ≥ 128γ4
1;2ψ

4
max

(λcond
min)

2 log 2p2

δ .

Proof of Theorem 4.3. First, note that

R∗(∇θL̂cond
f (θ⋆)) ≤ γR∗;∞∥∇θL̂cond

f (θ⋆)∥max

by definition of γR∗;∞. Then, by Proposition D.5, we have ∥∇θL̂cond
f (θ⋆)∥max ≤ ϵ with probability ≥ 1− δ1, if

nd ≥
8ψ2

max(B
(1)
cond,f,d +B

(1)
cond,f,n)

2

ϵ2
log

2p

δ1
.

Given that this event occurs,R∗(∇θL̂cond
f (θ⋆)) ≤ γR∗;∞ϵ, and thus we set λn ← 2γR∗;∞ϵ to satisfy the first condition in

Theorem 4.4.

Now, given λn ≥ 2R∗(∇θL̂cond
f (θ⋆)), (Negahban et al., 2012, Lemma 1) implies that R(θ̂cond,Rf,nd

− θ⋆) ≤ 4R(θ⋆), i.e.,
θ̂cond,Rf,nd

− θ⋆ ∈ 4Θ. Then, by Proposition D.6, we have

∆L̂cond
f

(θ, θ⋆) ≥ κ∥θ − θ⋆∥22

with probability ≥ 1− δ2 if nd ≥ 128γ4
1;2ψ

4
max

(λcond
min)

2 log 2p2

δ2
, where

κ =
1

2
(b

(2)
cond,f,d + b

(2)
cond,f,n)λ

cond
min .

Now, by taking a union bound with δ1 = δ2 = δ/2, with probability ≥ 1− δ, we have

∥θ − θ⋆∥2 ≤
3λnγR;2

κ
=

6γR∗;∞γR;2

κ
ϵ = ∆
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with ϵ← ∆κ
6γR∗;∞γR;2

, provided that

nd ≥ max
{288(B

(1)
cond,f,d +B

(1)
cond,f,n)

2γ2R;2γ
2
R∗;∞ψ

2
max

∆2κ2
log

4p

δ
,
128γ41;2ψ

4
max

(λcondmin )
2

log
4p2

δ

)

= max
{1152(B

(1)
cond,f,d +B

(1)
cond,f,n)

2γ2R;2γ
2
R∗;∞ψ

2
max

∆2(b
(2)
cond,f,d + b

(2)
cond,f,n)

2(λcondmin )
2

log
4p

δ
,
128γ41;2ψ

4
max

(λcondmin )
2

log
4p2

δ

)

= Ω
(
max

{ (B
(1)
cond,f,d +B

(1)
cond,f,n)

2γ2R;2γ
2
R∗;∞ψ

2
max

∆2(b
(2)
cond,f,d + b

(2)
cond,f,n)

2(λcondmin )
2

,
γ41;2ψ

4
max

(λcondmin )
2

}
log

p2

δ

)
.

E. Local NCE for Node-Wise-Sparse MRFs
In this section, we illustrate how one can construct a local version of the NCE principles introduced in the main text
for, e.g., node-wise-sparse Markov random fields (MRFs). The notation herein follows the convention of (Ren et al.,
2021) with modification. We use a boldface notation x = (x1, . . . , xp) ∈ X ⊂ Rp for the purpose, and a regular-font
variable x is assumed to be scalar-valued. We assume that the exponential family distribution we consider is described as
ϕθ(x) = exp(E(x)), where the (negative) energy function is

E(x) ≜
∑

I∈I
θIfI(xI),

where F ≜ {fI : I ∈ I} for some I ⊂ 2[p] is a collection of basis functions fI :
∏
k∈I Xk → R, each acting upon subsets

of variables xI . Note that F is often called the sufficient statistics of the model.

To describe a conditional model, for each i ∈ [p], define Ii ≜ {I ∈ I : i ∈ I}. Then, we have

pθ(xi |x\i) ∝ ϕθ(xi |x\i) ≜ exp(Ei(x)),
where

Ei(x) ≜
∑

I∈Ii

θIfI(xI).

We remark that the pseudo-likelihood estimator of Besag (1975) is defined as

θ̂i ≜ argmin
θi

nd∑

n=1

log
1

pθ(x
(n)
i |x

(n)
\i )

,

where θi is a collection of all parameters that affect the node conditional model ϕθ(xi|x\i) among all parameters θ.

For n-th sample x(n), let x(n)j denote the j-th coordinate of x(n). To apply the f -NCE principle, define the density ratio
model

ρθ(xi |x\i) ≜
ϕθ(xi|x\i)

νqn(xi)

for a choice of reference distribution qn(x). For each node i ∈ [p], we can derive the local f -NCE objective as

Eqd(x\i)[Lnce
f (ϕθ(xi |x\i); qd(xi |x\i), qn(xi))]

= Eqd(x\i)qn(xi)

[
∆f

(qd(xi|x\i)

νqn(xi)
,
ϕθ(xi|x\i)

νqn(xi)

)
− f

(qd(xi|x\i)

νqn(xi)

)]

= −1

ν
Eqd(x)[f

′(ρθ(xi |x\i))] + Eqd(x\i)qn(xi)[ρθ(xi |x\i)f
′(ρθ(xi |x\i))− f(ρθ(xi |x\i))]. (13)

In a similar manner, one can derive the local α-CentNCE, which recovers pseudo-likelihood (Besag, 1975) for α = 1 and
GISO (Vuffray et al., 2016; 2021; Shah et al., 2021a) and ISODUS (Ren et al., 2021) for α = 0, respectively. We note that
Ren et al. (2021) justified ISODUS only from the stationarity of the objective function at the optimal parameter, while the
connection established here between these interactive screening objectives (ISO) (i.e., GISO and ISODUS) to NCE provides
a natural theoretical justification.
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F. Optimization Complexity
F.1. Convexity

Proposition F.1 (f -NCE: convexity). Let gf (ρ) ≜ −(ρf ′′′(ρ) + f ′′(ρ)). If f ′′(ρ) ≥ gf (ρ) ≥ 0, then θ → L̂nce
f (θ) is

convex. In particular, θ → L̂nce
f (θ) is convex for flog and fα for α ∈ [0, 1].

Proof. By Lemma B.3, we have

∇2
θL̂nce

f (θ) =
1

ν
Eq̂d [ψψ⊺ξ

(2)
nce,f,d(ρθ)] + Eq̂n [ψψ⊺ξ

(2)
nce,f,n(ρ)].

Hence, if gf (ρ) ≥ 0 and f ′′(ρ)− gf (ρ) ≥ 0, then∇2
θL̂nce(θ) is a nonnegative combination of two positive definite matrices,

and so must be positive semidefinite.

It remains to show that the condition holds for all f ’s in Table 1. For the asymmetric power score fα(ρ) = ρα with
0 < α < 1, first, it is easy to check that ρ 7→ fα(ρ) is convex.

f ′′α(ρ) = ρα−2,

gα(ρ) = −(ρf ′′′α (ρ) + f ′′α(ρ)) = (1− α)ρα−2.

Since gα(ρ) ≥ 0 and f ′′α(ρ)− gα(ρ) = αρα−2 ≥ 0, θ → L̂nce(θ) is convex by Lemma F.1. Note that the same calculation
holds for α ∈ {0, 1}.

A counter example of convex functions f which do not result in convex objectives is fα(ρ) for α ̸∈ [0, 1]. For f -NCE, while
f ′′α(ρ) = ρα−2 ≥ 0 for any α, gfα(ρ) = (1 − α)ρα−2 < 0 for α > 1 and α ̸= 2 and f ′′α(ρ) − gfα(ρ) = αρα−2 < 0 for
α < 0. For α = 2, gfα(ρ) = −1 < 0.

Proposition F.2 (CentNCE: convexity). For α ∈ [0, 1], θ 7→ Lcent
α (θ; qd, qn) is convex.

Proof. For α ∈ (0, 1), note that we can write

θ 7→ log L̃α(θ; qd, qn) = − log(1− α) + logEqd [ρ
α−1
θ (x)] +

1− α
α

logEqn [ραθ (x)].

Here, the second and third terms can be understood as LogSumExp operations applied on the linear function θ 7→ log ρθ(x),
and the resulting function becomes also convex. For α ∈ {0, 1}, the MLE and GISO objectives are well-known to be
convex.

The proof of the following proposition is similar as above, and we thus omit the proof.

Proposition F.3 (f -CondNCE: convexity). If gf (ρ−1)+ρ3(f ′′(ρ)−gf (ρ)) ≥ 0, then θ → L̂cond
f (θ) is convex. In particular,

θ → L̂cond
f (θ) is convex for flog and fα for α ∈ [0, 1].

F.2. Smoothness

Under the boundedness assumption, we can show that f -NCE objective function is smooth with probability 1.

Proposition F.4 (Smoothness). (cf. (Shah et al., 2021b, Proposition B.1).) Assume Assumption 4.1. θ 7→ L̂nce
f (θ) is a

smooth function with smoothness constant

pψ2
max

(B(2)
nce,f,d

ν
+B

(2)
nce,f,n

)
.

Proof. Recall from Lemma B.3 that

∇2
θL̂nce

f (θ) =
1

ν
Eq̂d [ψψ⊺ξ

(2)
nce,f,d(ρθ)] + Eq̂n [ψψ⊺ξ

(2)
nce,f,n(ρ)].
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By Geršgorin’s theorem (Horn & Johnson, 2012, Theorem 6.1.1), the largest eigenvalue of a matrix is upper bounded by the
largest absolute row sum or column sum. Therefore, we have

λmax(∇2
θL̂nce

f (θ)) ≤ max
j

∑

i

| ∂θiθj L̂nce
f (θ)|

≤ max
j

∑

i

1

ν
|Eq̂d [ψiψjξ

(2)
nce,f,d(ρθ)]| + |Eq̂n [ψiψjξ

(2)
nce,f,n(ρ)]|

≤ max
j
ψ2
max

∑

i

(1
ν
sup
x,θ

ξ
(2)
nce,f,d(ρθ) + sup

x,θ
ξ
(2)
nce,f,n(ρ)

)

≤ pψ2
max

(B(2)
nce,f,d

ν
+B

(2)
nce,f,n

)
.

We note that Shah et al. (2021b, Lemma 3.1) shows that the projected gradient descent algorithm returns an ϵ-optimal solution
for GlobalGISO in polynomial optimization complexity, based on the similarly established smoothness of GlobalGISO. We
can establish a similar optimization complexity guarantee, but we omit the statement.

G. Experiments
In this section, we present a preliminary empirical evaluation of a selected set of estimators on a synthetic data, following a
setting in (Shah et al., 2023, Section 5.1). We consider a unnormalized exponential family model

ϕθ(x) ≜ exp
(
x⊺θx

)
,

where θ ∈ Rp×p for x ∈ [−1, 1]p. The data generating distribution is chosen as the model with θ = θ⋆ defined as

Θ⋆ij ≜

{
1√
p if i = 1, or j = 1, or i = j,

0 otherwise.

The samples were generated by brute-force sampling by discretizing each axis by 100 bins. We generated N =
105 samples for p ∈ {11, 13, 15, 17, 19} and computed the estimates for each estimator with varying sample size
{0.04N, 0.08N, . . . , 0.64N}. We repeated the experiments with random subsamples for 5 times for each configuration.

Assuming the parameter space Θ is bounded under the Frobenius norm, we consider NCE estimators regularized by the
Frobenius norm and optimized via gradient descent. We used a regularization weight λn = 10−2 and a learning rate η = 0.1
across all settings, except for the flog-NCE estimator, where we used η = 1.0. Each optimization was run for 1000 gradient
steps. As shown in Figure 2, the selected estimators exhibit an empirical convergence rate of n−1/2. However, we observed
that the f1-NCE estimator (asymmetric log NCE; see Table 1) and the CNCE estimator did not display convergent behavior,
despite the theoretical guarantees available for this example. This discrepancy highlights the need for further investigation
into the empirical behavior of various estimators, particularly in high-dimensional settings.
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p = 17, n−0.36

p = 19, n−0.38
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n
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?
‖ F

Asymmetric Power (α) NCE (α = 0.25)
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p = 15, n−0.42
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p = 11, n−0.43

p = 13, n−0.42
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Figure 2. Convergence rate of different NCE estimators.
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