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ABSTRACT

Effective treatment of cancer is a major challenge faced by healthcare providers,
due to the highly individualized nature of patient responses to treatment. This is
caused by the heterogeneity seen in cancer-causing alterations (mutations) across
patient genomes. Limited availability of response data in patients makes it dif-
ficult to train personalized treatment recommendation models on mutations from
clinical genomic sequencing reports. Prior methods tackle this by utilising larger,
labelled pre-clinical laboratory datasets (‘cell lines’), via transfer learning. These
methods augment patient data by learning a shared, domain-invariant represen-
tation, between the cell line and patient domains, which is then used to train
a downstream drug response prediction (DRP) model. This approach augments
data in the shared space but fails to model patient-specific characteristics, which
have a strong influence on their drug response. We propose a novel generative
attention-based data augmentation and predictive modeling framework, GAN-
DALF, to tackle this crucial shortcoming of prior methods. GANDALF not only
augments patient genomic data directly, but also accounts for its domain-specific
characteristics. GANDALF outperforms state-of-the-art DRP models on publicly
available patient datasets and emerges as the front-runner amongst SOTA cancer
DRP models.

1 INTRODUCTION

Cancer, a leading cause of deaths worldwide (Dattani et al., 2023), imposes a significant burden on
global healthcare systems (Lopes, 2023). It is caused due to the presence of alterations (mutations)
in the human genome, resulting in uncontrolled replication of cancer cells. Cancer patients exhibit a
great deal of heterogeneity in their genomic mutation profiles, even when they have the same cancer
type. This heterogeneity causes patients, of the same cancer type, to respond differently to the same
treatment (Liao et al., 2023), making cancer treatment challenging (Wahida et al., 2023). Treatment,
today, is largely guideline-based and prescribes drugs based on the cancer type (Planchard et al.,
2018; Conroy et al., 2023; Morris et al., 2023). This approach fails to account for heterogeneity in
patient mutations, and its impact on treatment outcomes. Precision oncology Sosinsky et al. (2024);
Collins & Varmus (2015) is gradually shifting focus from a “one-size-fits-all” approach to more
personalized treatment strategies.

To aid precision oncology, cancer patients undergo genomic sequencing as part of clinical diag-
nostics (Colomer et al., 2023). Clinical sequencing panels (Milbury et al., 2022; Wei et al., 2022)
identify the set of mutations present in specific sections of the human genome (called genes), which
have a known association with cancer. Cancer patients can exhibit a varying number of mutations
in each of these genes (Saito et al., 2021). These mutations interact with each other and the drug
in complex ways to determine patient response to treatment (Liu et al., 2022). While clinical tri-
als have identified drugs that target specific mutations, these studies have largely been restricted to
single mutations (Brachova et al., 2013; Randic et al., 2023). Conducting large scale clinical trials
for all possible combinations of mutations in ∼ 20000 genes of the human genome is practically in-
tractable, thereby limiting their ability to identify the right treatment when a patient exhibits multiple
mutations.
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Figure 1: Overview of clinical challenge in cancer drug response prediction.

Machine learning (ML) approaches provide a promising avenue to predict patient response yp to
drugs dp, based on the set of mutations Xp in their genomic profiles. However, guideline-based
treatment in clinics prescribe only a small subset of drugs from all drugs approved for clinical use,
thereby limiting the availability of labelled patient data (Xp, dp, yp). The resulting scarcity poses a
significant challenge in training supervised ML models to predict drug response in patients. Prior
methods in Drug Response Prediction (DRP) literature have tackled this using data from a related
domain called “cell lines”. Cell lines (Ghandi et al., 2019) are cancer cells extracted from patients,
which are then cloned under controlled laboratory settings. Each clone Xc is administered a different
drug dc, and the corresponding response yc(Xc, dc) is measured for various drug concentrations.
Since these cells are studied outside the human body, it is possible to obtain yc for a large set of
drugs D, resulting in abundant labelled data.

However, models trained only on (Xc, dc, yc) do not work well on patients (Mourragui et al., 2019;
2021; Sharifi-Noghabi et al., 2020). This is attributed to the inherent differences between patients
and cell lines. As cell lines are studied outside the human body in the absence of blood vessels and
the immune system (called tumor microenvironment), these cells can acquire mutations differently
compared to patients, i.e. P (Xc) ̸= P (Xp). In addition, yc ∈ [0, 1] depends on drug concentra-
tion and number of surviving cells (called Area Under the Dose Response Curve, AUDRC), while
yp ∈ {0, 1} indicates good or bad response (called Response Evaluation Criteria in Solid Tumors,
RECIST, based on change in tumor volume), i.e. domain(yc) ̸= domain(yp), as shown in Figure 1.

Prior DRP methods (Jayagopal et al., 2024; 2023; Kim et al., 2024; He et al., 2022) have addressed
these differences by learning shared domain-invariant representations Zs between Xc and Xp, which
are then used to train a downstream drug response prediction network f . Transforming Xc to Zs

increases samples in the shared space and allows f to use the larger (Zs, dc, yc) in training, thereby
tackling the data scarcity issue. However, Zs does not capture patient-specific characteristics in Xp,
which can influence yp (Liao et al., 2023; Zhai & Liu, 2024). To capture this, we need to augment Xp

directly. Prior DRP methods, except WISER, neglect this. WISER (Shubham et al., 2024) performs
data augmentation by pseudolabelling unlabelled patient profiles Xp(u) using (Xc, dc, yc) and trains
f by combining (Xc, dc, yc) and pseudolabelled Xp(u). However, while combining the two datasets,
WISER assumes domain(yc) = domain(yp), and does not account for P (Xp(u)) ̸= P (Xc). We
tackle these issues using GANDALF, a Generative AttentioN based Data Augmentation and pre-
dictive modeLing Framework. GANDALF augments Xp directly, by generating more “patient-
like” samples Xaug leveraging available Xc. It also generates their response labels yaug to drugs
daug ∈ D. Unlike WISER, it explicitly models domain(yc) ̸= domain(yp) and P (Xp) ̸= P (Xc).

Data augmentation strategies are known to improve prediction performance in various fields of ML,
like computer vision (Khosla & Saini, 2020) and natural language processing (Shorten & Khosh-
goftaar, 2019). This is usually achieved through data transformations where identifying the label
of the transformed data is relatively easy, e.g., a rotated image of a dog retains the label ‘dog’ after
transformation. However, it is difficult to find such ‘label-invariant’ transformations for genomic
data (Lacan et al., 2023). Although genomic data can be augmented by interpolation of available
samples or sampling new data points from a known distribution, assigning labels to these samples
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is difficult. Data points, which may be “close” together in the representation space, can still exhibit
different responses to drugs. If patients are represented by binary vectors (each element correspond-
ing to a gene, 1 indicating presence of mutations in a gene and 0 the absence), a perturbation is
equivalent to addition or removal of a mutation. This perturbation can impact the functioning of
the cells and the response to treatment (Hale et al., 2024). Identifying the response associated with
each perturbation is difficult due to scarcity of labelled data, making data augmentation strategies
challenging in DRP.

Though conclusively identifying labels for all possible perturbations is still an open problem,
GANDALF takes a step towards leveraging data augmentation in DRP, by utilising available la-
belled data from cell lines. It generates Xaug by transforming Xc and assigns yaug for generated
(Xaug, daug), daug ∈ D by leveraging labelled information from (Xc, dc, yc). We use attention
mechanisms to ensure that Xaug retains information from Xc. (Xaug, daug, yaug) is then used with
(Xp, dp, yp) to train a downstream DRP classifier. Our paper makes the following contributions:

• We are the first to tackle, through a novel data augmentation approach, the challenging
problem of limited labels for sparse patient genomic data, in cancer drug response predic-
tion.

• We propose GANDALF, a generative, semi-supervised, attention-based data augmentation
framework which uses labelled samples from the related cell line domain to generate la-
belled patient data.

• GANDALF performs data augmentation through a novel synthesis of denoising diffusion
probabilistic models, transformers and multi-task learning.

• GANDALF demonstrates an improvement of upto 10.96% over SOTA DRP methods, in
predicting patient response to drugs, on key benchmark datasets comprising real patient
samples with responses to clinically approved anti-cancer drugs. GANDALF also out-
performs baseline genomic data augmentation and pseudo-labeling strategies by 21% and
2.5% respectively.

2 RELATED WORK

2.1 DRUG RESPONSE PREDICTION MODELS

Prior DRP models perform transfer learning between the source domain (cell lines) and target
domain (patients). These methods can be inductive, transductive or unsupervised (Pan & Yang,
2009), based on their use of labelled patient data. Inductive methods, like AITL (Sharifi-Noghabi
et al., 2020), drug2tme (Zhai & Liu, 2024) and TCRP (Ma et al., 2021) use both labeled cell line
and patient samples. They may either use multi-task learning approaches or few shot learning to
capture the differences in label distribution across the two domains. Transductive methods like
TUGDA (Peres da Silva et al., 2021), WISER (Shubham et al., 2024), PANCDR (Kim et al., 2024)
use labeled cell line and unlabeled patient samples. The unjustified assumption is that the response
label does not change across the domains. To this end, most papers convert the continuous valued
cell line response to discrete categories as seen in patients, using arbitrary thresholds. Few methods,
like CODE-AE (He et al., 2022), rely on unsupervised transfer learning using unlabeled cell line and
patient datasets in pre-training. However, in most cases, the goal was to learn a shared representation
space between the domains. The shared representation was then used to train a downstream DRP
model. While the shared representation captures the similarities across the domains, this approach
largely neglects the patient-specific characteristics, which is relevant for drug response prediction.

2.2 GENOMIC DATA AUGMENTATION

Genomic data augmentation is difficult due to lack of known label-invariant transforms (Lacan et al.,
2023). Most existing methods augment transcriptomic data (Das & Shi, 2022; Chen et al., 2020),
which is unavailable in a clinical setting. A few recent methods (Yu et al., 2024; Lee et al., 2023;
Duncan et al., 2024; Lee et al., 2024) have augmented mutations, but they assume that the biological
function and associated labels do not undergo changes during data transformation. Moreover, none
of these methods focus on cancer drug response prediction as the downstream task, where it is
known that even the addition or removal of a mutation can cause a change in drug response (Liao
et al., 2023). Thus, patient mutation data augmentation for cancer drug response prediction is an
open problem. GANDALF proposes a way forward, by using prior information available in labelled
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cell lines to augment patient mutation data and to generate associated labels for DRP, rather than
assuming label invariance.

3 METHOD
3.1 PROBLEM FORMULATION

Given a patient genomic mutation profile Xp and drug dk, the goal in drug response prediction
(DRP) is to classify whether the patient would respond well (label yp = 1) or not (label yp = 0),
i.e. to learn a classifier fdk

(Xp) : R → {0, 1}. Let M denote the set of all possible mutations
found in set of sequenced genes G and A denote the set of possible alterations in G. Each mutation
ml ∈ M can be separated out into a gene component gl ∈ G and alteration al ∈ A. Let D
denote the set of chemotherapy drugs. Two related, albeit different datasets are available to perform
the DRP task - labelled pre-clinical cell line data and clinical patient data. Cell line genomic data
Xc ⊂ P(M) and labelled patient genomic data Xp ⊂ P(M), where P(.) denotes the power set of
M. Let Nc = |Xc| and Np = |Xp| denote the number of unique mutation profiles in each dataset.
yp(jk) ∈ {0, 1} is a binary RECIST response associated with patient-drug pair (xpj , dk), while
yc(jk) ∈ [0, 1] is the real-valued AUDRC response for cell line-drug pair (xcj , dk). To illustrate, a
patient mutation profile xp(1) = {m5 = (g2, a10),m7 = (g100, a8)} has a response yp(13) = 1 for
drug d3. The goal is to predict the response yp(jk) for a new patient-drug pair (xpj , dk). To achieve
this, we perform patient data augmentation, i.e. generate (Xaug, daug, yaug) using (Xc, dc, yc) and
(Xp, dp, yp). dc and dp denote the set of drugs available in labelled cell line and patient datasets,
and daug ⊆ D. In general, |dc| > |dp|, dc ⊆ D and dp ⊂ D, as obtaining drug responses in cell
lines for a wide range of drugs is easier than in patients. The real and generated labelled patient data
(Xaug, daug, yaug)

⋃
(Xp, dp, yp) can then be used to train a downstream DRP classifier f . Please

note that ∗ can denote c or p in subsequent sections, to denote cell lines and patients respectively.

3.2 METHOD OVERVIEW

We propose a Generative AtteNtion based Data Augmentation and predictive modeLing Frame-
work - GANDALF, to tackle the labelled patient data scarcity issue via data augmentation. The
complete algorithm is available in Algorithm 1. GANDALF generates new patient-like samples
from cell lines and assigns them labels in 5 steps - (1) pretraining diffusion models to learn rep-
resentations of Xc and Xp, (2) generating new patient-like samples Xaug from Xc, (3) training a
multi-task learning network using (Xc, dc, yc) and (Xp, dp, yp), (4) assigning pseudolabels yaug for
(Xaug, daug)∀daug ∈ D and selection of confident samples (Xs, ds, ys) ⊆ (Xaug, daug, yaug) and
(5) training DRP classifier f on (Xs ∪ X ′

p, ds ∪ dp, ys ∪ yp).

The goal is to learn g(.) : Xaug = g(Xc) ∼ P (Xp), which accounts for patient-specific characteris-
tics. The intuition behind the transformation process is: if we decompose each domain into domain-
invariant Zs and domain-specific Zp (for patients) and Zc (for cell lines) representations (Lee &
Pavlovic, 2021), to transform Xc → Xp, we introduce Zp over Zs obtained from Xc. We can then
augment (Xp, dp, yp) using (Xaug, daug, yaug), daug ∈ D, where yaug can be generated by pseu-
dolabelling (Lee et al., 2013; Kage et al., 2024). Our pseudolabelling approach assumes that yc and
yp share certain characteristics, while differing in others.

3.2.1 STEP 1: PRETRAINING DIFFUSION MODELS

In this step, we learn Zs, Zp and Zc representations. We assume Zs ∼ N (0, I), which can be mod-
elled using denoising diffusion probabilistic model (DDPM) encoders (Ho et al., 2020). The DDPM
decoders learn to remove the domain-specific noise, to reconstruct X . Transforming Xc → Xp

would then involve the use of the patient DDPM decoder on Zs. We train two DDPM models (TDp

and TDc), one per domain, such that they share a common Zs. In addition, we use the pretrained
transformer encoder (Te) from (Jayagopal et al., 2024), with padding, to model varying number of
mutations. We use domain alignment losses (Sun et al., 2016) to align Zs and KL-divergence loss
to ensure Xaug ∼ P (Xp). We use cross-attention to ensure Xaug retains information from Xc.

Te takes as input {ml;ml ∈ M}. Each ml has two parts - the gene part gl ∈ G and the alteration
part al ∈ A. gl and al are tokenized separately, padded and concatenated to generate a per-sample
vector. In the embedding step, each al is embedded following the variant annotation procedure
in (Jayagopal et al., 2024), to obtain a 23-dimensional embedding. This consists of a 17 dimensional
binary vector from Annovar (Wang et al., 2010), a 3-dimensional binary vector each from GPD (Li
et al., 2020) and ClinVar (Landrum et al., 2018). The embedding for each al is passed through a
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Algorithm 1 GANDALF training
Require: Mutation profiles Xc, Xp, drugs D, cell line-drug labels yc, patient-drug labels yp, time steps t,

pre-trained transformer encoder Te, DDPM networks TD∗, VAEs V∗, pre-train epochs ep, pseudolabel
generation epochs es, upper and lower thresholds tu and tl and DRP training epochs ed.

1: Step 1: Pretraining diffusion models
2: Obtain transformer embedded samples Zt∗ = Te(X∗) ∈ RN∗×k

3: Pre-train domain specific VAEs using Eq. 1 and 2
4: for e in range(ep) do
5: Extract output from the tranformer-VAE encoder network E = V∗(e)(Te(.))

Zv∗ = S(µ∗, σ∗) (S(.) = µ∗ + σ∗ϵ, where ϵ ∼ N (0, 1), µ∗, σ∗ = E∗(X∗))
6: Zv∗t = TD∗(e)(Zv∗)
7: X ′

∗ = denoise(Zv∗t, t, TD∗(d)(Zv∗t))

8: Z̄t∗ = V∗(d)(X ′
∗)

9: ZAtt = softmax(
ZvptZ

T
vct√

l
)Zvct

10: ˆZvpa = denoise(ZAtt, t, TDp(d)(ZAtt)) using Eq. 5
11: Minimise loss LPRE until convergence.
12: end for
13: Step 2: Generating new patient-like samples

Zvct = TDc(e)(Vc(e)(Ztc))
Xaug = denoise(Zvct, t, ϵpθ); ϵpθ = TDp(d)(Zvct)

14: Step 3: Training multi-task learning network
15: for e in range(es) do
16: Obtain cell line and patient embeddings Zv∗ = S(E∗(X∗))
17: Obtain drug embeddings Zd∗ = gd(d∗)
18: For each sample, drug pair concatenate the embeddings to get O∗d = Zv∗||Zd∗
19: Obtain AUDRC and RECIST predictions: ŷc = ga(Ocd); ŷp = gr(Opd)
20: Minimise LMTL till convergence.
21: end for
22: Step 4: Assigning pseudolabels and selection of confident samples
23: yaug = gr(Xaug||gd(daug)) for daug ∈ D.
24: Set ybin as 1 if yaug >= tu, 0 if yaug < tl and -1 otherwise.
25: Select confident tuples (non-abstained tuples) (Xs, ds, ys), i.e. where ybin ̸= −1.
26: Combine (Xs, ds, ys) with (X ′

p, dp, yp) to form (Xcomb, dcomb, ycomb)
27: Step 5: Training drug response prediction classifier
28: for e in range(ed) do
29: ˆycomb = f(Xcomb||dcomb)
30: Minimise loss LBCE in Eq. 10 till convergence.
31: end for

linear layer and concatenated with the corresponding gl embedding (obtained by one hot encoding),
before being fed into Te. The resulting output is mean-aggregated to obtain sample embedding
Zt∗ = Te(X∗) ∈ RN∗×k, where k denotes the maximum sequence length. k is set based on
maximum number of alterations in the training data, and all sequences are padded to match k. Te

was trained to predict the progression-free survival (PFS) for (Xp, dp). PFS is indicative of the time
after treatment that a cancer patient survives without the cancer progressing. For further details,
please refer to (Jayagopal et al., 2024).

To ease training (Rombach et al., 2022), we reduce the dimensionality of Zt∗ from k → l, l < k
using variational autoencoders (VAEs) (Kingma & Welling, 2013). We use 2 VAEs - Vc and Vp for
cell line and patient domains respectively. These VAEs take as input Zt∗ ∈ RN∗×k and estimate the
mean µc, µp ∈ RN∗×l and standard deviation σc, σp ∈ RN∗×l of each domain. Samples generated
using the estimated µ and σ are used to train TD∗. The VAEs are pretrained on each domain, to
minimise reconstruction mean square error and KL divergence loss as in Eq. 1 and 2. The VAE
pretraining loss is LV AE = LR + LKLD.

LR =
1

N∗
ΣN∗(Ẑt∗ − Zt∗)

2 (1)

LKLD = −(0.5/N∗)ΣN∗(1 + log(σ∗(Zt∗)
2)− µ∗(Zt∗)

2 − σ∗(Zt∗)
2) (2)

where N∗ denotes number of mutation profiles (Nc or Np), Ẑt∗ is the reconstructed VAE output.
Pretrained Te attached to the encoder layers of the pretrained Vc and Vp, are henceforth referred to
as encoder networks Ec and Ep; µ∗, σ∗ = E∗(X∗). Parameters of Te are frozen for training.
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Figure 2: GANDALF architecture used for pretraining domain-specific diffusion models and to
generate new patient-like samples using available cell line data. Circled numbers in blue indicate
steps from Algorithm 1.

The sampled output from E∗, Zv∗ = S(µ∗, σ∗)
(
S(.) = µ∗ + σ∗ϵ denotes VAE sampling, where

ϵ ∼ N (0, I)
)

is fed into TDc and TDp, with encoder TD∗(e) and decoder TD∗(d). Since Zv∗
is a vector, we used feed forward linear layers in TD∗ (Kotelnikov et al., 2023). To learn Zs,
we perform domain alignment, using CORAL loss (Sun et al., 2016). CORAL loss minimises the
co-variance between the latent spaces, as in Eq. 4. Although in theory, DDPM encoders should
yield isotropic Gaussians as T → ∞, the use of CORAL loss enforces that the two domains share
Zs, when T is finite. TDc and TDp are trained jointly with the CORAL loss using LALIGN =
LDDPM + LCORAL, as in Eq. 3 and 4.

LDDPM = E(Zvc,ϵc,t)[ϵc − ϵcθ(Zvct, t)]
2 + E(Zvp,ϵp,t)[ϵp − ϵpθ(Zvpt, t)]

2 (3)

LCORAL = ΣlΣl||C(Zvct)− C(Zvpt)||2;C(Z) =
1

n
Σn(Zi − Z̄i)(Zi − Z̄i)

T (4)

ϵc and ϵp are ground truth noise distributions added to Xc and Xp. Zvct = TDc(e)(Zvc) and
Zvpt = TDp(e)(Zvp) are the noisy representations after t timesteps through TD∗(e). ϵcθ and ϵpθ are
estimated by TD∗(d). Z̄ denotes mean. Zv∗t is denoised using ϵ∗θ (Eq. 5) to obtain X ′

c and X ′
p.

These are passed through VAE decoders to obtain Z̄tc = Vc(d)(X ′
c) and Z̄tp = Vp(d)(X ′

p). βt in
Eq. 5 is the variance schedule (Nichol & Dhariwal, 2021) of ϵc and ϵp at diffusion step time t.

X ′
c = denoise(Zvct, t, ϵcθ);X ′

p = denoise(Zvpt, t, ϵpθ)

where denoise(Xt, t, ϵ) =
1√
α̂t

(Xt −
√
1− α̂tϵ); α̂t = Πt

i=1(αi);αt = 1− βt

(5)

To ensure that Xaug preserves information from Xc, we use cross-attention Rombach et al. (2022).

Given, Zvct and Zvpt, we obtain ZAtt = softmax(
ZvptZ

T
vct√

l
)Zvct. ZAtt pays attention to Zvct. ZAtt

is passed through TDp(d) and denoised using ϵpθ to obtain ˆZvpa. A KL divergence loss LKLDA is
also calculated between the distributions of Zvp and ˆZvpa to ensure eventual adherence to P (Xp), as
in Equation 6. Additional mean square error terms LMSE between Zt∗ and Z̄t∗ and KL divergence
terms LKLDV for Zv∗ are calculated as in Equation 7.

LKLDA = 0.5ΣN∗(−1 + log(σ( ˆZvpa)
2)− log(σ(Zvp)

2) + exp(log(σ(Zvp)
2)

−log(σ( ˆZvpa)
2)) + (µ(Zvp)− µ( ˆZvpa))

2exp(−log(σ( ˆZvpa)
2)))

(6)

LMSE =
1

N∗
ΣN∗(Zt∗ − Z̄t∗)

2

LKLDV = −(0.5/N∗)ΣN∗(1 + log(σ∗(Zv∗)
2)− µ∗(Zv∗)

2 − σ∗(Zv∗)
2)

(7)

The overall training loss is LPRE = LALIGN +LKLDA +LKLDV +LMSE . Architecture details
are available in Figure 2. The training is done in an unsupervised manner and does not require
labeled data.
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Figure 3: GANDALF architecture for multi-task training (left), pseudolabel generation and selection
of confident samples (right, top) and training downstream DRP model (right, bottom). Circled
numbers in blue indicate steps from Algorithm 1.

3.2.2 STEP 2: GENERATING NEW PATIENT-LIKE SAMPLES

To generate Xaug , we run inference on the trained model using Xc. Xc is first passed through Te,
followed by Vc(e), to get Zvc. This is then passed through TDc(e) to get Zvct. This is analogous to
removing Zc from the input samples. As the latent spaces of the DDPMs are already aligned, Zvct

can be denoised using TDp(d) to obtain Xaug . This step corresponds to introducing Zp to Zs. The
red arrows in Figure 2, indicates the generation of Xaug from Xc.

3.2.3 STEP 3: TRAINING MULTI-TASK LEARNING NETWORK

In this step, the goal is to train a network to assign yaug∀(Xaug, daug), daug ∈ D. A naive approach
would involve training a classifier f̂ on (Xp, dp, yp) and using it to predict yaug . However, dp ⊂
daug , since only a small subset of drugs are provided to patients as per clinical guidelines. This
implies that P (Xp, dp, yp) learnt by f̂ may not fully model P (Xp ∪ Xaug, dp ∪ daug, yp ∪ yaug).
During inference, f̂ may encounter drugs outside of the training set, yielding noisy yaug . A similar
constraint exists in using weak supervision methods (Ratner et al., 2017; Zhang et al., 2022) to
assign pseudo-labels. Further, f̂ can be prone to overfitting, given the small size of (Xp, dp, yp).

In this step we alleviate overfitting concerns using larger data (Xc, dc, yc), in a multi-task learning
(MTL) setup, with additional regularizing loss terms. Moreover, dc ≃ D, which allows the network
to learn from drugs /∈ dp. We also capture the shared traits between yc and yp by projecting labelled
(Xc, dc) and (Xp, dp) into a shared latent space Os, and capture the differences, via two separate
prediction heads - a classification head ŷp = gr(Xp, dp) ∈ {0, 1} and a regression head ŷc =
ga(Xc, dc) ∈ [0, 1]. Os is learnt by aligning the latent representations, using CORAL loss (Sun
et al., 2016), as in Equation 8. Xc and Xp are first passed through the pretrained encoder network
E(.) to obtain µc, µp, σc and σp. Sampling S is applied as before to obtain Zvc and Zvp. Zvc and
Zvp are concatenated with drug embeddings obtained from a feedforward multi-layer perceptron
(MLP) Zd∗ = gd(d∗) ∈ RN∗×l. The resulting concatenated representations Ocd = Zvc||Zdc ∈
RNc×2l and Opd = Zvp||Zdp ∈ RNp×2l where || denotes concatenation, Nc = |(Xc, dc, yc)| and
Np = |(Xp, dp, yp)| denote number of labelled sample, drug pairs (Np < Nc).

LCORAL O = Σ2lΣ2l||C(Ocd)− C(Opd)||2; C(Z) =
1

n
Σn(Zi − Z̄i)(Zi − Z̄i)

T (8)

Ocd is passed through a feed-forward MLP ga to predict AUDRC values ŷc = ga(Ocd). Opd is
passed through another feed forward MLP gr to predict RECIST values ŷp = gr(Opd). The entire
network is trained to minimise LMTL = LBCE + LMSE + LCORAL O as in Equation 9, where
σ(x) = 1

1+e−x . MTL architecture is shown in Figure 3(left).

LBCE = − 1

Np
ΣNp [yplog(σ(ŷp)) + (1− yp)log(1− σ(ŷp))];LMSE =

1

Nc
ΣNc(yc − ŷc)

2 (9)

3.2.4 STEP 4: ASSIGNING PSEUDOLABELS AND SELECTION OF CONFIDENT SAMPLES

To obtain yaug , we first generate all possible Nc × |D| pairs (Xaug, daug), daug ∈ D. We pass the
drug representation daug through gd. We concatenate the resulting drug embedding gd(daug) with
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Xaug . This is then passed through gr and σ(.) to get yaug ∈ [0, 1], as shown in Figure 3(right, top).
(Xaug, daug, yaug) may however be noisy due to incorrect predictions from gr. Prior work on subset
selection (Lang et al., 2022) has identified that choosing a subset of more confident pseudolabelled
samples is more effective than using the complete pseudolabelled dataset. We use yaug , to select
this subset. ybin is generated by binning yaug into 3 groups, using an upper and lower threshold
tu and tl. ybin = 1, if yaug >= tu; ybin = 0, if yaug < tl and ybin = −1 otherwise (abstained
samples). Only Ns < (Nc × |D|) high confidence (non-abstained) samples (ybin ̸= −1) are used
for the downstream DRP classifier training.

3.2.5 STEP 5: TRAINING DRUG RESPONSE PREDICTION CLASSIFIER

The non-abstained, high confidence generated “patient”-drug pairs after pseudo labeling
((Xs, ds, ys) of size Ns) are combined with Np (X ′

p, dp, yp) pairs to train a drug response pre-
dicting feed forward neural network f (Figure 3, right, bottom). f is trained to minimise BCE loss
in Eq. 10.

LBCE = − 1

Np +Ns
ΣNp+Ns [yilog(σ(ŷi)) + (1− yi)log(1− σ(ŷi))] (10)

GANDALF offers several advantages. The use of VAEs and DDPMs makes the model generative
in nature. While generation in DDPMs usually involves sampling from N (0, I) and denoising, here
the sampling incorporates prior knowledge from Xc. This also enables the use of (Xc, dc, yc) in
generating pseudo-labels for Xaug . When Ns > 0, it reduces chances of overfitting.

4 EXPERIMENTS AND RESULTS
4.1 DATASETS

We used publicly available cell line and patient datasets, for all our experiments. Cell line mutation
profiles were obtained from the Cancer Cell Line Encyclopedia (CCLE) DepMap (v23Q4) (Ghandi
et al., 2019; Barretina et al., 2012). AUDRC responses were obtained from the GDSCv2 (Iorio et al.,
2016; Yang et al., 2012). Patient mutation profiles and associated response labels for drugs were col-
lected from The Cancer Genome Atlas (TCGA) (Weinstein et al., 2013), CbioPortal (CBIO) (Hard-
ing et al., 2019; Nixon et al., 2019; de Bruijn et al., 2023; Gao et al., 2013; Cerami et al., 2012) and
UC SanDiego Moores Cancer Center (Moores) (Schwaederle et al., 2016). Patient response, mea-
sured via RECIST were coalesced into binary labels (1: positive response; 0: negative) (Peres da
Silva et al., 2021). Drugs were encoded using 2048 dimensional binary Morgan fingerprints (Mor-
gan, 1965). We exclude samples on multiple drug regimen and retain only patients given a single
drug at a time. This results in 1197 CCLE samples, 541 TCGA, 44 Moores and 84 CBIO patient
samples with documented response labels for 211 drugs in cell lines and 56 drugs across patients. We
restrict our analysis to the 324 genes found in a popular clinical sequencing panel, FoundationOne
CDx (Milbury et al., 2022) and removed samples without mutations in these genes. We also removed
samples with responses to drugs without a Morgan fingerprint. For the transformer pretraining, we
used 71 non-small cell lung cancer and 71 colorectal cancer samples from GENIE (Choudhury et al.,
2023; Garcia et al., 2023), with a documented progression-free survival. We had a total of 156441
train, 17371 validation and 21589 test cell line, drug pairs. We also had 488/488/487 train, 53/54/56
validation and 115/114/113 test patient, drug pairs over 3 folds (folds 0/1/2 respectively) (details in
Appendix Section A.1).

4.2 COMPARISON WITH CANCER DRUG RESPONSE PREDICTION METHODS

We compared GANDALF against 4 recent state-of-the-art (SOTA) methods which take sample,
drug pairs as model inputs, namely, DruID (Jayagopal et al., 2023), PREDICT-AI (Jayagopal et al.,
2024), drug2tme (Zhai & Liu, 2024) and PANCDR (Kim et al., 2024). We also compared GAN-
DALF against CODE-AE (He et al., 2022) and WISER (Shubham et al., 2024), which train sepa-
rate models per drug. We report performance metrics on 5 drugs, with samples available in all 3
test folds, namely Cisplatin (Cis), Paclitaxel (Pac), 5-Fluorouracil (Flu), Gemcitabine (Gem) and
Temozolomide (Tem). We do drug-specific model tuning in GANDALF, by only augmenting with
sample, drug pairs for the drug considered. For CODE-AE and WISER, we train separate models
per drug. Apart from GANDALF, only PREDICT-AI could handle varying length inputs. For all
other methods, we converted the mutation profiles into fixed length input vectors of 7776 dimen-
sions, following the pre-processing in (Jayagopal et al., 2023). Validation set correlation between
predicted and actual response was used for early stopping and hyper-parameter selection. As shown
in Table 1, GANDALF achieves the best AUROC in Flu, Gem, Pac and Tem and second-best in Cis.
GANDALF achieves the best AUPRC score in Flu, Gem and Pac, and second-best in Cis.
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Table 1: Performance comparison across SOTA drug response prediction methods. Best performing
results are highlighted in bold, while the second best performing results are underlined.

AUROC (Mean ± Standard deviation)
Method Cis Flu Gem Pac Tem
GANDALF 0.6343 ± 0.0306 0.7309 ± 0.0664 0.6188 ± 0.0674 0.7728 ± 0.1253 0.6451 ± 0.0776
DruID 0.6764 ± 0.1447 0.6071 ± 0.1988 0.5092 ± 0.1005 0.5119 ± 0.2324 0.6194 ± 0.0420
PANCDR 0.6278 ± 0.0308 0.4762 ± 0.1798 0.4429 ± 0.2268 0.4236 ± 0.4168 0.6436 ± 0.2310
PREDICT-AI 0.5072 ± 0.0331 0.3869 ± 0.0372 0.5046 ± 0.1181 0.6815 ± 0.1786 0.5350 ± 0.0606
drug2tme 0.5243 ± 0.1301 0.7167 ± 0.1957 0.4568 ± 0.0857 0.3194 ± 0.3127 0.5951 ± 0.2541
WISER 0.4622 ± 0.1685 0.6095 ± 0.193 0.4305 ± 0.0867 0.3641 ± 0.2522 0.5297 ± 0.0738
CODE-AE 0.6322 ± 0.1872 0.5381 ± 0.1606 0.5085 ± 0.0503 0.3611 ± 0.3155 0.4332 ± 0.3123
AUPRC (Mean ± Standard deviation)
Method Cis Flu Gem Pac Tem
GANDALF 0.9093 ± 0.0355 0.8483 ± 0.0933 0.5874 ± 0.175 0.9558 ± 0.024 0.2535 ± 0.1108
DruID 0.9176 ± 0.0671 0.7588 ± 0.1484 0.4515 ± 0.1297 0.8897 ± 0.0223 0.3014 ± 0.1039
PANCDR 0.9018 ± 0.0324 0.6951 ± 0.1530 0.4562 ± 0.2270 0.8561 ± 0.1019 0.3049 ± 0.2653
PREDICT-AI 0.8622 ± 0.0189 0.5885 ± 0.0581 0.3873 ± 0.0489 0.8687 ± 0.1090 0.1373 ± 0.0050
drug2tme 0.8754 ± 0.0523 0.8092 ± 0.1722 0.4826 ± 0.0947 0.7824 ± 0.1023 0.3058 ± 0.1327
WISER 0.8454 ± 0.0685 0.7505 ± 0.0657 0.3901 ± 0.0885 0.7724 ± 0.1585 0.1762 ± 0.0243
CODE-AE 0.9059 ± 0.0521 0.6665 ± 0.1435 0.4735 ± 0.0701 0.8208 ± 0.0574 0.1756 ± 0.0929

Table 2: Contribution of various components (ablation) in GANDALF, comparisons with other aug-
mentation and pseudolabeling strategies.

Experiment Method AUROC (mean ± std) AUPRC (mean ± std)

Ablation

GANDALF 0.8409 ± 0.0437 0.778 ± 0.0255
W/O MTL 0.753 ± 0.1637 0.6448 ± 0.1604

W/O cross-attention 0.752 ± 0.165 0.6443 ± 0.1636
W/O transformer 0.6007 ± 0.08 0.5632 ± 0.1101

Augmentation W perturbation 0.6306 ± 0.0255 0.5967 ± 0.0611
W/O aug 0.6052 ± 0.0219 0.5784 ± 0.0394

Pseudolabeling W majority vote 0.8153 ± 0.0541 0.756 ± 0.0827

4.3 ABLATION STUDY

Next, we performed an ablation study to empirically verify the importance of each component in
the architecture. We successively removed each component and measured the overall AUROC and
AUPRC performance across all the drugs in the test set. The key components of GANDALF are the
MTL network for pseudolabeling, cross-attention in pretraining DDPMs and use of transformers to
model varying length inputs. We first removed the cell line head in the MTL network (W/O MTL).
Next, we removed the cross-attention KL divergence loss LKLDA (W/O cross-attention). We then
removed the use of pretrained transfomer (W/O transformer) in the input to the network and instead
used the 7776 dimensional input used by other SOTA methods. The full model with all components
shows the best performance in terms of both AUROC and AUPRC, highlighting the importance of
each component in the overall performance (Table 2, Ablation). We also analyse test performance
sensitivity to increased volume of pseudolabelled data; details in Appendix Section A.2. A low to
moderate volume of high confidence samples is better than large volume of low confidence samples.

4.4 COMPARISON WITH OTHER AUGMENTATION STRATEGIES

There are no known label-invariant mutation data augmentation approaches for cancer DRP (refer
Section 2.2 for details). As a baseline, we compare GANDALF against a naive data augmentation
approach (Lee et al., 2023), where we perturb the 7776 dimensional inputs, using samples from
N (0, I). This is done once per patient, drug pair (W perturbation) in the training data, and the
associated label is assumed to remain the same as in the original sample, resulting in a dataset of
size 2Np. In addition, we also compare GANDALF against a vanilla feed-forward MLP (W/O
aug), trained using only (Xp, dp, yp). We compare the learning curves (Appendix Figure 6) and test
performance metrics (Table 2, Augmentation). In both cases, we fix training epochs. In all folds,
no augmentation and Gaussian perturbation strategies result in overfitting, where the validation loss
show an increase while the training loss remains low. This is consistent with the fact that smaller
datasets can result in overfitting. The test performance metrics for these methods is lower than that of
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GANDALF. The slight improvement due to perturbation indicates the benefit of data augmentation
in improving overall performance.

4.5 COMPARISON WITH MAJORITY VOTE BASED PSEUDOLABELING

We compared MTL based pseudolabeling strategy against another pseudolabeling strategy similar
to Dong-DongChen & WeiGao (2018). The augmented data (Xaug, daug, yaug) is passed through 3
separate feed-forward networks, trained on (Xp, dp, yp). The pseudolabels generated by each net-
work is aggregated by majority voting (Lang et al., 2022). As before, non-abstained samples are used
to train the downstream DRP model, along with (Xp, dp, yp). The results comparing GANDALF
against this approach (W majority vote) are shown in Table 2, Pseudolabeling. While the majority
voting strategy does perform well, GANDALF outperforms it in overall AUROC and AUPRC. This
may be potentially due to the use of the larger cell line labelled data, with more drugs, as opposed
to the smaller labelled patient dataset.

5 CONCLUSIONS AND DISCUSSION

In this paper, we propose GANDALF, a generative patient data augmentation framework, to tackle
the challenge of training a cancer DRP model with limited labelled data.Unlike prior DRP methods
that augment data in the shared space between patients and cell lines, we utilise the larger labelled
cell line dataset to generate more patient-like samples as well as their pseudo-labels. GANDALF
outperforms SOTA DRP methods, and also shows improved performance when compared to base-
line genomic data augmentation and pseudo labeling approaches. GANDALF has a large number
of parameters and sub-modules, each of which needs pretraining, increasing overall training time.
Learning the underlying data distributions is limited by available labelled cell lines and patients.

There are several future directions to explore, which may improve GANDALF further. In this paper,
we have only considered labelled patient profiles for training, although the pretraining stage sup-
ports unlabelled data. Future work can evaluate the use of unlabelled patient profiles in all steps of
training. We examined the quality of the generated samples by comparing the distributions against
the original patient data. More extensive studies to examine the biological significance of the gen-
erated samples and their fidelity can shed light on the patterns captured by the model. Generative
strategies, which can incorporate known biological information on co-occurring mutations, can also
be explored in the future. In the cell line datasets we used, we have included both solid and non-solid
tumor types, that can lead to differences in pharmacological responses (Basu et al., 2013; Yao et al.,
2018; Gerdes et al., 2021; Sharifi-Noghabi et al., 2021b). The effect of these tumor types on model
performance can be examined in the future. We could even build tumor type specific models by
fine-tuning the existing model using data specific to each cancer type. Overall, GANDALF sets the
stage for using generative techniques in the field of cancer DRP research, and emphasises the im-
portance of capturing patient domain-specific characteristics for improving downstream prediction
performance.

6 REPRODUCIBILITY

Our code and data are made publicly available at https://anonymous.4open.science/
r/GANDALF.
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Schubert, Nanne Aben, Emanuel Gonçalves, Syd Barthorpe, Howard Lightfoot, et al. A landscape
of pharmacogenomic interactions in cancer. Cell, 166(3):740–754, 2016.

Aishwarya Jayagopal, Robert J Walsh, Krishna Kumar Hariprasannan, Ragunathan Mariappan, De-
babrata Mahapatra, Patrick William Jaynes, Diana Lim, David Shao Peng Tan, Tuan Zea Tan,
Jason J Pitt, et al. A multi-task domain-adapted model to predict chemotherapy response from
mutations in recurrently altered cancer genes. medRxiv, pp. 2023–11, 2023.

Aishwarya Jayagopal, Hansheng Xue, Ziyang He, Robert J Walsh, Krishna Kumar Hariprasannan,
David Shao Peng Tan, Tuan Zea Tan, Jason J Pitt, Anand D Jeyasekharan, and Vaibhav Rajan.
Personalised drug identifier for cancer treatment with transformers using auxiliary information. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 5138–5149, 2024.

Patrick Kage, Jay C Rothenberger, Pavlos Andreadis, and Dimitrios I Diochnos. A review of pseudo-
labeling for computer vision. arXiv preprint arXiv:2408.07221, 2024.

Cherry Khosla and Baljit Singh Saini. Enhancing performance of deep learning models with dif-
ferent data augmentation techniques: A survey. In 2020 International Conference on Intelligent
Engineering and Management (ICIEM), pp. 79–85. IEEE, 2020.

Juyeon Kim, Sung-Hye Park, and Hyunju Lee. Pancdr: precise medicine prediction using an adver-
sarial network for cancer drug response. Briefings in Bioinformatics, 25(2):bbae088, 2024.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models. In International Conference on Machine Learning, pp. 17564–
17579. PMLR, 2023.
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Snorkel: Rapid training data creation with weak supervision. In Proceedings of the VLDB en-
dowment. International conference on very large data bases, volume 11, pp. 269. NIH Public
Access, 2017.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Yuki Saito, Junji Koya, and Keisuke Kataoka. Multiple mutations within individual oncogenes.
Cancer science, 112(2):483–489, 2021.

Maria Schwaederle, Barbara A Parker, Richard B Schwab, Gregory A Daniels, David E Piccioni,
Santosh Kesari, Teresa L Helsten, Lyudmila A Bazhenova, Julio Romero, Paul T Fanta, et al.
Precision oncology: The uc san diego moores cancer center predict experience. Molecular cancer
therapeutics, 15(4):743–752, 2016.

Hossein Sharifi-Noghabi, Shuman Peng, Olga Zolotareva, Colin C Collins, and Martin Ester. Aitl:
adversarial inductive transfer learning with input and output space adaptation for pharmacoge-
nomics. Bioinformatics, 36(Supplement 1):i380–i388, 2020.

Hossein Sharifi-Noghabi, Parsa Alamzadeh Harjandi, Olga Zolotareva, Colin C Collins, and Martin
Ester. Out-of-distribution generalization from labelled and unlabelled gene expression data for
drug response prediction. Nature Machine Intelligence, 3(11):962–972, 2021a.

Hossein Sharifi-Noghabi, Soheil Jahangiri-Tazehkand, Petr Smirnov, Casey Hon, Anthony Mam-
moliti, Sisira Kadambat Nair, Arvind Singh Mer, Martin Ester, and Benjamin Haibe-Kains. Drug
sensitivity prediction from cell line-based pharmacogenomics data: guidelines for developing
machine learning models. Briefings in Bioinformatics, 22(6):bbab294, 2021b.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of big data, 6(1):1–48, 2019.

Kumar Shubham, Aishwarya Jayagopal, Syed Mohammed Danish, Prathosh AP, and Vaibhav Ra-
jan. Wiser: Weak supervision and supervised representation learning to improve drug response
prediction in cancer. arXiv preprint arXiv:2405.04078, 2024.

Alona Sosinsky, John Ambrose, William Cross, Clare Turnbull, Shirley Henderson, Louise Jones,
Angela Hamblin, Prabhu Arumugam, Georgia Chan, Daniel Chubb, et al. Insights for precision
oncology from the integration of genomic and clinical data of 13,880 tumors from the 100,000
genomes cancer programme. Nature Medicine, 30(1):279–289, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain adaptation. In
Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.
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A APPENDIX

A.1 EXPERIMENT SETTINGS

A.1.1 DRUG SELECTION CRITERIA

The patient dataset we used had 56 drugs. For each of the 56 drugs in patients, we first consider those
with at least 20 labelled patient samples (He et al., 2022) - this reduced labelled data to 12 drugs.
For each drug, we divided the samples into groups based on cancer type and data source. Each
group with > 20 samples was divided into 2:1 ratio in 3-fold label based stratified cross-validation.
For some groups, no test samples were available. We excluded these to get 7 drugs. These drugs
were used in the ablation studies in Table 2, to report overall performance metrics. We removed
drugs which had < 3 positive samples as it would cause issues in CV, where one fold may have test
samples with only a single label - this resulted in the five drugs shown in Table 1.

A.1.2 TRAIN-TEST SPLIT

RECIST labels in patients were initially coalesced into 2 groups - Complete and Partial Response
as label 1 (good response), Stable and Progressive Disease as label 0 (bad response). The labelled
patient samples obtained were grouped based on the drug, cancer type and source of dataset (TCGA,
Moores, CBIO). Each group with ≥ 20 samples was divided into 3-fold cross validation train-test
splits, stratified by label. Groups with < 20 samples were only used for training. The train and test
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Figure 4: Sensitivity tests on value of pseudo label lower (left) and upper (right) thresholds.

Lower threshold val-
ues

Fold 0 psuedola-
belled responders /
non-responders

Fold 1 psuedola-
belled responders /
non-responders

Fold 2 psuedola-
belled responders /
non-responders

0.1 3830/60101 874/15668 241/7157
0.2 3830/192454 874/125098 241/81011
0.3 3830/355849 874/323572 241/274803
0.4 3830/481589 874/479348 241/462177
Upper threshold val-
ues

Fold 0 psuedola-
belled responders /
non-responders

Fold 1 psuedola-
belled responders /
non-responders

Fold 2 psuedola-
belled responders /
non-responders

0.5 29599/60101 25932/15668 25554/7157
0.6 9568/60101 6336/15668 4023/7157
0.7 3830/60101 874/15668 241/7157
0.8 1578/60101 27/15668 0/7157
0.9 500/60101 0/15668 0/7157

Table 3: Number of pseudolabelled samples used in sensitivity test of thresholds.

labelled samples across all groups and folds were combined to form 3 train-test folds respectively.
Each of the 3 train folds were further divided in a 90:10 ratio to obtain a train-validation split. Cell
line data was also grouped in a similar fashion and divided into a single train-validation and test
fold. The training and evaluation in all cases use sample, drug pairs where the sample could be from
either domain. We had a total of 156441 train, 17371 validation and 21589 test cell line, drug pairs.
We also had 488/488/487 train, 53/54/56 validation and 115/114/113 test patient, drug pairs over the
3 folds. We run inference on test patient, drug pairs, and report the average AUROC and AUPRC
metrics across 3 test folds.

A.2 SENSITIVITY TO VOLUME OF PSEUDOLABELLED DATA

We examined the sensitivity of the overall model performance to increasing the quantity of pseu-
dolabelled data. We change the amount of pseudolabelled data by varying the upper and lower
thresholds tu and tl. Increasing tl and decreasing tu is equivalent to adding more pseudolabelled
samples. We varied tl from 0.1 to 0.4, tu from 0.5 to 0.9, in increments of 0.1. In all cases, only
a single parameter was changed while all others were left constant. Figure 4 indicates that a lower
value of tl shows better performance. This may result in fewer non-abstained samples with label 0,
and improve confidence in the samples selected for the downstream DRP task. A higher tu in gen-
eral improves performance with 0.8 yielding the best. If tu is too low or tl is too high, it may admit
more low-confidence samples, yaug being closer to 0.5. If tu is too high, it may drastically reduce
the number of positive labels available for downstream DRP training, also reducing performance.
Table 3 indicates the number of pseudolabelled samples added in each case.

A.3 SENSITIVITY TO DIFFERENT AMOUNTS OF TRAINING DATA

We conducted two experiments to evaluate the effect of varying amounts of real and synthetic patient
data.
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Figure 5: Kernel Density Estimation plot comparing the distribution of first PCA component (left)
and first TSNE component (right) across original cell line, real patient and generated patient data

Figure 6: Learning curves on (left to right) 3 cross-validation folds, with orange line indicating
train loss and blue indicating validation loss. Dotted lines indicate augmentation with Gaussian
perturbation, solid lines indicate no augmentation, dashed lines indicate GANDALF augmentation.

A.3.1 EFFECT OF VARYING AMOUNTS OF PSEUDOLABELLED DATA

We retain all the real train patient data and randomly sample 25%, 50%, 75% and 100% of the
generated pseudolabelled data, and use this in training the DRP model. 0% setting indicates no
augmented data in the DRP training. Results are shown in the Table 4 below. 0% does the worst,
without any augmentation. Best AUROC is at 50% addition of pseudolabelled data, best AUPRC at
25% pseudolabelled data. Across 25-100% settings, the difference in performance is not statistically
significant. For the case of 0% vs any other level of augmentation, differences are statistically sig-
nificant, indicating that adding psuedolabelled data improves performance. To answer the question
of how much pseudolabelled is helpful we will need further studies on possibly larger datasets.

A.3.2 EFFECT OF VARYING AMOUNTS OF REAL PATIENT DATA

We randomly sample 25%, 50%, 75% and 100% of real labelled patient data. In each case we
sample twice the number of real samples from the pseudolabelled data. 100% setting thus refers to
3 times the size of real labelled patient data. In general, as seen in Table 5, as more real labelled data
is added performance improves, as generally expected.

% of pseudola-
belled data

Average AUROC
over 3 folds

Average AUPRC
over 3 folds

Number of
pseudo labelled
patient data (fold
0)

Number of real
labelled patient
data (fold 0)

0% 0.5263 ± 0.0195 0.5229 ± 0.0249 0 488
25% 0.8584 ± 0.0361 0.7838 ± 0.0564 15983 488
50% 0.8613 ± 0.0279 0.7796 ± 0.0437 31966 488
75% 0.8577 ± 0.0269 0.7677 ± 0.0354 47948 488
100% 0.8409 ± 0.0437 0.778 ± 0.0255 63931 488

Table 4: Performance comparison for varying quantities of pseudolabelled data
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% of real data
(pseudolabelled
data = 2 x real
data)

Average AUROC
over 3 folds

Average AUPRC
over 3 folds

Number of
pseudo labelled
patient data (fold
0)

Number of real
labelled patient
data (fold 0)

25% 0.5326 ± 0.0152 0.5239 ± 0.0222 244 122
50% 0.581 ± 0.0216 0.5505 ± 0.0274 488 244
75% 0.6888 ± 0.0257 0.638 ± 0.0348 732 366
100% 0.7086 ± 0.0247 0.6533 ± 0.0374 976 488

Table 5: Performance comparison for varying quantities of real patient data

A.4 HYPERPARAMETER SELECTION

For baseline models, we used the hyperparameter ranges defined in each of the papers. We did a
hyperparameter sweep over these ranges using Bayesian Optimization for maximum of 15 runs, to
determine the best hyperparameters for our dataset. We did not tune epochs since we had early
stopping in all cases. Across methods, we focused on the last stage of DRP for tuning. For DruID,
MTL learning rate range was [0.001, 0.05], RECIST prediction network dimensions for 1st hidden
layer were tuned in 64, 32 and dimensions for second hidden layer in 16, 8. In PREDICT-AI, we
tuned learning rate in the range [0.0001, 0.001], batch size in 128, 64. In PANCDR, we tuned
encoder bottleneck dimensions in 100, 128, 256, GCN dimensions in 100, 128, 256, learning rate
in [0.0001, 0.001], adversarial learning rate in [0.0001, 0.001], lambda in 1, 0.1, 0.01, batch size in
128, 256. In CODE-AE and WISER, we tuned dropout in 0, 1. In WISER we additionally tuned
learning rate in the range [0.001, 0.1].

For GANDALF, we mainly focused on the hyperparameters in the supervised training stages, key
being the lower and upper thresholds and learning rate parameters for the DRP and MTL models. We
varied the lower threshold between 0.1 to 0.5 and upper threshold from 0.5 to 0.9, with increments
done based on quantiles calculated from predicted probability of response after MTL training. This
was done for each drug separately. The hidden layers from the VAE were set to 64 dimensions
based on our GPU memory restrictions and batch size was 512. For the transformer we used 64
dimensional embeddings, 4 heads and 8 encoder layers. For the cell line VAE, we used 1024, 128
and 64 hidden units and for patient VAE we used 512, 128 and 64 hidden units. Both VAEs used
tanh activation. The DDPM uses linear layers with dimensions as the VAE representation size, and
uses dropout and ReLU. The MTL network uses 2 linear layers each in embedding drugs, predicting
RECIST and predicting AUDRC, with ReLU activation. Max epochs were set to 500 for pretraining,
100 for the MTL and DRP training. Early stopping was done using patient validation set pearson
correlation as in (Sharifi-Noghabi et al., 2021a).

A.5 ADDITIONAL ABLATION EXPERIMENTS

To understand the contribution of each individual component, we added additional ablation studies
where each test removes just one component of the architecture. We also performed drug specific
tuning in each case. Table 6 shows the results of each ablation test. Apart from the ablation tests
in Table 2, we also added three more tests W/O VAE, W/O DDPM and W/O pseudolabels. In W/O
VAE, we attempt to directly feed the output of the transformer encoder layer to the domain-specific
DDPMs, bypassing the VAEs. In W/O DDPM, we replace the DDPMs with two domain-specific
VAEs. The data augmentation is done by passing the cell lines through the cell line VAE encoder
and the patient VAE decoder. The pseudolabelling and downstream DRP training remains the same
as GANDALF in both cases. In W/O pseudolabels, to remove the influence of pseudolabelled data,
we directly use the MTL part of the network (after stage 3) to run inference on the test patient data.
The use of transformers and MTL appear to contribute the most to the model performance. The use
of pseudolabelled data also helps improve average performance in most cases.

A.6 COMPARISON OF DISTRIBUTION

We examine the distribution of the Xaug with respect to the real distributions of X ′
c and X ′

p . We
expect Xaug to be closer to the patient distribution than the original cell lines, while also retaining
information from the original cell line data. Each dataset is further subjected to principal component
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Table 6: Performance comparison across different ablation tests, where each test removes one com-
ponent from GANDALF. Best performing results are highlighted in bold.

AUROC (Mean ± Standard deviation)
Method Cis Flu Gem Pac Tem
GANDALF 0.6343 ± 0.0306 0.7309 ± 0.0664 0.6188 ± 0.0674 0.7728 ± 0.1253 0.6451 ± 0.0776
W/O MTL 0.3409 ± 0.219 0.5333 ± 0.075 0.5587 ± 0.1787 0.2758 ± 0.1461 0.7513 ± 0.0805
W/O cross-
attention

0.6061 ± 0.0475 0.7309 ± 0.0834 0.6188 ± 0.0674 0.7728 ± 0.1253 0.6152 ± 0.1074

W/O trans-
former

0.3735 ± 0.1404 0.4143 ± 0.1122 0.5718 ± 0.0805 0.5625 ± 0.3903 0.2106 ± 0.0457

W/O VAE Out of memory issues
W/O DDPM 0.4849 ± 0.0909 0.6929 ± 0.1189 0.5162 ± 0.1247 0.5208 ± 0.4161 0.3138 ± 0.0647
W/O pseu-
dolabels

0.6048 ± 0.1185 0.6452 ± 0.2304 0.6019 ± 0.1891 0.6825 ± 0.3345 0.5026 ± 0.1647

AUPRC (Mean ± Standard deviation)
Method Cis Flu Gem Pac Tem
GANDALF 0.9093 ± 0.0355 0.8483 ± 0.0933 0.5874 ± 0.175 0.9558 ± 0.024 0.2535 ± 0.1108
W/O MTL 0.8101 ± 0.0793 0.7345 ± 0.1 0.5697 ± 0.0628 0.7582 ± 0.1012 0.3215 ± 0.1623
W/O cross-
attention

0.9183 ± 0.0255 0.8483 ± 0.0967 0.5873 ± 0.1753 0.9558 ± 0.024 0.2068 ± 0.0585

W/O trans-
former

0.8047 ± 0.0417 0.6400 ± 0.1231 0.4760 ± 0.0865 0.8478 ± 0.1374 0.0993 ± 0.0195

W/O VAE Out of memory issues
W/O DDPM 0.8696 ± 0.0098 0.8241 ± 0.0741 0.4932 ± 0.1867 0.8273 ± 0.1636 0.1150 ± 0.0263
W/O pseu-
dolabels

0.919 ± 0.035 0.8146 ± 0.1368 0.5669 ± 0.1321 0.9066 ± 0.1301 0.2702 ± 0.1045

Figure 7: Comparison of distribution (left to right) across real and generated data, using PCA (top)
and TSNE (bottom) methods.

analysis (principal components (PCs) from X ′
p) to obtain lower dimensional representations for eas-

ier visualization. Figure 7 (top, right) shows that original cell line data had lower variance compared
to the real patient data (Figure 7, top left). However, the generated patient data (Figure 7, top mid-
dle) is closer to the real patient data in terms of the variance of data points. This indicates that the
generated data captures patient-specific heterogeneity. A similar trend is seen in the density plots of
the first PC in Appendix Figure 5. Quantitatively, we also examine the Kolmogorov–Smirnov (KS)
test between the PCs of the 3 distributions. KS distance statistic between generated patient data and
real patient data over 3 folds is 0.0694 ± 0.0071, while the same between original cell line data
and patients is 0.2524 ± 0.0022. The PCs of the augmented data is closer to that of the real patient
data, when compared to the distance between the PCs of the original cell line and patient data. This
indicates that the augmented data starts resembling the patient data while retaining information from
the original cell line data.
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Figure 8: TSNE plots of first two components of the patient data in the representation space, color
coded based on TCGA cancer types.

Cancer type AUROC over 3 folds AUPRC over 3 folds
TCGA-BRCA 0.8947 ± 0.0368 0.8720 ± 0.0712
TCGA-CESC 0.3197 ± 0.1403 0.7704 ± 0.0716
TCGA-HNSC 0.7652 ± 0.137 0.9788 ± 0.0137
TCGA-STAD 0.7119 ± 0.1318 0.8253 ± 0.1222
TCGA-PAAD 0.6620 ± 0.0765 0.6239 ± 0.0516
TCGA-LGG 0.4309 ± 0.0563 0.1406 ± 0.0061

Table 7: Comparison of performance across various cancer types.

A.7 CHECKING FOR BATCH EFFECTS IN THE REPRESENTATION SPACE

Our patient data comes from three different sources - TCGA, CBIO and Moore’s. To ensure that
these representations do not inadvertently capture batch effects, we perform a TSNE based visual-
ization, where the patient latent representations are colored based on the cancer type (as coded in
TCGA). For Moore’s and CBIO datasets, we identified the corresponding category in TCGA. Fig-
ure 8 shows the TSNE plot for the first two components, after embedding the patient data into the
representation space. The lack of well defined boundaries across cancer types (indicated by various
colors) suggest that there is no batch effect across the mutation datasets.

A.8 PERFORMANCE ACROSS CANCER TYPES

During the train-test split, we split the data based on cancer type and drug. Then we divided each
group into 2:1 ratio if more than 20 samples were present per group. The train data thus con-
tained all available cancer types. The evaluation was on a limited set of cancer types - ’TCGA-
BRCA’, ’TCGA-CESC’, ’TCGA-HNSC’, ’TCGA-STAD’, ’TCGA-PAAD’, ’TCGA-LGG’. Perfor-
mance per cancer type from existing test splits - we calculated the metrics over the available test
splits by grouping based on cancer type. Table 7 shows the results.

20


	Introduction
	Related Work
	Drug Response Prediction Models
	Genomic Data Augmentation

	Method
	Problem Formulation
	Method Overview
	Step 1: Pretraining Diffusion Models
	Step 2: Generating new patient-like samples
	Step 3: Training multi-task learning network
	Step 4: Assigning pseudolabels and selection of confident samples
	Step 5: Training Drug Response Prediction Classifier


	Experiments and Results
	Datasets
	Comparison with cancer drug response prediction methods
	Ablation study
	Comparison with other augmentation strategies
	Comparison with majority vote based pseudolabeling

	Conclusions and Discussion
	Reproducibility
	Appendix
	Experiment Settings
	Drug Selection Criteria
	Train-test split

	Sensitivity to volume of pseudolabelled data
	Sensitivity to different amounts of training data
	Effect of varying amounts of pseudolabelled data
	Effect of varying amounts of real patient data

	Hyperparameter Selection
	Additional Ablation Experiments
	Comparison of distribution
	Checking for batch effects in the representation space
	Performance across cancer types


