Under review as submission to TMLR

End-to-end Deep Reinforcement Learning for Stochastic
Multi-objective Optimization in C-VRPTW

Anonymous authors
Paper under double-blind review

Abstract

In this work, we consider learning-based applications in routing to solve a Vehicle Routing
variant characterized by stochasticity and multiple objectives. Such problems are repre-
sentative of practical settings where decision-makers have to deal with uncertainty in the
operational environment as well as multiple conflicting objectives due to different stakehold-
ers. We specifically consider travel time uncertainty. We also consider two objectives, total
travel time and route makespan, that jointly target operational efficiency and labor regula-
tions on shift length, although more/different objectives could be incorporated. Learning-
based methods offer earnest computational advantages as they can repeatedly solve problems
with limited interference from the decision-maker. We specifically focus on end-to-end deep
learning models that leverage the attention mechanism and multiple solution trajectories.
These models have seen several successful applications in routing problems. However, since
travel times are not a direct input to these models due to the large dimensions of the travel
time matrix, accounting for uncertainty is a challenge, especially in the presence of multiple
objectives. In turn, we propose a model that simultaneously addresses stochasticity and
multi-objectivity and provide a refined training mechanism for this model through scenario
clustering to reduce training time. Our results show that our model is capable of construct-
ing a Pareto Front of good quality within acceptable run times compared to three baselines.
We also provide two ablation studies to assess our model’s suitability in different settings.

Keywords: Stochastic, Multi-Objective Optimization, Vehicle Routing Problem, Reinforcement Learning,
Active Search, End-to-End

1 Introduction

The Vehicle Routing Problem (VRP) is a problem of significant industrial relevance in contemporary
economies where vehicle delivery operations play a pivotal role in the supply chain (Vidal et al., 2020).
Real-life variants are often characterized by certain challenging features. Examples of such features include
stochasticity and the presence of several (conflicting) objectives simultaneously. Accounting for these fea-
tures during decision-making is important. Otherwise, sub-optimal decisions may lead to elevated costs.
In practical settings, computational budgets are often limited as solutions need to be generated quickly in
accordance with operational requirements (Horvitz, 2013). To that end, one seeks optimization techniques
that are capable of delivering near-optimal solutions efficiently in the presence of computational challenges
posed by factors like uncertainty and multi-objectivity.

In the literature, numerous techniques have been proposed to solve Combinatorial Optimization (CO) prob-
lems like VRP, ranging from hand-crafted heuristics to Machine Learning (ML) models that are indepen-
dently able to generate solutions - also known as end-to-end methods (Kotary et al., 2021). The spectrum
also covers hybrid methods, which incorporate both heuristics and ML models. ML models are particularly
useful in cases where problem parameters follow a known distribution. In such cases, an ML model can be
trained on a dataset of problems from this distribution and used to generate solutions for problem instances
arising in the future. This is because ML models have the capacity to learn from the collective expert knowl-
edge. Through learning common solution structures and relationships to problem parameters. Although the

Abdo Abouelrous
Highlight

Under review as submission to TMLR

training resources required are not trivial, ML models can be quickly applied for solving thereafter. (Bengio
et al., 2021; Giuffrida et al., 2022; Mazyavkina et al., 2021; Zhang et al., 2021; Kool et al., 2018).

In our estimation, CO problems treated in the literature by ML barely treated stochasticity and multi-
objectivity together. The objective of our study is to extend the framework of ML in optimization to settings
that jointly combine both problem features. Solving a multi-objective problem requires the definition of a
Pareto Front (Ngatchou et al., 2005), comprising of a set of Pareto optimal solutions by which improving one
objective can not be done without worsening other objectives. Solutions would then have to be validated on
a sample of scenario realizations to estimate their quality and feasibility. In an optimization context, this
poses a challenge that requires novel intervention. This is because multi-objectivity induces the generation of
several solutions to estimate the Pareto Front, while stochasticity imposes that each solution be feasible with
a good score for a large number of stochastic realizations. The repeated evaluation of multiple solutions, in
this setting, is a cumbersome task that requires careful choices in the optimization methodology to maintain
computational costs within practical limits.

In response, we present a framework that addresses the given computational issues in this paper to solve
Capacitated Vehicle Routing Problem with Time Windows (C-VRPTW), a popular variant of VRP (Liu
et al., 2023). We specifically focus on stochasticity in travel times and consider two objectives that are travel
time-based, although our method could account for more different objectives. The major contributions
prescribed by this paper are:

o Presenting the first end-to-end (independently constructs solution without interference of a heuristic)
deep-learning model that jointly treats stochasticity and multiple objectives for routing.

e Providing a retraining mechanism for parameter uncertainty through an active search that considers
multiple objectives rather than just one objective.

e Presenting a scenario-clustering technique that enhances the computational efficiency of model re-
training during active search.

The remainder of the paper is organized as follows. Section 2 introduces previous research. Section 3
describes the relevant problem in detail. Section 4 outlines our methodology. Section 5 presents numerical
experiments and results. Lastly, Section 6 asserts the conclusions.

2 Previous Work

We restrict our attention to ML applications in stochastic and/or multi-objective cases for routing. These
models generally rely on concepts of Reinforcement Learning (RL) to make decisions. These approaches fall
into two major categories, hybrid and end-to-end. Hybrid models integrate a ML model with a heuristic
to enhance the heuristic’s performance. The way in which the ML model is applied largely depends on the
heuristic at hand. A common example is that the RL agent selects a heuristic with some probability from a
set of discrete heuristics. In contrast, End-to-end models are able to independently solve a routing problem
without interference of a heuristic. When deciding on the ordering of node visits, the decision to visit a node
j after node ¢ is based on a probability p;;. Such a probability may be determined by features of nodes 7 and
j, the status of the current (partial) solution and the estimated corresponding reward. In both categories,
the decisions are determined by interaction of the problem input with the ML model’s parameters which are
optimized during model training to maximize the final reward.

For the multi-objective setting, works like Wu et al. (2024) and Deng et al. (2024) explore applications to
routing with hybrid methods through genetic algorithms. Yao et al. (2017), on the other hand, focus on hyper-
heuristic selection by the RL agent to complete a solution. In the Stochastic setting, Bayliss (2021) make
use of simulation-augmented optimization for urban-routing. Joe & Lau (2020) employ a hybrid approach
with a genetic algorithm to address a dynamic problem with stochastic customers. Works integrating both
stochastic and multi-objective components are rare, at least in routing. Tozer et al. (2017) propose an RL
model that selects voting methods based on social choice theory for path-finding. Niu et al. (2024) and
Niu et al. (2021) embed a decision tree that learns node orderings in a genetic algorithm in location and
vehicle routing, while Peng et al. (2023) adapt the same approach but for multi-modal transportation. Zhang

Under review as submission to TMLR

et al. (2024), in contrast, optimize multi-modal transportation routing using a framework aided by simple
Q-learning.

Recent innovations in the literature have prompted the use of Deep Reinforcement Learning (DRL) to solve
CO problems. Among the earliest of end-to-end ML applications in routing was Kool et al. (2018) who
leverage a Graph Attention network Velickovié et al. (2017) to estimate p;;. Kwon et al. (2020) extended
on this by presenting a model that uses multiple solution trajectories during model training and solution
inference (generation) which we refer to as Policy Optimization with Multiple Optima (POMO) for simplicity.
POMO is able to process complex graph information and greedily decide on the next node visit most likely to
minimize the objective value(s). The model is well-credited for its ability to generate solutions of high quality
in a relatively short time compared to alternative solvers and heuristics for a multitude of routing problems
given a certain distribution. During training, POMO learns the relationship between node orderings and the
resulting final objective values to look for orderings that minimize the objective in the future.

The impressive performance of DRL-based methods like POMO has led to adaptations in multi-objective
and stochastic cases for routing. For multi-objective CO routing problems, DRL has been proposed in works
like Sarker et al. (2020), Wang et al. (2023), Chen et al. (2023) and Lin et al. (2022). For applications in
stochastic CO routing problems, works like Schmitt-Ulms et al. (2022), Achamrah (2024), Iklassov et al.
(2024) and Zhou et al. (2023) showcase end-to-end methods addressing demand and travel-time uncertainty,
which is usually accounted for by fine-tuning the pre-trained model’s parameters. In these works, routing
problems are solved in an end-to-end fashion whereby the RL model decides on successive node visits. This
is in contrast to other DRL innovations that rely on hybrid methods (Jia et al., 2025; Son et al., 2024) for
stochastic and multi-objective applications.

To the best of our knowledge, there is no end-to-end DRL mechanism for solving routing (or CO) problems
characterized by both uncertainty and multiple objectives. Many of the multi-objective DRL architectures
can not be easily adapted to account for uncertainty and vice-versa. On the other end, existing hybrid
methods depend on the heuristics at hand which are often problem-specific. For example, deriving voting
methods or learning node orderings with decision trees may not be suitable for more complicated vehicle
routing variants such as ones with time windows. Ideally, one would like to come up with an end-to-end
model that can be easily adapted to solve a multitude of routing problems without the complexities associated
with external assumptions or hyper-heuristics. The novelty of this paper is embedded in deriving such a
framework for solving C-VRPTW, although the framework can be easily adopted to solve other routing
problems as explained below.

3 Problem Description

Consider a C-VRPTW instance with parameter input P and stochastic travel times 7, where 7 € P. Fur-
thermore, assume the problem is characterized by a set of K objectives for which preference Ay corresponds to
objective fi(.)Vk € K. The preferences \; are embedded in a vector A. For simplicity, assume), ;- A\x =1
and 0 < fi(.).

Such preferences could reflect the decision-makers view of importance of one objective relative to another.
Such preferences may not be explicitly defined initially, but repeatedly solving the problem with different
Ak values enables the decision-maker to understand the relationship between decisions and corresponding
objective values through the construction of a Pareto Front. Thereafter, the decision-maker can choose
decisions on the Pareto Front that align with their preferences. The proposed model should therefore be
able to approximate a Pareto optimal solution for any set of preferences as much as possible.

Let n be the number of nodes that may be visited in a solution and V' be the set of nodes, so that |V| = n.
Each node ¢ € V is characterized by some features that depend on the problem at hand, such as demand or
time-windows. Between each pair of nodes, there is an arc with travel times corresponding to the stochastic
parameters 7. That said, 7 is a n X n matrix with elements ¢;; representing the travel times between nodes
tand j € V. Let t;; follow some predetermined probability distribution f;;(.). Depending on the problem,
a depot may be defined as well. If so, we index the depot by 0, so that 0 € V and define stochastic travel
times to; and t;o for each other node i € V.

Under review as submission to TMLR

The objective is to jointly optimize all the K objectives while satisfying operational constraints. In C-
VRPTW, time-window constraints, as well as objective values, are largely determined by travel times. As
such, we are dealing with a CO problem where the objective values and constraint satisfaction for a set of
actions/decisions are uncertain.

Our proposed model strives to define a mapping - specified by a set of parameters 6 - between graph
information and associated node ordering in a solution that maximizes rewards (i.e. delivers good objective
values). Our model takes into account the uncertainty in travel times represented by the graph’s arc lengths
and conflicting rewards (objectives). The mechanism by which we define this mapping serves the purpose
of our study. Furthermore, cases with uncertain travel times 7 pose a greater challenge than others in the
literature such as in Niu et al. (2021) which deal with stochastic demand. This is because the number of
travel time parameters is much more than demand parameters, invoking a larger computational capacity to
process the associated uncertainty. Furthermore, different node orderings can give different feasibility and
solution scores for a given set of travel time realizations, in contrast to the case with stochastic demand. In
the following section, we present a method that treats the problem presented above.

4 Methodology

We propose a single machine learning model whose training is partitioned into two phases. One phase deals
with the multi-objective component of the problem and the latter with the stochastic component. Our
model is a variant of the POMO model whose parameters correspond to 6. It is firstly trained on a sample
of multi-objective deterministic instances. Afterwards, the parameters embedding information on the travel
times are re-trained to account for the stochasticity. The retraining is done by means of an Efficient Active
Search (EAS) which we will explain below. Finally, given problem input P and a vector of preferences A, we
apply a solution generation procedure with the re-trained POMO model to produce a solution. The Pareto
Front can then be estimated by repeatedly solving the problem P for different values of A\. An overview of
our overall method is illustrated in Figure 1. In the following section, we elaborate on the components of
our approach.

L —— - - - - - = = = ~
[\
| |
Train multi- : : :
| objective POMO I Multi-objective
Predetermined | model on data Pre-trained POMO model : Component
Training Dataset t > with deterministic
| embedding '
| |
\ I
~ b o 7
—_—— = = = = = _— - =~ N
0 Retrain Model with \
| Efficient Active I
| Search | AP
Stochastic | |
Component A 4 |
[. l
I ESr;TJ(;eZa::ISiES 4 » Pareto Front
I l Apply solution
\ /’ generation mechanism
N

___________ given problem input

Figure 1: Visual illustration of our complete approach using pre-trained POMO model.

4.1 Multi-Objective Component

The standard POMO model seen in Kwon et al. (2020) defines a mapping with parameters § between problem
parameter input P and a resulting reward /objective value. More precisely, the model’s main architecture is

Abdo Abouelrous
Highlight

Under review as submission to TMLR

given by an encoder-decoder duo. The encoder with parameters 6.,. takes as input problem parameters to
construct an embedding w, which is a summary of the problem features as explained in Kool et al. (2018).
w is then used alongside other dynamic information pertaining to the current status of the solution by the
decoder with parameters 64.. to take actions until a solution is complete with a corresponding reward. Since
the reward is constant for every set of parameter input P, the decoder can automatically process w and
make a decision.

In the multi-objective setting, the reward depends on the preferences A\. To that end, the information needed
to make a decision is not entirely prescribed by the embedding w. In turn, Lin et al. (2022) propose a multi-
objective variant of POMO. The idea is to equip the decoder with a Multi-Layer Perceptron with parameters
1 that takes A\ as input and determines the corresponding decoder parameters §(A|1). The resulting POMO
model can then be used to construct a Pareto Front by repeatedly sampling realizations of A and solving the
corresponding problem for a single realization one at a time. Since POMO models can solve a single instance
quite efficiently, the Pareto Front would not require a significant computational budget to be constructed.

Figure 2 depicts the process by which a solution is generated with the model of Lin et al. (2022). This
model and its training correspond to the Multi-objective component in Figure 1. In the following section,
we explain how the embedding w generated from this model is updated by means of an EAS to adapt to
stochastic travel times T € P.

P «| Encoder with model | Embedding @ summarizing
parameters 4 problem data
problem Oenc problem input
input fed processed

Embedding fed

A4

A > Mu\lltlli-tlaag:: al;e;:::rp;tron Model decoder with parameters

sreferences " hyper-network estimates O dec ()\| 1;[’)
fed decoder parameters

Y

POMO greedy mechanism
constructs solution

Solution Generated

Figure 2: Overview of solution generation with the model of Lin et al. (2022).

To compute the reward for a given solution 7; for problem instance s;, Lin et al. (2022) propose a linear
aggregation technique. The K objectives are aggregated into a single objective (reward) as follows:

> Aefrlmi) (1)

keK

with f(.) representing objective k. The term in (1) corresponds to the reward L(m;|A, s;) for solution 7; given
instance s; and preferences A. Solution 7; is generated according to a probability distribution pgx)(ms|s;)
which can be constructed in a greedy or sampling fashion.

There is an important consideration with regards to linear aggregation. While linear aggregation has been
proposed in studies like Lin et al. (2022), it is unable to produce a non-convex front, which may arise in CO
problems based on mixed integer programs like C-VRPTW (Pappas et al., 2021). One should, thus, consider
the observed objective values and see whether they are in line with the comparison metrics.

The model is trained by repeatedly sampling a preference vector A and a corresponding batch of B instances.
Thereafter, M different solution trajectories are created where each trajectory represents one possible solu-
tion. The average reward over all the M different solution trajectories and B instances is computed, where

Abdo Abouelrous
Highlight

Abdo Abouelrous
Highlight

Under review as submission to TMLR

the reward from one trajectory corresponds to some aggregation of the K objectives such as in (1). The
average reward is, in turn, used to compute the loss function and associated gradient for optimizing the
model’s parameters 6. To estimate the gradient loss, we make use of the REINFORCE training algorithm
of Williams (1992) with the ADAM optimizer. The training algorithm is summarized in Algorithm 1.

Algorithm 1 Training POMO Model from Lin et al. (2022)

1: Input: preference distribution A, instances distribution S, number of Training steps 7', number of
objectives K, batch size B, number of solution trajectories M.
Output: model parameter 6.
fort=1---T do
Sample Ay from A for k € K.
Sample B instances from S
Generate M different solutions using pg(x,)(.|si) for each instance s;.

Define shared baseline reward for instance s; using b; = 37 Zj\il L(wl |\, 51) vi{l,---,B}
Compute gradient Ag = iz 357 | M [(L(r] |, 51) — i) Agn) log oy (7 [5:)]
0 =ADAM(0, Ap)

end for

: return 6.

— =
= O

4.2 Stochastic Component

Algorithm 2 EAS-cluster Training

1: Input: number of search steps T,,, total number of realizations to consider W, clustering threshold e,
batch size during evaluation H, initial preferences A, evaluation frequency t..

2: Output: updated embedding w*

3: Initialization: initial embedding w

4: for the W scenarios do

5: Sample them in batches of H

6: Evaluate the H instances using w and fixed preferences A

7: Cluster the instances according to (3)

8: end for

9: W = Nr. of clusters.

10: W' =w

11: Evaluate w* on the W scenarios with A to determine initial mean aggregate reward L(7*|W,w*)
12: fort=1---T, do

13: Sample new preferences A

14: Update Decoder parameters without updating w

15: Solve deterministic instance using current embedding w* for given .
16: Compute gradient A, using (2).

17: w=ADAM(A,,w)

18: if ¢ is an evaluation epoch (a multiple of t.) then

19: Evaluate w on the W scenarios with \. Let L(7*|W,w) be the resulting mean aggregate reward.

Ensure that w is not updated in the evaluation.;

20: if L(7*|W,w) < L(7*|W,w*) then
21: w*=w
22: L(m*|W,w*) = L(7*|W,w)
23: end if
24: end if
25: end for

26: return w*.

Under review as submission to TMLR

Given that travel times are not encoded with the problem input for POMO, but implicitly represented by
a parametrized embedding w, an EAS is introduced in Schmitt-Ulms et al. (2022) by which the model is
re-trained to adapt to the different possible stochastic realizations of 7. In the retraining phase, only w is
updated. In each step, a gradient A, is computed with M solution trajectories by the following formula:

M
Ay = % Z[(L(wle, 8) = D)Aux) log Py (77]5)] ®

and w is updated by means of gradient ascent. For consistency, we use the ADAM optimizer for the update.
Observe that the gradient computation in (2) is similar to the one in Line 8 in Algorithm 1 - based on the
REINFORCE algorithm. The major differences is that this update concerns only one instance rather than
a batch of B instances, and the only parameters being updated are w. As such, the probability distribution
Pw(n (m]s) is determined by updates in w.

The embedding is updated over a series of T,, steps for instance s with expected travel times E[7] and
then evaluated on W stochastic realizations every t. iterations. t. can be interpreted as the evaluation
frequency. Further, the number W should be sufficiently large to address many possible realizations. Since
this evaluation is expensive, it is only done in a few of the T,, steps. The w value that gives the lowest mean
aggregate objective value over all W scenarios in the evaluation steps is selected as the final embedding.

There is an important consideration regarding the active search described in Schmitt-Ulms et al. (2022). In
the evaluation epoch, the resulting embedding w is evaluated on a large number of realizations W. Many
of these realizations are similar and the resulting objective values as specified by the pretrained POMO
model from Section 4.1, rendering these evaluations somewhat repetitive and unnecessary. Ideally, we are
interested in evaluations that are distinctive in input and resulting objective values. Secondly, because W
is rather large, this constrains the number of evaluations we can carry out during retraining. That said,
a more efficient evaluation method may not only reduce retraining time but also allow us to evaluate the
embedding more frequently with a smaller t., giving us a larger search space that may possibly result in a
larger embedding.

To account for the aforementioned considerations, we propose some adjustments to the EAS. Firstly, we
sample the W possible scenarios. Thereafter, we cluster these methods to get a subset of scenarios that
are sufficiently representative of the spectrum of realizations. To do that, we use the clustering method of
Abouelrous et al. (2022).

We consider the initial embedding w generated by training the entire model in Algorithm 1. We solve, the W
problems in batches of B to speed up their evaluation. For each instance s;, we select the solution trajectory
from the M trajectories with the highest aggregate reward L(7*|s;) = maxjeqi,... sy L(n7|s;) which will
be used to compare with other scenarios. The highest is chosen instead of the mean as it represents the
best solution found. The aggregate reward is calculated with fixed preferences A during clustering, although
the preferences may change later during the active search. Fixing parameter values and assuming perfect
information has been shown to be very beneficial for clustering (Abouelrous et al., 2022). Two scenarios s;
and sy, are clustered together if:

[L(7"[s;) — L(7"|sk)| <€ (3)

with |.| being the absolute operator and e being some threshold. Thus, scenarios s; and s are clustered
together if their objective values with the initial embedding are sufficiently close.

The first scenario automatically forms a cluster. The scenarios are compared to the clusters in order. So,
scenario sy is compared to the scenario representing cluster 1. If it meets (3), they are clustered together.
Otherwise, sj is compared to the scenario in cluster 2 and so forth. If sx is compared with all existing
clusters and not clustered with any, it forms a new cluster. The result of the clustering procedure is a subset
of W < W scenarios. These scenarios are then used in the embedding evaluations which happen every t,
iterations. Since W is much smaller than W, we can opt for a smaller ¢, value and evaluate the embeddings
more frequently and efficiently.

Our active search is summarized in Algorithm 2. An important distinction with the active search proposed
in Schmitt-Ulms et al. (2022) is that preferences X are repeatedly sampled during re-training to ensure that

Under review as submission to TMLR

the uncertainty is incorporated under different sets of preferences determined by the decision-maker. When
new preferences are sampled, the decoder parameters have to be updated, but one should ensure that the
embedding w is not altered as it is being retrained (Line 14). Similarly, during evaluation (Line 20), all
decoder parameters are updated except w. We also fix the preference vector A during evaluation (Line 20)
to ensure a fair evaluation as the model’s performance for different values of A may be uneven.

The returned w* is then saved to solve the problem instance with unknown travel times using a greedy policy
that maximizes the probability of the next visited node. The distribution of nodes to be visited is defined
by the retrained POMO model. We refer to the model trained using Algorithm 2 as EAS-cluster.

4.3 Extension to other DRL Architectures

Our proposed framework is largely based on the POMO architecture common to both the multi-objective
and stochastic component. In that sense, our framework is largely restricted to POMO-based architectures.
However, the architecture is largely considered a pillar in using DRL for solving CO problems (Wang et al.,
2024). Much of the recent literature on multi-objective DRL work mentioned in Section 2 also makes use of
encoder-decoder architecture of Lin et al. (2022) making the framework relevant to many applications.

Extension to other DRL architectures is not straightforward. Assuming another encoder-decoder architecture
where the decoder parameters contain a graph embedding w, the general framework may be still applicable.
Figure 1 offers an important guideline, however, into solving stochastic multi-objective problems. One should
first establish the multi-objective component before proceeding with the stochastic one. The reason being
that the model should first be able to generate multiple diverse solutions for a given problem before being
able to assess these solutions on a set of stochastic scenarios. This is particularly evident in the retraining
mechanism in Section 4.2 whereby preference vectors A are repeatedly sampled during the EAS in Algorithm
2.

5 Numerical Experiments

To evaluate our method, we propose a series of numerical experiments where we solve a bi-objective (K = 2)
C-VRPTW with stochastic travel times. We jointly minimize the objective of total travel times and makespan
(total time consumed by longest route). We compare the performance of our method on unseen instances
relative to alternative methods. For the comparison, we consider the final objective value as well as the total
run time. In the following sections, we elaborate on the set-up of our numerical experiments and analyze
their results.

5.1 Set Up

We consider three instance classes of sizes n € {50,100,200} with B = 20 instances for each n. For all
instance classes, the locations are given in 2-D space where the x-y coordinates are sampled from a square
of length 1. The vehicle capacities are 40, 50 and 70 for the three classes in increasing n. Node demand is
sampled uniformly as integer from the interval [1,9]. Time windows are such that the lower time window
twiew is sampled uniformly as integer from the interval [0,16], the time window width twygs, from the
interval [2,8] and the upper time window equal to min{twjow + tWwidth, tWhorizon } With the twhorizon being
the planning horizon. Naturally, the depot’s time window is [0, tWhorizon), and we set twhorizon to 18. Service
times are sampled uniformly between [0.2,0.5]. Lastly, the mean travel times E[T] are equal to the euclidean
distance, and the travel times follow a normal distribution with standard deviation 0.2 x E[t;;] for arc (3, j).

For each instance size n, we train a different POMO model with 200 epochs and 100,000 episodes, giving a
total of 20,000,000 instances. The instances were sampled from the aforementioned distribution in batches of
64 for n = 50 and 32 for n = 100, 200. Training was conducted on a GPU node with 2 Intel Xeon Platinum
8360Y (Intel (2025)) Processors and a NVIDIA A100 Accelerator (Nvidia (2025)). The training times of the
multi-objective POMO model were 18, 60 and 144 hours for n =50, 100 and 200.

For EAS-cluster, we initially consider a sample of W = 1,000 scenarios in ba:cches of H = 64 from which we
decide on the clusters W. In doing so, we consider initial preferences Ay = Ay = 0.5 to assign all objectives

Under review as submission to TMLR

equal importance when reducing scenarios. Two scenarios are clustered together if their aggregated objective
values A1 f1(7*) 4+ Ao fo(7*) differ by less than e = 1% where 7* is the best solution found by the pre-trained
ML model from Section 4.1 before EAS for the corresponding instance.

For n =50, 100 and 200, EAS-cluster produced 7.3, 6.5 and 5.75 clusters on average across the B = 20
instances. This shows that we can significantly reduce the number of scenarios as many of these correspond
to similar figures of f1(.) and fo(.) for fixed A. Furthermore, the number of clusters deceases as n increases,
likely due to differences in objective values becoming less significant as objective values like travel time
become larger for larger n.

Once the scenarios are clustered, we conduct an active search with T, = 2,500 steps where the embedding
is evaluated every t. = 100 steps. We use three benchmark methods, that test different aspects of our study.
They are as follows:

e NOEAS: the model without active search, which is simply the multi-objective POMO model from
Lin et al. (2022) without any updates to embedding w applied to solve the deterministic instance.
This baseline has been repeatedly shown to outperform other methods such as NSGA-II (Kalyan-
moy, 2002) and MOEA /D Zhang & Li (2007) in solving multi-objective combinatorial optimization
problems, especially in routing, so we focus on comparing with it. We generate 101 values of A\, where
A1 is computed from 100 evenly spaced intervals in the range [0,1] and Ao = 1 — A; to represent the
Pareto Front.

o EAS-basic: with the active search of Schmitt-Ulms et al. (2022) with ¢, = 250. Similarly, we use
the same 100 evenly spaced A realizations as above. Solution inference is done using a greedy policy
defined by the retrained model.

o LGA: the method of Niu et al. (2021). It is a learning-based Genetic Algorithm which makes use
of a decision-tree to learn optimal customer orderings. We adjust this method slightly to allow
for time-window configurations, since it was originally developed for a VRP variant with stochastic
demand only. Adding time-windows increases the frequency of infeasible solutions. We respond to
this by increasing the number of Genetic Algorithm iterations to 2,000 - from the original 200 - and
the number of evaluation scenarios in the population to 50 - from the original 10. LGA required
no pre-training, although a new ML supervised model had to be trained for each instance during
solution generation.

e LGA+noML: An LGA variant where no machine learning component is used. Solution search is
done purely using genetic perturbations (operators).

e LALNS: An adapted version of LGA where the random genetic operators are replaced by an
Adaptive Large Neighborhood Search (ALNS) - similar to Pisinger & Ropke (2007) - which is known
to work well with C-VRPTW. The ALNS is combined with the decision tree classifier from LGA.
We run it for 200 iterations due to the high computational cost of ALNS.

The resulting solutions for each method and preference A are evaluated on R = 500 stochastic realizations
of the travel times. The resulting mean objective value is used for comparison as it represents the expected
objective value at the Pareto Front for the given A. Infeasible realizations are excluded from the evaluation.
Solution Inference was done on the same GPU nodes used for training, (Intel, 2025; Nvidia, 2025). For LGA
variants, no GPU is needed, so an AMD EPYC 9654 (AMD, 2025) CPU node was used. The results of the
baselines compared to our method on the proposed set of instances are given in the following section.

5.2 Results

To compare results, we consider the same hyper-volume technique mentioned in Lin et al. (2022). The hyper-
volume measures the area covered by the Pareto Front from reference point, with larger hyper-volumes
translating to better Pareto Fronts. Let P define the Pareto Front for a certain policy and r* be some

Abdo Abouelrous
Highlight

Under review as submission to TMLR

reference point that is dominated by all solutions in P. Then, the hyper-volume HV (P) of P is given by
the volume of area S that is defined as follows:

S = {r ¢ R¥|3y € P such that y < r < r*} (4)

where y < r indicates that solution y dominates solution r. Given a baseline [and instance b, the associated
hyper-volume is given by HV (P?);. To estimate this volume, we make use of the Python package ‘pymoo’
(Blank, 2026). We are particularly interested in the percentage increase in hyper-volume due to using EAS-
cluster. This percentage is then averaged over all B instances in the test set to give our main performance
measure Z that is given by:

7 =

1 Z [HV(,Pb)EAsfcluster - HV(Pb)l] x 100

HV (PP, ®

o]

B
b=1

For EAS-cluster and EAS-basic the retraining times of the active search are compared. We report the average
ratio tf of EAS-cluster’s active search tEZAS—cluster yelative to the active search of EAS-basic 1245, More

precisely:
tEAS—cluster
av

tf‘“’ = tEAS—basz’c (6)
av

such that values < 1 indicate a smaller run time with EAS-cluster. Furthermore, we report the total run
time for solution inference per instance as t;,r, which represents the total time it would take to generate and
evaluate for a given number of solutions. For EAS-cluster and EAS-basic, this includes the total run time
with the active search and solution generation using POMO’s greedy policy for all A values, while only the
latter is incorporated for NoEAS as it lacks active search. For each of the POMO-based methods, inference
times are consistent among all B instances for fixed n. For LGA and LALNS, this includes the solution
generation and training of the supervised learning model which happens during inference.

We also report the number of solutions @), generated at the Pareto Front by each method. Note that this
number is equal for all POMO-based models (101). Larger @, values indicate a method’s ability to generate
more solutions at the Pareto Front, and possibly, increased diversity. Lastly, we report the average number
of feasible realizations Rf out of the total R = 500 for the solution constructed from the greedy policy for
each n. This is particularly relevant to assess solutions’ practicality as solutions which are feasible for only a
handful scenarios might not be appealing even if they result in better objectives. Table 1 compares the result
of EAS-cluster with the five baselines. Additional statistics on the percentage increase in hyper-volume are
reported in Table 5 in Appendix C.

For EAS-cluster, 7, 12 and 21 minutes per instance were spent on the EAS alone for the given values of
n. For all values of n (-0.02%,-0.28% and -0.51%), EAS-cluster results in a slightly worse Pareto Front
than EAS-basic as given by values of Z close to zeros. This slight deterioration could be due to the bias
imposed by the evaluation on the few scenarios in W. Statistical testing implies that the results are not
significantly different from 0, with p-values of 0.98, 0.75 and 0.34 for sizes 50, 100 and 200 assuming a
t-test with B — 1 = 19 degrees of freedom. To emphasize on the distribution of the value of Z among the
B = 20 instances, we provide Figure 3 in Appendix B. EAS-basic incurs a larger computational during
the active search, consuming more than twice the run time of EAS-cluster for all instances as result of the
larger number of evaluations on scenarios sampled from W. This gives tf,, ratios of 0.44, 0.43 and 0.40 for
the corresponding values of n, despite EAS-cluster incurring more than twice the evaluations of EAS-basic
(25 to 10) during the 2,500 retraining steps. The resulting run times for EAS-basic are 58, 105 and 195
minutes per instance compared to EAS-cluster’s 49, 90 and 164 minutes. Feasibility also slightly improves
with EAS-basic as the number of feasible evaluations Rf is 494 443 and 430 compared to EAS cluster’s 474,
438 and 422 which could be attributed to the aforementioned bias. With these results, we observe that the
reduction in computation time due to EAS-cluster outweighs the small deterioration in the Pareto Front
hyper-volume and scenario feasibility.

The added value of active search, and EAS-cluster specifically, is shown in the significant improvement in
hyper-volume compared to NoEAS, with Z values of 8.14%, 6.34% and 4.73% for the given n. For the sake

10

Abdo Abouelrous
Highlight

Abdo Abouelrous
Highlight

Abdo Abouelrous
Highlight

Abdo Abouelrous
Highlight

Abdo Abouelrous
Highlight

Under review as submission to TMLR

n Metric EAS-cluster | EAS-basic | NoEAS LGA LGA+noML | LALNS
50 Z (avg. ratio) 0 -0.02% 8.14% 368.31% 336.52% 8.36%
tfav (ratio) 1 0.44 —— —— —— ——
tins (mins) 49 58 42 ~ 0.17 ~0.17 ~
Q, (Nr.) 101 101 101 8 8 18
R/ (Nr./500) 474 494 494 426 411 440
100 Z 0 -0.28% 6.34% 636.57% 612.50% 14.52%
tfao 1 0.43 — — —
ting 90 105 78 ~ 0.67 ~ 0.67 ~ 10
Q. 101 101 101 10 11 30
R 438 443 447 380 314 345
200 Z 0 -0.51% 4.73% 970.48% 1041.67% ——
tfaw 1 0.40 —— —— —— ——
ting 164 195 143 ~ 3.25 ~ 3.25 —
Q- 101 101 101 13 14 ——
R/ 422 430 410 257 263 -

Table 1: Results EAS-cluster compared to EAS-basic on 20 different multi-objective C-VRPTW instances
with stochastic travel times 7 for each instance size n.

of clarity, we provide the distribution of the Z values in Figure 4 in Appendix B. We see that Z decreases as
n increases due to the increased difficulty of solving larger problems. The run times of NoEAS only include
the time for Pareto Front construction which is similar for EAS-cluster, giving 42, 78 and 143 minutes.
Solution feasibility is better for n = 50 and 100, with Rf = 494 and 447 scenarios. However, for n = 200,
R/ decreases to 410. This could be possibly due to the more pronounced effect of stochasticity in larger
instances that can not be easily treated by the original embedding w. In fact, R/ decreases as n increases
for all methods as it becomes increasingly difficult for a given solution to meet all the time windows of the
n customers.

We consider standard LGA from Niu et al. (2021). Since the existing implementation we found makes use
of multi-threading, it was difficult to accurately estimate the run time per instance, which we observed to be
less than a minute. However, LGA gives significantly inferior solutions compared to EAS-cluster as given by
Z values of 368.31%, 636.57% and 970.48%. This can largely be attributed to the method’s random genetic
operators which can not easily produce feasible solutions in the case of time-windows. Furthermore, the
simple decision tree is unable to learn information on time-windows from customer orderings, thus struggling
to find quality feasible solutions. A prominent advantage of POMO-based models, on the other hand, is
their ability to learn complex CO problems which can be easily configured in the model’s environment and
adequately processed by the encoder. LGA is also unable to find as many solutions as POMO-based methods
on the Pareto Front with 8, 10 and 13 solutions on average with respect to the 101 of the POMO-based
models. Furthermore, since these solution do not correspond to a specific balance of objectives fi(.), it is
difficult to verify their diversity for different decision-making criteria. In contrast, POMO-based methods
can provide such diversity through A\ parameters to balance the objectives fi(.).

To further investigate the computational difficulty posed by time-windows for LGA, we consider the results
of LGA+noML where the decision tree is omitted and solutions are generated purely by means of a genetic
algorithm’s perturbation operators. The performance is rather similar to standard LGA with hyper-volumes
of 336.52%, 612.50% and 1041.67% for sizes n =50, 100 and 200. The number of feasible runs and solutions
on the Pareto Front is fairly similar, except in the case of 100 where the number of feasible runs decrease to
314. These results stress the need for a heuristic suitable for solving a VRP variant with time-windows like
ALNS.

Finally, we consider LALNS. As expected, the hyper-volume improves significantly compared to the two
LGA baselines, although it still falls short to EAS-cluster. The mean hyper-volume increase is 8.36% and
14.52% for n = 50 and 100. The number of solutions observed at the Pareto Front was 18 and 30 respectively
with 440 and 345 feasible evaluation scenarios. The run-times were also relatively short at 2 and 10 minutes

11

Abdo Abouelrous
Highlight

Abdo Abouelrous
Highlight

Under review as submission to TMLR

approximately. For n = 200, we encountered an out-of-memory error as LGA’s multi-threading mechanism
and the application of ALNS at multiple points at the Pareto Front led to significant computational memory
consumption. While these results indicate an improvement over LGA, LALNS is still inferior to other
POMO-based methods which can treat complex CO problems although at a much higher run-time. Further,
by observing the trend from n = 50 to 100, we expect that the difference in hyper-volume compared to
EAS-cluster is significantly larger for larger instances. This asserts the added value of EAS-cluster in solving
larger problems, which we investigate further in Section A.3.

For a clear comparison of the resulting Pareto Front of all the methods, we refer to Figure 5 in Appendix
B. The figure compares the Pareto Front from EAS-cluster with each of the baselines for one of the test
instances of size 100. The comparison with EAS-basic in Figure 5a shows that the Pareto Fronts are fairly
close, while the comparison with NoEAS in Figure 5b shows a more prominent difference especially when
preferences are more oriented towards minimizing travel-times. Lastly, the comparisons with LGA and
LALNS in Figures 5c and Figure 5d demonstrate the superiority EAS-cluster’s Pareto Front compared to
either baselines. In Appendix A, we provide a series of ablation studies concerning the model’s sampling
policy and generalization to more variable scenarios and larger problem instances.

6 Conclusions

In this paper, we provided an end-to-end method to solve a multi-objective stochastic C-VRPTW. We
specifically considered stochastic travel times and minimized total travel distance and make-span. Our
model is based on a variant of POMO that is first trained on deterministic multi-objective instance and then
retrained through an active search to account for travel time stochasticity. The model could not only be
configured to treat a variety of routing problems through its flexible environment, but also account for more
different objectives. The end-to-end mechanism of the model not only simplifies solution generation, but is
also invariant of other external assumptions on the model environment and the action space.

We provide a training mechanism for the model and enhance it using a clustering algorithm that speeds up
evaluations during active search and run time as a result. Our results show that our model is very close in
performance compared to a baseline employing standard active search from the literature while being faster.
It also significantly outperformed another POMO baseline that disregards stochasticity as well as a common
learning-based method for VRP from the literature, resulting in more dominant Pareto Fronts.

Our model is able to generate as many solutions as desired for any set of preferences and in reasonable
run times. Its greedy policy is also sufficient to generate good results, reducing the need for sampling
policies often associated with POMO-based models. It also generalizes well to other instances with different
distribution than the one encountered during active search. Nonetheless, it often results in less feasible
solutions compared to the considered baselines, possibly due to the bias induced by the clustered sample of
scenarios. Furthermore, there still lacks a common framework that streamlines evaluation for specific cases
like larger scale instance and non-convex Pareto Fronts.

Future research should focus more on synchronizing multi-objective training with active search and the
derivation of superior clustering techniques while streamlining evaluation methods by which the associated
model performance could be accurately judged. Additionally, problems with more objectives are certainly
of interest.

References

Abdo Abouelrous, Adriana F Gabor, and Yinggian Zhang. Optimizing the inventory and fulfillment of an
omnichannel retailer: a stochastic approach with scenario clustering. Computers & Industrial Engineering,
173:108723, 2022.

Fatima Ezzahra Achamrah. Leveraging transfer learning in deep reinforcement learning for solving combi-
natorial optimization problems under uncertainty. IEEFE Access, 2024.

AMD. Server processor specifications, 2025. URL https://www.amd.com/en/products/specifications/
server-processor.html. Accessed: 26-02-2025.

12

https://www.amd.com/en/products/specifications/server-processor.html
https://www.amd.com/en/products/specifications/server-processor.html
Abdo Abouelrous
Highlight

Abdo Abouelrous
Highlight

Abdo Abouelrous
Highlight

Under review as submission to TMLR

Christopher Bayliss. Machine learning based simulation optimisation for urban routing problems. Applied
Soft Computing, 105:107269, 2021.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research, 290(2):405-421, 2021.

Julian Blank. pymoo 0.6.1.6, 2026. URL https://pypi.org/project/pymoo/. Accessed: 05-01-2026.

Jinbiao Chen, Jiahai Wang, Zizhen Zhang, Zhiguang Cao, Te Ye, and Siyuan Chen. Efficient meta neu-
ral heuristic for multi-objective combinatorial optimization. Advances in Neural Information Processing
Systems, 36:56825-56837, 2023.

Jianjun Deng, Junjie Wang, Xiaojun Wang, Yiqiao Cai, and Peizhong Liu. Multi-task multi-objective
evolutionary search based on deep reinforcement learning for multi-objective vehicle routing problems
with time windows. Symmetry, 16(8):1030, 2024.

Nadia Giuffrida, Jenny Fajardo-Calderin, Antonio D Masegosa, Frank Werner, Margarete Steudter, and
Francesco Pilla. Optimization and machine learning applied to last-mile logistics: A review. Sustainability,
14(9):5329, 2022.

Eric J Horvitz. Reasoning about beliefs and actions under computational resource constraints. arXiv preprint
arXiv:1304.2759, 2013.

Zangir Iklassov, Ikboljon Sobirov, Ruben Solozabal, and Martin Taka¢. Reinforcement learning for solving
stochastic vehicle routing problem. In Asian Conference on Machine Learning, pp. 502-517. PMLR, 2024.

Intel. Intel® xeon® platinum 8360y processor, 2025. URL https://www.intel.com/content/www/
us/en/products/sku/212459/intel-xeon-platinum-8360y-processor-54m-cache-2-40-ghz/
specifications.html. Accessed: 26-02-2025.

Ziying Jia, Zeyu Dong, Miao Yin, and Sihong He. How robust reinforcement learning enables courier-
friendly route planning for last-mile delivery? In ICML 2025 Workshop on Programmatic Representations
for Agent Learning, 2025.

Waldy Joe and Hoong Chuin Lau. Deep reinforcement learning approach to solve dynamic vehicle routing
problem with stochastic customers. In Proceedings of the international conference on automated planning
and scheduling, volume 30, pp. 394-402, 2020.

Deb Kalyanmoy. A fast and elitist multi-objective genetic algorithm: Nsga-ii. IEEE Trans. on Evolutionary
Computation, 6(2):182-197, 2002.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv preprint
arXiv:1803.08475, 2018.

James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. End-to-end constrained
optimization learning: A survey. arXiv preprint arXiv:2103.16378, 2021.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min. POMO:
Policy optimization with multiple optima for reinforcement learning. Advances in Neural Information
Processing Systems, 33:21188-21198, 2020.

Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective combinatorial
optimization. arXiv preprint arXiv:2203.15386, 2022.

Xiaobo Liu, Yen-Lin Chen, Lip Yee Por, and Chin Soon Ku. A systematic literature review of vehicle routing
problems with time windows. Sustainability, 15(15):12004, 2023.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for combi-
natorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

13

https://pypi.org/project/pymoo/
https://www.intel.com/content/www/us/en/products/sku/212459/intel-xeon-platinum-8360y-processor-54m-cache-2-40-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/212459/intel-xeon-platinum-8360y-processor-54m-cache-2-40-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/212459/intel-xeon-platinum-8360y-processor-54m-cache-2-40-ghz/specifications.html

Under review as submission to TMLR

Patrick Ngatchou, Anahita Zarei, and A El-Sharkawi. Pareto multi objective optimization. In Proceedings of
the 13th international conference on, intelligent systems application to power systems, pp. 84-91. IEEE,
2005.

Yunyun Niu, Detian Kong, Rong Wen, Zhiguang Cao, and Jianhua Xiao. An improved learnable evolu-
tion model for solving multi-objective vehicle routing problem with stochastic demand. Knowledge-Based
Systems, 230:107378, 2021.

Yunyun Niu, Chang Xu, Shubing Liao, Shuai Zhang, and Jianhua Xiao. Multi-objective location-routing
optimization based on machine learning for green municipal waste management. Waste Management, 181:
157-167, 2024.

Nvidia. NVIDIA A100 tensor core GPU, 2025. URL https://www.nvidia.com/en-us/data-center/a100/.
Accessed: 26-02-2025.

Tosif Pappas, Styliani Avraamidou, Justin Katz, Baris Burnak, Burcu Beykal, Metin Turkay, and Efstratios N
Pistikopoulos. Multiobjective optimization of mixed-integer linear programming problems: a multipara-
metric optimization approach. Industrial & engineering chemistry research, 60(23):8493-8503, 2021.

Yong Peng, Shu Han Gao, Dennis Yu, Yun Peng Xiao, and Yi Juan Luo. Multi-objective optimization
for multimodal transportation routing problem with stochastic transportation time based on data-driven
approaches. RAIRO-Operations Research, 57(4):1745-1765, 2023.

David Pisinger and Stefan Ropke. A general heuristic for vehicle routing problems. Computers € operations
research, 34(8):2403-2435, 2007.

Ankur Sarker, Haiying Shen, and Kamran Kowsari. A data-driven reinforcement learning based multi-
objective route recommendation system. In 2020 IEEE 17th international conference on mobile ad hoc
and sensor systems (mass), pp. 103-111. IEEE, 2020.

Fynn Schmitt-Ulms, André Hottung, Meinolf Sellmann, and Kevin Tierney. Learning to solve a stochas-
tic orienteering problem with time windows. In International Conference on Learning and Intelligent
Optimization, pp. 108-122. Springer, 2022.

Jiwoo Son, Minsu Kim, Sanghyeok Choi, Hyeonah Kim, and Jinkyoo Park. Equity-transformer: Solving
np-hard min-max routing problems as sequential generation with equity context. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pp. 20265-20273, 2024.

Bentz Tozer, Thomas Mazzuchi, and Shahram Sarkani. Many-objective stochastic path finding using rein-
forcement learning. Expert Systems with Applications, 72:371-382, 2017.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Thibaut Vidal, Gilbert Laporte, and Piotr Matl. A concise guide to existing and emerging vehicle routing
problem variants. European Journal of Operational Research, 286(2):401-416, 2020.

Feng Wang, Qi He, and Shicheng Li. Solving combinatorial optimization problems with deep neural network:
A survey. Tsinghua Science and Technology, 29(5):1266-1282, 2024.

Zhenkun Wang, Shunyu Yao, Genghui Li, and Qingfu Zhang. Multiobjective combinatorial optimization
using a single deep reinforcement learning model. IEEFE transactions on cybernetics, 54(3):1984-1996,
2023.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8:229-256, 1992.

Rixin Wu, Ran Wang, Jie Hao, Qiang Wu, Ping Wang, and Dusit Niyato. Multiobjective vehicle routing
optimization with time windows: A hybrid approach using deep reinforcement learning and nsga-ii. IEEE
Transactions on Intelligent Transportation Systems, 2024.

14

https://www.nvidia.com/en-us/data-center/a100/

Under review as submission to TMLR

Yuan Yao, Zhe Peng, Bin Xiao, and Jichang Guan. An efficient learning-based approach to multi-objective
route planning in a smart city. In 2017 IEEE International Conference on Communications (ICC), pp.
1-6. IEEE, 2017.

Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based on decomposition. IEEFE
Transactions on evolutionary computation, 11(6):712-731, 2007.

Tie Zhang, Jia Cheng, and Yanbiao Zou. Multimodal transportation routing optimization based on multi-
objective g-learning under time uncertainty. Complex & Intelligent Systems, 10(2):3133-3152, 2024.

Zizhen Zhang, Hong Liu, MengChu Zhou, and Jiahai Wang. Solving dynamic traveling salesman problems
with deep reinforcement learning. IFEE Transactions on Neural Networks and Learning Systems, 34(4):
2119-2132, 2021.

Chenhao Zhou, Jingxin Ma, Louis Douge, Ek Peng Chew, and Loo Hay Lee. Reinforcement learning-
based approach for dynamic vehicle routing problem with stochastic demand. Computers & Industrial
Engineering, 182:109443, 2023.

15

Under review as submission to TMLR

n Metric EAS-cluster (Monte Carlo Simulation) | EAS-cluster (Greedy)

50 Z (avg. ratio) 0 0.33%
tins (mins) 17 49
Q» (Nt.) 11 101
R (Nr./500) 489 474

100 Z 0 -1.26%
tiny 37 90
0. 11 101
RS 470 438

Table 2: Results of EAS-cluster with Monte Carlo Simulation compared to greedy policy for each instance
size n.

A Ablation Studies

To study the ability of our method to deliver improved results and generalize to settings with different
distributions, we propose two sets of experiments. In the first set of experiments, we combine our method
with Monte Carlo Simulation. This is in line with the recommendations in Schmitt-Ulms et al. (2022) who
state that Monte Carlo Simulation may improve over a greedy policy. In the second set of experiments, we
apply our method to solve a series of instances from a different distribution with more variable travel times.

A.1 Monte Carlo Simulation

With the final embedding w*, Schmitt-Ulms et al. (2022) use Monte Carlo simulation to evaluate the different
actions at every step of the solution generation, i.e. node visit. More precisely, at each step, the top 5
recommended actions are evaluated by applying them in the succeeding step and completing each of the
5 solution trajectories using the trained model’s policy. For each step, the process is repeated for a fixed
number of runs ms, and the average is taken to determine the best action in the next step.

We make use of the same Monte Carlo simulation technique. There are some adjustments, however, we
ought to incorporate in the application of the Monte Carlo Simulation for VRP. Firstly, Schmitt-Ulms et al.
(2022) consider a large number of simulation runs ms, - going up to 100s - for each problem instance. This
results in long running times per solution as demonstrated by their numerical experiments with instances of
size 200 going up to 48 minutes. Since we repeatedly have to apply this procedure for several realizations of
A as each realization of A invokes a different solution, we consider a smaller value ms, = 10 so that the total
run time per instance falls within the same order of magnitude of around 1 hour. Furthermore, we limit the
number of sampled \ values to 11 instead of 101.

Unlike the orienteering problem in Schmitt-Ulms et al. (2022), it is not possible to realize the stochastic travel
times after taking a step since repeated visits to the depot in VRP would then imply that we can travel back
in time. As such, the travel time realization we make after taking a decision concerns the expected value of
the travel time, while stochasticity is incorporated in future decisions by the Monte Carlo runs. To impose
feasibility constraints we require that the decisions considered at each step are feasible for at least half of the
ms, = 10 runs, otherwise they are discarded. We require that solutions are only feasible 50% of the time.
Similar to the greedy policy, we evaluate the resulting solution on a sample of R = 500 realizations and use
the average to estimate the objective values for given A at the Pareto Front.

We compare the performance of the Monte Carlo approach to the greedy policy of EAS-cluster from Section
5.2 in Table 2. Additional statistics on the percentage increase in hyper-volume are reported in Table 6 in
Appendix C. Due to the expensive evaluation, we only consider n =50 and 100. The reported ¢;,,; times also
include the run times for active search which is identical for both methods as they used the same embedding.

The results generally imply that Monte Carlo simulation is of limited added value to multi-objective op-
timization. While a marginal improvement of 0.33% is observed for n = 50, a deterioration of 1.26% is
observed for n = 100 compared to using the greedy policy. The average run time per instance as given by

16

Under review as submission to TMLR

n Metric EAS-cluster (Greedy) | NoEAS
50 Z (avg. ratio) 0 8.39%
RY (Nr./500) 448 480

100 Z 0 6.56%
R/ 391 413

200 Z 0 4.35%
R/ 334 340

Table 3: Results of EAS-cluster with greedy policy compared to NoEAS and more variable travel times for
each instance size n.

tins is slightly less than a third of the greedy policy’s run time, with Monte Carlo simulation requiring on
average 17 and 37 minutes per instance for n = 50 and 100. Yet, the number of solutions on the Pareto
Front generated from the greedy policy is 10 times as much.

Nonetheless, the Monte Carlo simulation slightly improves the number of feasible realizations from 474 to 489
and from 438 to 470 for n =50 and 100. This could be attributed to the repetitive evaluations in the Monte
Carlo runs that require that a node visit be feasible for at least half the ms, = 10 for it to be considered in
the solution. As a result, a stronger feasibility requirement is imposed compared to the greedy policy and
more scenarios are satisfied by the resulting solution. For cases where feasibility is crucial, one might still
resort to using Monte Carlo Simulation rather than a greedy policy.

A.2 Travel Time Distribution

In this section, we study the performance of our retrained model EAS-cluster on a dataset with a different
travel time distribution. We refrain from conducting an active search and simply run the greedy policy on
the new dataset to test model generalization. For the new dataset, we consider standard deviation E[t;;]x 0.4
which is twice as variable as the travel times considered in Section 5.2.

As a benchmark, we consider NoEAS again. The rationale being that if the difference of Z is still positive,
then the model with updated embedding w* generalizes well to a reasonable extent beyond a model where
no retraining is involved. We consider the greedy policy with @, = 101 solutions again. Since solution
inference times t;,; and number of Pareto Front points @), are identical, we only report Z and R’ in Table
3. Additional statistics on the percentage increase in hyper-volume are reported in Table 7 in Appendix C.

The results are largely in line with those in Section 5.2. EAS-cluster improves the hyper-volume by 8.39%,
6.56% and 4.35% on average for n = 50, 100 and 200. While the performance of EAS-cluster may deteriorate
slightly in a more variable dataset, it still outperforms NoEAS whose embedding w, is significantly ‘out-of-
tune’ with the more variable travel times 7. NoEAS, however, provides more feasible solutions, giving
R/ = 480, 413 and 340 solutions compared to EAS-cluster’s 448, 391 and 334 for given n. This could
be explained by the increased bias of cluster evaluations in a different dataset, although the difference in
R' values decreases with larger n due to the increased difficulty of solving larger instances as explained in
Section 5.2.

A.3 Larger-Scale Instances

In this section, we test the generalization of our method to larger instance classes than the ones upon which
the model was trained. In particular, we consider instances of size n =400 and 600 with vehicle capacities
100 and 120. We consider the original standard deviation of E[t;;] x 0.2 . For these experiments, we use
the POMO model trained on instances of size n =200. Due to the associated computational burden, we
consider B = 10 instances for each size with 21 A values. This poses certain evaluation challenges as there is
not a sufficient number of solutions on P to give a relatively accurate estimation of the hyper-volume using
(5) (Lin et al., 2022), in contrast to the previous experiments with 101 solutions. Indeed, we saw that our
method ended up scoring worse hyper-volumes despite consistently generating better objective values for
almost all values of A.

17

Abdo Abouelrous
Highlight

Under review as submission to TMLR

In response, we concluded that an alternative evaluation measures ought to be used which we take to be the
average percentage decrease in mean euclidean distance Z.,,. between each point on P and the reference point
r*. We saw that this measures correlated positively with the definition of Z as per (5) and could accordingly
be used for this evaluation. Intuitively, it represent the average improvement offered by solutions in P over
reference point r*. In line with Section A.2, we compare with NoEAS and report the Z.,. and Rf metrics
in Table 4.

The results demonstrate the consistent added value of EAS-cluster with respect to NoEAS even for larger
instances where Z.,. increased by 15.28% and 18.16% for n = 400 and 600. The number of feasible realiza-
tions deteriorated significantly for both methods to less than 300 and 200 for both instance sizes. This is
because it becomes more difficult to find a solution that satisfies all time windows as the number of customer
grows with highly variable travel times. Nonetheless, our method still yields significant improvements in the
objectives for the considered instances. To assert this, we consider Figure 6 in B. We see that the distribution
of Z.,. among the different instances of size 600 in 6a is always above 10%. Furthermore, the distribution
of Euclidean distances between points in P and r* for both EAS-cluster and NoEAS is given in 6b and 6¢
for one of the instances of size 600, such that the former is skewed towards larger values indicating larger
improvements over r* by the corresponding solutions in P.

n Metric EAS-cluster (Greedy) | NoEAS

400 Zeye (avg. ratio) 0 15.28%
R (Nr./500) 288 295

600 Zeye 0 18.16%
RS 110 188

Table 4: Results of EAS-cluster with greedy policy compared to NoEAS for larger instances.

18

Under review as submission to TMLR

B Figures

Frequency

-2 [} 2 4
Hypervolume Difference (%)

(a) n="50

w
!
Frequency

Frequency

24

N

=2 0 2
Hypervolume Difference (%) Hypervolume Difference (%)

-4 -2 0 2 4 6

(b) n =100 (c) n =200

Figure 3: Histogram of Z values of EAS-cluster against EAS-basic.

19

Under review as submission to TMLR

Frequency

5 10 15
Hypervolume Difference (%)

Frequency
Frequency

4 6 8
Hypervolume Difference (%)

6 8 10 12
Hypervolume Difference (%)

(b) n =100 (c) n =200

Figure 4: Histogram of Z values of EAS-cluster against NoEAS

20

Under review as submission to TMLR

’ ® EAS-Cluster
0.935 e EAS-basic
e
0.930 4
0.925 4
0.920 =
] -2
@
S
L 0.915 4
<
0.910
0.905
0.900 P e
e ° Q9 o o, °
0895 1 T T T T T T T T
0950 0975 1000 1025 1050 1075 1100 1125
Travel Time
(a) EAS-cluster vs. EAS-basic
® FEAS-Cluster °
098 ® LGA
0.96 4 -
=
a
& 0944 .
% ®
=
092+ g
[
0.90 1
L)

T T T T T
1.0 15 2.0 2.5 3.0
Travel Time

(c) EAS-cluster vs. LGA

Figure 5: Plots comparing the Pareto Front generated by EAS-cluster against other methods for one of the

instances of size 100.

21

0.96

0.95 4

o
©
B

Makespan
o
0
w
L

)
o
I

|

0.91 1

0.90

- ® EAS-Cluster
@ NoEAS

L4 e o :' apmg ® °

T
0.95

T T T T
1.00 1.05 110 115
Travel Time

(b) EAS-cluster vs. No EAS

0.935 -
0.930 -
0.925 -
0920 g

s

0.915 A

Makespan

0.910 A

0.905 A

0.300 A

0.895 A

® EAS-Cluster
@ LALNS

15 2.0 2.5
Travel Time

(d) EAS-cluster vs. LALNS

Abdo Abouelrous
Highlight

Under review as submission to TMLR

Frequency
L8]
)

[
L

16 18 20 22
Euclidean Distance Difference (%)

(a) Distribution of mean euclidean distance Ze,. among
the different B = 10 instances of size 600.

14 13
13 12
12 4 11
11 4 10 1
10 A 9
94
z g]
c 84 =
3] @ 74
=1 =1
g 7 Z 64
[=
54
54
44 A
34 31
24 2
1 11
0- 0-
14 1e 1.8 2.0 2.2 2.4 2.6 0.5 1.0 15 2.0 2.5
Euclidean Distances Euclidean Distances

(b) Distribution of euclidean distances for points on P (c¢) Distribution of euclidean distances for points on P
relative to r* for a given instance of size 600 with EAS- relative to r* for a given instance of size 600 with EAS-
cluster. cluster.

Figure 6: Histograms of Euclidean distances of Pareto Front from EAS-cluster compared to NoEAS.

C Hyper-volume Additional Statistics

In this section, we report additional statistics on the percentage increase in hyper-volume for our experiments.
Our statistics concern the quantity:

[HV(Pb)EAS—cluster - HV(Pb)l] x 100

HV (PP, @

for which the mean across all B instances represents the metric Z used in Section 5.2. In addition to the
mean, we report the standard deviation, the min and max values in the following Tables. Table 5 concerns
results in Table 1, Table 6 concerns results in Table 2 and Table 7 concerns results in Table 3.

22

Abdo Abouelrous
Highlight

Under review as submission to TMLR

n Metric | EAS-basic | NoEAS LGA LGA+noML | LALNS
50 St Dev 3.72% 6.4% 112.82% 65.11% 8.28%
Max 7.54% 25.23% 574.86% 466.55% 33.43%
Min -6.98% -3.94% 178.75% 221.02% -0.08%
100 St Dev 3.97 % 4.63 % 206.67% 147.31% 6.13%
Max 10.16 % 15.8 % | 1251.36 % 938.33% 27.53%
Min -5.63 % 0.57 % 348.12 % 389.11% 4.10%
200 St Dev 2.37 % 3.34 % 171.33 % 241.78% ——
Max 5.44 % 11.15 % | 1372.69 % 1643.61% ——
Min -5.0 % -0.6 % 676.73% 697.78% ——

Table 5: Statistics on percentage increase in hyper-volume of EAS-cluster relative to baseline for the exper-

iments reported in Table 1

n Metric

EAS-cluster (Greedy)

50 St Dev 2.4 %
Max 6.86 %
Min -3.87T %

100 St Dev 1.95 %
Max 3.47 %
Min -5.73 %

Table 6: Statistics on percentage increase in hyper-volume of EAS-cluster with Monte Carlo Simulation
relative to Greedy policy for the experiments reported in Table 2

n Metric | No-EAS
50 St Dev 6.57 %
Max 25.7 %
Min 2711 %
100 St Dev 4.73 %
Max 16.66 %
Min 0.3 %
200 St Dev 3.53 %
Max 10.99 %
Min -0.87 %

Table 7: Statistics on percentage increase in hyper-volume of EAS-cluster relative to NoEAS for the experi-
ments reported in Table 3 with more variable travel times.

23

Abdo Abouelrous
Highlight

	Introduction
	Previous Work
	Problem Description
	Methodology
	Multi-Objective Component
	Stochastic Component
	Extension to other DRL Architectures

	Numerical Experiments
	Set Up
	Results

	Conclusions
	Ablation Studies
	Monte Carlo Simulation
	Travel Time Distribution
	Larger-Scale Instances

	Figures
	Hyper-volume Additional Statistics

