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ABSTRACT

The human brain excels at lifelong learning by not only encoding information in
sparse activation codes, but also leveraging rich semantic structures and relation-
ships between newly encountered and previously learned objects. This ability to
utilize semantic similarities is crucial for efficient learning and knowledge consol-
idation, yet it is often underutilized in current continual learning approaches. To
bridge this gap, we propose Semantic-Aware Representation Learning (SARL),
which employs sparse activations and a principled approach to evaluate similar-
ities between objects encountered across different tasks and subsequently uses
them to guide representation learning. Using these relationships, SARL enhances
the reusability of features and reduces interference between tasks. This approach
empowers the model to adapt to new information while maintaining stability, sig-
nificantly improving performance in complex incremental learning scenarios. Our
analysis demonstrates that SARL achieves a superior balance between plasticity
and stability by harnessing the underlying semantic structure. 1

1 INTRODUCTION

Deep neural networks (DNNs) have been designed for static in-distribution batch learning, whereby
the model assumes that each batch of training data is representative of the underlying joint distri-
bution. However, this assumption fails when processing sequential data in continual learning (CL)
scenarios where information is made available incrementally over time, and hence the training batch
at a given point only contains samples from the current task. The inadequacy of standard train-
ing to handle such dynamic data distributions often results in catastrophic forgetting (McCloskey
& Cohen, 1989), erasing previously acquired knowledge as the model learns the new data. To ad-
dress these challenges, CL methods aim to retain previous knowledge while learning new tasks,
enabling models to accumulate knowledge across tasks (Parisi et al., 2019). The key challenge in
CL is maintaining an optimal balance between stability and plasticity (Mermillod et al., 2013): the
model needs enough plasticity to quickly adapt to new tasks, but also enough stability to preserve
previously acquired knowledge. Existing approaches often trade off between high plasticity (quick
adaptation) and high stability (knowledge retention), without effectively balancing the two. This
trade-off highlights the difficulty in consolidating knowledge efficiently while learning sequentially.

Many CL approaches tend to emphasize either stability or plasticity, often overlooking the complex
relationship between these two essential components. Stability-focused methods aim to preserve
important weights to maintain previously acquired knowledge (Zenke et al., 2017; Li et al., 2023),
while plasticity-oriented approaches allow significant representation changes to adapt flexibly to new
tasks (Caccia et al., 2022; Liang & Li, 2023). This dichotomy often treats stability and plasticity as
separate objectives rather than interconnected factors in knowledge consolidation. We hypothesize
that leveraging semantic relationships between objects can bridge this gap by enhancing knowledge
transfer and integrating new information with existing knowledge. By exploiting these semantic
structures, a CL model can reuse and consolidate overlapping concepts, enabling it to learn new
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objects without severely disrupting previously learned representations. This approach mirrors the
human cognitive ability to form associations between related concepts, facilitating retrieval, transfer,
and consolidation of knowledge across tasks (Binder & Desai, 2011; Saxena et al., 2022).

The human brain exemplifies the power of semantic relationships in organizing and retaining knowl-
edge. By forming associations between related concepts, the brain facilitates the retrieval, transfer,
and consolidation of information. When encountering a new object similar to a previously learned
one, the brain retrieves relevant information using semantic relationships (Saxena et al., 2022), aid-
ing the learning of new objects and linking new information to existing knowledge. Furthermore,
semantic relationships support knowledge consolidation and retention by reusing common concepts
and adapting them in a cohesive manner. Moreover, semantic relationships play an important role
in organizing memory (Artuso et al., 2022), necessitating that information be encoded in a way that
captures these relationships. The brain employs sparse coding (Foldiak, 2003), where information is
represented by the strong activation of a small subset of neurons. Notably, objects sharing concepts
likely activate overlapping sets of neurons, efficiently encoding semantic relationships. We hypoth-
esize that emulating these mechanisms can enable DNNs to better balance stability and plasticity by
leveraging the rich semantic structure between objects.

To this end, Semantic-Aware Representation Learning (SARL) emulates sparse coding in the brain
and employs a principled approach to capture the semantic relationships between objects and to
use them to guide representation learning. SARL leverages activation sparsity to emulate sparse
coding and represents each object through semantically rich object prototypes (Snell et al., 2017)
derived from the mean sparse activations of the object samples. These prototypes effectively capture
the semantic structure of object relationships, allowing the model to reuse and consolidate knowl-
edge efficiently. By capturing the inherent similarities between objects, SARL leverages semantic
relationships to guide the alignment of new object prototypes with those of similar classes from pre-
viously learned tasks, while promoting separation from dissimilar ones. This alignment encourages
a structured representation of knowledge, facilitating knowledge transfer across tasks and reducing
interference. Furthermore, SARL incorporates prototype regularization to ensure model stability,
mitigating the risk of forgetting previously learned information, and fostering effective consolida-
tion of knowledge in a cohesive manner. This mechanism enables the preservation of valuable
representations while adapting to new tasks, ultimately enhancing the model’s overall learning ca-
pabilities.

Our empirical analysis on challenging class-incremental learning scenarios across various datasets
demonstrates that SARL significantly enhances lifelong learning performance by leveraging seman-
tic structure for representation learning. By effectively aligning representations based on semantic
relationships, SARL facilitates efficient knowledge transfer and consolidation, enabling the model
to adapt seamlessly to new tasks while retaining previously acquired knowledge. These capabilities
are further supported by our analysis, which reveals that SARL achieves a better balance between
model stability and plasticity, mitigates forgetting, and reduces task recency bias.

2 RELATED WORK

Approaches to addressing catastrophic forgetting in CL can be broadly categorized into three groups.
Regularization-based methods penalize changes in the model either in parameter space (Farajtabar
et al., 2020; Ritter et al., 2018) or functional space (Benjamin et al., 2019; Li & Hoiem, 2017).
These methods primarily focus on stability and generally fail in class-incremental learning settings
where task information is unavailable. Dynamic architecture approaches (Rusu et al., 2016), expand
the network to allocate distinct parameters for each task. While reducing forgetting, these methods
lead to model size scaling linearly with the number of tasks and often require task identity at test
time, limiting their applicability. Rehearsal-based approaches draw inspiration from the brain’s
experience replay for knowledge consolidation (Ólafsdóttir et al., 2018). They store a subset of data
samples from previous tasks in a memory buffer, which are interleaved with new tasks samples to
approximate the joint distribution. Rehearsal-based approaches have proven to be more general and
effective for various continual learning scenarios (Farquhar & Gal, 2018).

The baseline Experience Replay (ER) (Riemer et al., 2018) interleaves the training of new task sam-
ples with previous task samples in memory. Several approaches have since been proposed to pro-
vide additional learning cues to the model from its previous state. Dark Experience Replay (DER++)
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Figure 1: SARL employs activation sparsity to emulate brain-like sparse coding, representing each
object with a class prototype derived from the mean representations of object samples. The seman-
tic relationships are utilized to encourage new object prototypes to align with the class prototypes
of similar objects and diverge from dissimilar ones. Additionally, SARL ensures model stability
through prototype regularization, mitigating forgetting and enabling effective consolidation of in-
formation in lifelong learning. Darker shades represent higher values.

(Buzzega et al., 2020) additionally stores the output logits and applies a consistency loss to the mem-
ory samples. ER-ACE (Caccia et al., 2022) uses an asymmetric cross-entropy loss, considering only
new task logits, on the incoming samples to reduce representation drift. Gradient Coreset Replay
(GCR)(Tiwari et al., 2022) selects and maintains a core-set based on gradient approximation.

Recently, there has been a shift towards multi-memory-based CL approaches, inspired by the com-
plementary learning systems theory in the brain (McClelland et al., 1995). CLS-ER (Arani et al.,
2022) simulates the interaction between fast and slow learning by using two semantic memories that
aggregate model weights at different rates with an exponential moving average. CO2L (Cha et al.,
2021) initially learns representations with a modified SupCon loss and subsequently trains a classi-
fier using samples from the last task and buffer data. Deep Retrieval and Imagination (DRI)(Wang
et al., 2022a) leverages an embedding network and generative model to retrieve and generate imag-
inary data. SCoMMER (Sarfraz et al., 2023) enforces sparse coding for efficient representation
learning and uses multiple memories, using the previous state of the model to reduce similarity drift.
While these multi-memory approaches effectively reduce forgetting, they incur additional compu-
tational and memory costs, which can be prohibitive in some real-world settings. Therefore, we
believe that it is crucial to improve CL performance in a single-model setting, which can later be
extended to a dual-memory framework. Please see extended related work in Appendix G.

3 METHODOLOGY

We begin with an overview of the biological mechanisms that inspire our approach, followed by
details on how we mimic these mechanisms in DNNs and an outline of our overall formulation.

3.1 BIOLOGICAL MOTIVATION

The human brain excels at adapting to dynamic environments by transferring knowledge from previ-
ously learned concepts to new ones, mitigating interference, and efficiently consolidating informa-
tion. A critical component of this lifelong learning ability is the brain’s capacity to exploit seman-
tic relationships between objects, which guides both information encoding and memory formation
(Binder & Desai, 2011). By establishing associations between related concepts, the brain orga-
nizes information into semantic networks in which interconnected concepts share common features,
enabling efficient retrieval, transfer, and consolidation of knowledge (Saxena et al., 2022). When
encountering a new objects, the brain rapidly integrates them into these networks, leveraging previ-
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Figure 2: Similarity matrices were computed using object representations from the model trained on
the joint CIFAR-10 dataset, with dense and sparse activations, respectively.

ously acquired knowledge to facilitate learning and reduce relearning efforts. This process is further
supported by the brain’s use of sparse coding (Foldiak, 2003), where only a small subset of neurons
is activated. Objects with conceptual similarities activate overlapping neuron sets, hence efficiently
encoding semantic relationships which can be leveraged for retrieval and learning.

Inspired by these cognitive mechanisms, we propose that incorporating sparsely activated neurons,
which allow for the extraction of semantic structures, and leveraging these relationships for learning
in DNNs, can significantly enhance their lifelong learning capabilities.

3.2 SEMANTIC-AWARE REPRESENTATION LEARNING

Building on these cognitive insights, we introduce Semantic-Aware Representation Learning
(SARL), which adopts a principled approach to extract the semantic relationships between objects
encountered across sequential tasks and subsequently utilizes them to guide representation learning
in a cohesive manner. SARL draws inspiration from the brain’s sparse coding approach and employs
activation sparsity to facilitate semantic information encoding in representations. Each object is rep-
resented by an object prototype, capturing the average features of its instances, which are saved in
memory at the end of each task. By evaluating the similarity between these stored prototypes and the
average features of new objects, SARL identifies sets of positive (similar) and negative (dissimilar)
objects from both previous and current tasks. Leveraging these relationships, SARL applies a novel
semantic-aware metric learning approach, guiding the model to bring representations of new objects
closer to similar prototypes while distancing them from dissimilar ones. This mechanism enables the
model to reuse knowledge from similar objects, enhancing learning efficiency and reducing interfer-
ence. To further promote stability, SARL implements prototype-based regularization, encouraging
the activations of previously learned objects to remain consistent with their established prototypes
and thus preventing drift over time. By integrating new information in a structured manner, SARL
fosters effective knowledge consolidation and maintains a balance between plasticity and stability
in lifelong learning. The following sections introduce the different components of SARL.

3.3 SPARSE CODING

To mimic sparse coding in the brain, we employ activation sparsity using k-winners-take-all (k-
WTA) (Maass, 2000), where only the K most active neurons in each layer are allowed to propagate
to the next layer. For convolutional layers, we apply k-WTA locally across the channels at each
spatial location rather than globally across the entire input and all channels. This localized approach
ensures that the most relevant features are selected at each position, promoting specialization of
filters. As a result, the network can focus on distinct patterns at different spatial locations, leading
to more efficient feature extraction, better semantic encoding, and reduced interference in lifelong
learning scenarios.
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3.3.1 OBJECT PROTOTYPES

Building on the sparse coding mechanism through k-WTA, we extend this principle to our formula-
tion of object prototypes. These prototypes are central to capturing and incorporating the intrinsic
similarities between objects to guide representation learning. By capturing shared concepts through
overlapping sparse activations, k-WTA offers an efficient and intuitive method to encode such re-
lationships. Each object is represented by its object prototype, defined as the mean of all instance
representations, a strategy commonly employed in metric learning (Kaya & Bilge, 2019). Specif-
ically, we utilize the ℓ2-normalized activations of the penultimate layer as object representations,
with the prototype for each class c computed as:

Oc =
1

Nc

∑
i

I(yi = c)a′i (1)

where a′i represents the normalized activation of sample xi with label yi, and Nc is the number
of instances in class c. This provides an efficient means of forming object prototypes that guide
subsequent learning. At the end of each task, we calculate and store the object prototypes of all the
new object categories. Hence, while learning task t, we have access to the object prototypes for all
the object categories learned until task t− 1.

3.3.2 SEMANTIC-AWARE METRIC LEARNING

Having developed an efficient method for representing objects using prototypes that capture the
essence of each category, we can now evaluate the similarity between objects across tasks. We use
cosine similarity, which measures the cosine of the angle between two class prototypes, providing
a scale-invariant measure independent of magnitude. This approach is particularly advantageous
when comparing object prototypes, as it focuses on directional alignment between vectors rather
than their magnitudes, effectively capturing semantic similarity in high-dimensional spaces. The
similarity between the object categories i and j, and the corresponding object prototypes Oi and Oj

is given by:

sim(Oi,Oj) =
Oi · Oj

∥Oi∥ · ∥Oj∥
(2)

This provides us with an efficient approach to evaluating the similarity between object categories
encountered across different tasks, which is subsequently used to inform learning. Figure 2 shows
that the proposed approach can capture semantic similarities, and sparse activations further enhance
the model’s ability to distinguish between similar and dissimilar objects. Section E in Appendix
shows that sparse activations enhances the capacity of the model to capture semantic similarities
between objects within animal and vehicle clusters as well as between the two clusters.

Specifically, for each new object category introduced in task t, we calculate intermediate object pro-
totypes O using Equation 1, and evaluate the similarity between each new object and other objects
in the combined set of both newly introduced and previously learned object categories. We employ
a warm-up stage for each new task to allow the model to learn meaningful representations before
computing the intermediate object prototypes. For each new object category c, we use the degree of
similarity between object prototypes to identify a set of similar object categories Sc:

Sc={i | Oi ≥ τs ∧ i ̸= c ∀i ∈ C0:t} (3)

where τs is the similarity threshold ranging from 0 to 1, and C0:t represents the set of all object
categories observed up to task t.

We employ our semantic-aware metric learning loss in subsequent epochs following the warm-up
stage. For each new object category c, we encourage the mean ℓ2-normalized representations of its
object instances in the batch, denoted as oc, to be closer to the object prototypes of objects in the
set Sc—indicating similarity. Simultaneously, they are pushed to be distant from dissimilar objects.
Formally, the loss is given by:

LSM=
∑

c∈ Ct

∑
i∈ Sc ∥Oi − oc∥2∑
i/∈ Sc ∥Oi − oc∥2

(4)
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where Ct is the set of new object categories at task t. The semantic-aware metric learning loss en-
ables the model to leverage similarities between objects and acquire semantic-aware representations.
This, in turn, facilitates effective knowledge sharing and reusing while mitigating interference. Such
enhancements augment the model’s capacity to consolidate knowledge more cohesively.

3.3.3 REGULARIZATION ON OBJECT PROTOTYPES

To enhance stability and preserve the semantic structure within the acquired representations, we
introduce a regularization loss on the object prototypes. This regularization is applied to buffer
samples, penalizing the divergence of mean representations of buffered samples in the batch from
their originally learned object prototypes. Formally, in each training batch, we sample from the
memory buffer, Mb, calculate the ℓ2-normalized mean representations for each object category, ob

c,
and minimize the mean squared error between ob

c and their corresponding object prototypes, Oc,
stored in the prototype memory, Mo:

LOP =
∑

c∈ C0:t−1

∥ob
c −Oc∥2 (5)

where C0:t−1 is the set of previously learned object categories. By imposing this regularization,
we encourage the model to maintain the semantic integrity of learned object categories across tasks,
minimizing deviations in the representations of buffered samples from their learned prototypes. This
not only fosters stability in the model’s knowledge but also mitigates the risk of forgetting important
semantic relationships established in earlier learning phases.

3.3.4 FUNCTIONAL REGULARIZATION

Functional regularization plays a crucial role in helping models retain previous knowledge and ef-
fectively consolidate new information by directly regulating changes in the model’s input-output
behavior rather than just its parameters. When applied to new data, it encourages the model to adapt
while remaining within the functional vicinity of its previous state, thereby facilitating the smooth
integration of new information. On old data, functional regularization helps maintain consistency
with prior learned functions, minimizing forgetting by directly aligning the current model’s outputs
with those from earlier tasks. This approach stabilizes the learning process and allows the model to
evolve while preserving essential knowledge.

Specifically, before training on a new task, we pass its samples through the model and save the output
logits, denoted as zt, in memory. This allows us to enforce functional consistency during training on
the new task without the need to maintain the previous model state in memory. To further promote
consistency in model behavior and maintain semantic relationships, we also save the output logits
along with the data samples in a memory buffer. During the replay of these samples, similar to
Buzzega et al. (2020), we apply a consistency regularization loss on the model’s output. At each
training step with new task samples xt and yt, along with their precomputed output logits zt from
previous model state, we sample xb,yb, and zb from the memory buffer and apply the following
functional consistency loss:

LFR=α∥F (xb : θ)− zb∥2 + β|F (xt : θ)− zt∥2 (6)

where F (.) is the model’s output parameterized by weights θ. α and β control the strength of
functional consistency on buffer samples and new task samples, respectively. This combination of
regularization on object prototypes and regularization of consistency improves the stability of the
model and preserves the semantic structure learned in previous tasks.

3.4 OVERALL FORMULATION

SARL involves training a model f(.; θ) on a non static data stream, D containing a sequence of T
i.i.d tasks (D1, D2, .., DT ). To employ rehearsal, it maintains a small episodic memory, Mb using
reservoir sampling (Vitter, 1985). Additionally, it maintains a memory of object prototypes, Mo.
During each training iteration of task t, the model is fed with the training batch (xt, yt) ∼ Dt

and a random batch from episodic memory (xb, yb, zb) ∼ Mb. Task 1 is trained using standard
cross-entropy loss. For each subsequent task, we employ a warm-up stage where we train the model
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Table 1: Comparison analysis of single- and dual-model CL methods across various CL settings.
The baseline taken from the repective methods. We ran SCoMMER for Seq-TinyImageNet using
the hyperparameter setting approach provided by the authors. We report the average accuracy and 1
std of 3 different seeds.

Buffer Method Seq-CIFAR10 Seq-CIFAR100 Seq-TinyImg

Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL

– JOINT 92.20±0.15 98.31±0.12 70.62±0.64 86.19±0.43 59.99±0.19 82.04±0.10

SGD 19.62±0.05 61.02±3.33 17.58±0.04 40.46±0.99 7.92±0.26 18.31±0.68

200

ER 44.79±1.86 91.19±0.94 21.40±0.22 61.36±0.39 8.49±0.16 38.17±2.00

FDR 30.91±2.74 91.01±2.74 22.02±0.008 61.72±1.02 8.70±0.19 40.36±0.68

DER++ 64.88±1.17 91.92±0.60 29.60±1.14 62.49±0.78 10.96±1.17 40.87±1.16

ER-ACE 62.08±1.44 35.17±1.17 27.44±0.64 25.29±1.89 11.25±0.54 44.17±1.02

GCR 64.84±1.63 90.8±1.05 33.69±1.40 64.24±0.83 13.05±0.91 42.11±1.01

CO2L 65.57±1.37 93.43±0.78 31.90±0.38 55.02±0.3 13.88±0.40 42.37±0.74

CLS-ER 66.19±0.75 93.90±0.60 43.80±1.89 73.49±1.04 23.47±0.80 49.60±0.72

SCoMMER 69.19±0.61 93.20±0.10 40.25±0.05 69.39±0.43 16.30±1.54 49.37±0.81

SARL 70.97±0.47 95.72±0.36 48.96±0.53 78.91±0.15 28.95±1.13 71.56±0.18

500

ER 57.74±0.27 93.61±0.27 28.02±0.31 68.23±0.16 9.99±0.29 48.64±0.46

FDR 28.71±3.23 93.29±0.59 29.19±0.33 69.76±0.51 10.54±0.21 49.88±0.71

DER++ 72.70±1.36 93.88±0.50 41.40±0.96 70.61±0.11 19.38±1.41 51.91±0.68

ER-ACE 68.45±1.78 40.67±0.06 30.14±1.11 24.81±0.63 17.73±0.56 49.99±1.51

GCR 74.69±0.85 94.44±0.32 45.91±1.30 71.64±2.10 19.66±0.68 52.99±0.89

CO2L 74.26±0.77 39.21±0.39 39.21±0.39 62.98±0.58 20.12±0.42 53.04±0.69

CLS-ER 75.22±0.71 94.94±0.53 51.40±1.00 78.12±0.24 31.03±0.56 60.41±0.50

SCoMMER 74.97±1.05 94.36±0.06 49.63±1.43 75.49±0.43 22.60±0.85 58.46±1.31

SARL 75.64±0.36 95.95±0.24 55.30±0.61 81.23±0.24 32.56±1.23 70.94±0.43

with the combination of cross-entropy loss, LCE on the training batch and buffer samples and the
regularization losses. At the end of the warm-up stage when the model has learned meaningful
representations, we evaluate the intermediate object references for each object category, c, in the
current task using Equation 1 and identify a set of corresponding similar object categories, Sc using
Equation 3 to employ the semantic-aware metric learning loss in the subsequent training on the task.
The overall loss for training the model is given by:

L = LCE(F (xt : θ), yt) + LCE(F (xb : θ), yb) + λSMLSM + λOPLOP + LFR (7)

where λSM and λOP are the hyperparameters that control the weight of each loss.

At the end of each task, we evaluate the object prototypes of the object categories introduced in the
task using Eqn 1. Additionally, to mitigate the biases of the batch norm statistics towards the current
task (Pham et al., 2022), we employ a simple yet effective technique of passing the model through
all buffer samples to shift the batch norm statistics towards the approximate joint distribution.

4 EMPIRICAL EVALUATION

Settings. To evaluate the effectiveness of SARL, we consider various CL scenarios that each
present unique challenges for lifelong learning models. In the class-incremental learning (Class-
IL) scenario, with each new task, the model is introduced to a new set of classes and must learn
to distinguish not only among the current task’s classes but also across all previously encountered
classes. This setting tests the model’s ability to build generalizable representations, consolidate
knowledge, and transfer that knowledge to efficiently distinguish all classes seen so far. We only
train our models for the CLass-IL setting; for completion, we also provide task-incremental learning
(Task-IL) setting. In this context, the model has access to task labels during inference, enabling the
utilization of task labels to selectively choose the subset of output logits.

While Class-IL focuses on knowledge accumulation across distinct tasks, it does not fully capture
the complexity of real-world scenarios, where tasks often lack clear boundaries, and classes can
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Table 2: Comparison analysis of single- and dual-model CL methods on GCIL-CIFAR-100 dataset.
Dist. Buffer JOINT SGD ER DER++ CLS-ER SCoMMER SARL

Uniform 200 58.36±1.02 12.67±0.24
16.40±0.37 18.84±0.60 25.06±0.81 30.84±0.80 36.97±0.54

500 28.21±0.69 32.92±0.74 36.34±0.59 36.87±0.36 39.03±0.45

Longtail 200 56.94±1.56 22.88±0.53
19.27±0.77 26.94±1.27 28.54±0.87 29.08±0.31 35.26±0.75

500 20.30±0.63 25.82±0.83 28.63±0.68 35.20±0.21 35.47±1.20
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Figure 3: Cosine similarities between the object prototypes computed at the end of each training
task on Seq-CIFAR10 with 200 buffer size and the similarity structure of the final model on test set.

reappear with varying distributions. To address this, we also evaluate SARL in the generalized class-
incremental learning (GCIL) setting. GCIL introduces a more dynamic and realistic environment
where classes reoccur across tasks, and the number of classes and their sample sizes can vary. This
scenario tests the model’s ability to deal with class imbalance, sample efficiency, and the continual
integration of knowledge from overlapping or reappearing classes.

Additionally, we consider online continual learning (Online CL), a highly challenging setting where
the model is exposed to each data instance only once, requiring it to learn and adapt dynamically
without revisiting previous data. Details of the experimental setup and datasets are provided in
Appendix A.

Results. We benchmarked SARL’s performance against established rehearsal-based approaches
across varying CL settings and dataset complexities. Table 1 demonstrates consistent performance
improvements across all settings. Notably, under the low buffer regime, where the model has to
retain knowledge while having access to very limited samples from previous tasks (approximately
two samples per class for Seq-CIFAR-100 and one sample per class for Seq-Tiny-ImageNet), SARL
effectively retains previously acquired knowledge, demonstrating its ability to learn new tasks while
remaining in the functional vicinity of earlier tasks despite the limited buffer size and consolidating
knowledge as it learns new tasks. Interestingly, as the complexity of the dataset increases with the
number of classes with high semantic similarity, the performance gains are more pronounced, sug-
gesting that SARL is able to exploit the semantic structure and utilize it to consolidate knowledge.

Table 2 highlights the advantage of SARL in the challenging GCIL setting, where the model must
update its knowledge across multiple occurrences of the same object with varying sample sizes,
while addressing class imbalance and task complexity. SARL’s ability to update object prototypes
when re-encountering a class ensures efficient use of new samples without penalizing for deviations
from earlier suboptimal representations. SARL shows remarkable resilience to these challenges and
provides additional credence to the benefits of semantic-aware representation learning.

These results are particularly impressive considering that SARL uses only a single model, while
many state-of-the-art methods rely on multiple models. For instance, CLS-ER uses two additional
models, and SCoMMER incorporates one. Although these methods claim to use a single model for
inference, the distinction between training and inference in lifelong learning is blurred, as the model
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Table 3: Performance comparison across Seq-CIFAR10 and Seq-CIFAR100 in the online CL setting.
Baseline results are taken from Wu et al. (2024). We report the mean and std of three runs.

Seq-CIFAR10 Seq-CIFAR100

Method AAA Acc AAA Acc

SGD 34.85±1.71 16.96±0.60 11.63±0.38 5.27±0.28

ER 55.53±2.58 43.83±4.84 23.19±0.38 16.07±0.88

DER 45.85±1.62 29.87±2.95 13.35±0.36 6.12±0.18

DER++ 64.22±0.70 52.29±1.86 19.88±0.43 11.79±0.65

CLSER 63.02±1.54 52.80±1.66 25.46±0.57 17.88±0.69

OCM 66.14±0.95 53.39±1.00 22.54±0.79 14.40±0.82

ER-OBC 65.82±0.91 54.85±2.16 25.54±0.25 17.21±0.92

On-EWC 38.44±0.50 17.12±0.51 11.81±0.42 5.88±0.31

IS 37.33±0.23 17.39±0.19 12.32±0.22 5.20±0.18

La-MAML 42.98±1.60 33.43±1.21 12.55±0.39 11.78±0.65

VR-MCL 66.97±1.58 56.48±1.79 27.01±0.48 19.49±0.69

SARL 66.85±1.15 57.21±0.27 31.66±1.49 24.39±1.44

must continuously learn from the environment. This can make the overhead of maintaining multiple
memories prohibitive in real-world applications, especially for resource-constrained systems like
embedded devices. The ability of SARL to achieve superior results with a single model further
underscores its practicality and efficiency for lifelong learning.

Additionally, while SARL is not explicitly designed for Online CL, we adapted it to this setting
to assess its versatility and broader applicability. By maintaining running feature sums and sample
counts to dynamically update object prototypes, SARL effectively learns in an online manner. We
introduce a brief warm-up phase during the first 10 iterations of each task to stabilize feature ac-
cumulation before evaluating prototypes. Despite this adaptation being secondary to our primary
focus, SARL-Online demonstrates strong performance. As shown in Table 3, it achieves notable
improvements across all datasets, particularly on Seq-CIFAR100, where it significantly boosts both
AAA and Acc. These results further reinforce the effectiveness of semantic-aware representation
learning, highlighting SARL’s adaptability to different continual learning paradigms without requir-
ing extensive modifications. Our ablation study in Appendix B.1 shows that each component of
SARL contributes to the performance gains.

5 ANALYSIS

Here, we delve deeper into what enables performance improvements in SARL. We compare with the
baseline ER and the state-of-the-art in single-model (DER++) and multiple-memory (SCoMMER).

5.1 SEMANTIC STRUCTURE

At the core of SARL is semantic-aware representation learning. We investigate whether SARL can
learn and retain a meaningful semantic structure during sequential task training. We evaluate the
similarities between object prototypes calculated stored in memory during training that are evaluated
at the end of each task for new object categories and compared them with the similarity structure of
the trained model on test data. Figure 3 shows that SARL not only retains the similarity structure
but also updates it by consolidating new knowledge. Notably, the class prototypes from early tasks,
where the model was trained to distinguish only between two classes, show strong similarities even
with other classes, indicating that the initial representations were not yet fully optimized for all
classes. However, as the model encounters more tasks, the semantic relationships across classes
become more refined and meaningful. For instance, classes such as ‘cat’, ‘dog’, and ‘horse’ exhibit
higher similarity values post-training, reflecting their semantic coherence, while unrelated classes
such as ’plane’ and ’truck’ maintain lower similarities. The semantic-aware metric learning loss,
combined with object prototype regularization, guides training to enforce and maintain this semantic
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Figure 4: (a) Comparison of the stability and plasticity of the models; and (b) average probability
of predicting each task at the end of training for models trained on Seq-CIFAR100 with 200 buffer
size. Figure 5 in Appendix shows the task-wise performance of the different models.

structure, allowing the model to incorporate new knowledge without losing the relationships between
previously learned classes.

5.2 STABILITY-PLASTICITY TRADE-OFF

Continual learning requires balancing plasticity (learning new tasks) and stability (retaining past
knowledge). To evaluate this trade-off, we use the metric from (Sarfraz et al., 2022), where plasticity
(P) is the average performance on newly learned tasks, and stability (S) is the retention of past tasks
after learning task t . The trade-off is given by (2xPxS) / (P + S) . Figure 4(a) shows that SARL
significantly enhances stability without sacrificing plasticity, achieving a 362% gain over ER and
127% over DER++. In contrast, SCoMMER, which employs an additional exponentially averaged
model for knowledge accumulation, improves stability but severely degrades plasticity over longer
task sequences, as reflected in its lower final-task accuracy (47.7% vs. 73.60% for SARL, Figure 5
in Appendix). This highlights the advantage of SARL’s semantic-aware sparse learning in fostering
a better stability-plasticity balance.

Sequential task learning also introduces a recency bias, favoring recently seen objects (Hou et al.,
2019). Figure 4(b) shows that SARL significantly reduces this bias compared to ER and DER++.
While SCoMMER’s EMA model produces more uniform predictions, it exhibits a declining prob-
ability for the last task, which may impact long-term performance. Notably, SARL assigns higher
probabilities to earlier tasks, suggesting that its regularization mechanisms effectively preserve the
initial function space, mitigating forgetting.

These analyses collectively show that SARL is able to effectively evaluate semantic similarities
between objects across tasks and utilize them to enforce a semantic structure in the representation
space. This creates a synergy between plasticity and stability, leading to a better balance between
the two and reduces forgetting and recency bias.

6 CONCLUSION

Inspired by how the brain uses sparse coding and semantic relationships between objects to in-
form memory formation and retrieval, we proposed semantic-aware representation learning (SARL),
which employs sparse activations to create semantically rich object prototypes which can effectively
capture the inherent similarities between objects. The semantic structure is leveraged to align new
object representations with similar objects from previous tasks while promoting separation from dis-
similar ones. Our approach facilitates feature reuse while reducing interfering, creating a synergy
between the plasticity and stability of the model. Our empirical evaluation in challenging CL sce-
narios demonstrates SARL’s effectiveness. By enforcing a semantic structure on the representations
of objects across tasks, SARL balances model plasticity and stability, reduces task recency bias,
and mitigates forgetting. Our findings present a compelling case for incorporating semantic-aware
representation learning similar to the brain’s method.
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A EXPERIMENTAL SETUP

To ensure fair comparisons between continual learning (CL) methods and isolate algorithmic im-
provements from training regimen variability, we adopt consistent experimental conditions across
all models. In line with Buzzega et al. (2020), we use a ResNet-18 architecture trained with an SGD
optimizer and a batch size of 32 for both task data and memory buffer. We use an initial learning rate
(lr) of 0.03 with multistep decay scheduler with factor 0.1. Standard data augmentations—random
cropping and horizontal flipping—are applied. For all tasks, we include a warm-up stage consisting
of 3 epochs, during which the model trains solely on the task-specific data without utilizing memory
buffer samples. This allows the model to initialize a strong representation for each task before in-
tegrating knowledge from past tasks. For Seq-CIFAR10 we trained for 20 epochs with decay steps
For Seq-CIFAR10, the model is trained for 20 epochs with lr decay steps at 15th epoch, for Seq-
CIFAR100 and GCIL-CIFAR100, we extend the training to 50 epochs with lr decay steps at 35 and
45. For the Tiny ImageNet dataset, we further increase the number of epochs to 100 with lr decay
steps at 70 and 90.

A.1 SPARSE BACKBONE:

In all experiments, we incorporate activation sparsity by replacing ReLU activations with the k-
Winner-Take-All (kWTA) activation function. In kWTA, for each layer, only the top k% of activa-
tions at each spatial location are allowed to propagate, while the rest are set to zero. This localized
sparsity mechanism ensures that the most relevant features are selected at each spatial location, pro-
moting filter specialization and reducing interference across tasks. The level of sparsity (i.e., k% ) is
kept fixed across all layers and experiments. Beyond this change to the activation function, no other
modifications are made to the backbone architecture.

A.2 EVALUATION SETTINGS:

For the Class-IL setting, we follow established baselines and evaluate on three datasets: sequential
CIFAR-10 (Seq-CIFAR10) (Krizhevsky et al., 2009), where 10 classes are split into 5 disjoint tasks
with 2 classes per task; sequential CIFAR-100 (Seq-CIFAR100) (Krizhevsky et al., 2009), splitting
100 classes into 5 tasks with 20 classes each; and sequential TinyImageNet (Le & Yang, 2015)
(Seq-TinyImageNet), where 200 classes are divided into 10 tasks of 20 classes each.

For the Generalized Class-IL (GCIL) setting (Mi et al., 2020), probabilistic modeling is used to
randomly vary three task characteristics: the number of classes, the specific classes included, and
the sample sizes. As in Sarfraz et al. (2023), we apply this GCIL setting to CIFAR-100, using 20
tasks with 1,000 samples per task and a maximum of 50 classes per task. To separate the effects of
class imbalance from the model’s ability to learn from recurring classes across tasks, we evaluate the
model on both uniform and long-tailed data distributions. For consistency, the GCIL dataset seed is
fixed at 1993 for all experiments, ensuring a fair comparison across methods.

For Online-CL, we follow previous works Caccia et al.; Wu et al. (2024) and evaluate our method
under the single-head setting. For this setting, we also report average anytime accuracy (AAA)
Caccia et al., which measures the model’s performance throughout the training stream. Let AAj

denote the test average accuracy after training on task Tj . Then, the metrics are defined as:

AAA =
1

N

N∑
j=1

AAj , Acc = AAN ,

where N is the total number of tasks. Following (Wu et al., 2024), we evaluate our method on the
Seq-CIFAR10 and Seq-CIFAR100,. Seq-CIFAR10 comprises 5 tasks, each containing 2 classes,
Seq-CIFAR100 consists of 10 tasks with 10 classes each.

B ADDITIONAL RESULTS

B.1 ABLATION STUDY
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Figure 5: The task-wise performance (x-axis) of the different models assessed after training on each
task (y-axis) in Seq-CIFAR100 with a buffer size of 200.

Table 4: Selected hyperparameters for SARL. For all our experiments, we use λSM=0.01, τs=0.8,
and β=1.

Dataset Buffer kw% λOP α

Seq-CIFAR10 200 0.8 0.5 0.2
500 0.8 0.5 0.2

Seq-CIFAR100 200 0.9 0.5 0.5
500 0.9 0.5 0.2

Seq-TinyImageNet 200 0.9 0.2 0.2
500 0.9 0.5 0.5

GCIL-Uniform 200 0.7 0.2 0.2
500 0.7 0.2 0.2

GCIL-Longtail 200 0.7 0.2 0.5
500 0.7 0.2 0.5

Table 5: Impact of adding distinct elements of SARL
on Seq-CIFAR10 performance with 200 buffer size.

Sparsity LOP LSM LFR Accuracy

✗ ✗ ✗ ✗ 44.79±1.86

✓ ✗ ✗ ✗ 58.23±1.73

✓ ✓ ✗ ✗ 62.53±0.41

✓ ✗ ✓ ✗ 61.60±0.58

✓ ✓ ✓ ✗ 63.83±0.60

✓ ✓ ✓ ✓ 70.97±0.47

Here, we systematically assess the contri-
bution of each key component of SARL
by incrementally adding them on top of
the baseline ER. Table 5 reveals the im-
portance of each element in improving
model performance. Firstly, the inclu-
sion of sparse coding via activation spar-
sity alone yields a substantial performance
boost. This underscores the importance of
activation sparsity in mitigating task inter-
ference by allowing only the most salient
neurons to remain active, effectively con-
trolling task-specific noise and enhancing generalization. Next, we observe the separate effects of
adding object prototype loss (LOP ) and semantic-aware metric learning (LSM ) on top of sparsity.
Object prototype loss introduces regularization, stabilizing the model by maintaining the average
representations of objects, which further improves accuracy to 63.01%. Semantic-aware metric
learning, on the other hand, enhances forward transfer by leveraging the semantic similarities be-
tween objects while reducing interference. Notably, when both losses are applied together, the
synergy between them becomes evident. The object prototype loss ensures stable representations of
previously learned object, which in turn helps semantic-aware metric learning enforce a consistent
semantic structure throughout training. Finally, adding forward regularization (LFR) to the mix en-
courages the model to stay within the functional vicinity of previously learned states as new tasks are
introduced. This final combination of all components achieves the best performance, highlighting
the cohesive benefits of SARL’s components working together to reduce interference and improve
knowledge retention.
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B.2 RESULTS ON DIFFERENT BACKBONE

To further test the versatility of our approach, we evaluate SARL on the ViT Small backbone and
VGG. It is well known that Vision Transformers (ViTs) struggle with smaller datasets due to their
inherent architectural requirements, which demand pretraining on large-scale datasets to achieve
performance comparable to convolutional networks like ResNet. This limitation is particularly ev-
ident in continual learning settings with smaller datasets, leading to a noticeable performance gap
between ViT and ResNet backbones.

Despite this inherent challenge, Table 6 shows that SARL provides considerable performance gains
over ER across all evaluation settings. These results highlight the robustness and adaptability of
SARL, even in scenarios where the backbone architecture is less suited for the dataset size. Ad-
ditionally, SARL’s performance on the VGG backbone is particularly noteworthy. The VGG back-
bone, which lacks the inductive bias of residual connections and is less efficient compared to modern
architectures, still benefits significantly from SARL. Specifically, SARL achieves state-of-the-art re-
sults in both Class-IL and Task-IL settings with VGG. This demonstrates SARL’s ability to enhance
learning effectiveness even in scenarios where the backbone architecture itself has inherent limita-
tions.

Importantly, it should be noted that no hyperparameter tuning was performed specifically for these
backbones. Instead, we used the same hyperparameters optimized for the ResNet backbone. This
suggests that further improvements in performance are possible by tailoring the hyperparameters
to better suit the backbone architecture and adapting the functional regularization. The significant
performance improvements observed with SARL validate its capability to enhance learning effec-
tiveness across diverse backbone architectures, emphasizing its potential as a versatile and robust
continual learning method.

Table 6: Performance comparison on ViT-Small and VGG backbones. We report the mean and std
of three runs.

Backbone Buffer Method Seq-CIFAR10 Seq-CIFAR100

Class-IL Task-IL Class-IL Task-IL

ViT-Small
200 ER 21.92±1.70 69.65±4.05 11.90±1.75 29.11±7.05

SARL 26.04±0.45 82.74±1.39 19.08±3.00 44.82±4.46

500 ER 24.41±1.46 72.30±1.79 12.51±1.47 31.08±4.25

SARL 32.94±1.14 83.25±1.86 22.00±0.79 47.68±1.99

VGG
200 ER 40.63±0.74 80.50±1.05 18.71±0.78 40.53±2.85

SARL 63.06±2.48 91.07±0.84 26.47±0.60 51.73±0.81

500 ER 54.09±0.87 86.83±0.88 23.01±0.66 50.27±0.91

SARL 66.15±0.70 92.37±0.42 33.82±0.65 58.69±0.50

C ADDITIONAL METRICS

We provide additional metrics for all our experiments to comprehensively evaluate SARL’s perfor-
mance. Since the number of test samples per task is uniform across all tasks, the final accuracy,
calculated as the total number of correctly classified samples across all tasks divided by the total
number of samples, is equivalent to the average accuracy, which is the mean accuracy across indi-
vidual tasks at the end of training. Table 7 provides additional metrics such as forgetting, stability,
and plasticity, which provide deeper insights into model behavior. Forgetting measures the model’s
ability to retain knowledge from previous tasks by quantifying the average drop in accuracy of a
task at the end of continual learning training compared to its accuracy when first learned, where
lower forgetting indicates better knowledge preservation. Stability (S) reflects the average accuracy
on previously learned tasks at the end of training, demonstrating how well the model performs on
earlier tasks. Plasticity (P), on the other hand, evaluates the model’s ability to effectively learn new
tasks, measured as the average accuracy of tasks when they are initially trained. Trade-off is mea-
sured by (2 * S * P) / (P + S) and measure how well the method keeps a balance between the stability
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and plasticity of the model. Together, these metrics offer a holistic view of SARL’s performance,
capturing its strengths and trade-offs in diverse continual learning scenarios.

Note that the vast majority of baselines do not provide these metrics and hence we cannot compare
the baselines across these metrics unfortunately. In addition to the comparison on Average Accuracy
in Table 1, we compare the forgetting and additional metrics for the baselines in Table 7 (where
available). Note that DER++ is the strongest single model baseline and SARL considerable reduces
forgetting by a considerable margin.

Table 7: Performance metrics across datasets and buffer sizes.
Dataset Buffer Accuracy Forgetting Stability Plasticity Trade-off

Seq-CIFAR10 200 70.97±0.47 14.83±0.43 67.72±1.05 82.64±0.73 74.44±0.78

500 75.64±0.36 8.75±6.89 73.39±1.00 85.31±0.92 78.90±0.88

Seq-CIFAR100 200 48.96±0.53 33.82±0.56 43.12±0.91 76.45±1.01 55.14±0.98

500 55.30±0.61 26.78±1.53 50.21±1.39 76.73±0.62 60.69±0.83

Seq-TINYIMG 200 28.95±1.13 42.08±2.94 23.99±1.41 66.82±1.52 35.27±1.29

500 32.56±1.23 27.34±0.56 29.88±1.52 57.16±1.73 39.24±0.72

Table 8: Results of different methods on Seq-CIFAR10 and Seq-CIFAR100 datasets with varying
buffer sizes.

Dataset Buffer Method Accuracy Forgetting Stability Plasticity Trade-off

Seq-CIFAR10

200

ER 50.36±2.41 57.60±3.53 38.40±3.01 96.44±0.42 54.88±2.98

DER++ 65.74±1.82 31.75±2.86 58.73±2.53 91.13±0.65 71.40±1.76

CLSER 65.92±0.73 28.74±1.45 67.70±1.21 81.17±1.45 73.83±1.21

SCoMMER 66.80±0.94 28.32±1.35 62.26±1.49 84.72±1.18 71.76±0.78

SARL 70.97±0.47 14.83±0.43 67.72±1.05 82.64±0.73 74.44±0.78

500

ER 62.70±1.04 41.92±1.98 53.92±1.34 96.24±0.86 69.11±1.04

DER++ 70.10±1.47 26.79±1.08 63.70±1.89 91.53±0.64 75.11±1.51

CLSER 75.16±0.86 22.56±1.04 73.40±0.33 78.03±0.81 75.64±0.57

SCoMMER 74.25±0.42 20.13±1.30 70.62±0.45 87.99±0.45 78.36±0.37

SARL 75.64±0.36 8.75±6.89 73.39±1.00 85.31±0.92 78.90±0.88

Seq-CIFAR100

200

ER 21.73±0.03 76.13±0.29 5.29±0.15 82.63±0.21 9.94±0.26

DER++ 30.68±1.35 65.10±1.74 17.19±1.75 82.77±0.72 28.44±2.37

CLSER 43.80±1.89 36.33±1.46 45.75±1.78 50.47±1.03 47.99±1.35

SCoMMER 40.74±0.53 42.20±1.13 35.98±0.90 63.30±6.21 45.80±1.76

SARL 48.96±0.53 33.82±0.56 43.12±0.91 76.45±1.01 55.14±0.98

500

ER 28.03±1.06 67.08±1.11 13.42±1.60 81.69±0.17 23.03±2.37

DER++ 42.03±2.01 48.90±2.42 32.01±2.74 81.15±0.80 45.87±2.89

CLSER 51.68±0.99 30.74±0.25 52.18±0.27 58.07±2.17 54.95±1.04

SCoMMER 50.11±0.31 32.98±0.80 46.40±0.79 66.93±1.72 54.79±0.35

SARL 55.30±0.61 26.78±1.53 50.21±1.39 76.73±0.62 60.69±0.83

D HYPERPARAMETER TUNING

During hyperparameter tuning, we used a small validation set to adjust values for kw%, λOP , and
the coefficient α for LFR. For all experiments, we set τs = 0.8, β = 1 and λSM = 0.01. The value
of kw% was selected from the set {0.7, 0.8, 0.9}, while λOP and α, were chosen from {0.2, 0.5,
1}. The final selected parameters are presented in Table 4. It is important to note that we did not
perform an exhaustive hyperparameter search, so better configurations may exist. Furthermore, we
observed a synergistic relationship among the parameters, and the model demonstrated robustness
to a range of values, which significantly eased the tuning process.

To further illustrate this, the results in Table 9 demonstrate that SARL is not overly sensitive to
specific hyperparameter values, as multiple configurations yield consistent performance improve-
ments. For instance, across different values of α , λOP , and kw% , the method achieves robust
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Class-IL and Task-IL accuracies on Seq-CIFAR10, with minor variations in performance. While
certain configurations (e.g., α = 0.2, λOP = 0.5, kw% = 0.8 ) achieve the highest Class-IL accuracy
(70.97%), other values (e.g., kw% = 0.9, α = 0.2, λOP = 0.5 ) provide similar results (70.08%).
We present results for all the grid values explored during hyperparameter tuning, demonstrating that
SARL achieves consistent performance improvements across various configurations without relying
heavily on precise hyperparameter adjustments. This reliability underscores SARL’s practicality and
suitability for a wide range of continual learning applications

Table 9: Sensitivity to hyperparameters on the performance of SARL. For all the experiments, we
use learning rate η = 0.1, α = 0.999, λOP = 0.5, λSA = 0.01, λCR = 0.15 and τ = 0.8.

seq-cifar10

kw% α λOP Class-IL Task-IL

0.8

0.2
0.2 70.73±2.31 95.77±0.16

0.5 70.97±0.47 95.72±0.36

1 70.57±0.73 95.71±0.08

0.5
0.2 68.53±1.14 95.23±0.07

0.5 69.40±1.21 95.21±0.19

1 68.79±0.84 95.14±0.09

1
0.2 65.30±1.40 93.73±0.68

0.5 64.59±0.62 93.72±0.42

1 63.86±1.45 93.19±0.08

0.9

0.2
0.2 70.05±1.44 95.49±0.14

0.5 70.08±1.48 95.63±0.22

1 69.07±0.68 95.52±0.01

0.5
0.2 68.12±2.90 95.13±0.41

0.5 66.66±0.55 94.92±0.31

1 65.49±0.08 94.48±0.38

1
0.2 63.99±2.83 93.34±0.91

0.5 64.04±0.06 93.00±1.05

1 63.80±1.56 92.87±1.33

Table 10: Memory and performance comparison of SARL and baselines on Seq-CIFAR100. #M
stands for number of models, #FWD for number of forward passes, and |B| for buffer size.

Method #M #FWD #FWD |B| Total Memory Memory Ratio Avg. Acc Avg. Acc
(Tasks) (Buffer) (MB) (MB) (vs ER) (%) / Memory Ratio

ER 1 1 1 5.86 48.52 1.0000 28.02 28.02
DER++ 1 1 2 6.05 48.71 1.0039 41.40 41.24
CLS-ER 3 1 3 5.86 133.84 2.7584 51.40 18.63
SCoMMER 2 1 2 5.86 91.18 1.8792 49.63 26.41
SARL 1 1 1 8.15 50.09 1.0323 55.30 53.57

E SEMANTIC SIMILARITY BETWEEN CLUSTERS

To further strengthen our analysis in Figure 2 which provides similarity matrices for dense and sparse
activations, we defined two clusters within the CIFAR-10 classes: the Animal Cluster, comprising
‘bird,’ ‘cat,’ ‘deer,’ ‘dog,’ ‘frog,’ and ‘horse,’ and the Vehicle Cluster, consisting of ‘airplane,’ ‘au-
tomobile,’ ‘ship,’ and ‘truck.’ The comparison of inter- and intra-cluster similarities is visualized in
Figure 6, and the results indicate that sparse activations exhibit consistently higher average similar-
ity within clusters compared to dense activations. For the Animal Cluster, sparse activations achieve
an average similarity of 0.8873 compared to 0.8367 for dense activations. Similarly, for the Vehicle
Cluster, sparse activations achieve 0.8694 compared to 0.8684 for dense activations. This suggests
that sparse activations better group objects within the same semantic category, capturing seman-
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Figure 6: Inter- and Intra-Cluster Similarities Across Animal and Vehicle Clusters in CIFAR-10 for
Dense and Sparse Activations

tic cohesion more effectively. By activating only the most relevant neurons, sparse representations
reduce noise and focus on features critical for semantic grouping.

Sparse activations also demonstrate a slightly higher average similarity between clusters, with
0.8295 compared to 0.8068 for dense activations. However, this inter-cluster similarity is signif-
icantly lower than the intra-cluster similarity, aligning with the expected semantic distinction be-
tween clusters. Notably, sparse representations encode inter-cluster relationships more semantically
rather than merely enforcing hard separations. For instance, airplane and bird, which share abstract
features like wings and the ability to fly, exhibit a higher similarity of 0.90 with sparse activations
compared to 0.87 with dense activations. In contrast, ship and horse, which are semantically dis-
similar, show a similarity of 0.81 with sparse activations compared to 0.83 with dense activations.
These findings reinforce our hypothesis that sparse activations can enhance the model’s capability
to capture semantic structure across objects.

F VISUALIZATION OF REPRESENTATION SPACE

To further analyze the representations and evaluate how well SARL captures and enforces a seman-
tic structure among objects, we project the object prototypes into a two-dimensional space using
t-SNE and compare SARL with ER on Seq-CIFAR10 with a buffer size of 200 (Figure 7). The
t-SNE visualizations reveal clear differences in the representational quality of SARL compared to
ER. In the left panel (ER), object prototypes exhibit a lack of structured clustering, with seman-
tically similar classes, such as animals (“bird,” “frog,” “deer”), being dispersed and overlapping
with other categories. This indicates that ER struggles to effectively group related objects or sep-
arate distinct semantic categories in the representation space. In contrast, the right panel (SARL)
demonstrates significant improvements, forming compact and cohesive clusters for semantically
similar objects. For example, animals are tightly grouped together, and SARL effectively captures
the semantic similarity between “bird” and “airplane,” a relationship that ER fails to encode. This
structured organization of prototypes highlights SARL’s ability to leverage semantic relationships to
guide representation learning, aligning similar classes while maintaining clear distinctions between
unrelated ones. These findings underscore the effectiveness of SARL in creating a more meaningful,
semantically aware, and structured representation space.

G EXTENDED RELATED WORKS

Continual learning has seen significant advancements in recent years, with diverse approaches tar-
geting the challenges of catastrophic forgetting, model stability, and effective knowledge transfer
across tasks. In this section, we extend our related works section and position our SARL in the
broader context of these developments.
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Figure 7: t-SNE plot of object prototypes using trained model with ER and SARL on Seq-CIFAR10
with 200 buffer size.

Meta-learning approaches have shown promise in continual learning by leveraging task-specific
adaptations. VR-MCL (Wu et al., 2024) proposes an online CL approach that combines Meta-CL
with regularization to efficiently approximating online Hessians, enhancing adaptability in real-time
learning scenarios. While our work adopts a batch training setup, allowing multiple passes over se-
quential task data which we believe is more aligned with many real-world scenarios where datasets
can be revisited periodically (e.g., staged data collection or iterative training), VR-MCL provides a
focuses on online single-pass learning. The fundamental differences in training settings make di-
rect comparisons challenging, but we recognize the potential of such meta-learning techniques to
inspire future extensions of SARL in online CL. Interactive Continual Learning (ICL) (Qi et al.,
2024) utilizes multimodal large language models (LLMs) to achieve state-of-the-art performance
in continual learning. By leveraging extensive pretraining on diverse datasets (often a superset of
classes in the baseline CL datasets) and significantly larger architectures, this approach gains a lot of
advantage over the standard setting. It also makes them infeasible for many CL applications due to
the magnitudes larger memory and computational costs. The reliance on pretraining introduces an
inherent disparity when comparing with SARL, which operates with a randomly initialized model
and focuses on both learning robust representations in the CL regime and retaining them as train-
ing progresses. Furthermore, Memory-based approaches are widely used in rehearsal-based CL to
alleviate catastrophic forgetting. Bilateral Memory Consolidation (BiMeCo) (Nie et al., 2023) in-
troduces a method that consolidates long-term and short-term memories to improve performance.
Their approach is complementary to SARL and could potentially enhance SARL further if inte-
grated. However, their evaluation setting of involves pretraining on a large number of base classes
before sequential learning, whereas SARL and its baselines initiate continual learning with a ran-
domly initialized model. This distinction in experimental setups underscores the importance of
careful contextualization when comparing results across studies.

Prompt-based methods, such as L2P (Wang et al., 2022c) and DualPrompt (Wang et al., 2022b),
utilize pre-trained backbones, like those trained on ImageNet, to achieve strong performance in
class incremental learning setting. These pre-trained backbones inherently include representations
for many classes encountered later in CL tasks or for classes that are semantically similar. This
allows these methods to bypass one of the core challenges of CL: learning and preserving general
representations of objects across sequential tasks. In contrast, SARL operates in a more challenging
setting, starting from a randomly initialized state without leveraging pretraining. Extending SARL
to integrate pre-trained models could be a promising direction for future research, but the current
work focuses on enabling robust representation learning from a random start utilizing the semantic
structure to learn and retain representations.

We would like to emphasize that evaluating CL methods across diverse baselines presents several
challenges. Variations in architectures, the use of additional pretraining, access to implicit or explicit
auxiliary information, and differences in task structures and metrics significantly influence reported
results. Uniform evaluation settings are critical for meaningful assessments, as discrepancies in
setup may reflect differences in methodology rather than genuine improvements.
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