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ABSTRACT

Adapting pre-trained video generation models into controllable world models via
latent actions is a promising step towards creating generalist world models. The
dominant paradigm adopts a two-stage approach that trains latent action model
(LAM) and the world model separately, resulting in redundant training and limiting
their potential for co-adaptation. A conceptually simple and appealing idea is to
directly replace the forward dynamic model in LAM with a powerful world model
and training them jointly, but it is non-trivial and prone to representational collapse.
In this work, we propose CoLA-World, which for the first time successfully
realizes this synergistic paradigm, resolving the core challenge in joint learning
through a critical warm-up phase that effectively aligns the representations of the
from-scratch LAM with the pre-trained world model. This unlocks a co-evolution
cycle: the world model acts as a knowledgeable tutor, providing gradients to shape
a high-quality LAM, while the LAM offers a more precise and adaptable control
interface to the world model. Empirically, CoLA-World matches or outperforms
prior two-stage methods in both video simulation quality and downstream visual
planning, establishing a robust and efficient new paradigm for the field.

1 INTRODUCTION

A prevailing goal in artificial intelligence is the creation of a generalist agent capable of acting
across a multitude of environments and embodiments. Central to this vision is the concept of a
world model (Sutton, 1990; Ha & Schmidhuber, 2018), an internal simulator of the environment that
allows an agent to plan and learn through imagination. An ideal world model would be universal,
leveraging vast priors about world physics and dynamics, and adaptable with minimal data to any
specific downstream task. While large-scale video generative models (OpenAI, 2024; Blattmann et al.,
2023) have emerged as powerful candidates for such general-purpose simulators due to their rich
pre-trained knowledge, a fundamental challenge remains: how to interactively control the generation.
The heterogeneity of action spaces across different domains, from the continuous torques of a robot
arm to the discrete button presses of a game console, prohibits the direct use of real actions for
finetuning a video generative model to a single, universal world model.

To bridge this gap, Latent Action Models (LAMs) have shown great promise (Schmidt & Jiang, 2023;
Bruce et al., 2024; Ye et al., 2025). By inferring abstract actions directly from visual observations,
LAMs provide a unified, embodiment-agnostic interface for controlling a world model. This paradigm
opens an exciting direction: pre-training a single, general-purpose world model conditioned on a
universal latent action space (Bruce et al., 2024; NVIDIA et al., 2025; Gao et al., 2025). To integrate
LAMs with world models, existing works typically adopt a two-stage approach: first training a LAM
on action-free videos, usually with a small inverse dynamics model (IDM) and a forward dynamics
model (FDM) trained from scratch, and then freezing the IDM to supply latent actions for training a
larger world model.

However, this two-stage approach faces several issues. First, the FDM and the world model are
essentially both performing next-observation prediction, rendering the overall framework redundant.
Second, the pipeline forces the world model to rely on a fixed, static latent action space, preventing
the latent actions from adapting as world model training progresses. One question naturally arises:

Can we replace the FDM with the world model?

At first glance, this might seem like a straightforward modification, but our experiments show that
naively training the IDM and world model together can easily lead to collapse.
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In this work, we explore this question and provide an affirmative answer. We propose CoLA-World, a
training pipeline that enables the synergistic co-evolution of latent action learning and world modeling.
We first observe that, whether the IDM is initialized from scratch or from a pre-trained one, direct
joint training with the world model leads to collapse. This suggests that the IDM is not well aligned
with the pre-trained weights of the world model.

To address this, before switching to joint training, CoLA-World introduces a warm-up phase in which
the world model is kept frozen and only supplies gradients to update the IDM. This greatly stabilizes
subsequent joint training and enables the IDM and world model to co-evolve effectively. On one
hand, the powerful world model carries prior knowledge of plausible physics and visual dynamics
inherited from a pre-trained video generation model. It acts as an active tutor, providing gradients
that guide the from-scratch IDM toward higher-quality latent actions. On the other hand, as the IDM
learns to produce a more informative latent action space, it in turn offers the world model a clearer
and more precise control interface.

We evaluate our method on a large-scale dataset consisting of human egocentric and robot manipu-
lation videos. Compared to baseline two-stage methods, CoLA-World learns higher-quality latent
actions and achieves stronger world model prediction performance. We further provide empirical
evidence that co-evolution in the joint-training phase is crucial, as it enables both latent action learning
and world modeling to outperform setups where either component is fixed. Finally, we assess the
adaptability of the learned latent-action-based world models to out-of-distribution real-action control
interfaces, showing that the joint training enabled by our method is key to improving both video
prediction quality and downstream visual planning.

In summary, our main contributions are:

• We propose CoLA-World, the first framework that successfully enables joint training of a latent
action model with a pre-trained video-generation-based world model.

• Compared to prior two-stage methods, CoLA-World’s joint latent action learning and world mod-
eling yield a higher-quality latent action space and a world model with stronger controllability
and sample efficiency, improving both video simulation and downstream visual planning.

• We show that CoLA-World’s joint training exhibits synergistic co-evolution: the improving
world model and LAM mutually reinforce each other, creating a tightly coupled system that
drives superior adaptability.

2 RELATED WORK

Latent Action Learning Latent actions have recently emerged as a promising approach for behavior
pre-training on action-free data. Early methods such as FICC (Ye et al., 2023) and LAPO (Schmidt
& Jiang, 2023) adopt the IDM–FDM framework, where latent actions are discovered through a
next-frame reconstruction objective. Genie (Bruce et al., 2024) scales this framework to large
transformer-based architectures, focusing on latent-action-driven world model prediction in addition
to policy learning. A few works (Ye et al., 2025; NVIDIA et al., 2025; Bu et al., 2025; Chen et al.,
2025) have also explored the utility of latent action learning in embodied agents, particularly in
the vision–language–action setting. Our work differs from prior approaches in that we leverage a
pre-trained video generation model to co-evolve latent action learning and world modeling, a direction
that has not been explored before.

Latent-action-based World Models While the FDM in the latent action model can be interpreted as
a world model, most works do not explicitly focus on future prediction abilities, with the exception
of (Cui & Gao, 2023). However, the prediction quality of FDMs is generally lower than that of
high-capacity video-generation-based world models. Recently, Genie (Bruce et al., 2024) trained
a separate decoder-only MaskGIT (Chang et al., 2022) as the world model, conditioned on a fixed
latent action space learned beforehand. AdaWorld (Gao et al., 2025) is the work most closely related
to ours, adopting a similar two-stage approach as Genie but using a diffusion-based video model and
extending discrete latent actions to continuous ones. Other efforts, such as AD3 (Wang et al., 2024b)
and PreLAR (Zhang et al., 2024), integrate latent action learning with dynamics and policy training
in a Dreamer-style (Hafner et al., 2021) architecture trained from scratch, rather than leveraging the
benefits of large-scale pre-trained video generation models.

2
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Figure 1: (a) Prior works use a two-stage pipeline: learn a latent action model (LAM), then fix it to
train the world model. (b) We propose a one-stage pipeline, directly using the world model as the
forward dynamics model and backpropagating gradients through latent actions.

Finetuning Pre-trained Video Generation Model as World Models Our work is also related
to efforts that fine-tune pre-trained video generation models into controllable world models by
adding action conditioning. Except for AdaWorld (Gao et al., 2025) discussed above, most works
in this line assume a pre-specified action space. AVID (Rigter et al., 2025) introduces a lightweight
adapter on top of a frozen video generation model for action conditioning and world modeling.
IRASim (Zhu et al., 2024) uses adaptive layer normalization (Peebles & Xie, 2023) to incorporate
actions, analogous to how text prompting is conditioned. Following IRASim, DWS (He et al.,
2025) proposes a more granular action conditioning mechanism along with other improvements for
world modeling. Vid2World (Huang et al., 2025a) focuses on challenges of temporal causality in
adapting video diffusion models to world models, while EnerVerse-AC (Jiang et al., 2025) adds
action conditioning to a robotics foundation model (Huang et al., 2025b) for manipulation tasks.

3 METHOD

3.1 WORLD MODELS WITH LATENT ACTIONS

We focus on training a world model to predict the next observation ot+1 based on the current
observation ot and a latent action zt, modeling the distribution p(ot+1 | ot, zt). Unlike pre-specified
actions, such as keyboard or mouse inputs in video games, latent actions are learned entirely from
observational data. This allows us to pre-train world models on large-scale, action-free video data.

As mentioned in the introduction, previous works (Bruce et al., 2024; Gao et al., 2025) typically adopt
a two-stage process, training a latent action model (LAM) prior to world model training. The LAM
consists of an inverse dynamics model (IDM) and a forward dynamics model (FDM). Specifically,
the IDM finv takes the current observation ot and the next observation ot+1 as input and outputs a
latent action zt, while the FDM ffwd takes ot and zt to predict the next observation ôt+1. LAM is
trained by minimizing the reconstruction loss between ôt+1 and ot+1, i.e.,

LLAM = ∥ot+1 − ffwd(ot, finv(ot, ot+1))∥. (1)
To prevent trivial solutions, a bottleneck is often applied to the latent action space, forcing the latent
actions to compactly encode the most meaningful changes between ot and ot+1. Once trained, the
IDM is frozen and used to extract latent action labels for observation sequences. Previous works then
train a separate world model to capture p(ot+1 | ot, zt), typically employing a much higher-capacity
model than the LAM. The complete pipeline is illustrated in Figure 1(a).

However, one may immediately notice that the FDM and the world model perform exactly the same
task: predicting ot+1 based on ot and zt. Our idea is to replace the FDM with the world model,
reducing the two-stage training into a single joint training framework that performs dynamics learning
and latent action learning simultaneously in an end-to-end fashion, as illustrated in Figure 1(b). Such
a framework not only enables a more elegant model design and efficient training but also allows the
co-evolution of latent actions and the world model. The powerful world model can provide gradients
that help the IDM learn higher-quality latent actions, while the IDM produces a more informative
latent action space, offering the world model a clearer control interface.

3
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Figure 2: Latent action codebook metrics during joint training of the IDM and world model. “rand”
indicates random initialization, while “pre” indicates initialization from pre-trained weights. The
dashed line shows the codebook metrics of the pre-trained IDM. All three subplots share the same
legend, shown only in the middle panel for clarity.

While this idea may seem simple, we show in the next subsection that naively training the inverse
dynamics model and the world model together can easily collapse. One might also argue that the
FDM is essentially a world model and could be used to roll out future predictions. Empirically,
however, we find that the FDM produces much lower-quality predictions than a separately trained
world model. We believe this explains why previous works adopt a two-stage approach. To the best
of our knowledge, no prior work has successfully attempted this type of joint training.

3.2 TAMING THE FRAGILITY OF JOINT TRAINING

Following prior work (Bruce et al., 2024; Gao et al., 2025), we instantiate the IDM in Figure 1(b) as
an ST-Transformer (Xu et al., 2020), followed by vector quantization (Van Den Oord et al., 2017)
to produce discrete latent actions. For the world model, we adopt OpenSora (Zheng et al., 2024), a
high-performing open-source diffusion-based video generative model. We choose OpenSora for its
demonstrated effectiveness in the DWS method (He et al., 2025), where it was adapted for world
modeling with pre-specified actions. Additional implementation details are deferred to Section 3.3.

When training the model, however, we observe that learning quickly collapses. As shown by the gray
curve in Figure 2, the utilization rate of the VQ codebook for the latent actions drops to zero after
an initial brief increase. At the same time, the maximum code usage rapidly rises to nearly 100%,
indicating that the model collapses to using only a very small subset of latent actions. The concurrent
drop of code entropy to zero further suggests that all codes in the codebook degenerate into a single
dominant code. In contrast, a healthy latent action codebook should exhibit relatively high utilization
and entropy, along with low maximum usage, as indicated by the dashed horizontal lines in Figure 2.

As we have seen, directly training a freshly initialized IDM jointly with a pre-trained world model
leads to collapse. We hypothesize that this occurs because the powerful, pre-trained world model
quickly learns to disregard the random and uninformative action signals provided by the from-scratch
LAM. By relying on its own strong internal priors to minimize the prediction loss, the world model
provides no structured, supervisory gradient back to the LAM, causing its representation to degenerate
into a few dominant, uninformative codes. To further investigate the fragility of joint training, we next
initialize the IDM using parameters from a reasonably well-trained latent action model (corresponding
to the dashed horizontal lines in Figure 2). However, as the brown curve in Figure 2 shows, even
though it starts from a favorable state, the codebook quickly deteriorates, leading to low utilization
and entropy. Although it gradually improves later, the progress remains too slow to be practical.

Given that neither random nor guided initialization works, we hypothesize that the IDM is not well
aligned with the pre-trained weights of the world model. To test this, we randomly initialized both
the IDM and the world model and trained them jointly. As shown by the green curve in Figure 2,
this setup does not collapse, supporting our hypothesis. To mitigate the instability while still taking
advantage of powerful pre-trained video generation models, we propose a warm-up strategy: first
train the IDM while keeping the world model frozen, then switch to joint training.

With this warm-up, the IDM is able to catch up with the world model, enabling stable joint training
without collapse. As the dark blue curve in Figure 3 shows, the codebook metrics remain healthy
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Figure 3: Latent action codebook metrics during warm-up and joint training. Different blue curves
correspond to IDM initializations from warm-up checkpoints at various steps. All three subplots
share the same legend, shown only in the middle panel for clarity.

under this scheme. We further varied the number of warm-up steps. Figure 3 shows that longer
warm-up generally leads to more stable subsequent joint training, confirming that the IDM indeed
undergoes a catch-up phase during warm-up. In practice, we choose a warm-up length that ensures
stability while reserving as many steps as possible for end-to-end co-evolution.

After warm-up, we jointly train the IDM and world model end-to-end, allowing them to co-evolve and
adapt to each other. The world model provides gradients that guide the IDM to learn higher-quality
latent actions, while the IDM in turn produces a more informative latent action space for the world
model. In Section 4, we present extensive experiments showing that this joint training strategy
enhances both the quality of the learned latent actions and the performance of the world model.

3.3 IMPLEMENTATION DETAILS

We elaborate on the key implementation details central to our joint training paradigm, focusing on
the latent action conditioning mechanism and the end-to-end training process. Further information
regarding model architectures and training details are deferred to the Appendix B.

Latent Action Conditioning. We integrate latent actions extracted by the IDM into the pre-trained
OpenSora model via Adaptive Layer Normalization (AdaLN) (Peebles & Xie, 2023). The sequence of
the latent actions is first processed by a from-scratch self-attention network to produce contextualized
embeddings. These embeddings are then projected into action-specific scale, shift and gate parameters
by a MLP, which are then fused via addition with the original modulation parameters derived from
the diffusion timesteps, and applied at each LayerNorm layer within all the OpenSora blocks. This
mechanism provides control signals to condition the denoising process on the latent actions.

Training Objective and Gradient Flow. The system is jointly optimized using a flow matching
loss objective (Liu et al., 2022a) provided by the OpenSora model, which learns to predict the
velocity needed to denoise the video latent. The warm-up and end-to-end training phases carefully
manage the gradient flow generated by the loss. During warm-up, the pre-trained OpenSora model
is frozen, and the loss is backpropagated through the action AdaLN parameters and solely update
the action conditioning modules and the LAM components (IDM and VQ quantizer). Subsequently,
in the end-to-end phase, we unfreeze the OpenSora world model and the unified gradient updates
all components simultaneously. Crucially, this end-to-end gradient flow is the core mechanism for
synergistic co-evolution.

4 EXPERIMENTS

In this section, we conduct experiments to answer the following questions:

1. How does our joint training paradigm compare against the traditional two-stage approach in
terms of LAM representation quality and world model video prediction performance?

2. What is the underlying mechanism of our paradigm’s success? Do the LAM and the World
Model truly engage in a synergistic co-evolution during joint learning?

5
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3. Can the inherent advantages of our joint training paradigm translate into performance gains
in practical real-action-based video simulation?

4. What is the ultimate efficacy of CoLA-World as a learned simulator for solving control tasks
via visual planning?

4.1 EXPERIMENTAL SETUP

Dataset We focus on learning latent-action-based world models for robotic manipulation that can
adapt to diverse downstream embodiments and action spaces. Our training data consists of a large-
scale mixture of human egocentric videos and robot manipulation videos. Importantly, the training
process is entirely action-free: both the world model and the latent action model are learned purely
from video. Full dataset details are provided in Appendix A.

Baselines We compare two training paradigms. 2-STAGE: Following prior work, we first train a
LAM (comprising an IDM, an FDM, and a VQ quantizer) from scratch. Then the LAM is frozen and
its IDM and quantizer are used to provide latent actions for fine-tuning the world model, while the
FDM is discarded. JOINT (CoLA-World): Our joint learning paradigm begins with a brief warm-up
phase to align the from-scratch LAM (IDM and quantizer) with the pre-trained world model, followed
by full end-to-end (E2E) joint training. The architectures of the LAM and world model are identical
across both paradigms. In the 2-stage setting, we train the LAM for 30K steps to ensure a high-quality
representation. For joint training, we use an 8K warm-up phase (Figure 3), which provides a stable
initialization while preserving budget for the E2E phase. Additional training details are provided in
Appendix B. For clarity, we denote checkpoints by training budgets of their respective phases, e.g.,
LAM30K + WM30K in 2-stage learning; WARM8K + E2E52K in joint learning.

Evaluation metrics. To assess the quality of the learned latent action, we employ a linear probing
task, where a simple one-layer linear projection head is trained to predict the original real action
from the frozen latent actions. Here we evaluate on L1 prediction loss to prevent potential outliers
dominating the loss results. For the world model, we measure action-conditioned video generation
quality using a suite of standard metrics: PSNR, SSIM, LPIPS and FVD. In the tables, LPIPS and
SSIM scores are scaled ×100 for compact display.

4.2 PERFORMANCE OF THE JOINTLY LEARNED LAM AND WORLD MODEL

Table 1: Linear probing loss across several robotics datasets (lower is better).

METHOD BRIDGE RT-1 KUKA DROID AGIBOT LIBERO

2-STAGE LAM30K 0.0827 0.1191 0.0741 0.1912 0.1035 0.1614
JOINT WARM8K + E2E22K 0.0815 0.1206 0.0736 0.1911 0.0908 0.1623

Latent Action Quality. We first evaluate the quality of the learned latent action representations via
linear probing on six robotics datasets, including five from the Open X-Embodiment suite (Collab-
oration et al., 2023) and one out-of-distribution LIBERO dataset (Liu et al., 2023) unseen during
training. As shown in Table 1, our CoLA-World yields a competitive latent action space, achieving
lower probing loss on most datasets.

While the difference in probing loss appears marginal, this isolated metric does not fully capture
the latent action representation’s utility. The ultimate measure of a latent action’s quality lies in its
ability to effectively control the world model. As we will show, the world model guided by the jointly
learned LAM significantly outperforms the two-stage baseline on LIBERO. This suggests that our
co-evolved latent action space, while less amenable to linear probing, provides a more robust and
effective control interface for world modeling.

World Model Simulation Performance. We then evaluate the latent-action-conditioned video
prediction performance of the world model. Table 2 reports results across several in-distribution
datasets (OXE, EgoCentric, AgiBot) and one out-of-distribution (LIBERO) dataset, comparing
different training checkpoints. With the same total training budget of 60K steps, our joint training
paradigm (WARM8K + E2E52K) consistently matches or surpasses the best two-stage method
(LAM30K + WM30K) across all datasets. Notably, improvements are most pronounced on the
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Table 2: Video prediction performance of the learned world models on different datasets.

DATASET METHOD PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓

OXE
2-STAGE

LAM30K + WM30K 22.34 81.16 13.17 291.30
LAM8K + WM52K 21.91 80.76 13.79 296.64

JOINT
WARM8K + E2E52K 22.57 81.40 12.79 278.90
WARM8K + E2E30K 22.26 81.06 13.26 289.37

EGOCENTRIC
2-STAGE

LAM30K + WM30K 23.80 83.68 12.90 260.14
LAM8K + WM52K 23.48 83.28 13.46 267.94

JOINT
WARM8K + E2E52K 23.69 83.52 13.08 252.45
WARM8K + E2E30K 23.66 83.41 13.26 263.57

AGIBOT
2-STAGE

LAM30K + WM30K 23.61 85.36 10.11 185.63
LAM8K + WM52K 23.30 85.11 10.30 196.18

JOINT
WARM8K + E2E52K 23.93 85.61 9.86 174.93
WARM8K + E2E30K 23.64 85.27 10.22 189.03

LIBERO
2-STAGE

LAM30K + WM30K 23.13 86.90 10.22 167.77
LAM8K + WM52K 22.72 86.43 10.78 190.09

JOINT
WARM8K + E2E52K 23.33 87.21 9.89 158.36
WARM8K + E2E30K 23.25 87.05 10.08 164.86

perceptually aligned FVD metric, indicating that our generated videos are not only pixel-accurate but
also more temporally coherent and realistic.

Crucially, our paradigm also demonstrates superior sample efficiency. Our WARM8K + E2E30K
model, with a substantially smaller budget, already approaches the performance of the fully trained
LAM30K + WM30K 2-stage model and surpasses it on the out-of-distribution LIBERO dataset.
This efficiency arises from the synergistic training, which avoids the redundant learning and static
bottlenecks inherent in the 2-stage approach. Moreover, when the 2-stage method is given a similar
total budget (LAM8K + WM52K vs. WARM8K + E2E52K), it is significantly outperformed, even
lagging behind our less-trained WARM8K + E2E30K checkpoint due to its under-trained, static
LAM. These results highlight that our joint training unlocks a higher performance ceiling with
significantly fewer training steps. We provide latent action transfer results in Appendix D.2.

4.3 EVIDENCE FOR SYNERGISTIC CO-EVOLUTION

Having shown the performance of our CoLA-World, we now turn to understanding the mechanism
behind its success. To this end, we design two controlled ablation studies to dissect the bidirectional
information flow and verify the presence of a virtuous cycle of mutual promotion.

An Evolving World Model as a Better Tutor for the LAM. To isolate the influence of the world
model’s own learning process on the LAM, we compare our WARMUP + E2E method with a PURE
WARMUP variant, where the LAM is trained using gradients from a frozen world model. We evaluate
the resulting LAMs via linear probing loss on the LIBERO dataset, as shown in Figure 4(a). While the
LAM guided by the static world model (PURE WARMUP) improves steadily, the LAM in our CoLA-
World exhibits much faster reduction in probing loss once E2E training starts. This demonstrates that
the supervisory signal from the world model evolves over time: as the world model refines its own
understanding of the world’s dynamics, the gradients it provides to the LAM become progressively
more informative and causally sound. These results confirm that a concurrently improving world
model acts as a effective tutor, enabling a better and more efficiently learned LAM.

An Evolving LAM as a Better Control Interface for the World Model. We then investigate the
impact of a dynamically evolving LAM on the world model’s video prediction performance. We
compare our WARMUP + E2E model against a variant where the LAM is frozen after the same
initial warmup phase and only the world model is fine-tuned subsequently. As shown in Figure 4(b),
the world model paired with a frozen LAM improves initially but quickly plateaus. By contrast,
when paired with a continuously improving LAM during E2E training, the world model achieves
substantially higher video generation quality. This demonstrates that a static latent action space
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Figure 4: Evidence of synergistic co-evolution. The LAM’s probing loss drops faster when the world
model is co-evolving (a), while the world model achieves higher video prediction performance as the
LAM improves (b).

imposes a performance bottleneck, whereas a dynamically evolving LAM provides a progressively
more precise control interface, unlocking the world model’s full predictive potential.

The Virtuous Cycle of Co-evolution. These two experiments provide evidence for a virtuous cycle
of synergistic co-evolution: an improving world model better shapes the latent action representation,
which in turn enables more effective world modeling. This dynamic co-evolution creates a deeply
coupled and intrinsically consistent system. As shown in the following section, this property underlies
our model’s superior performance on downstream adaptation tasks.

4.4 ADAPTATION FOR REAL-ACTION-BASED SIMULATION

A key promise of latent-action-based world models is their adaptability to diverse, real-action control
interfaces. We evaluate this capability by adapting our world model to new, out-of-distribution robotic
environments including LIBERO and RoboDesk (Kannan et al., 2021).

Adaptation and Evaluation Protocol For each downstream dataset, we follow Gao et al. (2025) and
first train a lightweight two-layer MLP adapter to map the dataset’s real actions to the latent actions.
Subsequently, we fine-tune the world models for 3K steps. Crucially, this fine-tuning is performed
using ground-truth latent actions (GT-LAM), which are extracted from the downstream videos by the
frozen learned LAM. This ensures the world model learns the new environment’s dynamics from the
clean supervisory signal, consistent with its pre-training. Finally, we evaluate the fine-tuned world
model in two distinct modes: (a) using the same GT-LAM to assess the ideal performance ceiling
after domain-specific finetuning, and (b) using the trained adapter to translate real actions into latent
actions and assess the world model’s practical, real-action-based video prediction performance.

Results and Analysis. To evaluate our paradigm’s efficiency, we compare our jointly trained
WARM8K + E2E30K checkpoint against the more extensively trained LAM30K + WM30K two-
stage model. Despite using a smaller training budget, Table 3 shows that CoLA-World clearly
outperforms the two-stage baseline. In GT-LAM evaluation, it already demonstrates an advantage,
indicating that the jointly trained world model provides a stronger foundation for learning dynamics
in unseen environments.

Moreover, the performance gap between CoLA-World and the two-stage baseline becomes more
pronounced when evaluated with real actions, particularly on the FVD metric. This reflects a
fundamental distinction in how the LAM and world model interact under the two paradigms. The
two-stage model, fine-tuned on a fixed GT-LAM distribution, becomes rigidly calibrated to this static
representation. When faced with biased latent actions from an imperfect adapter, the world model
struggles to interpret these out-of-distribution signals, leading to a substantial performance drop.

By contrast, our world model co-evolves with a dynamically improving LAM, continually adapting
to a smoothly changing latent action landscape. This process endows the world model with a more
smooth and robust utilization of the latent action space, making it more resilient to the adapter’s
imperfections, correctly interpreting its biased outputs as functionally equivalent to the ground-truth
signals. This intrinsic consistency allows CoLA-World to generalize effectively from ideal training
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Table 3: Video prediction performance of the finetuned world models, taking latent actions inferred
by the LAM or translated from the real actions by the learned adapters as conditions.

DATASET ACTION TYPE METHOD PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓

LIBERO
GT-LAM LAM30K + WM30K 25.51 89.55 7.41 73.54

WARM8K + E2E30K 25.85 89.82 7.31 74.65

REAL ACTION
LAM30K + WM30K 22.45 86.96 9.56 115.45

WARM8K + E2E30K 22.68 87.15 9.27 93.68

ROBODESK
GT-LAM LAM30K + WM30K 24.21 86.99 7.41 120.51

WARM8K + E2E30K 24.29 87.04 7.57 120.26

REAL ACTION
LAM30K + WM30K 20.03 83.33 10.64 188.82

WARM8K + E2E30K 21.37 84.67 8.90 169.70

Table 4: Visual planning success rate on RoboDesk in the VP2 benchmark.

METHOD UPRIGHT BLOCK PUSH SLIDE FLAT BLOCK PUSH DRAWER AVERAGE

2-STAGE 20.0% 4.44% 1.11% 2.22% 6.94%

JOINT 37.78% 6.11% 3.33% 5.25% 13.12%

signals to practical real-world control interfaces. Furthermore, as shown by a quantitative analysis
of codebook metrics in Appendix D.1, the latent action space learned through joint training proves
robust to the potential representation collapse observed in the two-stage approach during downstream
adaptation, preserving its diversity and thus validating its strong generalization performance.

4.5 VISUAL PLANNING

To evaluate the final utility of our world model for downstream control, we assess the planning
performance of our adapted world models using the VP2 benchmark (Tian et al., 2023). We take the
CoLA-World and two-stage models previously fine-tuned on the RoboDesk dataset and evaluate their
ability to solve four challenging manipulation tasks using a sampling-based Model Predictive Control
planner. The results, summarized in Table 4, indicate that our CoLA-World paradigm demonstrates a
clear advantage over the two-stage approach, especially on Upright Block task. This confirms that
the superior simulation quality demonstrated in Section 4.4 translates into more reliable prediction
results for the planner, leading to more effective control.

On several complex tasks, both methods exhibited low performance, underscoring the inherent
difficulty of these high-precision manipulation problems for any planner relying purely on a learned
visual model. Nevertheless, the consistent and sometimes substantial performance gains achieved
by CoLA-World on the tractable tasks strongly validate our joint training methodology as a more
effective foundation for real-world control applications.

5 CONCLUSION, LIMITATION AND FUTURE WORK

In this work, we introduce CoLA-World, the first framework to successfully realize the synergistic
joint training of a latent action model with a pre-trained video-generation-based world model. A
critical warmup phase resolves the inherent instability of this approach, enabling co-evolution
between latent action learning and world modeling. Our experiments show that CoLA-World
significantly outperforms previous two-stage methods in both simulation quality and downstream
planning. A potential limitation is that the world model’s performance depends on the pre-trained
video generation model and requires substantial computational resources; however, this can be
mitigated with more efficient models, and our paradigm is broadly applicable for injecting latent
action conditioning. Future directions include evaluating the learned latent actions in vision-language-
latent-action settings (Chen et al., 2025; Bu et al., 2025) for robotic manipulation policy training,
and scaling our framework to train foundational world models on larger video datasets for broader
adaptability.
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All datasets used in our experi-
ments are publicly available, with detailed descriptions provided in Appendix A. Comprehensive
information on model architectures and training protocols can be found in Appendix B. Our code is
available in an anonymous repository for review at https://anonymous.4open.science/
r/CoLA-World , and model checkpoints will be released upon publication.
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LARGE LANGUAGE MODELS (LLMS) USAGE

We used large language models (LLMs) solely as a writing and code-assistance tool, for tasks such
as polishing text and providing autocomplete suggestions in code. The LLMs did not contribute to
the research ideation, experimental design, data analysis, or interpretation of results. All scientific
content, results, and conclusions are the original work of the authors.

A DATASET

We mainly focus on learning a latent action model and a world model for robotic manipulation
that is adaptable to diverse downstream embodiments and action spaces. The data mixture for
CoLA-World training is composed of both robot videos and human manipulation videos. For
robot data, we primarily use Open X-Embodiment (OXE) (Collaboration et al., 2023) mixture
and the AgiBot (AgiBot-World-Contributors et al., 2025) dataset. For human videos, we curate a
comprehensive collection from nine prominent datasets, including Something-Something V2 (Goyal
et al., 2017), RH20T (Fang et al., 2023), Ego4D (Grauman et al., 2022), EgoPAT3D (Li et al., 2022),
EGTEA Gaze+ (Li et al., 2018), HOI4D (Liu et al., 2022b), EPIC-KITCHENS (Damen et al., 2020),
HO-Cap (Wang et al., 2024a) and HoloAssist (Wang et al., 2023). The final data mixture consists of
approximately 30% OXE, 20% AgiBot, and 50% human video data.

B IMPLEMENTATION DETAILS

Our two-stage training baseline involves training a LAM consisting of an IDM and an FDM, as
well as a VQ quantizer to bottleneck the latent action space. Then the latent actions are inferred
from the video using the frozen IDM and quantizer, used to finetune a pre-trained OpenSora video
generation model into a world model, while the FDM is discarded. The joint training paradigm
trains the LAM (i.e. the IDM and the VQ quantizer) and the OpenSora world model simultaneously,
detaching the gradients of the world model’s weights when executing warm-up. For fair comparison,
the architectures of the IDM, the quantizer and the world model as well as the action conditioning
moodules of the two paradigms are totally the same. We then elaborate each of the mentioned
components above.

B.1 IDM, FDM AND THE QUANTIZER

The IDM is implemented as an 12-layer ST-Transformer (Xu et al., 2020). Each block has a hidden
dimension of 768 and 12 attention heads. The FDM is implemented as an 12-layer spatial Transformer
with the same number of hidden dimension and attention heads as the IDM. Between the IDM and
FDM, we apply vector quantization (Van Den Oord et al., 2017) to produce latent actions, which is
composed of two 32-dimensional action tokens chosen from the codebook. The codebook contains
32 entries, yielding a total number of 1024 different latent action choices. The IDM takes an T ×
224 × 224 × 3 video clip as input, first patchified with a patch size of 14 and then processed by the
ST-Transformer to predict T − 1 latent actions. The FDM concatenates the image patches and the
predicted latent action tokens, using the spatial transformer to produce pixel decoding results of the
next frames. The IDM and FDM both have about 0.12 B parameters.

B.2 WORLD MODEL BASED ON THE PRETRINED OPENSORA MODEL

We adopt the pre-trained OpenSora model as the backbone of the world model. We use the v1.2 release
with about 1.2 B parameters. As mentioned in Section 3.3, we add an extra from-scratch module
for conditioning the video generation of OpenSora on the extracted latent actions, including 6 self-
attention blocks to process the latent action sequence and an MLP to get the final AdaLN parameters
of the latent actions, which are then fused with original diffusion timestep AdaLN parameters and
modulate the attention results in each OpenSora DiT block. We initialize the weights in the action
attention blocks as zero, to ensure a steady training at the beginning. Similar AdaLN-style action
conditioning method is also explored in previous work (Zhu et al., 2024; He et al., 2025). However,
their action inputs are fixed and not learnable, while our latent actions and conditioning layers are
dynamically refined by the world model’s own objective, which sets our method apart.
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These newly introduced from-scratch modules to the OpenSora have about 74M parameters. The
original layers in OpenSora for processing the texts, as well as the cross attention layers for fusing
visual and text modalities, are discarded. Then there the about 0.93 B learnable parameters in the
OpenSora, including the newly added action conditioning modules. Moreover, the original temporal
transformer blocks in the OpenSora Dit are not causal, and we add causal masks in them to prevent
future information influencing the past, which is unfavorable in dynamics modeling.

During training, the OpenSora WM takes in 256-resolution videos and the extracted latent action
sequence, adding noise to the ground-truth videos and forwarding them through the DiT to predict the
velocity vector, and building the prediction loss in the context of rectified flow. We use a timestep-wise
classifier-free guidance, where during training we randomly mask the action condition as zero in a
probability of 0.1 at each timestep of the sequence, and apply a guidance scale of 4.0 for sampling
during inference. The number of denoising timestep is 10 in inference.

B.3 TRAINING DEATILS

Latent Action Training of the two-stage paradigm After FDM producing pixel reconstruction
results, we simply build the MSE loss between the reconstruction and the ground-truth ”next frame”
observation, in a teacher-forcing manner, rather than multi-step auto-regression. The vq loss and
commitment loss introduced by the vq technique are also included to update the IDM and the
codebook, and their loss weights are 1.0.

World Model Training of the two-stage paradigm As mentioned above, the OpenSora world model
builds the flow matching loss using the input videos and the detached latent actions and update the
OpenSora model, as well as the action conditioning modules.

Training of CoLA-World paradigm The OpenSora world model now builds the flow matching loss
using the input videos and the learnable latent actions. The gradients then backpropagate throughout
the whole system. The IDM, VQ quantizer and the action conditioning modules introduced in the
OpenSora will be updated, while the pretrained weights of the original OpenSora model will only be
updated after warm-up phase. The IDM and VQ quantizer will also receive gradients from the vq
loss and commitment loss both during warm-up and end-to-end phase, similar to the latent action
training in the two-stage paradigm.

Other training protocols. To ensure fair comparison, both training paradigms use a learning rate of
7.5e-5, a batch size of 128, and a 2000-step linear warmup schedule for the learning rate. When the
LAM model is updating (LAM training of 2-stage paradigm, and all of the joint training paradigm),
we use random crop to the video clips as a data augmentation trick to improve performance, while
when the LAM is fixed, we do not use the augmentation and direct use the IDM to extract the latent
actions from the original video.

C EVALUATION DETAILS

C.1 EVALUATION SETUP

For linear probing task and all the video prediction tasks, we train the prober head (the LAM and the
world model) on the training split of the given dataset mixture, and validate on the valid split. For
example, for linear probing on out-of-distribution LIBERO dataset, in fact the LAM is previously
trained on the whole training data, and the prober head is now trained on the training split of the
unseen LIBERO dataset. Then, we test the performance of the LAM and the prober by probing the
loss on the valid split of the LIBERO dataset, and record the results. For all the probing tasks, we
train the prober head for 1K steps with a batch size 64 on 8 gpus (512K samples in all), and validate
on 20K test samples. For all the video prediction tasks, we evaluate on a fixed test dataset for each
data mixture, consisting of 240 video clips on each gpu, and the performance is averaged.

C.2 REAL ACTION ADAPTATION

When adapting the trained world model to a downstream real action space, we first train the adapter
predicting the GT-LAM vq code indices from the real actions using a 2-layer MLP. This takes 1K
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Figure 5: Codebook metrics in different training and adaptation stages. All subplots share the same
legend, shown only in the middle panel for clarity.

steps training with a batch size of 64. We then finetune the world model on downstream dataset using
Gt-LAM for 3K steps with a batch size of 16.

C.3 VISUAL PLANNING ON VP2ENCHMARK

We test the learned world model’s utility in control on RoboDesk environment using the evaluation
protocol from VP2 benchmark. Each task of the RoboDesk environment in VP2 benchmark is
specified by 30 pairs of initial observation and goal observation. When testing on one task, every
time we sample such a pair and the agent needs to use the world model to plan the trajectory starting
at the initial state towards the goal. The reward function is also provided by VP2, defined as the
weighted sum of the MSE loss between the predicted video and the goal observation, with a pretrained
binary classifier’s predicted logit on the current task. The classifier’s weights are also provided by
the benchmark. Finally, the task success rate is the ratio of success trajectories in these 30 runs.
Moreover, VP2 offers trajectory data on RoboDesk, and the experiments of world model downstream
adaptation on RoboDesk in Section 4.4 is conducted by training the adapter and finetuning the world
model on these data.

D ADDITIONAL RESULTS

D.1 ANALYSIS OF CODEBOOK DYNAMICS IN DOWNSTREAM ADAPTATION

To provide deeper quantitative insight into the mechanisms behind our paradigm’s superior down-
stream real-action-adaptation performance over two-stage method, we analyze the metrics of the VQ
codebook. For both CoLA-World and the Two-Stage baseline, we compare three distinct latent action
distributions on the LIBERO and RoboDesk datasets:

(a) Training Distribution: The latent action distribution in our general training.

(b) GT-LAM Fine-tuning Distribution: The ground-truth latent action distribution inferred by the
frozen LAM encoder from the downstream task videos, used for fine-tuning the world model.

(c) Adapter-LAM Inference Distribution: The latent action distribution produced by the trained
adapter when translating the downstream task’s real actions.
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The results, visualized in Figure 5, reveal a stark contrast in how the two paradigms adapt their latent
action space.

As shown in the bar charts, the two-stage method exhibits a dramatic representational collapse
when adapting to the downstream tasks’ real actions. While the codebook utilization and entropy
are reasonable during pre-training (a), they decrease when the model is fine-tuned on the narrower
distribution of the downstream GT-LAM (b). Most critically, when the adapter is used for inference
(c), the codebook metrics degenerate severely and tend to collapse: codebook utilization plummets to
nearly 10% on RoboDesk, with the max usage metric spiking to approximately 0.5 on both LIBERO
and RoboDesk. This indicates that the adapter has found a “lazy shortcut” by mapping the vast
majority of real actions to a single, all-purpose latent code. This is a direct cause of the model’s low
performance and its inability to handle the full complexity of the control task.

In contrast, the overall codebook usage is relatively healthy in our CoLA-World paradigm under
the Adapter-LAM setting. The entropy remains high and the max usage stays at a relatively low
level compared to the two-stage baseline. This provides direct, quantitative evidence that the co-
evolutionary process has forged a more robust and flexible latent action space for downstream
adaptation and generalization. The constant, supervisory feedback from the powerful world model
tutor prevents the LAM from taking degenerative shortcuts, compelling them to learn a richer, more
meaningful representations. This preserved diversity of the codebook is a cornerstone of our system’s
adaptation performance and its ability to robustly generalize.

To conclude, and in conjunction with our analysis in Section 4.4, our joint training paradigm’s success
in downstream adaptation stems from co-evolution forging an intrinsically consistent and deeply
coupled system, which manifests in the dual advantages of a collapse-resistant latent action space
and a world model that robustly utilizes it.

Figure 6: Action transfer results. The first image of the generated video comes from a different
dataset from the source video.
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D.2 ACTION TRANSFER RESULTS

Here we provide action transfer results in Figure 6, where our learned LAM in CoLA-World extracts
the latent actions from the source video, and the world model generates the video from an initial
image, taking these latent actions as conditions. For each video pair below, the top video is the source
video, while the bottom one is the generated action-transfer video. We notice that the generated
videos show a strong resemblance in semantic meaning to the source videos. To avoid too large PDF
file, we provide additional qualitative results for action transfer videos in our anonymous repository.
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