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Abstract
Speech Foundation Models encounter significant performance degradation when
deployed in real-world scenarios involving acoustic domain shifts, such as back-
ground noise and speaker accents. Test-time adaptation (TTA) has recently emerged
as a viable strategy to address such domain shifts at inference time without requir-
ing access to source data or labels. However, existing TTA approaches, particularly
those relying on backpropagation, are memory-intensive, limiting their applicability
in speech tasks and resource-constrained settings. Although backpropagation-free
methods offer improved efficiency, existing ones exhibit poor accuracy. This
is because they are predominantly developed for vision tasks, which fundamen-
tally differ from speech task formulations, noise characteristics, and model ar-
chitecture, posing unique transferability challenges. In this paper, we introduce
E-BATS, the first Efficient BAckpropagation-free TTA framework designed ex-
plicitly for speech foundation models. E-BATS achieves a balance between adap-
tation effectiveness and memory efficiency through three key components: (i)
lightweight prompt adaptation for a forward-pass-based feature alignment, (ii)
a multi-scale loss to capture both global (utterance-level) and local distribution
shifts (token-level) and (iii) a test-time exponential moving average mechanism
for stable adaptation across utterances. Experiments conducted on four noisy
speech datasets spanning sixteen acoustic conditions demonstrate consistent im-
provements, with 4.1%–13.5% accuracy gains over backpropagation-free baselines
and 2.0×–6.4× GPU memory savings compared to backpropagation-based meth-
ods. By enabling scalable and robust adaptation under acoustic variability, this
work paves the way for developing more efficient adaptation approaches for practi-
cal speech processing systems in real-world environments. Code is available at:
https://github.com/JiahengDong/E-BATS

1 Introduction
Speech foundation models (SFM), large-scale pre-trained models that learn generalized represen-
tations from vast amounts of unlabeled speech data, have shown strong performance for a wide
range of applications including voice assistants [1], transcription services [2], and accessibility tools
[3]. These systems generally rely on the assumption that the training and test data follow the same
distributions. In practice, this assumption is often violated, leading to significant performance drops
under domain shifts caused by real-world acoustic variations such as background noise, speaker
accents, and microphone characteristics [4]. While domain adaptation [5, 6, 7, 8] and domain gen-
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eralization [9, 10, 11, 12] have been extensively studied to address distributional shifts, they often
require access to labeled target domain data or continuous availability of raw source data. These
requirements are seldom feasible in real-world scenarios following model deployment. Recently,
Test-Time Adaptation (TTA) has emerged as an attractive solution, adapting pre-trained models to
new domains during inference using only unlabeled test data.

Existing TTA methods can be broadly categorized into backpropagation-based (BP) and
backpropagation-free (BP-free) approaches. While the former achieved state-of-the-art (SOTA) perfor-
mance using entropy minimization [13, 14, 15, 16, 17, 18, 19] or pseudo-labeling techniques [20, 21],
they have a large memory overhead, mainly due to gradient computation. Even when updates are
limited to a small subset of model parameters, such as batch normalization layers [13, 14, 15] or
early exits [22], these methods still require high GPU memory due to automatic differentiation
frameworks. This significantly limits their practical use in continuous inference scenarios and on
resource-constrained devices. In contrast, BP-free TTA methods eliminate the need for gradient
computation, making them more efficient and computationally lightweight. These methods either
modify the model parameters during the forward pass [23, 24, 25, 26, 27] or learn a new input
prompt, a vector integrated with the partially processed input samples at an intermediate layer of the
model [28].
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Figure 1: The main difference between (a)
Vision Foundation Models and (b) Speech
Foundation Models (SFMs) is the sequential
pipeline in SFMs that processes a fixed-length
frame of an utterance as an input and maps to
a distribution over |V| token classes.

Despite the promise of TTA, they are largely tailored
to models that depend on Batch Normalization (BN),
while SFMs use Layer Normalization (LN), limiting
the applicability of BN-based TTA [16]. Addition-
ally, SFMs include both CNN-based feature encoders
extracting localized spectral features and transformer
encoders processing global context. This is unlike
models in other modalities like vision, which are
either CNN-based (e.g., ResNet [29]) or transformer-
based (Vision Transformer [30]). Such architectural
difference presents a fundamental challenge for BP-
free feature adaptation. Furthermore, downstream
tasks and noise characteristics differ significantly be-
tween vision and speech tasks. As shown in Figure 1,
vision models are commonly used for image classi-
fication, a one-to-one mapping task where noise typ-
ically appears as spatial perturbations of pixels [31].
In contrast, speech recognition involves sequence-to-sequence mapping and must handle dynamic,
temporally varying noise across frames [32]. This requires more dynamic, multi-scale adaptation.
Lastly, TTA methods often depend on large batch sizes for reliable adaptation, whereas TTA in speech
tasks needs to process one utterance at a time (batch size of 1) due to the high variability across
speech utterances [16, 18]. Despite recent developments in TTA for SFMs [16, 19, 18, 17, 21], they
still heavily rely on the BP-based TTA methods with high computational overhead, and overlook the
unique requirements of multi-scale adaptation.

To address these challenges, we propose the first Efficient BAckpropagation-free single-utterance TTA
framework for SFMs, E-BATS, which achieves SOTA accuracy with memory efficiency. Here we
focus on one of the most popular tasks on speech data – speech recognition. E-BATS consists of three
novel modules: i) A lightweight, prompt-based tuning mechanism tailored for SFMs which directly
adapts latent feature distribution using forward pass only; ii) a custom multi-scale loss function that
captures both global (utterance-level) and local (token-level) latent embeddings distribution shifts;
and iii) a test-time Exponential Moving Average (T-EMA) module that stabilizes prompt updates
across dynamic utterances. The main contributions are threefold:

• We introduce the first backpropagation-free TTA approach tailored explicitly for SFMs that
achieves high accuracy and low memory consumption.

• We propose a novel framework E-BATS, consisting of three novel modules to effectively
address the multi-scale domain shifts and stable adaptation across the dynamic speech
streams.

• We validate E-BATS across four noisy datasets, sixteen acoustic environments, and two
model architectures have demonstrated significant improvements in both accuracy and mem-
ory, particularly 2× to 6.4× reduction in peak GPU memory usage over SOTA baselines.
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2 Related Works
Memory-Intensive BP TTA Methods. Traditional backpropagation-based TTA methods are gen-
erally memory-intensive, as they rely on gradient-based updates of model parameters, typically
guided by entropy minimization or pseudo-labeling. TENT [13] was the first to adapt the affine
parameters of the BN layers using entropy minimization. SAR [15] and EATA [14] are variants of
TENT, which further filter out a small portion of data samples that are unreliable and redundant.
Although they only update a small portion of the overall parameters, the computation is still overhead
due to backpropagation and the large batch size required for reliable adaptation [15]. More advanced
methods, like CoTTA [20], employ additional networks (e.g., teacher-student models) for adaptation,
but at the cost of significantly increased computational and memory overhead.

TTA for SFMs. A few recent TTA approaches have been tailored for SFMs, which typically extend
memory-intensive BP TTA methods with speech-specific mechanisms [16, 18, 19]. SUTA [16] built
upon TENT by updating CNN-based feature encoder layers alongside normalization parameters,
incorporating techniques like temperature smoothing and Minimum Class Confusion loss. SGEM
[18] and CEA [19] further improved upon this with advanced loss design for audio tasks, such as
sequence-level entropy minimization or uncertainty-driven frame prioritization. DSUTA [17] and
AWMC [21] introduced additional subnetworks (e.g., fast-slow models and anchor-chaser-leader
models) to enhance cross-utterance knowledge transfer. However, these methods still heavily rely on
backpropagation, leading to significant memory overhead and scalability challenges as more layers
are updated beyond normalization.

BP-free TTA Methods. BP-free TTA methods offer an efficient alternative by updating the model
solely via forward pass to achieve computational efficiency. These methods generally fall into three
categories: (i) analytical adjustment of batch normalization statistics [23, 24, 25, 26], (ii) adaptation
of the classifier using class prototypes [27] or output probabilities [33], and (iii) optimization via
evolutionary algorithms that circumvent gradient-based updates [28]. However, they typically
offer lower adaptation accuracy compared to memory-intensive BP TTA methods [13, 20, 14, 15].
Currently, BP-free TTA for speech foundation models remains unexplored, primarily due to the unique
challenges posed by sequence-to-sequence learning, single-utterance adaptation rather than batches,
and differences in model structures, particularly in normalization layers and feature encoders.

3 Methodology
3.1 Overview
We consider a covariate shift between the source and a target domain, such that the marginal
distributions of speech differ, Psrc(X) ̸= Ptgt(X), while the class prior Psrc(y) = Ptgt(y) and
the conditional distribution Psrc(y | X) = Ptgt(y | X) are preserved. We adapt an SFM Θsrc,
pre-trained on a source speech dataset Dsrc, to improve transcription accuracy while maintaining
the low peak memory usage on an unlabeled target speech dataset Dtgt. A target stream Dtgt =
{X1, . . . ,XT } consists of T utterances arriving sequentially, each is processed under an online,
single-utterance setting with a batch size of one. Each utterance Xt is composed of a variable number
of frames Nt and is represented as a sequence of frame-level feature vectors, where each frame
represents a short, fixed-duration segment of the audio signal: Xt =

[
x1
t ,x

2
t , . . . ,x

Nt
t

]
, xi

t ∈ Rdin .
The model Θsrc is composed of two components, Θ = g ◦ h, where: (a) h is a convolutional
encoder that maps each input frame to a latent embedding: xi

t 7→ zi
t ∈ Rd. (b) g consists of

a stack of transformer layers and a Connectionist Temporal Classification (CTC) classifier head,
producing frame-level posterior distributions over CTC token classes v ∈ V , where V consists
of twenty-six alphabet token classes (a–z) and six special token classes (apostrophe, blank, etc.):

g(Zt) =
{
P (yit | z

1:Nt
t )

}Nt

i=1
. These posteriors are further decoded to produce each utterance’s final

transcription ŷt.

System Overview. As shown in Figure 2, for a test-time utterance Xt, the model first employs
a Lightweight Prompt Adaptation (LPA) module, which directly modifies the CNN encoder fea-
tures Zt by incorporating J learnable prompt vectors st,j . These prompts are sampled using the
derivative-free Covariance Matrix Adaptation Evolution Strategy (CMA-ES), guided by a multi-scale
adaptation loss Ladapt. The prompt that results in the lowest loss is selected for adaptation. The loss
comprises three components: entropy minimization (Lent), utterance-level (Lutt), and token-level
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Figure 2: Overall framework of E-BATS. For an utterance Xt: (i) Lightweight Prompt Adaptation
(LPA): CNN-extracted latent features Zt are adapted using a set of J candidate prompts st,j generated
by CMA-ES in parallel, leading to J adapted representations. (ii) The adapted representations J
are evaluated, and their corresponding prompts are ranked using a multi-scale loss (entropy loss,
utterance-level and token-level feature alignment). This ranking guides the iterative update of CMA-
ES parameters over K iterations until the loss converges, at which point the best prompt is selected
for adaptation. The CMA-ES parameters are smoothed using T-EMA for next utterance adaption.
(b) Test-time Exponential Moving Average (T-EMA): T-EMA stabilizes adaptation by smoothing the
CMA-ES search trajectory across a stream of utterances, facilitating robust prompt learning.

latent embeddings alignment (Ltoken). To promote stable adaptation across consecutive utterances, a
Test-time Exponential Moving Average (T-EMA) module (Figure 2(b)) incrementally updates the
CMA-ES search distribution, enabling smoother evolution of the prompt vector st,j over time.

3.2 Lightweight Prompt Adaptation (LPA)

To ensure memory efficiency, E-BATS adopts prompt tuning [34]. This technique introduces a
small set of learnable parameters, called prompts, to guide the behavior of a pre-trained model on
a downstream task while keeping the original model weights fixed. While conventional prompt
tuning approaches have primarily been developed for transformer-only architectures [30], typically by
concatenating prompts with the model’s inputs, we propose a novel LPA module (Figure 2a) designed
specifically for SFMs that include convolutional components. The LPA integrates adaptive prompts
directly into the convolutional layers, leveraging their effectiveness in extracting acoustic features [16].
Furthermore, rather than common strategy of concatenating prompts with input features [28], our
approach examines latent feature distribution shifts and leverages shifting patterns to guide adaptation.
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Figure 3: Comparing the source and target latent
spaces across different acoustic conditions (same
sample size for source and target domain within
each condition). Blue and red bars indicate the
mean and covariance shifts.

Characterizing Distribution Shifts. To un-
derstand differences in speech distribution, we
first characterize the shift between the embed-
ding vectors produced by source P (Zsrc) and a
target domain P (Ztgt). We study the two most
natural ways, covering both first and second or-
der statistics: a) comparing shift in the centroid
of the point clouds, and b) comparing the spread
of the point clouds using their covariances. Inci-
dentally, the popular distance measure between
distributions, Fréchet Inception Distance, is a
linear combination of these two factors, justi-
fying our choice. Figure 3 shows that, under
various real-world noise and variability condi-
tions, the shift in the mean accounts for up to
7.8× of the shift in the covariance (we make sure they are in comparable scale, explained in Ap-
pendix A).
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From this observation, we hypothesize that the shift between Dsrc and Dtgt can be explained by
a simple geometric translation operation in the latent space; therefore, an adequate shift of target
embeddings, Zt would align the latent target vectors to the ones from the source, essentially mitigating
the problem of domain shift. It is important to note that, despite the potential for a translation operation,
this remains a non-trivial problem. In real-world scenarios, noise is not consistently introduced into
clean samples, making it impossible to derive a simple solution based on an analyzable shifting vector.
Therefore, adaptively learning the prompt becomes necessary.

Learning Prompt to Adapt. Following the above observation, we propose to add the embeddings
Zt and the prompt vector st over all frames (Figure 2a) as:

Ẑt = Zt + st · 1⊤
N , (1)

where Zt =
[
z1
t , . . . , z

Nt
t

]
, st ∈ Rd is the prompt vector for Xt. We exclusively optimize the

prompt vector for each utterance while the rest of the model parameters remain frozen.

Prompt Optimization with CMA-ES. To identify the optimal prompt vector in a backpropagation-
free manner, we adopt the CMA-ES [35]. For each test-time utterance Xt, CMA-ES samples J
candidate prompt vectors st,j from a multivariate normal distribution N (.), which are parameterized
by a mean vector mt ∈ Rd, a covariance matrix Ct ∈ Rd×d, and a step size σt ∈ R>0. The
performances of these candidates are then ranked based on a loss function (explained in Section 3.3),
which informs the update of the distribution parameters m(k)

t ,C
(k)
t , σ

(k)
t for the next iteration k. The

step size scales the covariance and thus controls the spread of candidate samples drawn from the
distribution in the next iteration. The iteration continues until the loss convergences. The final prompt
vector st is selected as the candidate that minimizes the loss for adaptation (Appendix D):

st = arg min
st,j∈Rd

Ladapt(Xt, st,j). (2)

3.3 Multi-scale Loss Function

The loss function Ladapt that effectively guides the prompt optimization is proposed to integrate
entropy minimization (Lent) with feature alignment to the source domain latent embedding distribu-
tions at multiple scales, i.e., utterance-level (Lutt) and tokenwise (Ltoken). We optimize a weighted
average using Ladapt = αLent + βLutt + cLtoken where α and β are hyperparameters, and c is
chosen algorithmically based on the confidence in the prediction.

Entropy Minimization Loss with Blank Token Exclusion (Lent). Entropy minimization aims
to improve prediction confidence, which is further improved with blank token exclusion for SFMs.
SFMs for speech recognition include a special ‘blank’ token class ∅, which is primarily designed in
CTC to address the alignment mismatch between input frames and output labels [36] with different
lengths. In recent studies, it often indicates frames where no alphabetic character can be assigned,
helping to eliminate the need to identify ambiguous sound boundaries [36] and highlighting silent
periods [37]. In practice, predictions for a large proportion of the frames often belong to this blank
class, which introduces class imbalance [16]. We address this by defining the entropy loss only
considering the set of frames X̃t that do not predict blanks. Formally, we use Shanon’s entropy as
Lent = − 1

|X̃t|

∑
xi
t∈X̃t

H(Θ(xi
t)).

Despite its effectiveness, minimizing only Lent has a trivial solution of predicting the blank token
class for each frame (as highlighted in Section 5.5). Thus, we introduce an utterance-level latent
embeddings alignment loss to guide optimization towards the source domain embeddings correctly.

Utterance-level Latent Embeddings Alignment (Lutt). Utterance-level latent embeddings align-
ment aims to align the global latent embedding distributions between the source domain and the
target domain to avoid trivial solutions. At each transformer encoder layer, l, we compute the squared
Euclidean distance between the source-domain centroid and the target-domain centroid of utterance-
level latent embeddings (Figure 2a(ii)). Each utterance-level embedding is obtained by averaging the
embeddings across all frames within that utterance. Effectively, we compute and store the centroids,
µsrc using Dsrc and Θsrc and compare against the centroids, µtgt, computed from the current target
utterance. This gives us the following loss component: Lutt =

1
L

∑L
ℓ=0 ∥µl

tgt − µl
src∥22, where L is

the number of transformer layers in Θ. Note that µsrc requires a small storage size, in the order of
L× d, and as this does not correspond to an individual source sample, it is privacy preserving.
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Adaptive Confidence Tokenwise Latent Embeddings Alignment (Ltoken). The tokens within a
single utterance may not comprehensively represent all possible tokens. Aligning the centroids of
the source and target utterance-level embeddings could lead to bias towards the majority tokens. To
address this, we minimize the distance between the source and target latent distributions corresponding
to token classes, where target token classes are estimated using pseudo-labels. To prevent unreliable
pseudo-labels from distorting adaptation, we introduce adaptive confidence coefficients for the token-
level loss. Specifically, when overall distribution shifts are substantial or entropy is high, this indicates
less reliable posterior probabilities and a higher risk of inaccurate token pseudo-labels. In such cases,
the confidence for token-level loss is reduced to minimize the impact of misleading token predictions.
Conversely, if the shifts are minor or entropy is low, stronger alignment of token-level distributions
can be applied with greater confidence.

Formally, we represent the mean µv,l and the standard deviation σv,l of the distribution for each
token class v ∈ V in a d-dimensional space at transformer layer l. Then we define the loss as the
average distance between distributions as:

Ltoken =
1

L

1

|V|

L∑
l=0

∑
v∈V

(∥∥∥µv,l
tgt − µv,l

src

∥∥∥2
2
+
∥∥∥σv,l

tgt − σv,l
src

∥∥∥2
2

)
. (3)

Note that the storage cost for µv,l
src and σv,l

src is small and in the asymptotic order of 2× L× 32× d.
This is privacy-preserving as the distribution parameters are sample-agnostic.

We further introduce an adaptive confidence c ∈ [0, 1] to adjust the trustworthiness of token-level
predictions. We propose using the inverse of the combined loss H = Lent + Lutt as the confidence-
based coefficient, where high H means lower confidence. We define the normalized coefficient using
min-max normalization with predefined bounds Hmin, Hmax and cmax as: c = cmax− H−Hmin

Hmax−Hmin+ϵ ,
where ϵ is a small constant to prevent division by zero. This adaptive confidence-aware scaling
strengthens token-wise control via prediction reliability and domain shift.

Optimizing through CMA-ES. The CMA-ES parameters are optimized using Ladapt, driving the
prompt optimization. By iteratively minimizing Ladapt for candidate prompt vectors within each
utterance, CMA-ES could be updated to effectively generate prompts that robustly mitigate both
global (utterance-level) and local (token-level) acoustic domain shifts.

3.4 T-EMA across Utterances
To stabilize adaptation across the utterance streams, we propose T-EMA that updates the CMA-ES
parameters incrementally, ensuring a smoother and more consistent search space for the prompt
(Figure 2b). It leverages the knowledge from past utterances to initialize each new search more
robustly, thereby reducing overfitting and mitigating model drift. This serves as the first smoother
adaptation strategy for BP-free TTA in SFMs.

CMA-ES statistics parameters are carried over between utterances using the following weighted
average scheme. We introduce EMA statistics, e.g., mema, that are updated using a hyperparameter
γ ∈ [0, 1) to weight the past and current statistics values. Such an update happens when all K
iterations have finished for an utterance. For example, at the end of processing t-th utterance, the
mean of the distribution is updated as mema = γmema + (1 − γ)m

(K)
t , where the mema is

initialized with m0 when t = 0. Then, mt+1 is set to mema from the previous round for next
utterance prompt learning. The other statistics, covariance and step size are updated in the same way.

4 Experiments
Datasets. We evaluate the proposed method on four datasets across sixteen acoustic conditions to
assess its effectiveness under varying domain shifts. The test sets encompass three categories of acous-
tic variability: synthetic noise, single-domain distributional shifts, and multi-domain distributional
shifts, reflecting the range of conditions encountered in real-world deployment. Following [16, 19],
we introduce synthetic noise to the LibriSpeech test-other split [38] with additive Gaussian noise
with zero mean and varying standard deviations (σ ∈ {0.0, 0.005, 0.01, 0.015, 0.02}) to simulate
covariate shifts. We use the CHiME-3 dataset [39] representing single domain shift in a sample,
including four acoustic environments: bus, café, pedestrian area, and street junction. We further use
CHiME-3-Mix that creates a dynamic stream by concatenating CHiME-3 environments to emulate
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Table 1: Word Error Rate (WER) on various noisy conditions using Wav2Vec2ForCTC-Base. Lower
value means better adaptation performance. Bold represents the best performance for BP-free TTA,
while underlined means the best for both BP-based and BP-free TTA.
Method BP- Gaussian noise CHiME3 CHiME3 TED Common

free 0.0 0.005 0.01 0.015 0.02 Avg (Single) (Mixed) Voice
Source — 8.6 13.9 24.4 39.5 54.5 28.2 34.2 34.2 13.2 36.8
TENT ✗ 8.5 14.0 24.1 39.2 54.3 28.0 34.1 34.1 13.1 36.8
EATA ✗ 14.1 18.1 27.0 37.9 51.3 29.7 33.1 39.9 14.1 61.3
SAR ✗ 8.4 13.6 22.9 36.0 49.9 26.2 33.6 34.7 13.0 38.2
CoTTA ✗ 9.2 12.6 18.1 39.3 54.5 26.7 32.9 34.3 12.8 36.9
CEA ✗ 7.5 11.1 16.4 23.8 33.6 18.5 26.8 26.8 12.0 31.5
SGEM ✗ 7.3 10.9 16.4 23.8 33.9 18.5 27.2 27.1 11.9 31.2
AWMC ✗ 9.5 11.7 16.6 23.9 31.8 18.7 34.0 33.9 13.6 37.9
SUTA ✗ 7.3 10.9 16.5 24.1 34.1 18.6 26.8 26.8 11.9 31.5
CSUTA ✗ 13.1 17.5 24.5 31.4 37.0 24.7 26.5 32.6 15.6 135.0
DSUTA ✗ 9.0 11.7 16.1 21.1 24.1 16.4 24.0 24.1 12.7 36.1

T3A ✓ 10.0 15.9 26.8 42.7 58.6 30.8 35.9 35.8 14.6 38.8
LAME ✓ 9.1 15.0 26.0 42.4 58.2 30.1 36.0 36.0 14.0 38.8
FOA ✓ 8.7 13.9 22.7 33.3 45.3 24.8 31.7 31.1 13.3 38.2
Ours ✓ 7.7 10.5 14.8 19.9 25.3 15.6 24.0 24.3 12.5 30.6

non-stationary acoustic shifts [17]. CommonVoice (CV) [40] introduces variability in speaker accents,
recording devices, and environments and TEDLIUM-v2 (TED) [41] comprises oratory speech from
TED talks with diverse accents, speaking styles, and syntactic structures.

Baseline Methods. We compare E-BATS against 13 SOTA TTA baselines. The BP methods
include general approaches of Episodic TENT [13], SAR [15], EATA [14], and CoTTA [20], as well
as speech-specific methods: SUTA [16], CEA [19], SGEM [18], DSUTA [17], CSUTA [17], and
AWMC [21]. The BP-free methods include LAME [33], T3A [27], and FOA [28]. Dataset and
baseline details are provided in Appendix B.

Implementation Details. All TTA baselines are configured for per-utterance adaptation with batch
size of 1. For E-BATS, we set the CMA-ES population size J = 50. The loss function coefficients
are α = 1.0 and β = 2.0. We use Hmin = 0.0, Hmax = 5.0 in calculating the confidence-weighted
coefficient c with cmax = 2.0 optimized over {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}. Evaluation is
performed using two commonly used SFMs, Wav2Vec2ForCTC-Base [42] and HuBERTForCTC-
Large [43]; both models are fine-tuned on LibriSpeech and then are adapted in our experiments. The
pre-collected statistics are sourced from clean LibriSpeech data samples. For T-EMA, we select
γ = 0.9 for Wav2Vec2 and γ = 0.8 for HuBERT after tuning over {0.7, 0.8, 0.9, 0.95, 0.99}. We
use Word Error Rate (WER) [44] as the evaluation metric, which measures the fraction of incorrectly
predicted words in the dataset. A lower WER indicates better performance. We further conducted
sensitivity analyses on key hyperparameters in Appendix C.3, including the CMA-ES population
size (J), the number of iteration steps (N ), the loss component weights (α, β), and the T-EMA decay
factor (γ), confirming that the chosen settings yield stable and robust performance across diverse
configurations. All experiments are conducted on a single NVIDIA A100 GPU. Implementation
details are provided in Appendix B.

5 Results and Discussion
5.1 Comparing accuracy to SOTA
Experiments using Wav2Vec2ForCTC-Base (Table 1) show that E-BATS consistently outperforms
all BP-free TTA baselines across datasets, with WER reductions ranging from 0.8% to 20.0% over
the strongest alternative. Its performance gains increase with noise severity, achieving at least 3.4%
improvement at σ = 0.005 and 20.0% at σ = 0.02, highlighting robust adaptation under challenging
conditions. T3A and LAME degrade the source model, indicating that updating only the final
classifier is insufficient. FOA, which also uses prompt tuning, performs better but remains less
effective than E-BATS, likely due to difficulties in adapting transformer layers for acoustic shifts
(Section 5.5).
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Table 2: WER on various noisy conditions using HuBERTForCTC-Large. Lower is better. Bold: best
among BP-free; underlined: best overall.
Method BP- Gaussian noise CHiME3 CHiME3 TED Common

free 0.0 0.005 0.01 0.015 0.02 Avg (Single) (Mixed) Voice
Source — 4.2 5.0 6.4 9.0 12.8 7.5 16.5 16.5 9.1 21.4
TENT ✗ 4.2 4.9 6.3 8.8 12.5 7.3 16.4 16.4 9.0 27.5
EATA ✗ 7.4 8.4 9.5 11.3 13.7 10.1 16.2 18.9 9.7 34.4
SAR ✗ 4.0 4.7 6.3 8.6 12.2 7.2 16.4 17.3 9.0 21.7
CoTTA ✗ 4.4 5.1 6.3 8.3 11.0 7.0 16.2 15.3 9.0 25.8
CEA ✗ 3.8 4.2 5.1 6.7 9.1 5.8 14.2 14.1 8.1 18.3
SGEM ✗ 3.7 5.3 5.3 6.9 9.3 6.1 14.2 14.2 8.3 18.4
AWMC ✗ 5.5 6.4 8.2 10.7 14.3 9.0 15.9 17.2 9.9 21.9
SUTA ✗ 3.8 4.2 5.1 6.8 9.2 5.8 14.2 14.2 8.2 18.4
CSUTA ✗ 6.0 6.8 7.9 9.5 11.9 8.4 14.7 16.2 10.2 90.0
DSUTA ✗ 4.6 5.0 6.0 7.1 8.8 6.3 13.3 13.5 8.7 27.4

T3A ✓ 14.4 15.8 18.9 24.2 30.2 20.7 27.9 32.3 22.5 46.2
LAME ✓ 4.5 5.3 6.9 9.8 13.9 8.1 17.5 17.5 9.7 22.6
FOA ✓ 4.5 5.3 6.8 9.2 12.9 7.7 16.4 16.7 9.3 22.8
Ours ✓ 4.3 4.9 5.9 7.5 9.5 6.4 14.0 14.0 9.3 20.1

Compared to BP-based methods, E-BATS achieves the lowest WER in 3 out of 5 datasets, with
up to 30.7% relative improvement, and remains competitive. Methods such as EATA and CoTTA,
which depend on larger batch sizes or vision-specific strategies, perform poorly across the board.
While TENT and SAR are more resilient with small batches, they still underperform relative to
E-BATS, showing that adapting only normalization layers is inadequate. On the other hand, the
performance limitations of SGEM, SUTA, and CEA stem from their utterance-level reset strategy.
This prevents them from transferring the already learned knowledge for adapting further utterances as
model weights are reinitialized every time. Notably, DSUTA, despite continuous adaptation, performs
5.5% worse than E-BATS on CommonVoice, the most diverse test condition. This suggests that
frequent parameter updates may lead to catastrophic forgetting. In contrast, E-BATS updates only
prompt vectors, preserving the pre-trained model and enabling effective, stable adaptation across
varied domains. Additional results across different fine-grained noise conditions are in Appendix C.

5.2 Memory Efficiency
Beyond accuracy, E-BATS demonstrates substantial memory efficiency across all evaluated methods,
as shown in Figure 4. Compared to BP-based TTA methods, it reduces peak GPU memory usage
by 1.5× to 5.9×. Specifically, relative to DSUTA, CEA, and SGEM, E-BATS achieves memory
savings of 3.3×, 3.2×, and 2.8×, respectively, while outperforming them in WER. This efficiency is
attributed to lightweight prompt tuning and the T-EMA mechanism, which avoids gradient-based
updates. Compared to BP-free baselines, E-BATS maintains comparable or lower memory usage
while achieving a lower WER, indicating a favorable balance between efficiency and performance.

5.3 Performance with Different Backbone Models
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Figure 4: Balance between Average
Peak GPU memory usage (bar) and av-
erage WER (percentages %) for differ-
ent TTA methods across all datasets.

When using HuBERTForCTC-Large backbone, a larger
SFM than Wav2Vec2ForCTC-Base, E-BATS continues to
outperform all BP-free and most BP-based TTA methods
across datasets, as summarized in Table 2. On average,
it achieves 1.8% to 17.1% lower WER than BP-free base-
lines. While performance is comparable to BP-based meth-
ods under certain conditions, E-BATS surpasses them in
challenging scenarios such as CHiME-3 single-domain and
mixed-domain settings. More notably, E-BATS offers sub-
stantially better memory efficiency at larger model scale,
with 2.4× to 6.8× lower GPU memory usage compared to
BP-based approaches (detailed in Appendix C and Figure 6).
As model size increases, memory usage grows for all TTA
methods; however, E-BATS scales more gracefully, exhibit-
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Table 3: Ablation study on three key components.
Prompt Adaptation Loss Function (w/ T-EMA) Loss Function (w/o T-EMA) T-EMA Mechanism

Feat Trans WER Lent Lutt Ltoken WER Lent Lutt Ltoken WER T-EMA Reset WER

✓ — 24.0 ✓ ✓ ✓ 24.0 ✓ ✓ ✓ 25.4 ✓ — 24.3
— ✓ 34.2 ✓ ✓ — 24.3 ✓ ✓ — 25.5 — ✓ 26.5
— — — ✓ — — 24.5 ✓ — — 49.6 — — 25.4

ing only a moderate increase in memory demand. This makes it particularly suitable for on-device or
resource-constrained environments where backpropagation is infeasible.

5.4 Memory Efficiency Across Utterance Lengths
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Figure 5: Peak GPU memory of TTA
on TED as audio duration increases.

Figure 5 shows the peak GPU memory usage as utter-
ance duration increases on the TED dataset using the
HuBERTForCTC-Large model. TED is selected due to its
wide range of utterance lengths. We compare E-BATS against
four top-performing BP-based TTA methods. These base-
lines exhibit rapidly growing memory consumption with in-
creasing utterance duration, reaching 6–12 GB for 30-second
clips. In contrast, E-BATS displays a near-linear memory
profile, increasing from ∼ 1.1 GB at 1 second to just over
1.9 GB at 35 seconds, particularly suitable for deployment
scenarios with strict or varying memory constraints.

5.5 Ablation Study
We investigate the effectiveness of three key components in E-BATS.

Prompt Adaptation. We compare our proposed method, which injects prompts into Zt to adapt
the CNN latent feature representations directly, with a variant that concatenates prompts with Zt at
the input to the transformer encoder, following conventional prompt-tuning approaches. As shown in
Table 3, adapting within the CNN-based feature encoder yields better performance (24.0 vs. 34.2
WER) on CHiME3 (single). This advantage comes from CNNs’ ability to capture localized spectral
features (e.g., pitch, formants), which are crucial for handling acoustic domain shifts. In contrast,
transformer encoders focus on global contextual dependencies (e.g., sentence-level semantics),
making them less effective at modeling fine-grained acoustic variations under domain mismatch.

Loss Function Components. We evaluated each component of the loss function under two settings:
(1) CHiME-3-Single with (w/) T-EMA, representing a stable and consistent distribution shift, and
(2) CHiME-3-Mix without (w/o) T-EMA, reflecting more diverse shifts. For the single-domain shift
with T-EMA, we observed that each loss component contributed to overall performance (24.0 WER),
with the token-level loss providing additional improvements (from 24.3). In contrast, for the mixed
distributional shifts, adaptation relied heavily on utterance-level alignment (from 49.6 to 25.5), as
expected due to the increased shifts. Compared with only using Lent, combining Lutt effectively
prevents trivial solutions caused by entropy minimization of predicting all frames to the blank token
class or collapsing into a single character. This is further explained and analyzed in Appendix C.4.
Moreover, the adaptive weighting mechanism of the token-level loss ensured its reduced confidence,
facilitating more reliable adaptation under this setting (25.4). These findings not only underscore the
importance of all loss components across different scenarios but also highlight the critical role of
confidence-based adaptive weighting, allowing the loss to emphasize the most reliable signals under
varying conditions.

T-EMA and Reset Strategy. We evaluate the effectiveness of the T-EMA under dynamic domain
shifts (CHiME3-Mix) by comparing it against two alternatives: (i) a reset variant that reinitializes
CMA-ES parameters at the start of each utterance, and (ii) a variant that performs continuous
adaptation without any resetting mechanism. As shown in Table 3, T-EMA consistently achieves
lower WER than both variants. The reset variant yields the worst performance (26.5), indicating
that discarding adaptation history prevents the accumulation of knowledge. Conversely, omitting
reset entirely leads to sub-optimal results (25.4), suggesting that preserving historical information
is important but needs to be regulated to avoid overfitting. T-EMA provides a principled balance
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between stability and adaptability across utterances. The effectiveness of T-EMA is further analyzed
with an increasing number of target domain samples in Appendix C.5.

6 Conclusions and Discussion
Conclusions. In this paper, we propose E-BATS, the first backpropagation-free test-time adaptation
method for Speech Foundation Models that effectively balances adaptation accuracy and memory
efficiency. E-BATS introduces a lightweight prompt adaptation module that directly adapts CNN-
based feature encoders to mitigate acoustic domain shifts. A novel multi-scale loss function combining
entropy minimization with utterance-level and token-wise feature alignment ensures fine-grained
control over speech feature adaptation. Additionally, the test-time Exponential Moving Average
mechanism stabilizes continuous adaptation in dynamic speech streams. Experimental results across
four noisy datasets and diverse acoustic conditions demonstrate its superior performance, particularly
in memory efficiency as the model size increases significantly.

Limitations. Although E-BATS is more theoretically efficient than other baseline methods through
computation complexity comparision, which is reported in Appendix C.9, the iterative CMA-ES
optimization introduces additional adaptation latency in practical environments. Specifically, the
current implementation of CMA-ES does not fully exploit GPU parallelization, leading to sequential
computation steps per utterance. While this latency is acceptable for scenarios without strict real-time
requirements, it might pose challenges for latency-sensitive applications.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See Abstract and Section 1 (Introduction, third and fourth paragraph).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 6 (Conclusion and Discussion, The limitations paragraph.)
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We include no formal theorems or lemmas in this work. All claims are
validated through experimental results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 3 (Methodology) and Appendix D (Detailed algorithms). Our
code is publicly available at: https://github.com/JiahengDong/E-BATS.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our code is publicly available at: Code is available at: https://github.
com/JiahengDong/E-BATS.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4 (Experiment), Appendix B (Details of datasets and baseline
settings) and Appendix D (Detailed algorithms).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See section 3 (Methology: FID figure), Appendix A (Detailed FID scores),
and Appendix C.2 (Ablation study with different seeds).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: See Section 4 (Experiment: Implementation Details) and Figure 6
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: See Appendix E.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix E (The second paragraph and the last sentence in the first
paragraph)
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not release or produce any new data or generative model
artifacts—rather.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the data and models are correctly cited and follow the license and terms of
use explicitly. See Appendix E and Appendix B.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: See Section 3 (Methodology), Section 4 (Experiment details) and Section 6
(Limitation). Our code will be publicly available upon acceptance (See Abstract, last
sentence).
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or new human-subject data collection was conducted in this
work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

18



• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No IRB approval was required for this study because we did not collect any
new human-subject data.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: All text, figures, and analyses related with core methods were created solely
by the authors.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A FID score of detailed domain shifts

To accurately quantify distributional shifts between the source and target domains, we employ the
Fréchet Inception Distance (FID), a metric effective in capturing differences in both mean and
covariance statistics of feature embeddings. Specifically, given the CNN-extracted latent embeddings
Zt = [z1t , z

2
t , . . . , z

Nt
t ] for each utterance Xt, we first average these embeddings across all frames

to obtain the utterance-level representation as 1
Nt

∑Nt

i=1 z
i
t ∈ Rd due to the variable length of each

utterance.

Considering the utterance-level embeddings from the source dataset Dsrc and the target dataset Dtgt,
we calculate their empirical mean vectors and covariance matrices as:

µsrc =
1

|Dsrc|
∑

Xt∈Dsrc

1

Nt

Nt∑
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zit, µtgt =
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(
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)(
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(
1
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Nt∑
i=1

zit − µtgt

)(
1

Nt

Nt∑
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zit − µtgt
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where ε > 0 is added to ensure numerical stability.

The final FID between the source and target domains is computed as:

FID(Overall) = ∥µsrc − µtgt∥22 +Tr
(
Σsrc +Σtgt − 2(ΣsrcΣtgt)

1
2

)
,

where the first part is the Mean shift, and the second part is the Covariance shift. Mean Covariance
shift Ratio will be calculated as Mean shift

Covariance shift .

Table 4: FID Scores and Mean Shift Ratios for Various Noisy Conditions
Noisy Condition Mean

shift
Covariance

shift
Mean/Covariance

shift Ratio(×)
Gaussian noise 0.031 0.004 7.8
Single-domain environment noise (simulated) 0.016 0.003 5.3
Single-domain environment noise (real) 0.029 0.004 7.3
Mixed-domain environment noise 0.019 0.005 3.8
Speaking Style variability 0.004 0.002 2.0

Table 5: FID Scores and Mean Shift Ratios for detailed Gaussian noise and single-domain environment
noise

Noisy Condition Mean
shift

Covaraince
shift

Mean/Covariance
shift Ratio (×)

Gaussian noise σ = 0.005 0.017 0.003 5.7
Gaussian noise σ = 0.01 0.028 0.003 9.3
Gaussian noise σ = 0.015 0.036 0.004 9.0
Gaussian noise σ = 0.02 0.042 0.004 10.5
Cafe-real 0.031 0.003 10.3
Bus-real 0.031 0.003 10.3
Pedestain-real 0.031 0.004 7.8
Street-real 0.022 0.004 5.5
Cafe-simu 0.021 0.003 7.0
Bus-simu 0.011 0.003 3.7
Pedestain-simu 0.017 0.004 4.3
Street-simu 0.015 0.003 5.0
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B Experiments

B.1 Datasets

• Gaussian Noise Data. Following [16, 19], we corrupt the LibriSpeech [38] test-other
split with zero-mean additive Gaussian noise to provide covariate shifts at different ampli-
tudes (σ ∈ {0.0, 0.005, 0.01, 0.015, 0.02}). This setting provides a controlled evaluation of
robustness to incremental noise severity.

• Single-Domain Background Noise Data.
– CHiME-3-single: It is a noisy version of WSJ corpus with artificial and real-world

environmental noises at 16 kHz. We utilize the official simulated and real enhanced eval-
uation sets from CHiME3 [39], which cover four challenging acoustic environments:
bus, cafe, pedestrian area, and street junction. This setting simulates domain-specific,
scene-consistent background conditions.

• Multi-Domain and Wild Real-World Data.
– CHiME-3-Mix: All CHiME-3 scenarios are combined into a dynamic stream to

simulate continuously shifting acoustic environments, similar to setups in continual
test-time adaptation [17].

– CommonVoice (CV) [40]: A crowdsourced project where volunteers contribute by
reading Wikipedia sentences to produce 48 kHz audio samples. To align with the
source ASR models’ training conditions, we resampled these recordings to 16 kHz. The
test set from the en-June-22nd-2020 release was used to evaluate robustness against
different speaking styles, accent variability, and crowd-sourced audio quality issues.

– TEDLIUM-v2 (TED): Consists of oratory speech from TED conference videos with
high quality stored at 16 kHz. We use the official test set for experiments, which
introduces mismatches in recording quality and presentation style speech, diverging
from the read speech in LibriSpeech or CommonVoice, and thus providing a natural
domain shift. Following [16], transcripts across all datasets are converted to uppercase
and stripped of punctuation, retaining only apostrophes.

B.2 Baseline methods

The baseline methods include both BP TTA and BP-free TTAs.

BP TTAs:

• TENT [13]. A fully test-time adaptation method that minimizes entropy by updating
BatchNorm affine parameters online. We use it in episodic version since the batch size is
small.

• SAR [15]. A sharpness-aware and reliable entropy minimization method that selectively
filters samples with large gradients and encourages the model weights to converge to a flat
minimum, improving stability under wild domain shifts.

• EATA [14]. An efficient TTA framework that selectively adapts on samples with lower
uncertainty to reduce gradient noise and also mitigates catastrophic forgetting through a
Fisher regularizer.

• CoTTA [20]. A continuous TTA method that maintains a teacher-student adaptation strategy
with stochastically restoring certain model parameters.

• SUTA [16]. A single-utterance test-time adaptation method based on entropy minimization
and minimum class confusion, adapted for CTC-based ASR.

• CSUTA. A continous version of SUTA with iteration step of 1, which is examined as one
baseline in the work of [17].

• DSUTA [17]. A dynamic variant of SUTA that adaptively resets or retains model updates
based on domain shift detection with fast-slow adaptation strategy.

• CEA [19]. Confidence-enhanced frame-level adaptation with short-term consistency regu-
larization, proposed for wild acoustic test conditions.

• SGEM [18]. A method leveraging beam-search logits and generalized entropy minimization
for autoregressive ASR adaptation at sequence-level granularity.

• AWMC [21]. A pseudo-labeling-based continual TTA algorithm for ASR that employs an
anchor model, leader model and chaser model to achive stabel continous adaptation wihout
forgetting.
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BP-free TTAs:

• LAME [33]. A training-free approach that corrects model outputs probabilities by estimating
distribution drift in feature space.

• T3A [27]. A TTA technique that adjusts classifier via pseudo-prototypes without requiring
backward passes.

• FOA [28]. A forward-only approach that optimizing learnable prompts with activation shifts
to avoid forgetting issue and trivial solutions.

B.3 Baseline methods hyperparameter setting

The detailed baseline settings and the hyperparameter tuning are presented for both BP TTA and
BP-free TTA.

BP TTA baslines The hyperparameter settings for TTA methods are organized as follows: For
Speech Foundation Models (SFMs), we follow the configurations specified in the original papers for
SUTA [16], DSUTA [17], CEA [19], and SGEM [18]. For CSUTA [17] and AWMC [21], which
do not have released code, we adhere to the hyperparameters outlined in their official papers and
the implementations from [17]. Additionally, we set the model to evaluation mode to maintain
consistency.

For Visual Foundation Models (VFMs), to adapt the methods for SFMs with a batch size of 1 (BS=1),
we follow the guidelines presented in [16, 19, 28]. All optimizers are configured to use the AdamW
optimizer with the same learning rate as the TTA baseline methods for SFMs. Episodic methods
are set with 10 iteration steps, while continuous methods use a single step. Minor adjustments are
made for specific methods: for EATA [14], we use e_margin = 0.4× ln(32) and d_margin = 1.0;
for SAR [15], e_margin = 0.4 × ln(32) and reset_constant = 0.3; and for CoTTA [20], the
augmentation threshold is set to 0.2, with augmentation limited to adding Gaussian noise.

BP-free TTA baselines We follow the original hyperparameter settings for LAME [33] and
T3A [27] as specified in their official papers. For FOA, the parameters are set as follows: σ = 0.1
(CMA-ES), α = 0.05, and γ = 0.1.

In our approach, adaptation for each utterance is terminated early if the best fitness across iterations
does not improve by at least 0.001 for three consecutive steps.

B.4 Backbone models

Wav2Vec2ForCTC-Base [42] model employs a 12-layer Transformer encoder with a CNN-
based feature extractor, representing lightweight ASR architectures optimized for fast inference.
HuBERTForCTC-Large [43] model features a deeper 24-layer Transformer stack with a similar CNN
front-end, offering a more powerful and robust ASR framework.

C Detailed Experiment results

C.1 CHiME3

The detailed performance on CHiME3 dataset using Wav2Vec2ForCTC-Base and HuBERTForCTC-
large are shown in Tables 6 and 7 respectively. It presents the performance comparison across
four different acoustic environments, including cafe, bus, pedestrian, and street. For each acoustic
condition, we also include the simulated and real-world noise conditions. The performance also
demonstrated the superior performance of our approach over all BP-free TTA and most of BP-based
TTA.
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Table 6: Comparison of TTA methods across CHiME3-single (cafe, bus, pedestrian, street) by using
Wav2vec2ForCTC-base model. WER in bold is the best performance within BP-free TTA methods,
and the underlined WER is the best within both BP and BP-free TTA methods.

Method Cafe Bus Pedestrian Street Average
Simu Real Simu Real Simu Real Simu Real Simu Real Overall

Source 20.1 58.7 14.6 56.2 17.9 55.5 18.7 32.2 17.8 50.7 34.2

BP adaptation
TENT (episodic) 20.0 58.4 14.5 55.9 17.8 55.2 18.7 32.0 17.8 50.4 34.1
EATA 20.0 55.3 14.9 54.1 18.3 51.6 18.9 31.4 18.0 48.1 33.1
SAR 19.6 56.2 14.4 56.5 17.8 52.8 18.7 33.0 17.6 49.6 33.6
CoTTA 19.2 58.6 14.2 49.2 16.8 55.4 17.8 32.1 17.0 48.8 16.2
CEA 17.3 45.8 13.1 41.8 16.1 38.0 17.1 25.2 15.9 37.7 26.8
SGEM 17.4 45.5 13.0 43.1 15.8 38.8 17.1 25.6 15.8 38.5 27.2
AWMC 19.5 62.9 14.5 54.6 17.4 39.0 18.5 31.9 17.5 50.6 34.0
SUTA 17.1 45.1 13.0 42.5 16.2 38.1 17.5 25.3 16.0 37.8 26.8
CSUTA (1 step) 17.7 40.3 14.8 41.1 16.8 36.4 18.7 26.0 17 36.0 26.5
DSUTA 16.4 36.3 13.0 39.6 15.2 32.8 15.6 22.4 15.1 32.8 24.0

BP-free adaptation
T3A 20.9 61.3 15.3 59.0 18.5 58.4 19.6 33.6 18.6 53.1 35.9
LAME 20.9 61.6 15.2 58.9 18.6 58.9 19.8 33.9 18.6 53.3 36.0
FOA 19.9 52.5 14.6 50.5 18.0 48.1 18.6 31.0 17.8 45.5 31.7
Ours 16.1 37.9 13.1 37.4 15.1 33.1 15.4 24.0 14.9 33.1 24.0

Table 7: Comparison of TTA methods across CHiME3-single (cafe, bus, pedestrian, street) by using
HuBERTForCTC-large. WER in bold is the best performance within BP-free TTA methods, and the
underlined WER is the best within both BP and BP-free TTA methods.

Method Cafe Bus Pedestrian Street Average
Simu Real Simu Real Simu Real Simu Real Simu Real Overall

Source 9.2 27.9 8.5 26.2 9.2 24.3 10.1 16.6 9.3 23.8 16.6

BP adaptation
TENT (episodic) 9.2 27.5 8.5 25.8 9.2 24.0 10.0 16.5 9.2 23.5 16.4
EATA 9.2 27.0 8.7 25.8 9.2 23.2 9.9 16.4 9.3 23.1 16.2
SAR 9.1 28.0 8.4 26.1 9.1 23.2 9.9 17.3 9.1 23.7 16.4
CoTTA 9.3 26.8 8.5 25.5 9.1 23.9 9.9 16.4 9.2 23.2 16.2
CEA 8.6 22.5 8.1 22.0 8.3 19.6 9.2 14.7 8.6 19.7 14.2
SGEM 8.7 22.5 8.1 21.8 8.5 19.9 9.5 14.7 8.6 19.7 14.2
AWMC 9.5 25.5 8.9 23.9 9.4 22.5 10.4 16.5 9.6 22.1 15.9
SUTA 8.6 22.9 8.1 22.2 8.4 19.6 9.4 14.6 8.6 19.8 14.2
CSUTA (1 step) 9.3 22.8 8.9 22.2 9.5 19.7 9.9 14.7 9.4 19.9 14.7
DSUTA 8.7 20.3 8.3 20.0 8.6 17.5 9.3 13.9 8.7 17.9 13.3

BP-free adaptation
T3A 18.2 42.1 18.2 42.1 17.3 37.5 18.2 29.0 18.0 37.7 27.9
LAME 9.7 30.2 8.9 27.9 9.6 25.4 10.6 17.8 9.7 25.3 17.5
FOA 9.6 26.9 8.6 26.2 9.3 23.4 10.4 16.4 9.5 23.2 16.4
Ours 9.2 20.7 8.4 21.3 9.2 18.9 10.0 14.2 9.2 18.8 14.0
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C.2 Ablation study with multiple seeds

We repeat each ablation experiment using three different random seeds in Figure 8 to ensure that our
results are robust and not the artifact of any single initialization.

Table 8: Ablation study with mean±std WER (%) over 3 seeds
Prompt Adaptation Loss Function (w/ T-EMA) Loss Function (w/o T-EMA) T-EMA Mechanism

Feat Trans WER Lent Lutt Ltoken WER Lent Lutt Ltoken WER T-EMA Reset WER

✓ — 24.0±0.0 ✓ ✓ ✓ 24.0±0.0 ✓ ✓ ✓ 25.4±0.0 ✓ — 24.3±0.0
— ✓ 34.1±0.1 ✓ ✓ — 24.2±0.1 ✓ ✓ — 25.5±0.1 — ✓ 26.5±0.0
— — — ✓ — — 24.6±0.1 ✓ — — 64.3±11.5 — — 25.4±0.0

C.3 Sensitive Analysis

C.3.1 Sensitivity of T-EMA Decay Parameter

Table 9 below presents our analysis on the EMA parameter γ, where we evaluated performance
across γ ∈ {0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 0.99} under the caf-real condition. We observed a
clear U-shaped WER curve: performance improves up to γ = 0.90 (best WER 37.9%), and then
degrades as γ increases further. This behavior aligns with our expectation and is also observed in
other datasets that smaller γ values lead to unstable, overly reactive updates, while larger values result
in over-smoothing and hinder adaptation.

Table 9: WER (%) of Wav2Vec2ForCTC on caf-real CHiME-3 for different T-EMA decay γ.
γ 0.50 0.60 0.70 0.80 0.90 0.95 0.99
WER (%) 39.1 39.1 38.4 38.1 37.9 38.3 39.9

C.3.2 Sensitivity of Loss Component Weights

To further understand how the relative weighting of loss components affects the CMA-ES optimization
process, we conducted a sensitivity analysis of the loss weights α and β for the entropy loss and
utterance-level loss, which in turn leads to changes in the token-level weight c (Minmax normalization
Equation in Section 3.3). The WER results using the caf-real condition of the CHiME3 dataset are
shown in Table 10 below. The results reveal that WER is remarkably stable across a wide range of
weight settings. WER stays within a narrow range across different values of α and β, showing a
broad area of near-optimal performance instead of a single best point. The results suggest that both
components of the loss must be balanced, as extreme values for either can hurt performance. The
chosen setting (α = 1.0, β = 2.0) sits comfortably in this stable region and consistently yields the
best performance.

Table 10: WER (%) of Wav2Vec2ForCTC on caf-real CHiME-3 under varying α (rows) and β
(columns), representing varying weights for the token-level loss.

α\β 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.5 37.7 38.2 38.5 38.6 39.1 39.4 39.2 39.8 39.4 39.7
1.0 38.1 38.1 38.0 37.9 38.4 38.3 38.4 38.8 38.7 39.6
1.5 38.5 38.1 38.4 38.1 38.5 38.0 38.2 37.8 38.3 38.4
2.0 38.4 38.3 38.0 37.9 37.9 38.1 38.0 38.3 38.0 38.4

C.3.3 Sensitivity of CMA-ES to Target Domain Complexity

We selected four target domains exhibiting increasing variability, quantified by the covariance shift
offered by Fréchet Inception Distance (FID) of the embedding distribution between the source
and target. These range from low to high variability: Gaussian noise (σ = 0.01), CHiME-3 cafe-
simulated, CHiME-3 cafe-real, and CHiME-3 mixed. As shown in Table 11 below, with CMA-ES
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population size increasing from 10 to 100, the largest gains occur moving from 10 to 40 candidates
across all domains. Beyond 50 candidates, performance plateaus. These results show that while
more complex domains (cafe-real, mixed) begin at higher absolute WER, they exhibit the same
early-saturation behavior as simpler conditions. Therefore, sensitivity to domain complexity may not
be directly related to the number of prompt candidates considered.

Table 11: WER (%) across different population sizes on four target domains with varying complexity.
Candidate Size 10 20 30 40 50 60 70 80 90 100
Gaussian (σ = 0.01) 16.2 15.6 15.2 14.9 14.8 14.8 14.7 14.7 14.7 14.7
Cafe-simulated 17.0 16.5 16.5 16.2 16.1 16.3 16.1 16.0 16.0 16.2
Cafe-real 41.8 39.3 38.3 38.3 37.9 38.0 37.9 37.9 38.0 37.8
CHiME3 Mixed 25.7 25.1 24.7 24.6 24.3 24.3 24.4 24.2 24.4 24.3

C.3.4 Sensitivity of CMA-ES to Candidate Size and Iteration Steps

We find the expected trade-off between the population size and optimization iterations with word
error rate (WER) (Table 12 and Table 13 below). As shown in Table 12 (caf-real condition of
CHiME-3 using Wav2Vec2ForCTC), increasing the CMA-ES candidate size from 10 to 40 yields the
most significant gains. Table 13 demonstrates that moving from 5 to 25 iterations captures most of
the benefit. We observe the same early-saturation behavior across other conditions (e.g., bus-real,
street-real) and datasets.

Table 12: WER (%) of Wav2Vec2ForCTC on the caf-real condition of CHiME-3 under different
CMA-ES population sizes (iteration steps = 25).

Candidate Size 10 20 30 40 50 60 70 80 90 100
WER (%) 41.8 39.3 38.3 38.3 37.9 38.0 37.9 37.9 38.0 37.8

Table 13: WER (%) of Wav2Vec2ForCTC on the caf-real condition of CHiME-3 under different
CMA-ES iteration steps (population size = 50).

Iteration Steps 5 10 15 20 25 30 35 40 45 50
WER (%) 40.8 39.9 38.6 38.0 37.9 38.0 37.9 37.6 38.4 38.0

C.4 Impact of Utterance-level Loss on Trivial Predictions

We analyzed and compared the occurrence of trivial predictions under two conditions: (i) entropy-only
and (ii) entropy with utterance-level loss, using the CHiME-3-Mix dataset. As shown in Table 14, we
observed two types of trivial solutions: blank predictions and single-character predictions (entropy =
0 with only one character predicted). It is evident that the utterance-level loss significantly reduces
the incidence of trivial solutions from 37.5% to 0.61%, thereby improving the WER.

C.5 Effectiveness of Continual Adaptation with T-EMA

We reported the WER against the number of process utterances under two variations of the continual
adaptation process: (i) T-EMA with resetting, reported in Table 3 in the ablation study; and (ii)
T-EMA with exponential averaging (proposed), presented in Table 3 and Section 3.4. We evaluated
their performance across varying numbers of target samples from 100 to 800 in Table 15 below,
using the LibriSpeech dataset with Gaussian noise (σ = 0.015). With the resetting approach,
performance increases up to 300 samples and then declines with additional samples, suggesting
that resetting CMA-ES prevents leveraging prior adaptation. In contrast, the proposed exponential
averaging method demonstrates relatively stable performance, indicating that even with a small
number of samples, reliable adaptation can be achieved. This is likely due to the T-EMA mechanism
accumulating knowledge from earlier utterances and updating CMA-ES in a more favorable region
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Table 14: Trivial solutions on CHiME-3-Mix: number and percentage of trivial predictions among all
predictions.

Configuration Blank Single-char Total problematic WER (%)
Entropy-only 42 (1.59%) 948 (35.91%) 990 (37.50%) 49.6
+ Utterance-level loss 12 (0.45%) 4 (0.15%) 16 (0.61%) 25.5

Table 15: WER (%) against the number of processed utterances with T-EMA (resetting) and T-EMA
(proposed) under the LibriSpeech dataset with Gaussian noise (σ = 0.015).

Method 100 200 300 400 500 600 700 800
T-EMA (Resetting) 20.4 19.7 19.8 20.4 20.8 20.8 21.1 21.3
T-EMA (Proposed) 17.9 17.0 17.2 17.4 17.6 17.5 17.8 17.7
Performance Gain 2.5 2.7 2.6 3.0 3.2 3.3 3.3 3.6

of the search space. The improved performance over the resetting mechanism further demonstrates
that our method is robust to the number of samples used for adaptation, and that the proposed T-EMA
effectively stabilizes the adaptation process.

C.6 Memory Usage

Figure 6 shows the memory usage comparison between two SFMs: Wav2Vec2ForCTC-Base and
HuBERTForCTC-Large. The increasing model size leads to a significant increase in memory usage
for adaptation, especially for the BP-based TTA, whereas our method demonstrates only a slight
increase in memory usage.
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Figure 6: Comparison of Average Peak GPU memory usage of different TTA methods across all
datasets with two different scale backbones.

C.7 Controlling Prompt Vector Dimensionality for CMA-ES Efficiency

The computational cost of CMA-ES with increasing dimensionality d may cause concerns. Indeed,
the full-rank CMA-ES algorithm has a per-iteration complexity of O(Jd2 + d3), where J is the
number of sampled solutions (i.e., prompts in our case). To mitigate this cost, we design our prompt
vector to have a fixed dimensionality of 512, aligned with the embedding size commonly used in
speech foundation models, ensuring that d remains tractable in practical scenarios. Furthermore, as
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Table 16: WER (%) of Wav2Vec2ForCTC on the caf-real condition of CHiME-3 under different
CMA-ES candidate sizes J (iteration steps = 25).

J 10 20 30 40 50 60 70 80 90 100
WER (%) 41.8 39.3 38.3 38.3 37.9 38.0 37.9 37.9 38.0 37.8

Table 17: Per-utterance adaptation time complexity (big-O) for E-BATS and top TTA baselines.
Method Time Complexity per Utterance
DSUTA O(N × (F + E + P ))
FOA O(N × [J(F + E + Ld2) + d3])
E-BATS O(N × [J(F + E + L+ d+ L|V |d) + d3])

shown in Table 16, with our grid search of J , we observe the optimal J always much smaller than
d; in our configuration, we fix J = 50, which remains significantly smaller than d. This ensures
that the asymptotic complexity does not exceed O(d3). Thus, while CMA-ES theoretically scales
cubically with d, our design choices effectively cap the computational overhead in the context of
high-dimensional but fixed-size prompt vectors.

C.8 Adaptation performance on Speech Emotion Recognition Task

To further test the generality of our method beyond ASR with CTC, we applied E-BATS to speech emo-
tion recognition tasks (cross-entropy loss) using the IEMOCAP dataset and the SpeechBrain/emotion-
recognition-wav2vec2-IEMOCAP model under additive Gaussian noise (σ = 0.02). Adaptation
increased emotion prediction accuracy from 38.8% to 43.4%, demonstrating that our E-BATS frame-
work can enhance the performance of other downstream tasks using SFMs.

C.9 Adaptation Speed and Computation Complexity

We compute the per-utterance time complexity to compare E-BATS with the top-performing
backpropagation-based (DSUTA) and backpropagation-free (FOA) methods (see Table 17). DSUTA
scales with the large number of model parameters via backpropagation (P ), often in hundreds of
millions, whereas E-BATS only involvesO(d2) andO(d3) operations (with d = 512). Since P ≥ d3

in most SFM models, E-BATS achieves significant efficiency gains over DSUTA. While both FOA
and E-BATS share the same asymptotic complexity of O(d3) for CMA-ES updates, E-BATS is prac-
tically more efficient since FOA requires a 33 multiplicative factor ofO(d3) as it needs three prompts
for adaptation. FOA also incurs an additional O(Ld2) cost (over d) per prompt for prompt attention
with L transformer layer encoders. Nonetheless, our main focus, as noted in the introduction, is the
trade-off between accuracy and memory efficiency, which is more critical for resource-constrained
devices.

where:

• F : cost of one forward pass
• E: cost of entropy loss calculation
• N : number of adaptation iteration steps per utterance
• J : number of candidate prompts per iteration
• |V |: size of the token class

D Algorithms

The algorithm for LPA per utterance and for T-EMA is shown in Algorithm 1 and Algorithm 2
respectively.
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Algorithm 1 Lightweight Prompt Adaption (Per Utterance)

Require: CMA-ES params ϕ0
t , max steps K, Utterance Xt

Ensure: Adapted predictions ŷ
1: best_loss←∞
2: for k = 1 to K do
3: Sample prompts Sk

t =
[
skt,1, s

k
t,2, . . . , s

k
t,J

]
from CMA-ES ϕt,k−1

4: Inject skt,j with Ztand feedforward pass

5: Compute loss Lk
adapt,all =

[
Lk

adapt,1, L
k
adapt,2, . . . , L

k
adapt,J

]
6: if minj∈{1,...,J} L

k
adapt,j < best_loss then

7: best_loss← Lk
adapt,j

8: Ŷt ← decode adapted output with skt,j
9: end if

10: ϕk
t ← Update(ϕk−1

t ,Lk
adapt,all, S

k
t )

11: end for

Algorithm 2 T-EMA Updating Strategy

Require: Utterance data T , CMA-ES params ϕ0
0, Iteration Steps K

1: Initialize ϕema = {Cema, mema, σema} ← ϕ0
0

2: for each utterance t in T do
3: ϕ0

t ← ϕK
t Run Algorithm 1

4: EMA Update (ϕema, ϕ
K
t )

5: ϕ0
t+1 ← ϕema

6: end for

E Ethical Consideration

Our research fully complies with the NeurIPS Code of Ethics. We exclusively utilize publicly available
datasets, pretrained models, baseline methods, and their accompanying code, strictly adhering to
their respective licenses and usage protocols. We did not collect any new data, nor do our adaptation
methods pose privacy risks or enable misuse. Thus, our work does not introduce broader negative
societal impacts, eliminating the need for additional safeguards beyond standard ethical research
practices.

Moreover, our method has potential positive societal impacts, including improving the accessibility
and reliability of speech recognition technology in noisy real-world environments, thereby benefiting
communication technologies, assistive systems, and applications serving diverse and inclusive user
populations.
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