Under review as a conference paper at ICLR 2026

TESTEXPLORA: CAN LLMS WRITE TESTS TO FIND PO-
TENTIAL PROBLEMS EXISTING IN REPOSITORY?

Anonymous authors
Paper under double-blind review

ABSTRACT

As Large Language Models (LLMs) are increasingly applied to automate software
development, their use for automatic test case generation has become a key area
of research. However, existing benchmarks for evaluating LLMs fundamentally
simplify the real-world testing challenge. They typically constrain the problem
to either (1) reproducing known bugs at the repository level, or (2) generating
tests for isolated code units, such as individual functions, detached from their
broader project context. Both approaches fail to assess the crucial capability of
LLMs for proactive, exploratory testing in projects defined by complex, cross-
file dependencies. To address this critical gap, we introduce TestExplora, the
first systematic benchmark designed to evaluate the proactive defect discovery
capabilities of LLMs at the repository level. Constructed from real-world pull re-
quests, TestExplora challenges models to find bugs without any prior knowledge
of bug manifestations. Our comprehensive evaluation, conducted in both black-
box and white-box settings, reveals a stark capability gap. Even state-of-the-art
models exhibit critically low success rates (e.g., GPT-5-mini: 12.79%, 03-mini:
5.23%), and access to the full source code (white-box) yields only marginal im-
provement. Further Analysis reveals that existing models struggle mainly with
assertion mismatches and misconfigured mocks. TestExplora thus establishes a
principled foundation for advancing research towards the grand challenge of au-
tonomous, repository-level defect discovery.

1 INTRODUCTION

As Large Language Models (LLMs)(OpenAll [2024; |Gemini-Team, [2025} (Qwen-Team, [2025)) are
increasingly applied to automate software development, their use for automatic test case generation
has become a key area of research. Ideally, such automation should not only reproduce known
bugs to prevent regressions but, more importantly, perform proactive exploratory testing to discover
unknown, hidden defects before code is deployed. This proactive discovery capability is crucial for
determining whether test automation can evolve from an auxiliary tool into a core pillar of software
quality assurance.

However, an examination of current benchmarks reveals that their design has largely overlooked the
systematic measurement of this core capability, as they fundamentally simplify real-world testing
along two different axes. First, one line of work, while operating at the repository level, constrains
the task to error reproduction. Ferexample; Recent studies have concentrated on leveraging LLMs to
generate tests strictly from explicit issue reports (Hasan et al., [2025}; [Nashid et al., [2025) or specific
commit changes (Pradell 2025} |Liu et al., 2025). Reflecting this focus, SWT-Bench (Miindler et al.,
2024) and TDD-Bench-Verified (Ahmed et al., 2024b) require a model to produce a unit test that
replicates a pre-defined bug scenario. This framing assesses a model’s ability to confirm a known
issue, not its capability to discover new ones. Second, another prominent line of work focuses
on test generation for isolated code units, such as the self-contained functions and individual files
found in corpora like (Li & Yuanl 2024; Wang et al., |2025a; [Zhang et al., |2024; [Jain et al.| [2025).
It ignores the complex web of dependencies—across modules, APIs, and data schemas—where the
most critical and subtle real-world bugs often reside. Consequently, a critical gap remains: there is
no systematic evaluation of an LLM’s ability for proactive defect discovery in realistic repository
contexts—a capability that lies at the heart of modern software engineering, aiming to shift the

Under review as a conference paper at ICLR 2026

development focus from reactive, “firefighting” debugging to proactive quality building, thereby
fundamentally improving development efficiency and software robustness.

Table 1: Comparison of different open-source benchmarks with ours. Abbreviations: Cov = Cover-
age, Acc = Accuracy, MS = Mutation Score, ComR = Commit Relevance, FP = Fail-to-Pass Rate,
CC = Change Coverage, Wb = White-box, Bb = Black-box.

Benchmark #Tasks Task Level Repositories TDD Testing Scenario Eval. Metrics

TestEval 216 Function — X Wb Cov
UnLeakedTestbench 3909 Function — X Wb Pass@k, MS
TestBench 108 Class — X Wb Cov, Acc, MS
TestGenEval 1210 File 11 X Wb Pass@k, Cov, MS
ProjectTests 295 Project 60 X Wb ComR, Corr
SWTBench 1900 Project 12 Wb FP, CC
TDDBench 449 Project 12 Wb FP, CC
TestExplora 2389 Project 482 Bb & Wb Cov, Acc, FP, CC

To address these limitations, we present TestExplora, a benchmark that evaluates LLMs as issue-
finding testers in realistic repository contexts. Unlike existing benchmarks that focus on problem
reproduction, TestExplora deliberately conceals all manifestations of defects—including diffs, com-
mit messages, and issue reports—forcing models to discover bugs through behavioral testing rather
than pattern matching. This design mirrors real-world exploratory testing, where engineers must
proactively identify risks without prior knowledge of specific bugs. The evaluation harness of Test-
Explora executes generated tests on both buggy and fixed versions of the code. A test is considered
valid if it fails before the fix and passes after, aligning with the Fail-to-Pass principle of defect val-
idation. Beyond Fail-to-Pass rates, TestExplora also measures change-focused coverage, providing
a more comprehensive assessment of test quality than prior benchmarks. In summary, this work
makes three contributions:

» TestExplora benchmark: a curated suite of real-world pull requests evaluates LLMs as issue-
finding testers in realistic repository context. TestExplora contains 2,389 test generation tasks
from 1,552 pull requests in 482 repositories.

* Comprehensive Evaluation: empirical results showing that even the strongest model achieves only
a maximum Fail-to-Pass rate of 12.79%, posing a critical capability gap. Further Analysis reveals
that writing a high-quality test requires not only strong programming ability but also the capability
to identify the key aspects that need to be tested. And existing models struggle mainly with
assertion mismatches and misconfigured mocks.

* Scalable benchmark collection framework: We propose a scalable data collection framework that
consists of the core steps of repo filtering with validated pull requests, automated build on a virtual
machine, and Fail-to-Pass validation. It can be extended on demand and continuously produce new
data for the field of test generation.

2 RELATED WORK

Benchmarks for Software Engineering. In recent years, several repository-level software engi-
neering benchmarks have been introduced, emphasizing realistic repositories, long contexts, and
multi-file dependencies. SWE-bench (Jimenez et al., [2023)) provides 2,294 issues and fixes from 12
Python projects and has become a widely used benchmark. Its extensions (Li et al., 2025} |(Chowd-
hury et al,, |2024; [Yang et al) [2024; [Zhang et al.| |2025; |Zan et al., 2025) further expand scale,
difficulty, and dynamism to mitigate contamination and static overfitting. Other efforts include
USEbench, which integrates multiple SWE tasks (Applis et al.| 2025); DevBench, which evaluates
multiple stages of the development lifecycle (Li et al., 2024} [Tan et al [2024)); and Other Bench-
marks (Le Hai et al., 2024; Zhao et al., 2025), which target completion, dependency handling, and
real-world bug fixing. Collectively, these resources form a rich ecosystem for repository-level eval-
uation, yet they predominantly emphasize bug fixing, feature implementation, and code completion,
and rely on high-quality human-written tests as the supervision signal for determining task success.

Under review as a conference paper at ICLR 2026

Benchmarks for Test Generation. Motivated by this reliance, subsequent work has explored
leveraging LLMs for test generation (Wang et al., [2025d; |Hasan et al., 2025;|Wang et al., 2025c). As
the centrality of testing has become more widely recognized, an increasing number of benchmarks
have been introduced to evaluate test generation at different granularities. At the function level,
TestEval and UnLeakedTestbench (Wang et al.||2024; |[Huang et al.,2025)) focus on line, branch, and
path coverage while addressing contamination and realism. At the class level, TestBench (Zhang
et al.| [2024) samples 108 Java classes and proposes a five-dimensional evaluation of syntax, exe-
cutability, coverage, and defect detection. At the project level, CLOVER (Xu et al., 2025) examines
long-context generation, ProjectTest (Wang et al.,[2025b) targets medium-scale projects across three
languages, and TestGenEval (Jain et al.| 2025)) builds on 68k human-written tests to assess writing,
completion, and improvement. SWT-Bench (Miindler et al., 2024) and TDD-Bench Verified (Ahmed
et al) [2024a) tie tests to real issues and fixes. Most of these efforts emphasize confirmatory test-
ing, whereas TestExplora conceals diffs, commit messages, and implementation details, requiring
models to hypothesize risk areas and design tests for latent defects, with effectiveness measured by
Fail-to-Pass outcomes and change-focused coverage.

3 TESTEXPLORA

TestExplora is a benchmark designed to measure large language models’ ability in exploratory
software testing—specifically, their capacity to proactively discover defects rather than merely re-
produce known errors.The subsequent sections present our methodology across three components:
Benchmark Acquisition, Model Inputs, and Evaluation Metrics.

3.1 BENCHMARK ACQUISITION

All instances of TestExplora are derived from existing GitHub repositories to ensure data quality.
During the construction of TestExplora, carefully maintained repositories were selected. As illus-
trated in Figure[T] the Benchmark Acquisition process primarily comprises the following four main
steps:

gou0s
I Crawling Raw Issue-PR o%o Filtering Validated PR @Aummated Build Virtual Machine @ Fail-to-Pass Validation
O Repositories (Stars>1k) @ Test Patch Q Find Relevant Files 1. Apply Test Patch &)
Parse Patch from PR
o = Code Patch l @
ssue =
rewina o o) 2 0 {@ Execute Scripts I
calfils with division by 0 a
xox e of il % — @ ?I:;r ;{ea;hable'resn— @~ Reachable —— 2. Apply Code Patch @
s Code Patcl i ine Execute @
frred ¢2°0 o Cle=) s
1% Pull Request
ff-git oy blook sy Ensurelneent | 4@y doc © Verify __.® Test Patch Run l
it o L Consistency =doc(¢) Successtully % TestExplora Instance

Figure 1: The data acquisition process of TestExplora.

Stepl.Crawling Raw Issue-PR Constructing a reliable exploratory testing benchmark requires
high-quality, well-maintained codebases where defects can be meaningfully discovered and vali-
dated. We select only repositories R with substantial community adoption (>1,000 stars), yielding
12,227 preliminary pull requests with patches P that provide genuine opportunities for proactive
defect detection.

Step2.Filtering Validated PR For each patch P, we can decompose it into a test patch P; and
a code patch P., where P, = P/P;. By employing the parser parser(-), we can identify the
function with the number of n modifications involved in each patch, such that parser(Py) =
{fiks - fnr} k € {c,t}. Before applying the Fail-to-Pass filtering, we first analyze the in-
voke graph of the repository. We designate the functions directly invoked by parser(P.) as entry
funetions entry interface £, which are then used for subsequent test generation across different
pipelines. We retain only PRs where modified functions f. € parser(P.) are reachable by test
functions f; € parser(P;) through explicit call paths. This ensures that our benchmark captures

Under review as a conference paper at ICLR 2026

realistic testing scenarios where generated tests can meaningfully exercise the modified code and
potentially discover defects through proper invocation chains. This step differs from previous bench-
marks (Miindler et al.|[2024;|Ahmed et al., 2024b), which only applied Fail-to-Pass filtering without
verifying whether the Fail-to-Pass outcome was indeed caused by the code patch P.. In addition,
we filter out PRs in which P, involves doctoring modifications, in order to ensure that the function’s
intention does not undergo substantial changes before and after the pr. We also exclude PRs where,
after preprocessing, parser(P.) contains doctoring with “TODO” annotations or implementations
including “pass,” thereby ensuring that the code after the pr does not contain potential placeholders
for future updates.

Step3. Automated Build Virtual Machine Constructing Docker environments_for large-scale
repositories is challenging; therefore, we adopted GitHub Actions Runner Images[] to establish a
unified virtual machine with test scripts, enabling Fail-to-Pass testing in a manner analogous to
GitHub Actions Runners. Action Run script is listed in the Appendix [B] During the setup of each
repository for testing, the process mainly consists of the following three steps: a) Install system de-
pendencies: This step primarily prepares the system-level compilation toolchain and external library
dependencies. b) Look for and merge all requirements files: It automatically detects and merges
requirements within the project, ensuring that no requirements are missed or duplicated during sub-
sequent installation. ¢) Environment Setup: This step selects the logic for dependency installation
based on the project structure in order to configure the testing environment. The script attempts to
identify a pyproject.toml project and installs dependencies using Poetry or PDM. If the project is
not a pyproject project, it installs dependencies using pip together with requirements/setup.py and
common utility packages. This approach facilitates flexible setup of the testing environment, and
such flexibility enables us to expand existing datasets at any time without manual setup.

Step4. Fail-to-Pass Similar to SWE-bench, we conducted tests on P; both before and after ap-
plying the code patch P.. Ultimately, our dataset comprises 1,552 pull requests and 2,389 test
generation tasks across 482 repositories. The Appendix [J| provides information on the categories of
the repositories and related details.

When generating tests for &, it is es-
sential to clarify the intention of &
to enable effective exploratory test-
ing that can uncover potential de-
fects. The most straightforward ap-

Table 2: The statistical information of TestExplora. Cat-
egories denotes the numbers of repository categories of
repositories. In Test Invokes, Entries per Test counts func-
tions invoked by a test case, while P, Depth is the invoca-
tion distance between the test case and the modified code

proach is to leverage existing doc- patch

strings of £ as documentation, en-

abling LLMs to infer function intent Corpus Overview

and generate comprehenswe tests. Repositories PRs Tests Categories Avg. Stars
However, we observe that adequate - 1552 735 PY R —

documentation is rarely available for PR Instance Statistics

entry—funetions entry interface in Aren Indicator Max Mean Median

real-world repositories. To address

. . . Test Patch # Tests Edited 23 1.60 1
this documentation scarcity, we use Teut Iovokes Entries per Test 154 822 3
a high-performing agent—DocAgent Pe Depth 12 176 1

et et i # Dependencies 150 3.57 1

(Yang et al.., 2025)—to generate the BawyFonetion Bnury Interface =070 * 7 1378 29,07 13
corresponding documentation for £. # Lines Edited 1297 2292 11
This automated annotation approach Code Patch # Functions Edited 29 1.42 1
Files Edited 28 1.83 1

greatly enhances the scalability of
TestExplora. We list a log from the execution process of DocAgent in the Appendix [C]

Following the above steps, TestExplora consists of 1,552 pull requests from 482 repositories, along
with 2,389 test cases as generation tasks. Table[2] presents the information of TestExplora.

3.2 MODEL INPUTS

Effective exploratory test generation requires strategic information provisioning to balance realism
with model capability assessment. TestExplora provides three categories of input information:

"https://github.com/actions/runner-images

https://github.com/actions/runner-images

Under review as a conference paper at ICLR 2026

* Documentation: Documentation, produced through the two-stage generation process described
in Section is employed to clarify what the test entry points are intended to accomplish, what
their inputs and outputs are, and what potential errors may arise.

* Test Entry Points: As mentioned in Section test entry points £ are codes that are directly
invoked by the test cases parser(P;).

* Dependencies: Dependencies are the direct dependencies of the test entry points and are used to
further clarify the intention of the test entry points for the LLMs.

To more comprehensively simulate testing under different conditions, we defined two test-
ing scenarios: white-box and black-box. As illustrated in the lower-right corner of Fig-
ure 2] these scenarios differ in terms of the input information provided. Specifically, Code
Imp. indicates whether the concrete implementation of the test entry points is provided,
while Dep. denotes whether the dependencies of the test entry points are included. In
all two settings, the documentation (Doc.) of the test entry points is consistently provided.

3.3 EVALUATION METRICS

You are an experienced software test engineer
applying a Test-Driven Development approach.
Your taskis to ...

Before introducing the evalu-
ation metrics, we first formal-

ize the test generation task:

7:‘]‘ = @(571,.t|5),5 e{white_box’ 1. :jnfertheintendedbehavioroftheTestentrypoints'APIfromthe Z

> . ocumentation.
black—box} is a set of tests generated 2. Design a set of test cases that cover ... o
by the model @(|) given the test 3. Ensure tests are designed to differentiate between correct and %

. incorrectimplementations.

entry points &, ;. &, denotes the - i
entry points of a specific test ¢ in the]
ground truth tests T = parser(Pt) Setting Code Imp. Dep. Doc. E-
from the n'" data snippet’s test patch (J
Pt To evaluate the quality of White v v v

* *
T = Uier Ti't» we employed the Black » » 7

following four metrics:

Head Pass Rate (HP) : We mea- Ejoyre 2: Illustration of model inputs. According to the dif-
sured the pass rate of the tests gener- ferences in input information, the tests are mainly divided

ated by the model on the head commit (6 two scenarios: white-box testing and black-box testing.
after the pull request, which reflects

the accuracy with which the gener-
ated tests adhere to the intended functionality. The Head Pass Rate is a test-level metrics:

N
| Un:l{t S 7;:(|pa53(ta Rn,base X Pn,c)|}
N
Zn:l |7;;k|
where pass(+,-) serves as an indicative function I, which denotes whether the test ¢ passes on the

head repository R, pase X Pn,c, Where the issue from the base commit repository R, pase 1S fixed
with P, .

HP =

; (D

Fail-to-Pass Rate (F2P) : Similar to SWT-bench (Miindler et al.| 2024), we compute the pro-
portion of PRs for which at least one generated test exhibits a Fail-to-Pass transition. This metric
reflects the effectiveness of the generated tests, indicating the extent to which the model can accu-
rately identify potential errors:

Sy I f2p(n)] > 1)
N (2)
f2p(n) = {t € 7;;«|pa55(ta7zn,base X Pn,c)&fail(taRn,hase)}}v

2P =

where f2p(-) is a pr level function, which finds the test that passes on the head repository and fails
on the base repository.

Under review as a conference paper at ICLR 2026

Entry Coverage (EC) : Entry Coverage measures the line coverage of the generated tests with
respect to the test entry points, reflecting the extent to which the generated tests comprehensively
capture the intention of the test entry points:

(T.5,En
NZ |cover (T,)|7 3)

[line(Ey)]

where cover(-,-) denotes the set of lines from entry—fanetions entry interface &, covered by the
tests. And line(-) returns the lines of &,.

Change-focused Coverage (CFG) : When applying P, ., certain lines in R,, are modified, de-
noted as A(R,):

N
1 |cover(T,¥, parser(Pen))
CFG =Y s 4

|A(R,)] @

The aforementioned metrics collectively capture the model’s fidelity to the code’s intended func-
tionality, its precision in identifying issues, and the comprehensiveness of the generated tests.

Table 3: Performance comparison of different models on TestExplora. The best results are in bold,
and the second-best are underlined.

TestExplora TestExplora-Lite
Type Model HP F2P EC CFG Num.| HP F2P EC CFG Num.
QC-30B-A3B 6398 2.05 5298 4221 1948 | 51.28 1.16 47.01 4295 13.29
03-mini 68.27 393 5146 41.67 1386 | 54.66 523 52.57 4440 8.11
Black Box 04-mini 66.18 259 51.18 4324 1419 | 54.16 233 58.59 4648 10.8
Gemini-2.5-pro 62.04 2.06 3840 4145 1426 | 58.60 1.74 49.14 45.60 12.72
GPT-40 62.58 147 4698 4214 1231 | 47.66 1.74 5501 43.92 7.60
GPT-5-mini 7328 517 5242 4341 1150 | 58.00 7.56 60.63 46.70 7.82
QC-30B-A3B 68.80 1.39 5399 43.01 19.21 | 5435 1.74 5758 4498 1270
03-mini 76.54 4.19 5249 4216 1268 | 67.01 698 59.56 43.40 7.72
White Box 04-mini 7233 592 67.30 47.06 1048 | 7233 592 67.30 47.06 10.48
Gemini-2.5-pro 74.51 2.59 45.88 43.05 1623 | 73.00 4.65 6297 4471 1299
GPT-40 6791 1.79 46.00 41.64 11.22 | 52.81 1.16 53.83 44.71 7.12
GPT-5-mini 84.80 7.54 5633 43.17 1155 | 77.68 12.79 67.76 45.66 7.69

4 EVALUATION

To demonstrate the effectiveness of our approach and understand the capabilities of different models
in automated test generation, in this section, we evaluate the performance of six mainstream models
on TestExplora. We conduct a comprehensive evaluation using four key metrics: Head Pass Rate,
Fail-to-Pass Rate, Entry Coverage, and Change-focused Coverage. And the number of testcases
Num. is also listed. Our experiments span six mainstream language models across 12,227 real-
world pull requests. To ensure efficient evaluation, we constructed a subset named TestExplora-Lite
by filtering based on the quality of human-written docstrings in the repository. This subset contains
330 PRs and 517 samples in total.

4.1 EXPERIMENTAL DESIGN

Models To comprehensively evaluate the problem detection capability of existing LLMs, we select
six mainstream models. Among open-source code models, we select the representative Qwen3-
Coder-30B-A3B (Qwen-Team, 2025)). For general-purpose LLMs, GPT-40 (OpenAI 2024) and
GPT-5- rmml are selected. For reasoning models, TestExplora evaluates 03-mini, 04- m1n L and
Gemini-2.5-pro (Gemini-Team) 2025).

Zhttps://openai.com/index/introducing-gpt-5/
*https://openai.com/index/03-04-mini-system-card/

https://openai.com/index/introducing-gpt-5/
https://openai.com/index/o3-o4-mini-system-card/

Under review as a conference paper at ICLR 2026

Context Template To comprehensively evaluate the capability of LLMs in problem detection,
we adopt different input formats to simulate various testing scenarios. Specifically, white-box and
black-box are selected as two main testing scenarios. In the white-box scenario, models are allowed
to access the complete codes along with their related dependencies. In contrast, in the black-box
scenario, the model is only provided with the corresponding test entry points and the associated
documentation. The detailed templates are provided in Appendix

4.2 EVALUATION RESULTS

Performance comparison among the models As shown in Table[3] GPT-5-mini achieves the best
performance. Its testing capability is stronger in both black-box and white-box scenarios. Specifi-
cally, H P is an evaluation metrlc at the test-case level Wthh reﬂects the fundamental ablhty of the
model to wrlte tests. 4SS 1 ; 3 3

s: We observe that Gemlm 2.5- pro
tends to generate significantly more test cases than other models. While generating a larger number
of tests may increase the chance of discovering defects, it also introduces a higher likelihood of
producing invalid or incorrect assertions. Since the F'2P is calculated as the proportion of generated
tests that successfully capture a bug, a large volume of low-quality tests dilutes the metric. In other
words, the abundance of tests produced by Gemini-2.5-pro does not necessarily translate into better
defect detection; instead, the presence of many ineffective or erroneous tests lowers its average F'2P
compared to models that generate fewer but higher-quality tests. As for the EC and CFG metrics,
GPT-5-mini generates the fewest tests yet achieves superior scores. This indicates that GPT-5-mini
excels at capturing the potential branches of the entry—funetion entry interface as well as locating
possible errors. Meanwhile, o4-mini achieves the second-best performance on these two metrics.

—o— Qwen3-Coder-30B w/o dep code/blackbox/gen. doc gpt-5-mini w/o dep code/blackbox/gen. doc
== gemini-2.5-pro w/o dep code/blackbox/gen. doc 03-mini w/o dep code/blackbox/gen. doc
=== gpt-40 w/o dep code/blackbox/gen. doc === 04-mini w/o dep code/blackbox/gen. doc
24 4
221
2014 18.2%
X 184
‘; 164
n 141
© E
o 12
N 107
= gi
© 3.2
L 64 o, 1.5%
41 1.1% ’
2 k|
0- ? y y ¥ y y y y
0-18 19-37 38-56 57-75 76-94 95-113 114-135 136-155 156-178 180-510

Number of Generated Tests

Figure 3: The impact of the number of generated test cases on performance. The best performance
of each model is highlighted.

Performance variation with respect to the number of generated tests In the previous section,
we find that although Gemini-2.5-pro performs well at the single-test generation level, its tendency to
generate a larger number of tests leads to lower performance on the pull-request-level F'2P metric.
Figure [3|illustrates the correlation between the number of generated tests and model performance.
As shown in the Figure [3] when the number of tests generated by a model gradually increases, the
corresponding F2P decreases. When the number of generated tests exceeds 104, no model is able
to successfully produce correct tests. The experimental results indicate that generating more tests
does not necessarily lead to better performance. However, generating too few tests also poses
potential risks of hacking. For example, in Table [3] GPT-4o produces relatively few tests, but its
coverage metric is comparatively low, indicating that it may not generate sufficiently comprehensive
tests. TThese These results suggest that, at the repository level, an effective test suite depends
not only on a model’s ability to generate tests, but also on its precision in targeting critical
functionality. In other words, better performance is achieved by producing fewer but more
meaningful tests.

Performance variation with respect to the timeline Figure [] shows how the performance of
models in test generation varies over time. We find that existing models perform better on data

Under review as a conference paper at ICLR 2026

-—@— gpt-40 w/o dep code/blackbox/gen. doc —4-— Qwen3-Coder-30B w/o dep code/blackbox/gen. doc
=== 03-mini w/o dep code/blackbox/gen. doc === 04-mini w/o dep code/blackbox/gen. doc
=——de==_gemini-2.5-pro w/o dep code/blackbox/gen. doc === gpt-5-mini w/o dep code/blackbox/gen. doc

6 5.4% 5.5%

Fail2Pass (%)

19- 20-21 22-23 2451 2452 2453 2454 2551 2552 2553
Eval Data Year Group

Figure 4: Fail-to-Pass success rates across eval year buckets for six code-generation models without
dependency code access, highlighting each model’s peak performance season.

prior to 2023 than on data after 2023. Since SWE-Bench (Jimenez et all,2024) covers pull requests
from before 2023, existing models have been trained on repositories related to SWE-Bench, which
leads to their relatively stronger performance on pre-2023 data. This indicates that existing datasets
(Miindler et al.| 2024} [Ahmed et al.| [2024a)) based on SWE-Bench may suffer from data leakage
risks, while also highlighting the importance of our scalability framework. Additionally, for GPT-
4o, its performance remains relatively poor, which may be because the selected checkpoint (2024-
05-13) is not specifically trained on SWE-type datasets.

Performance variation with respect to the repository categories We also analyze the impact
of repository type on model performance. As shown in Figure [§] the models perform best in the
Scientific/Engineering domain, where all models achieve an F2P score above 5%. In contrast, per-
formance is the worst in the Security domain, with both 04-mini and Qwen3-Coder scoring 0.

B gpt-4o0 Emm Qwen3-Coder-30B .
mEm 03-mini N o4-mini Fail to Pass Rate
N gemini-2.5-pro EEEE gpt-5-mini
84 7.8
261
]
& 5]
c
0 44
[4
o 37
g
6 2
(8}
11
e

Class Function Mixed
Type of Tested Entry Points

Figure 5: Fail-to-Pass success rates across test entry points type. Class indicates that the test entry
points consist only of classes, Function indicates that they consist only of functions, and Mixed
denotes that the test entry points are a combination of both.

Performance variation with respect to the types of entry points In Figure[3] all models perform
best when the test entry points involve only function-type code, while they perform worst in mixed
tests involving both functions and classes. This finding naturally divides TestExplora into three
levels of difficulty: Easy, Medium, and Hard.

Performance variation with different types of dependences In Table[3] we observe that for cer-
tain models—such as GPT-4o0—their White-Box performance in the Lite version is inferior to their
Black-Box performance. To investigate this issue, we hypothesize that GPT-40 may not effectively
leverage contextual information. Therefore, in Figure[T0} we compute the performance variations of
different models under different types of dependencies. In our setting, we categorize dependencies

Under review as a conference paper at ICLR 2026

into two types: invocation and inheritance. GPT-40 shows an F2P rate of 2.3 in the black-box set-
ting, but increases to 3.9 when only invocation dependencies are provided. In contrast, GPT-5-mini
achieves an F2P rate as high as 12.8 when all types of dependencies are supplied.

Performance of Agents From the previous section, our experimental results indicate that different
models exhibit preferences for different types of dependencies. Therefore, we introduce the Agent
baseline. Specifically, we allow the SWE-Agent and Trae-Agent to freely explore the repository
to generate tests that uncover potential issues. From Table] we can observe that, compared to
providing all dependencies directly, the Agent makes more efficient use of the context. This suggests
that, for the tasks represented by TestExplora, the Agent constitutes a promising research direction.

Table 4: Performance comparison with different context methods. he best results are in bold.

\ Metrics
Model Context | HP F2P EC CFG Num.

White Box | 72.33 592 67.30 47.06 10.48
04-mini SWEAgent | 82.03 942 69.63 47.81 13.79
TracAgent | 86.55 12.16 62.01 4795 12.76

White Box | 77.68 12.79 67.76 45.66 7.69
SWEAgent | 93.81 17.27 6545 4743 23.09

gpt-5-mini

We also analyze the tool-invocation frequency of different agents. We find that for SWE-
agents based on GPT-5-mini and o4-mini, the tool used most frequently at every stage is
str_replace_editor view. Figure[f]and Figure [[T]indicate that the agents are consistently
exploring the repository throughout the process. Moreover, the top 15 most frequently used tools
are also predominantly focused on repository exploration and comprehension.

Tool Call Distribution Across Turns

Total Calls: 14027
s00 [& Max Turn:
(Top 15 + Others)

0 ‘|||||““‘|‘

Figure 6: The frequency with which SWE-agent w/ GPT-5-mini invokes tools in each iteration.
Specifically, we analyze all trajectories contained in TestExplora-Lite.

Frequency

-
I =
20 3

EmgiR_ o : -
INRARRNRRRSEEEEaE s o
% % 4 45 48 51 54 5 o & 6 6 I R R
Turn
M str_replace_editor view str_replace_editor str_replace [l pytest-q grep-R Ml str_replace_editor insert [l rm -t
sed-n W str_replace_editor create bash-ic [l grep-n midir -p Others
W sumit Is-da M python Is-R

4.3 ABLATION ON DOCUMENTATION

In TestExplora, we adopt DocAgent (Yang et al.,[2025) as an additional source of information for test
generation. To verify the effectiveness of synthetic documentation, we compare the performance dif-
ferences between synthetic documentation and human-written documentation in TestExplora-Lite.

From Table] it can be observed that the documentation generated by DocAgent provides stronger
informational gains compared to human-written documentation. Specifically, the documentation
generated by DocAgent does not lead to significant changes in the average number of tests gener-
ated by the models. Instead, it helps improve performance across other metrics. Since DocAgent
observes only the information from the head repository during exploration—without accessing diff

Under review as a conference paper at ICLR 2026

Table 5: Performance change from human-written documentation to DocAgent-generated documen-
tation. The table reports the information gain of DocAgent-generated documentation compared with
human-written documentation.

\ TestExplora-Lite Change

Type Model | HP F2P EC CFG Num.
QC-30B-A3B +13.42 +3.33 +0.39 +0.19 -0.16
03-mini +16.78 +3.33 +6.20 +0.92 +0.01

Black Box 04-mini +6.55 +1.82 +3.28 +0.17 +0.27
Gemini-2.5-pro +10.7 +0.61 +8.53 +0.81 +0.15
GPT-40 +4.39 +2.12 +6.54 +0.33 +0.70

GPT-5-mini +10.12 +6.06 +10.52 +1.83 +0.13

patches or error messages—there is no risk of potential information leakage. The ablation study
further demonstrates the scalability of TestExplora.

5 FURTHER ANALYSIS

We also conduct an analysis of the errors produced by models. From Figure |7, we observe that all
models are more prone to Assertion Mismatch errors and Misconfigured Mocks. In other words,
existing models fail to accurately capture the behavior and output of the function under test, both in
black-box and white-box scenarios. We also conduct a case study in Appendix [F]

Testing Error Distribution Comparison

Blackbox Testing Whitebox Testing
Error Distribution Error Distribution

Assertion Mismatch Assertion Mismatch

Incorrect Parametgr Types/Counts /’ \“Uncaught / Unagserted Exceptions Incorrect Parametgr Types/Counts /)
/ f

/ Unasserted

Models
Qwen3-Coder-30B
gemini-2.5-pro

—o= gpt-d0

=®= gpt-5-mini

== 03-mini
04-mini

Misconfigured Mocks Syntax /Riintime Errors Misconfigured Mocks Syntax /Riintime Errors

Figure 7: The generated test error distribution. The left subfigure shows the distribution of error
types of the model in the black-box scenario, while the right subfigure shows the distribution of
error types in the white-box scenario.

We also conduct an ablation study on the dependency forms of test entry points. In our setting, we
categorize dependencies into two types: invocation and inheritance. As shown in Figure invo-
cation dependencies exert the most substantial impact, which is consistent with the original design
principle of TestExplora—constructing the dataset based on invocation-driven parsing relationships.

6 CONCLUSION

We present TestExplora, an extensible new benchmark for evaluating LLMs in exploratory software
testing. TestExplora conceals bug information and challenges models to proactively uncover de-
fects in realistic repository-level contexts. Our evaluation reveals a critical capability gap: even the
strongest models achieve less than 13% Fail-to-Pass success. These findings highlight that effective
test generation requires not only coding ability but also reasoning about risk-prone behaviors.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Toufique Ahmed, Martin Hirzel, Rangeet Pan, Avraham Shinnar, and Saurabh Sinha. Tdd-
bench verified: Can llms generate tests for issues before they get resolved? arXiv preprint
arXiv:2412.02883, 2024a.

Toufique Ahmed, Martin Hirzel, Rangeet Pan, Avraham Shinnar, and Saurabh Sinha. Tdd-
bench verified: Can llms generate tests for issues before they get resolved? arXiv preprint
arXiv:2412.02883, 2024b.

Leonhard Applis, Yuntong Zhang, Shanchao Liang, Nan Jiang, Lin Tan, and Abhik Roychoudhury.
Unified software engineering agent as ai software engineer. arXiv preprint arXiv:2506.14683,
2025.

Neil Chowdhury, James Aung, Chan Jun Shern, Oliver Jaffe, Dane Sherburn, Giulio Starace, Evan
Mays, Rachel Dias, Marwan Aljubeh, Mia Glaese, Carlos E. Jimenez, John Yang, Leyton Ho,
Tejal Patwardhan, Kevin Liu, and Aleksander Madry. Introducing SWE-bench verified, 2024.
URLhttps://openai.com/index/introducing—-swe—bench-verified/.

Gemini-Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
context, and next generation agentic capabilities, 2025. URL https://arxiv.org/abs/
2507.06261.

Navid Bin Hasan, Md Ashraful Islam, Junaed Younus Khan, Sanjida Senjik, and Anindya Igbal.
Automatic high-level test case generation using large language models. In 2025 IEEE/ACM 22nd
International Conference on Mining Software Repositories (MSR), pp. 674—685. IEEE, 2025.

Dong Huang, Jie M Zhang, Mark Harman, Qianru Zhang, Mingzhe Du, and See-Kiong Ng. Bench-
marking 1lms for unit test generation from real-world functions. arXiv preprint arXiv:2508.00408,
2025.

Kush Jain, Gabriel Synnaeve, and Baptiste Roziere. Testgeneval: A real world unit test genera-
tion and test completion benchmark. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=706SG5gVev.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik

Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Nam Le Hai, Dung Manh Nguyen, and Nghi DQ Bui. Repoexec: Evaluate code generation with a
repository-level executable benchmark. arXiv e-prints, pp. arXiv—2406, 2024.

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao, Chen Qian,
Binyuan Hui, Qicheng Zhang, et al. Devbench: A comprehensive benchmark for software devel-
opment. CoRR, 2024.

Kefan Li and Yuan Yuan. Large language models as test case generators: Performance evaluation
and enhancement, 2024. URL https://arxiv.org/abs/2404.13340.

Wei Li, Xin Zhang, Zhongxin Guo, Shaoguang Mao, Wen Luo, Guangyue Peng, Yangyu Huang,
Houfeng Wang, and Scarlett Li. Fea-bench: A benchmark for evaluating repository-level code
generation for feature implementation. arXiv preprint arXiv:2503.06680, 2025.

Jing Liu, Seongmin Lee, Eleonora Losiouk, and Marcel Béhme. Can llm generate regression tests
for software commits?, 2025. URL https://arxiv.org/abs/2501.11086.

Niels Miindler, Mark Niklas Mueller, Jingxuan He, and Martin Vechev. SWT-bench: Testing and
validating real-world bug-fixes with code agents. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
1d=9Y8zUO11EQ.

11

https://openai.com/index/introducing-swe-bench-verified/
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2507.06261
https://openreview.net/forum?id=7o6SG5gVev
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2404.13340
https://arxiv.org/abs/2501.11086
https://openreview.net/forum?id=9Y8zUO11EQ
https://openreview.net/forum?id=9Y8zUO11EQ

Under review as a conference paper at ICLR 2026

Noor Nashid, Islem Bouzenia, Michael Pradel, and Ali Mesbah. Issue2test: Generating reproducing
test cases from issue reports, 2025. URL https://arxiv.org/abs/2503.16320.

OpenAl. Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276

Michael Pradel. Testora: Using natural language intent to detect behavioral regressions, 2025. URL
https://arxiv.org/abs/2503.18597.

Qwen-Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388,

Alvin Tan, Chunhua Yu, Bria Long, Wanjing Ma, Tonya Murray, Rebecca Silverman, Jason Yeat-
man, and Michael C Frank. Devbench: A multimodal developmental benchmark for language
learning. Advances in Neural Information Processing Systems, 37:77445-77467, 2024.

Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng Huang, Zhaoyang Chu, Da Song, Lingming
Zhang, An Ran Chen, and Lei Ma. Testeval: Benchmarking large language models for test case
generation. arXiv preprint arXiv:2406.04531, 2024.

Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng Huang, Zhaoyang Chu, Da Song, Lingming
Zhang, An Ran Chen, and Lei Ma. Testeval: Benchmarking large language models for test case
generation, 2025a. URL https://arxiv.org/abs/2406.04531.

Yibo Wang, Congying Xia, Wenting Zhao, Jiangshu Du, Chunyu Miao, Zhongfen Deng, Philip S
Yu, and Chen Xing. Projecttest: A project-level unit test generation benchmark and impact of
error fixing mechanisms. arXiv preprint arXiv:2502.06556, 2025b.

Yinjie Wang, Ling Yang, Ye Tian, Ke Shen, and Mengdi Wang. Co-evolving llm coder and unit
tester via reinforcement learning. arXiv preprint arXiv:2506.03136, 2025c.

Zihan Wang, Siyao Liu, Yang Sun, Hongyan Li, and Kai Shen. Codecontests+: High-quality test
case generation for competitive programming. arXiv preprint arXiv:2506.05817, 2025d.

Jiacheng Xu, Bo Pang, Jin Qu, Hiroaki Hayashi, Caiming Xiong, and Yingbo Zhou. CLOVER: A
test case generation benchmark with coverage, long-context, and verification. In ICLR 2025 Third
Workshop on Deep Learning for Code, 2025. URL https://openreview.net/forum?
1d=gPpQa4PGEZ.

Dayu Yang, Antoine Simoulin, Xin Qian, Xiaoyi Liu, Yuwei Cao, Zhaopu Teng, and Grey Yang.
Docagent: A multi-agent system for automated code documentation generation, 2025.

John Yang, Carlos E Jimenez, Alex L Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press,
Niklas Muennighoff, Gabriel Synnaeve, Karthik R Narasimhan, et al. Swe-bench multimodal:
Do ai systems generalize to visual software domains? arXiv preprint arXiv:2410.03859, 2024.

Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu,
Xiaojian Zhong, Aoyan Li, et al. Multi-swe-bench: A multilingual benchmark for issue resolving.
arXiv preprint arXiv:2504.02605, 2025.

Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao Wang,
Maoquan Wang, Yufan Huang, Shengyu Fu, et al. Swe-bench goes live! arXiv preprint
arXiv:2505.23419, 2025.

Quanjun Zhang, Ye Shang, Chunrong Fang, Siqi Gu, Jianyi Zhou, and Zhenyu Chen. Testbench:
Evaluating class-level test case generation capability of large language models, 2024. URL
https://arxiv.org/abs/2409.17561.

Yicong Zhao, Shisong Chen, Jiacheng Zhang, and Zhixu Li. Recode: Improving llm-based code
repair with fine-grained retrieval-augmented generation. arXiv preprint arXiv:2509.02330, 2025.

12

https://arxiv.org/abs/2503.16320
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2503.18597
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2406.04531
https://openreview.net/forum?id=gPpQa4PGEZ
https://openreview.net/forum?id=gPpQa4PGEZ
https://arxiv.org/abs/2409.17561

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODEL

In this paper, we employ a large language model (LLM) for proofreading and icon creation.

B ACTION RUN SCRIPT

Action Run Script

name: Tests
on:
push

jobs:
tests :
runs —on: ubuntu-latest

steps :
— name: checkout

uses: actions/checkout@v4

— name: Detect Python

run: |
which python3
python3 ——version

— name: Install system dependencies
run: |
sudo apt—get update
sudo apt—get install -y python3-dev librados2
librados —dev libpq—-dev build-essential

— name: Look for and merge all requirements files
id: find_reqs

shell: bash
run: |
echo ”"===> Looking for requirements*.txt or
requirements . txt files ...”
find . —-maxdepth 1 —type f \(—iname “requirements =.
txt” —o —iname “xrequirements.txt” \) >

all_package . txt

if [[—-s all_package.txt]]; then
echo "Found requirements files:”
cat all_package. txt
echo ”"HAS_REQUIREMENTS=true” >> $GITHUB_ENV

2

echo "===> Merging and deduplicating requirements

touch merged-requirements. txt
while read -r file; do
grep —vE "\ sx#’ 7 $file” | grep —-vE "\ sx$’ >>
merged—-requirements . txt || true
done < all_package. txt

sort merged-requirements.txt | uniq > requirements —
all . txt

13

Under review as a conference paper at ICLR 2026

echo "===> Combined requirements:”
cat requirements—all. txt
else
echo "No requirements files found.”
echo ”"HAS REQUIREMENTS=false” >> $GITHUB_ENV
fi
python3 —-m pip install ——upgrade pip
— name: Install Python via pyproject
run: |
if [—f ”pyproject.toml”]; then
echo "===> pyproject.toml detected”
echo ”"USE POETRY=true” >> $GITHUB_ENV
echo 7===> install poetry”
pip install poetry
if [—f ”poetry.lock”]; then
echo ”===> Checked poetry.lock and Using
Poetry”
poetry install || echo ”Poetry install dev
failed or timed out”
elif [—f ”pdm.lock”]; then
echo ”===> Checked pdm.lock and Using PDM”
echo ”"USEPDM=true” >> $GITHUB_ENV
pip install pdm
pdm install ——with test || echo ”Test group
not found or failed”
pdm install ——with dev || echo ”Dev group not
found or failed”
else
if grep —q *"\[tool\.poetry\]’ pyproject.toml
|| grep —q *“\[project\]’ pyproject.toml
; then
echo ”===> This pyproject.toml is a
project”
echo "===> No lock file detected,
installing via pip (PEP 517)...”
echo "===> install poetry pytest—json-—
report”
poetry install ——no-interaction ——with
dev || echo ”Dev group not found or
failed”
poetry install ——no-interaction ——with
test || echo ”Test group not found or
failed”
else
echo "===> This pyproject.toml is NOT a
project”
echo ”"USE_POETRY=false” >> $GITHUB_ENV
fi
fi
else
echo "===> pyproject.toml not detected”
echo "USE_POETRY=false” >> $GITHUB_ENV
fi

14

Under review as a conference paper at ICLR 2026

— name: Install others if not poetry

run: |
if [”"$USE_POETRY” = ”false”]; then
echo 7===> This is not a pyproject.toml project,
ready to install others”
pip install ——upgrade pip setuptools wheel
packaging
if [-f “requirements—all.txt”]; then
echo ”Using requirements x.txt...”
pip install ——prefer—-binary -r requirements—all.
txt
fi
if [—-f ”setup.py”]; then
echo 7===> Installing from setup.py...”
pip install —-e .[tests]
fi
pip install numpy pytest pytest—json-—report pytest-—
cases IPython mock pygsheets oauth2client
pyyaml Ixml django
pip install pytest-black pytest—pylint pytest—
django python-dotenv pytest-mock django
responses
if | pytest ——collect —only; then
echo ”"Tests fail due to numpy incompatibility ,
downgrading ...”
pip install “numpy<2.0”
fi
fi

— name: Run tests and generate JSON report

run: |

if [”$USEPDM” = “true”]; then
echo 7===> Run in PDM...”
pdm add ——-dev coverage
pdm fix
pdm run coverage run —-m pytest {test_files}
pdm run coverage json —-o coverage_data.json
echo ”===> Run in PDM end...”

elif [”$USE_POETRY” = ”true”]; then
echo ”7===> Run in poetry...”
poetry add coverage
poetry run coverage run —-m pytest {test_files}
poetry run coverage json —o coverage_data.json
echo "===> Run in poetry end...”

else
echo 7===> Run in pytest...”
pip install coverage
coverage run —-m pytest {test_files}
coverage json —o coverage_data.json

fi

15

Under review as a conference paper at ICLR 2026

C DOCAGENT EXECUTION PROCESS

DocAgent consists of four modules: Searcher, Reader, Writer, and Verifier. In this section, we

illustrate the generated log with an example from PyCQA/isort (isort.wrap.line).

C.1 SEARCHER AND READER

The Searcher is responsible for retrieving the relevant dependencies of the target function within the
repository, as well as performing internet searches. In TestExplora, for efficiency, we disable internet
search. The Reader primarily analyzes the target code to be generated along with the retrieved
context. The Searcher first retrieves the relevant dependencies based on the control flow graph

parsed from the repository:

Searcher Iteration 1

The code function ”line” handles wrapping an input string
according to a configurable line length and multiple
wrapping modes. It examines the content for special
markers (like comments or import—related keywords) and
splits it into parts using regular expressions. It then
conditionally calls a helper function (_wrap-_line) to
further format parts of the line, and it treats special
cases (such as ”# NOQA” comments) differently based on
configuration settings. The function relies on a
configuration object (Config) that provides several
attributes (like line_length , multi_line_output ,
use_parentheses , and others) and on a Modes object or
enum (with values like NOQA, VERTICAL_HANGING_INDENT, etc
.) that indicate the wrap mode.

To generate a high—quality docstring , additional internal
context is needed. In particular, it would help to know:

1. Details about the Config class including its attributes ,
their types, and what each one signifies (for example,
the significance of DEFAULT_CONFIG) .

2. Information about the Modes enumeration (or similar)
including what each mode means and how it affects the
wrapping .

3. The purpose and behavior of the helper function _wrap_line
, e.g. its parameters, its expected output, and how it
integrates into the overall formatting.

4. Optionally , understanding where the ”line” function is
used might help clarify its expected input or edge-—case
handling , though understanding the internal calls is
likely sufficient here.

<INFO_NEED>true </INFO_NEED>

<REQUEST>
<INTERNAL>
<CALLS>
<CLASS>Config , Modes </CLASS>
<FUNCTION>_wrap _line </FUNCTION>
<METHOD> </METHOD>
</CALLS>
<CALLBY>true </CALLBY>
</INTERNAL>

16

Under review as a conference paper at ICLR 2026

<RETRIEVAL>
<QUERY></QUERY>
</RETRIEVAL>
</REQUEST>

Having obtained sufficient information, the Searcher terminates the retrieval process:

Searcher Iteration 2

The provided code component is a function that takes a string
as input and returns a wrapped version of the string
based on a maximum line length defined in its
configuration. It includes logic for handling comments (e
.g. 7"# NOQA”), various delimiters (like ”import ”, ”
cimport 7, ”.”, and “as ”) and even different wrapping
modes (such as handling vertical hanging indents or grid-—
grouped modes). It also makes use of a helper function (
wrap-line) and a formatter function determined by the
configuration , but overall the transformation logic is
sufficiently clear from the code.

There is enough context in terms of the configuration
parameters used by the function and the operations
performed on the content. The current internal details
allow us to understand the expected behavior and cover
exceptional cases (like when wrap mode is NOQA) .

<INFO_NEED>false </INFO_NEED>

<REQUEST>
<INTERNAL>
<CALLS>
<CLASS></CLASS>
<FUNCTION></FUNCTION>
<METHOD></METHOD>
</CALLS>
<CALLBY>false </CALL_BY>
</INTERNAL>
<RETRIEVAL>
<QUERY></QUERY>
</RETRIEVAL>
</REQUEST>

C.2 WRITER

The Writer is responsible for generating the documentation based on the available information.
Writer Iteration 1

<DOCSTRING>
Summary :
Wraps the provided line of text so that it fits within
the prescribed maximum line length, applying
configurable formatting and splitting rules.

17

Under review as a conference paper at ICLR 2026

Description:

This function processes a string (typically a code line
such as an import statement) to ensure it
adheres to a desired maximum line length as defined in
the configuration. It analyzes the line
for comments and specific split points (like ”import 7, ”
cimport 7, ”.”, and “as ”) to intelligently
break the line. Depending on the configuration:
— When wrapping is enabled and the content exceeds the
line length, the function splits the line
while preserving inline comments and formatting
details (including adding trailing commas or
managing parentheses).
— If the configuration indicates a NOQA mode and the
content is too long without a NOQA marker,
it appends the appropriate NOQA comment.
The function is typically used to format and balance long
lines in source code, improving readability
by producing multi—-line outputs that respect user—defined
styling preferences.

Args:
content (str):
The original text line to be processed. This may
contain inline comments (e.g., after a ’#’)
and segments that should be conditionally wrapped.
line_separator (str):
The string used to separate lines in the output,
commonly a newline character.
config (Config, optional):
A configuration object that defines formatting
preferences such as maximum line length,
multi—line output mode, indentation, inclusion of
trailing commas, comment prefix , and parenthesis
usage .
Defaults to DEFAULT.CONFIG if not provided.

Returns:
str:
A reformatted version of the input text that adheres
to the specified line-length and formatting
rules. If the original content does not exceed the
allowed length, it is returned unchanged.

Usage Considerations:
— Ensure that the provided configuration accurately
reflects the desired formatting preferences.
— The function performs special handling for NOQA
comments and may alter comment placement when
wrapping lines .
— It is primarily intended for processing code lines with
import—like structures but can be used
for other long strings adhering to similar formatting
rules .
</DOCSTRING>

18

Under review as a conference paper at ICLR 2026

C.3 VERIFIER

The Verifier validates the generated documentation to determine whether further revisions are nec-
essary.

Verifier Iteration 1

<NEED_REVISION>false </NEED_REVISION>

D MODEL INPUT PROMPT TEMPLATE

D.1 WHITE-BOX TEMPLATE

Below is the prompt template in white-box testing setting, where models are allowed to access the
complete code along with its related dependencies:

Task Prompt Template

You are an experienced software test engineer applying a Test
—Driven Development (TDD) approach.

Your task is to design tests that ensure only correct
implementations (following the documentation) pass, while
incorrect implementations would fail.

You are given the following information:
— Dependencies

— Test entry points

— Documentation

Your tasks:
1. Infer the =xintended behaviorsx of the Test entry points

API from the documentation.

2. Design a set of =#xtest cases*x that cover:

— Basic functionality with valid inputs and expected
outputs.

— Boundary conditions and edge cases.

— Invalid inputs and error handling.

— Potential issues with dependency interactions.

3. Write executable test code using Pytest.
4. Ensure tests are designed to differentiate between correct
and incorrect implementations:

— At least one test should be able to expose an incorrect
implementation if it does not fully follow the
documented behavior.

— A correct implementation should pass all tests.

)

Dependencies

This section provides the dependencies of the test entry
points. Each dependency is represented by its file path.

{dependencies}

Test Entry Points

This section provides the functions or methods to be tested,
each represented by its file path:

{entry functions}

19

Under review as a conference paper at ICLR 2026

Documentation

You should infer the intended behavior of the test entry
points from the following documentation:

{documentation }

#* Additional information:

— Here are the simplified dependencies of the codes to be
tested , you can refer to them when generating unit tests:

{dependency graph}

Requirements for the generated unit tests

— You must leverage the following code in ## Test Entry
Points ## section as entry points to find potential
problems:

{entry function name}

Output Format

— You must output the generated unit tests in the following
format, wrapped in a single code block with triple
backticks:

‘“‘python

{necessary imports}

<generated unit tests>

G

D.2 BLACK-BOX TEMPLATE

Below is the prompt template in black-box testing setting, where models are restricted to performing
the test generation task based on the corresponding test entry points and the associated documenta-
tion:

Task Prompt Template

You are an experienced software test engineer applying a Test
—Driven Development (TDD) approach.

Your task is to design tests that ensure only correct
implementations (following the documentation) pass, while
incorrect implementations would fail.

You are given the following information:
— Test entry points
— Documentation

Your tasks:

1. Infer the =xintended behavior=s of the Test entry points’
API from the documentation.

2. Design a set of =xxtest cases#% that cover:
— Basic functionality with valid inputs and expected

outputs.

— Boundary conditions and edge cases.
— Invalid inputs and error handling.

3. Write executable test code using Pytest.

4. Ensure tests are designed to differentiate between correct
and incorrect implementations:

20

Under review as a conference paper at ICLR 2026

— At least one test should be able to expose an incorrect
implementation if it does not fully follow the
documented behavior.

— A correct implementation should pass all tests.

Test Entry Points

This section provides the functions or methods to be tested,
each represented by its file path:

{entry functions}

Documentation

You should infer the intended behavior of the test entry
points from the following documentation:

{documentation }

Requirements for the generated unit tests

— You must leverage the following code in ## Test Entry
Points ## section as entry points to find potential
problems:

{entry function name}

Output Format

— You must output the generated unit tests in the following
format, wrapped in a single code block with triple
backticks:

‘““‘python

{necessary imports}

<generated unit tests>

I3

E REPOSITORY CATEGORIES ANALYSIS

. B gpt-40 mEmm Qwen3-Coder-30B
Fail to Pass Rate =3 03-mini B o4-mini
144 13.0 EEE gemini-2.5-pro EEEE gpt-5-mini

Fail2Pass (%)

Software. Scientific. Internet Utilities Security Other
Type of Tested Entry Points

Figure 8: The performance of the model varies with the repository categories. We present in detail
the top five categories in terms of the number of repositories included. The remaining categories
are grouped under Other. The categories are arranged from left to right according to the number
of repositories they contain. Software. and Scientific. correspond to Software Development and
Scientific/Engineering, respectively.

F CASE STUDY

We analyze a representative failure case inmitmproxy/pdoc (PR #402, base commit 087£37b).
The developer’s golden test (test_config_checks) constructs a realistic configuration with

21

Under review as a conference paper at ICLR 2026

Metadada

Repo mitmproxy/pdoc

PRid #402

Base Commit 087f37b32349f01bb0a881990b7c70ea2b6684c7
Model GPT-5-mini

Problem Statement

Up until a few minutes ago | was using khal version 0.9.10 , and then upgraded to

® Golden Test

URI : pimutils/khal/tests/settings_test.py#L265
def test_config_checks(metavdirs)
path = metavdirs
config={
‘calendars’: {
‘default’: {path’: path + /cal[1-3)/*, ‘type" ‘discover’}

‘cfgeolor {
‘color’ dark blue;
‘path’: cal4/cfgcolor
‘type’ ‘calendar,
“priority’: 10

0.10.6 and now it throws an exception on launch due to what appears to be the code
added in #812 from the backtrace:
Traceback (most recent call last): @
File "/home/Linuxbrew/. linuxbrew/bin/ikhal", line 10, in <module>
sys. exit(main_ikhal())
File "/home/Linuxbrew/. Linuxbrew/Lib/python3.7/site-packages/click/core. py"
return self.nain(sargs, *+kwargs)
File "/home/Linuxbrew/. linuxbrew/lib/python3.7/site-packages/click/core.py"
rv = self.invoke(ctx)
File "/home/linuxbrew/. Linuxbrew/1ib/python3. 7/site-packages/click/core.py"
return ctx. invoke(self.callback, **ctx.parans)
File "/home/Linuxbrew/. Linuxbrew/Lib/python3.7/site-packages/click/core. py"
return callback(xargs, #xkwargs)
File "/home/Linuxbrew/. Linuxbrew/Lib/python3.7/site-packages/click/decorate
return f(get_current_context(), #args, *xkwargs)
File "/home/linuxbrew/. Linuxbrew/1ib/python3.7/site-packages/khal/cli-py",
multi_calendar_select(ctx, include_calendar, exclude_calendar)
File "/home/Linuxbrew/. Linuxbrew/Lib/python3.7/site-packages/khal/cli.py",
*priority’s call'priority’],
File "/home/Linuxbrew/. linuxbrew/Lib/python3.7/site-packages/configobj-5.0.
KeyError: 'priority*

¢ Generated Test

[Tests/tests] | def config_checks(

[Tests/tests] | config,

[Tests/tests] | _get_color_from_vdir=get_color_from_vdir,
[Tests/tests] | _get_vdir_type=get_vdir_type):
[Mests/tests] |> if len(configlcalendarsTkeys() < !
[Tests/tests] |E KeyError: ‘calendars’

[Test Result
« Func: test_calls_helpers_for_each_vdir

« Func: test_empty_vdir_does_not_call_helper =

« Func: test_helper_exception_is_propagated [

Figure 9: Case Study of TestExplora on mitmproxy/pdoc pull request #402

multiple calendar entries (paths, colors, priorities), thereby validating the intended, well-formed
configuration flow. In contrast, the test generated by GPT-5-mini attempts to probe error conditions
but introduces a self-induced failure:

Why GPT-5-mini is wrong. The model correctly intuits that “calendar configuration complete-
ness” is the risk surface to test, but it fails at precondition safety. Instead of (i) validating behavior
under missing/ill-formed inputs via the public API or documented error contracts, it (ii) directly
dereferences config [’ calendars’] without checking key existence. The resulting exception
is thus caused by the test harness itself, not by the system under test.

Golden vs. generated. The golden test exercises realistic, schema-conformant inputs to reach
the genuine defect path through normal data flow. GPT-5-mini’s test, however, violates the input
schema and triggers an immediate KeyError at the test boundary, preventing it from observing the
intended configuration-validation logic or the PR’s actual behavior changes.

G DEPENDENCY ANALYSIS

Model Performance Heatmap by Information Type

Model
(%) @dueuwiopagd

Information Type

Figure 10: The performance of the model varies with the distribution of dependencies. Whitebox
only inherits indicates that only inheritance dependencies are retained. Whitebox only invokes indi-
cates that only invocation dependencies are retained.

22

Under review as a conference paper at ICLR 2026

H FREQUENCY OF ACTIONS AT EACH TURN

300
200
0
0

o

Figure 11: The frequency with which SWE-agent w/ o4-mini invokes tools in each iteration. Specif-
ically, we analyze all trajectories contained in TestExplora-Lite.

Tool Call Distribution Across Turns
Total Calls: 12735
Max Turn: 126

(Top 15 + Others)

Frequency

II|'
‘| 'l. =8
‘I‘“llll"||“||||IIIII|||| ANARRAaNRAgAZaEacEEsz -

39 42 45 48 51 54 57 60 63 66 69 72 75 78 8l 84 8 90 93 96 99 102 105 108 111 114 117 120 123 126

[grepn win W et
str_replace_editor insert [l we -l pwd Others

I CASES FOR LLM INFERENCE

In this section, we enumerate the reasoning process of DeepSeek-R1.

Casel: The intended behavior for the code is not mentioned explicitly

<think >
We are going to write unit tests for the KeywordProcessor
class in flashtext.keyword.
We are focusing on the following methods (as per the
requirements) :
- __init__
— add_keyword
— remove_keyword
— extract_keywords
— replace_keywords
— add_keyword_from_file
— get_all _keywords
— add_keywords_from_list
— add_keywords_from_dict
— remove_keywords_from_list
— remove_keywords_from_dict

We will design test cases to cover:
— Basic functionality with valid inputs and expected
outputs.
— Boundary conditions and edge cases.
— Invalid inputs and error handling.
— Potential issues with dependency interactions.

We note that the class has two modes: case_sensitive (
default False) and non_word_boundaries (default set of
alphanumeric and underscore).

We’ 11 structure the tests in a pytest test class.

23

Under review as a conference paper at ICLR 2026

implementations .

Let’s start by writing tests for:
- __init__
— add_keyword
— __contains__
- __getitem__
- __len__
— remove_keyword
— extract_keywords
— replace_keywords
— get_all _keywords
— add_keywords_from_list, add_keywords_from_dict
— remove_keywords_from_list, remove_keywords_from_dict
— add_keyword_from_file

settings .

Since the problem states that we must test the specific
entry points, we will write tests for each.

We’ 11 note that the class is complex and we must test
various scenarios.

We’ 11 create a test class: TestKeywordProcessor
We’ 11 break down the tests by method and by behavior.

Let’s write the test code accordingly.
</think >
Based on the documentation and requirements, 1’11 design

using pytest. The tests will cover all specified entry
points while ensuring correct implementations pass and
incorrect ones fail.

‘“‘python

from flashtext.keyword import KeywordProcessor
import pytest

import os

import tempfile

class TestKeywordProcessor:

Test __init__

def test_init_default (self):
kp = KeywordProcessor ()
assert kp.case_sensitive is False
assert kp.non_word_boundaries == set(’

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_")
assert len(kp) ==

def test_init_case_sensitive (self):
kp = KeywordProcessor(case_sensitive=True)
assert kp.case_sensitive is True

Important: We must ensure that the tests can catch incorrect

We’ 11 also test the non_word_boundaries and case_sensitive

comprehensive test cases for the KeywordProcessor class

24

Under review as a conference paper at ICLR 2026

assert len(kp) == 0

Test add_keyword and __setitem._._
def test_add_keyword_basic(self):
kp = KeywordProcessor ()
assert kp.add_keyword(’Python’) is True
assert ’'Python’ in kp
assert kp[’Python’] == ’Python’
assert len(kp) ==

def test_add_keyword_with_clean_name (self):
kp = KeywordProcessor ()

assert kp.add_keyword(’py’, ’Python’) is True
assert ’'py’ in kp
assert kp[’py’] == ’Python’

def test_add_keyword_duplicate(self):
kp = KeywordProcessor ()
kp.add_keyword (’Java ’)
assert kp.add_keyword(’Java’) is False
assert len(kp) ==

def test_add_keyword_case_insensitive (self):
kp = KeywordProcessor ()
kp.add_keyword (’ Python)
assert ’python’ in kp
assert 'PYTHON’ in kp

def test_add_keyword_case_sensitive(self):
kp = KeywordProcessor(case_sensitive=True)
kp.add_keyword (’ Python)
assert 'Python’ in kp
assert ’python’ not in kp

def test_add_keyword_empty(self):
kp = KeywordProcessor ()
assert kp.add_keyword(’’) is False
assert len(kp) ==

Test __contains__

def test_contains_missing(self):
kp = KeywordProcessor ()
kp.add_keyword (’ Python)
assert ’Java’ not in kp

def test_contains_partial_match (self):
kp = KeywordProcessor ()
kp.add_keyword (’ Python)
assert ’'Pytho’ not in kp
assert ’ython’ not in kp

Test __getitem__

def test_getitem_missing (self):
kp = KeywordProcessor ()
kp[’Python’] = ’PY’
assert kp[’Java’] is None

25

Under review as a conference paper at ICLR 2026

def

def

def

def

def

def

def

def

Test __len__

test_len_after_add_remove (self):
kp = KeywordProcessor ()
kp.add_keyword(’A’)
kp.add_keyword(’B’)
kp.add_keyword (’C’)

assert len(kp) == 3
kp.remove_keyword(’B’)

assert len(kp) ==

Test remove_keyword and __delitem__

test_.remove_keyword_basic(self):

kp = KeywordProcessor ()

kp.add_keyword (’ Python)

assert kp.remove_keyword(’Python’) is True
assert ’'Python’ not in kp

assert len(kp) == 0

test_remove_missing_keyword (self):
kp = KeywordProcessor ()
assert kp.remove_keyword(’ Missing ’) is False

test_remove_keyword_with_dependencies (self):
kp = KeywordProcessor ()

kp.add_keyword (’ Python)

kp.add_keyword (’ Python3)

kp.remove_keyword (’ Python *)

assert ’'Python’ not in kp

assert ’'Python3’ in kp

Test extract_keywords

test_extract_keywords_basic(self):

kp = KeywordProcessor ()

kp.add_keyword (’Big Apple’, 'New York’)

kp.add_keyword (’Bay Area’)

results = kp.extract_keywords(’I love Big Apple and
Bay Area.’)

assert results == [’New York’, ’Bay Area’]

test_extract_keywords_longest_match (self):
kp = KeywordProcessor ()

kp.add_keyword (’New York)
kp.add_keyword (’New York City ’)

results = kp.extract_keywords(’I live in New York
City ’)
assert results == [’New York City ’]

test_extract_keywords_boundaries (self):

kp = KeywordProcessor ()

kp.add_keyword (’ Python)
kp.add_non_word_boundary (!)

results = kp.extract_keywords(’I love Python!’)
assert results == [’Python]

test_extract_keywords_case_insensitive (self):
kp = KeywordProcessor ()
kp.add_keyword (’ python)

26

Under review as a conference paper at ICLR 2026

def

def

def

def

def

def

def

def

results = kp.extract_keywords(’I love PYTHON’)
assert results == [’python’]

test_extract_keywords_empty_input(self):
kp = KeywordProcessor ()

kp.add_keyword (’ Python)

assert kp.extract_keywords(’’) == []
assert kp.extract_keywords (None) == []

Test replace_keywords

test_replace_keywords_basic(self):

kp = KeywordProcessor ()

kp.add_keyword (’Big Apple’, 'New York’)

kp.add_keyword (’Bay Area’)

new_text = kp.replace_keywords(’I love Big Apple and
bay area.’)

assert new_text == I love New York and Bay Area.’

test_replace_keywords_overlapping (self):

kp = KeywordProcessor ()

kp.add_keyword (’New York)

kp.add_keyword (’ York City)

new_text = kp.replace_keywords (’ Visit New York City ’)
assert new_text == ’Visit New York City”’

test_replace_keywords_preserve_case (self):

kp = KeywordProcessor(case_sensitive=True)

kp.add_keyword (’ Python)

new_text = kp.replace_keywords ('’ python is great but
Python is better *)

assert new_text == ’python is great but Python is
better ’

Test get_all_keywords

test_get_all_keywords_basic(self):

kp = KeywordProcessor ()

kp.add_keyword(’py’, ’Python’)

kp.add_keyword(’java)

keywords = kp.get_all_keywords ()

assert keywords == {’py’: ’Python’, ’java’: ’java’}

test_get_all_keywords_case_insensitive (self):
kp = KeywordProcessor ()

kp.add_keyword (’ Python)

keywords = kp.get_all_keywords ()

assert ’python’ in keywords

Test add_keywords_from_list

test_add_keywords_from_list_valid (self):

kp = KeywordProcessor ()
kp.add_keywords_from_list ([*Python’, ’Java’, ’C++’])
assert len(kp) ==

assert ’'Python’ in kp

test_add _keywords _from_list_invalid (self):
kp = KeywordProcessor ()
with pytest.raises (AttributeError):

27

Under review as a conference paper at ICLR 2026

def

def

def

def

def

def

def

kp.add_keywords_from_list(”not a list”)

Test add_keywords_from_dict

test_add _keywords_from_dict_valid (self):

kp = KeywordProcessor ()

keyword_dict = {’Python’: [’py’, ’python’], ’Java
["java’, ’j2ee’]}

kp.add_keywords_from_dict(keyword_dict)

assert len(kp) ==

assert kp[’py’] == ’Python’

7.

test_add_keywords_from_dict_invalid (self):
kp = KeywordProcessor ()
with pytest.raises (AttributeError):
kp.add_keywords_from_dict ({ Python’: ’py’}) #
Not a list

Test remove_keywords_from_list

test_remove_keywords_from_list_valid(self):
kp = KeywordProcessor ()
kp.add_keywords_from_list ([*Python’, ’Java’])
kp.remove_keywords_from_list ([Python ’])
assert 'Python’ not in kp

assert len(kp) == 1

test_.remove_keywords_from_list_invalid (self):

kp = KeywordProcessor ()

with pytest.raises (AttributeError):
kp.remove_keywords_from _list(”not a list”)

Test remove_keywords_from_dict

test_remove_keywords_from _dict_valid (self):

kp = KeywordProcessor ()

kp.add_keywords_from_dict ({’Python’: [’py’, ’python
"1, ’Java’: [’java’l})

kp.remove_keywords_from_dict ({ Python’: [’py’], ’Java
* [Tjava’l})

assert 'py’ not in kp

assert ’java’ not in kp

assert ’'python’ in kp # Should still exist

test_.remove_keywords_from_dict_invalid (self):
kp = KeywordProcessor ()
with pytest.raises (AttributeError):
kp.remove_keywords_from_dict ({ Python ’: ’py’}) #
Not a list

Test add_keyword_from_file

test_add_keyword_from _file_valid (self):
kp = KeywordProcessor ()
with tempfile. NamedTemporaryFile (mode="w+’, delete=

False) as f:
f.write (”Python\nJava=>JAVA\nC++\n")
f.flush ()

kp.add_keyword_from_file (f.name)
os.unlink (f.name)
assert len(kp) ==

28

Under review as a conference paper at ICLR 2026

def

def

def

def

def

def

assert kp[’Python’] == ’Python’
assert kp[’Java’] == ’JAVA’

test_add_keyword_from_file_invalid_path (self):

kp = KeywordProcessor ()

with pytest.raises (IOError):
kp.add_keyword_from_file (’/invalid/path.txt)

Test non_word_boundaries

test_custom_non_word_boundaries (self):

kp = KeywordProcessor ()
kp.set_-non_word_boundaries (set(’1237))
kp.add_keyword (’ Python3)

results = kp.extract_keywords(’I love Python3)
assert results == [’Python3’]

Test to expose incorrect implementations

test_incorrect_extract_behavior (self):

”””Should fail if implementation doesn’t handle word
boundaries correctly”””

kp = KeywordProcessor ()

kp.add_keyword (’ Python)

Incorrect implementation might match inside words

results = kp.extract_keywords (’Pythonic is good’)

assert results == [’Python’] # Should match at word
boundary

test_incorrect_remove_behavior(self):

”7”Should fail if remove doesn’t properly clean up
trie”””

kp = KeywordProcessor ()

kp.add_keyword (’ Python)

kp.add_keyword (’ Pythonic ”)

kp.remove_keyword (’ Python)

Incorrect implementation might remove both

assert ’'Python’ not in kp

assert 'Pythonic’ in kp # Should still exist

test_incorrect_case_handling (self):

”””Should fail if case sensitivity isn’t handled
properly ”””

kp = KeywordProcessor(case_sensitive=True)

kp.add_keyword (’ Python)

Incorrect implementation might be case insensitive

assert ’python’ not in kp

assert kp.extract_keywords(’I love python’) == []

test_incorrect_clean_name_return (self):

”””Should fail if clean name isn’t preserved”””

kp = KeywordProcessor ()

kp.add_keyword (’py’, ’Python’)

Incorrect implementation might return keyword
instead of clean name

assert kp.replace_keywords(’I code in py’) == ’I code
in Python”’

29

Under review as a conference paper at ICLR 2026

This comprehensive test suite:
1. Covers all required entry points and methods
2. Includes tests for valid inputs, boundary cases, and error

handling

3. Verifies correct behavior for case sensitivity and word
boundaries

4. Contains specific tests to expose common implementation
mistakes

Tests file I/O operations using temporary files
Validates trie structure integrity after add/remove
operations

N

A correct implementation should pass all tests , while
incorrect implementations would fail at least one test (
especially the ”incorrect behavior” tests). The tests
cover all aspects of the documentation including:

— Keyword addition/removal

— Case sensitivity handling

— Word boundary definitions

— File —based operations

— Extraction and replacement functionality

— Trie structure management

Case2: DeepSeek-R1 meticulously enumerates the behavior of the entry function

<think >

We are testing the function ‘apply_overwrites_to_context °
from ‘cookiecutter.generate °

The function modifies the context in place based on the
overwrite_context.

We’ 11 design tests to cover:

1. Basic functionality with valid inputs and expected
outputs.

2. Boundary conditions and edge cases.

3. Invalid inputs and error handling.

4. Potential issues with dependency interactions.

The function handles several cases:

— If a variable is not in the context and we are not in a
dictionary variable , skip.

— If it is in the context, then:
a) For a list in the context:

— If in_dictionary_variable is True: replace the
entire list with the overwrite (which must be a
list? but note: the code says if
in_dictionary_variable then replace and continue)

— Else, if the overwrite is a list: check that every
element in the overwrite list is in the original
list (subset). If yes, replace the context
variable with the overwrite list. If not, raise
ValueError.

— Else (overwrite is not a list): then treat the
context variable as a choice variable. Check if
the overwrite is in the original list. If yes,

30

Under review as a conference paper at ICLR 2026

move it to the front (by removing and inserting
at 0). If not, raise ValueError.

b) For a dictionary in the context context and the
overwrite is a dictionary: recursively call °
apply_overwrites_to_context ° on that nested dictionary
with ‘in_dictionary_variable=True *

c¢) For a boolean in the context context and the overwrite
is a string: convert the string to a boolean using °
YesNoPrompt () . process_response (overwrite) ‘. If it
fails (raises InvalidResponse), then catch and re-—
raise as ValueError.

d) Otherwise: simply set the context variable to the
overwrite value.

We also note that if the variable is not in the context and
in_dictionary_variable is True, then we add the new
variable .

We must test:

— Adding new keys only when in_dictionary_variable is True (
for nested dictionaries).

— The different types: list (both multi—choice and single
choice), dict, bool, and others (simple overwrite).

— Error cases: invalid choices for list, invalid string for
boolean .

We’ 11 mock the ‘YesNoPrompt‘ for the boolean conversion?
Actually , note that the function uses ‘YesNoPrompt().
process_response (overwrite) ‘.

However, the ‘YesNoPrompt‘ is defined in ‘cookiecutter.
prompt *° and we are not testing that class here. We can
assume that the ‘YesNoPrompt‘ works as per its own tests
9

But note: the function catches ‘InvalidResponse ° and
converts to ‘ValueError ‘. We should test that conversion

However, note: the dependency ‘YesNoPrompt® is provided. We
can see that ‘YesNoPrompt‘ has ‘yes_choices ‘ and
no_choices ‘. We can use known valid and invalid strings.

But note: the test should not depend on the implementation
of ‘YesNoPrompt ‘? Actually , we are testing the function
‘apply_overwrites_to_context ° and how it handles the
conversion.

We should test with valid and invalid strings for the
boolean conversion.

However, the ‘InvalidResponse ‘ exception is not defined in
the provided code. But the function catches it. We must
import it? Actually, in the test we are only concerned
with the behavior of ‘apply_overwrites_to_context ‘.

We are not required to test ‘YesNoPrompt‘ but we must
simulate the exception?

31

Under review as a conference paper at ICLR 2026

Alternatively , we can note that the ‘YesNoPrompt‘ is defined
in the same ‘prompt‘ module. We can import it? But the
problem says we are to write tests for °
apply_overwrites_to_context °

We can assume that the ‘YesNoPrompt‘ is correctly
implemented? But for the purpose of testing the error
handling , we can use an invalid string to cause the
exception .

Since the ‘YesNoPrompt‘ class is provided, we know that it
will raise ‘InvalidResponse ° for a string that is not in
‘yes_choices ° or ‘no_choices ¢

So we can use a string that is not in either to cause the
error .

Let’s design the test cases:
Test Cases:

1. Basic: overwrite a simple variable (string) at top level

(not in dictionary) —> overwrites.

2. Basic: overwrite a variable in a nested dictionary (with
in_dictionary_variable=True) —> updates the nested dict.

3. New key in top level: should be ignored (because
in_dictionary_variable=False by default).

4. New key in nested dictionary (in_dictionary_variable=True

) —> added.

5. List variable:

a) Single choice: valid choice —> moves to front.

b) Single choice: invalid choice —> raises ValueError.

¢) Multi—-choice (overwrite is list): valid (subset) —>
replaces the list.

d) Multi—choice: invalid (not subset) —> raises
ValueError.

e) When in_dictionary_variable=True: the list is replaced
by the overwrite (even if the overwrite is not a
list? but note: the code says if
in_dictionary_variable and the variable is a list,
then set to overwrite and continue. So the type doesn
>t matter? It just sets. But note: the condition is
if isinstance (context_value , list):‘ and then inside ,
if ‘in_dictionary_variable ° then set and continue.
So it doesn’t check the type of the overwrite. So we
can set a non—1list to a list variable? Yes, that’s
the behavior. We’ll test that.

6. Boolean variable:
a) Overwrite with a string that is in yes_choices —>
converts to True.
b) Overwrite with a string that is in no_choices —>
converts to False.
c) Overwrite with a string that is neither —> raises
ValueError.

7. Dictionary variable:

32

Under review as a conference paper at ICLR 2026

So

10.

11.

12.

We’

a) Overwrite with a dictionary: recursively update (test
nested update).

b) Overwrite with a non-dictionary: then it falls to the
else clause and overwrites the entire dictionary (so
the dictionary becomes the non—dictionary value).

Edge: empty context and empty overwrite —> nothing
happens .
Edge: overwrite with a key that exists but the value is
of a different type? For example, context has a list,
but overwrite is a string —> then it will be overwritten
by the string? Because the condition for list is only
if the context_value is a list. So if the context_value
is a list and the overwrite is a list —> multi—-choice.
If the context_value is a list and the overwrite is not
a list —> then it’s treated as a single choice? But wait
the code has:
if isinstance (context_value , list):
if in_dictionary_variable:

context[variable] = overwrite # just set,
regardless of type
continue

if isinstance (overwrite , list):
multi —choice

else:
single choice

if in_dictionary_variable is True, we set the list to the
overwrite (any type). Otherwise, if the overwrite is a
list —> multi—-choice, else —> single choice.

What if the context_value is a list and the overwrite 1is
a list, but in_dictionary_variable is True? Then we set
the entire list to the overwrite list? Actually, the
condition for in_dictionary_variable is checked first ,
so we set and continue.

Also, note that for a dictionary , the function is called

recursively with ‘in_dictionary_variable=True *. So in
the nested call, if there is a new key, it will be added

Test that the function modifies in place: we can check
the original dictionary after the call.

11 write the tests using pytest.

Note: We must import the function and the exception (

ValueError) and also the InvalidResponse? Actually , we
don’t need to import InvalidResponse because the

function catches it and raises ValueError. We only need
to check for ValueError.

However, note: the function also raises ValueError for the

list cases.

We’ 11 structure the tests:

33

Under review as a conference paper at ICLR 2026

We’ 11 use pytest parametrize for similar test patterns.
Let’s write the tests.

Important: We must output the tests in the required format.
We’ 11 create a test module.

Note: We are not allowed to change the context in the test?
We are going to write the test for the function.

We’ 11 write :

‘“‘python

from cookiecutter.generate import apply_overwrites_to_context
import pytest

We’ Il define a test for each scenario.

def test_basic_overwrite_simple_variable ():
Original context

context = {"keyl”: ”valuel”, “key2”: ”value2”}
overwrite = {"keyl”: “new_value”}
apply_overwrites_to_context(context, overwrite)
assert context[”’keyl”] == "new_value”

assert context[’key2”] == “value2” # unchanged

def test_new_key_top_level_ignored () :
context = {"keyl”: “valuel”}
overwrite = {"new_key”: “value”}
apply_overwrites_to_context(context, overwrite)
assert “new_key” not in context

def test_new_key_in_nested_dictionary_added () :

context = {
“nested ”: {
“keyl”: ”valuel”
}
overwrite = {
“nested”: {
“new_key”: “new_value”

}
}
apply_overwrites_to_context(context, overwrite)
assert context[”nested”][”new_key”] == “new_value”
def test_list_single_choice_valid ():
context = {”choice_var”: [7a”, ”b”, "c”]}
overwrite = {”choice_var”: ”b”}
apply_overwrites_to_context(context, overwrite)
It should move ’'b’ to the front
assert context[”choice_var”] == [”b”, ”a”, ”c”]

def test_list_single_choice_invalid ():
context = {”choice_var”: [7a”, "b”, "c”]}

34

Under review as a conference paper at ICLR 2026

def

def

def

def

def

overwrite = {”choice_var”: 7d”}

with pytest.raises (ValueError, match="d provided for
choice variable choice_var, but the choices are”):
apply_overwrites_to_context(context, overwrite)

test_list_multi_choice_valid () :

context = {"multi_choice”: [7a”, "b”, "c”]}
overwrite = {"multi_choice”: [”b”, “a”]}
apply-overwrites_to_context(context, overwrite)
assert context[”multi_choice”] == ["b”, a”]

test_list_multi_choice_invalid ():

context = {"multi_choice”: [”a”, "b”, "c”]}

overwrite = {"multi_choice”: [”a”, 7d”]}

with pytest.raises(ValueError, match=r”\[.x\] provided
for multi—choice variable multi_choice , but valid
choices are”):
apply-overwrites_to_context(context, overwrite)

test_list_in_dictionary_variable ():

context = {"list_var”: [7a”, "b”]}

overwrite = {”list_var”: “just a string”} # not a list,
but in_dictionary_variable is False by default?

But note: we are going to set in_dictionary_variable to
True by being in a nested dictionary?

We need to set up a nested structure.

Let’s create a nested context and set the overwrite to
be a nested dictionary that sets the list_var to a
string?

context = {

“outer ”: {
“list_var”: ["a”, ”b”]
}

overwrite = {
29 .,
outer”: {
“list_var”: “new_value”

apply_overwrites_to_context(context, overwrite)

Because the nested call sets in_dictionary_variable=
True, the list is replaced by the string.

assert context[”outer ”][” list_var”] == "new_value”

test_boolean_valid_yes ():

context = {”bool_var”: False}

overwrite = {”"bool_var”: “yes”} # ’yes’ is in
yes_choices

apply_overwrites_to_context(context, overwrite)

assert context[”bool_var”] is True

test_boolean_valid_no () :

context = {”"bool_var”: True}

overwrite = {”bool_var”: ”no” # 'no’ is in no_choices
apply-overwrites_to_context(context, overwrite)

assert context[”bool_var”] is False

35

Under review as a conference paper at ICLR 2026

def

def

def

def

def

test_boolean_invalid () :

context = {”bool_var”: True}

overwrite = {"bool_var”: “invalid”}

with pytest.raises (ValueError, match="invalid provided
for variable bool_var could not be converted to a
boolean.”) :
apply_overwrites_to_context(context, overwrite)

test_dictionary_recursive_update () :
context = {
“dict_var”: {
“keyl”: ”valuel”,

“key2”: ”value2”

overwrite = {
7dict_var”:
“key2”: “new_value2”,
“key3”: ”value3” # new key in nested dict —>

should be added because
in_dictionary_variable=True in the recursive
call

}
}

apply_overwrites_to_context(context, overwrite)

assert context[”dict_var”][”keyl”] == “valuel” # remains
assert context[”dict_var”][”key2”] == "new_value2”
assert context[”dict_var”][”key3”] == "value3”
test_dictionary_overwritten_by_non_dict():
context = {

“dict_var”: {

“keyl”: ”valuel”

overwrite = {

“dict_var”: ”string_value”

}

apply_overwrites_to_context(context, overwrite)
assert context[”dict_var”] == ”string_value”

test_empty_overwrite () :

context = {"key”: ”value”}

overwrite = {}
apply_overwrites_to_context(context, overwrite)
assert context == {"key”: ”value”}

test_new_key_in_nested_via_recursion ():

This is similar to
test_.new_key_in_nested_dictionary_added , but we’1l
test a deeper level.

context = {
“levell ”: {
“level2”: {

"key”: ”old”

}

36

Under review as a conference paper at ICLR 2026

}
}

overwrite =
“levell ”: {
level2”: {
“new_key”: “new”
}
}
}
apply_overwrites_to_context(context, overwrite)
assert context[”levell ”][”level2”][”new_key”] == "new”

def test for the case: in_dictionary_variable=True at top
level ?

But note: the top level call has in_dictionary_variable=
False by default. We can also test if we set
in_dictionary_variable=True at top level.

def test_new_key_top_-level_with_in_dictionary_variable_true ()

context = {"keyl”: “valuel”}

overwrite = {"new_key”: “value”}

We call with in_dictionary_variable=True

apply-overwrites_to_context(context, overwrite ,
in_dictionary_variable=True)

assert context[”’new_key”] == "value”

Also, we should test the example from the documentation.
def test_documentation_example () :

context = {
”project_name ”: [”HelloWorld”, "App”],
”enable_feature”: True,
“settings”: {”retry_count”: 3}
overwrite = {
”project_name”: “App”,

”settings”: {”"retry_count”: 5}
apply-overwrites_to_context(context, overwrite)
For project_name: it’s a list and the overwrite is a
string —> so it’s a single choice. We move “App” to

front?
assert context[”project_.name”] == ["App”, “HelloWorld”]
For settings: nested dictionary , so update the nested
key .
assert context[”settings”] == {’retry_count”: 5}

But note: the example says “the first element of the list
for ’project_.name’ will be set to “App’ if wvalid”.

However, the code removes the overwrite value and inserts
at 0. So the list becomes: [overwrite] + the rest without
the overwrite .

So the list becomes [“App”, “HelloWorld”] because
originally it was [”HelloWorld”, “App”] —> remove “App”
and then insert at 0 —> [“App”, "HelloWorld”]?

37

Under review as a conference paper at ICLR 2026

Wait, no: the original list is [”HelloWorld”, “App”]. We
remove “App” —> becomes [’ HelloWorld”] and then insert
App” at 0 —> [”App”, "HelloWorld”]

2

However, note: the example says: “first element” is set to
"App”. So the list becomes [“App”, ”"HelloWorld”].

But what if the list has duplicates? The code removes the
first occurrence of the overwrite?

Actually , the code:

context_value .remove(overwrite) # removes the first
occurrence

context_value.insert (0, overwrite)

So if the list has duplicates , then after removal, one
duplicate remains and then we insert at front —> so the
list will have the overwrite at front and then the rest
including the duplicate.

We should test that.

def test_list_single_choice_with_duplicates ():

context = {”choice_var”: [7a”, ”b”, “a”]}

overwrite = {”choice_var”: ~a”

apply_overwrites_to_context(context, overwrite)

It should remove the first occurrence of ”a”, then
insert ”a” at front —> becomes [”a”, ”"b”, ”a”] —> but
after removal: [”b”, ”a”] and then insert —> [7a”, ”
b”, 7a”]?

Actually:

Original: [’a’,’b’,’a’]

Remove the first ’a’ —> becomes [’b’,’a’]

Insert ’a’ at 0 —> [’a’,’b’,’a’] —> same as original?

But the order is now: the first element is the one we

set, and then the rest. But note the duplicate
remains .

The expected behavior is to have the chosen value at
the front and the rest in the original order?

So we expect: ['a’,’b’,’a’] —> becomes ['a’,’b’,’a’]?

But note: the removal only removes the first occurrence

So the duplicate remains.

The documentation doesn’t specify duplicates. But the
function is designed to remove one occurrence and
then put one at the front.

We’ 11 check:
assert context[”choice_var”] == ["a”, ”"b”, “a”]

But wait: the function does:

context_value .remove(overwrite) # removes the first
occurrence —> so the list becomes ['b’,’a’]
then insert (0, overwrite) —> [’a’,’b’,’a’] —> same as

original?

38

Under review as a conference paper at ICLR 2026

Actually , the original had two ’a’s. The first element
was 'a’. We remove the first element and then put it
again at the front? So the list becomes:

[0] = ’a’ (new), [1]="b’, [2]=’a’ (the one that was

at indexl originally becomes index2).
So the list is the same?

But the function does not guarantee uniqueness. It just
moves one occurrence to the front.

We’ 11 leave it as is.

We’ 11 also test the multi-choice with duplicates? The multi
—choice just replaces the entire list. So duplicates in
the original are lost?

But the overwrite list might have duplicates? The condition
is: set(overwrite).issubset(set(context_value))

But note: set(context_value) will remove duplicates. So if
the original has duplicates , the set is without
duplicates .

And the overwrite set must be a subset of that set. Then
the entire list is replaced by the overwrite list (which
might have duplicates?).

Example:

context_value = ["a’,’a’,’b’] —> set is {’a’,’b’}

overwrite = [’a’,’a’] —> set is {’a’} —> subset? yes.
Then the context becomes [’a’,’a’].

So we can test:

def test_multi_choice_with_duplicates ():

context = {"multi_choice”: [7a”, "a”, "b”]}
overwrite = {"multi_choice”: [”a”, “a”]}
apply-overwrites_to_context(context, overwrite)
assert context[”multi_choice”] == ["a”, “a”]

Also, if the overwrite has an element that is in the set
but the original had duplicates , it’s allowed.

But note: the condition is set(overwrite).issubset(set(
context_value)), so duplicates in the overwrite are
allowed as long as the distinct elements are in the
context.

Now, we have covered the main cases.

We must also test the case when the context_value is a
boolean and the overwrite is a string that is in the
yes_choices or no_choices.

We have done that.

Let’s write the tests accordingly.

We’ 11 now output the code.

39

Under review as a conference paper at ICLR 2026

Note: We must import pytest and the function.
We’ 11 write the tests in a single block.

One more: test that the function is called recursively and
the in_dictionary_variable is set to True for nested
dictionaries .

We have a test for that: test_dictionary_recursive_update and
test_.new_key_in_nested_via_recursion.

We’ Il also test the case when the context_value is a list and
in_dictionary_variable is True (via being in a nested
dictionary) and the overwrite is a list? Then it should
replace the entire list?

But note: the condition for in_dictionary_-variable is checked
first , so it will set the list to the overwrite list (or

any type) and continue.

We have a test for that: test_list_in_dictionary_variable ,
but that test uses a string. Let’s also test with a list.

def test_list_in_dictionary_variable_with_list_overwrite ():

context = {
“outer”: {
”listivar”: [37a95’ ’7b7’]
}
overwrite = {
“outer ”: {
“list_var”: ["c¢”, 7d”]

apply-overwrites_to_context(context, overwrite)
assert context[”outer”][” list_var”] == ["c”, ”d”]
But note: the condition for in_dictionary_variable is true in

the recursive call, so the list is replaced without
checking the subset? Yes.

We’ 11 add that.

But we already have a test for multi_choice in the top level?
So we don’t need to test the multi_choice in nested?
Because the nested one is replaced without validation.

We’ 11 write the test for the above.

Now, we have a comprehensive set.

We’ 11 output the code.

Note: We must not forget to test the error messages? We are

using pytest.raises with match, so we are testing the
message .

40

Under review as a conference paper at ICLR 2026

But note: the error message for the list multi-choice
includes the entire list. We use a regex that matches
part of the message.

We’ 11 write the code.

</think >

‘““‘python

from cookiecutter.generate import apply_overwrites_to_context
import pytest

def test_basic_overwrite_simple_variable ():
”””Test basic overwrite of existing top—level variable

9395 9>

context = {”name”: “old”, “version”: 1.0}
overwrite = {”name”: “new”
apply_overwrites_to_context(context, overwrite)
assert context == {”name”: “new”, “version’: 1.0}

def test_new_top_level_variable_ignored ():
?””Test new top—level variable is ignored by default.
context = {"existing”: “value”}
overwrite = {”new_var”: “data”}
apply-overwrites_to_context(context, overwrite)
assert “new._var” not in context

999599

def test_new_nested_variable_added ():
”””Test new variable added in nested dictionary.
context = {”"nested”: {"key”: "value”}}
overwrite = {"nested”: {"new_key”: "new_value”}}
apply_overwrites_to_context(context, overwrite)
assert context[”’nested”][”new_key”] == “new_value”

9993 99

def test_list_single_choice_valid ():
”””Test valid single choice moves value to front.

9999 99

context = {”choices™: [7a”, "b”, "c”]}
overwrite = {”choices”: ”b”}
apply_overwrites_to_context(context, overwrite)
assert context[”choices”] == [”b”, 7a”, "c”]

def test_list_single_choice_invalid():
?””Test invalid single choice raises ValueError.
context = {”choices”: [7a”, "b”, "c”]}
overwrite = {”choices”: ”d”}
with pytest.raises (ValueError, match="d provided for
choice variable choices”):
apply_overwrites_to_context(context, overwrite)

9999 99

def test_list_multi_choice_valid():
?””Test valid multi-choice replaces list.”””
context = {”choices™: [7a”, ”"b”, "c”]}
overwrite = {”choices”: [”b”, "c¢”]}
apply-overwrites_to_context(context, overwrite)
assert context[”choices”] == [”’b”, "c”]

def test_list_multi_choice_invalid ():
”””Test invalid multi—-choice raises ValueError.

9999 99

41

Under review as a conference paper at ICLR 2026

def

def

def

def

def

def

def

context = {”choices”: [7a”, "b”, "c”]}

overwrite = {”choices”: [7a”, 7d”]}

with pytest.raises (ValueError, match="multi-choice
variable choices”):
apply_overwrites_to_context(context, overwrite)

test_list_in_nested_dict_replaced ():

”7””Test list in nested dict is replaced without
validation .”””

context = {”config”: {"options”: ["x”, "y”]1}}

overwrite = {”config”: {”options”: "new”}} # String
replaces list

apply_overwrites_to_context(context, overwrite)

2 29

assert context[”config”][” options”] == "new

test_boolean_valid_conversion () :

”””Test valid boolean string conversions.

context = {"flagl”: False, “flag2”: True}

overwrite = {”flagl”: “yes”, "flag2”: “off”} # “yes’=
True, “off”’=False

apply-overwrites_to_context(context, overwrite)

assert context[”flagl”] is True

assert context[”flag2”] is False

939993

test_boolean_invalid_conversion () :

”””Test invalid boolean string raises ValueError.

context = {"flag”: True}

overwrite = {”flag”: “maybe”}

with pytest.raises (ValueError, match="could not be
converted to a boolean”):
apply_overwrites_to_context(context, overwrite)

9999 99

test_dict_recursive_update ():

”””Test nested dictionary partial update.
context = {”settings”: {7a”: 1, ”b”: 2}}
overwrite = {”settings”: {"b”: 99, "c¢”: 3}}
apply_overwrites_to_context(context, overwrite)

assert context[”settings”] == {”a”: 1, ”b”: 99, ”c¢”: 3}

9399 99

test_dict_overwritten_by_non_dict():

”””Test dictionary replaced by non-dict value.
context = {"config”: {"key”: “value”}}
overwrite = {”config”: ”simple”}
apply_overwrites_to_context(context, overwrite)
assert context[”config”] == “simple”

9999 99

test_new_key_with_in_dictionary_flag ():

?””Test new top—level variable added when flag is True

context = {”existing”: ”value”}

overwrite = {"new_var”: “data”}

apply_overwrites_to_context(context, overwrite ,
in_dictionary_variable=True)

assert context[”new_var”] == “data”

test_empty_context_and_overwrite () :
”»””Test empty inputs produce no changes.

9999 99

42

Under review as a conference paper at ICLR 2026

def

def

def

def

context = {}
overwrite = {}
apply-overwrites_to_context(context, overwrite)
assert context == {}

test_example_from_documentation () :
”””Test behavior matches provided documentation example
context = {
”project_name ”: [”HelloWorld”, "App”],
”enable_feature”: True,
“settings”: {”retry_count”: 3}

overwrite = {
”project_name”: "App”,
“settings”: {”"retry_count”: 5}
}
apply-overwrites_to_context(context, overwrite)
assert context[”project_.name”] == ["App”, “HelloWorld”]
assert context[”settings”] == {’retry_count”: 5}

test_multi_choice_with_duplicates ():

”””Test multi—choice with duplicate values in context.
context = {”choices™: [7a”, "a”, "b”]}

overwrite = {”choices”: [7a”, "b”]}
apply_overwrites_to_context(context, overwrite)

assert context[”choices”] == [7a”, 7"b”]

93959

test_boolean_edge_case_empty_string () :

?””Test empty string for boolean raises error.

context = {"flag”: True}

overwrite = {”flag”: 77}

with pytest.raises (ValueError, match="could not be
converted to a boolean”):
apply_overwrites_to_context(context, overwrite)

9999 99

test_boundary_large _nested_structure () :

”””Test deep nested structure with multiple levels.
context = {7a”: {"b”: {"c”: {7d”: 1

overwrite = {7a”: {"b”: {7"c”: {"d”: 2, "e”: 3}}}}
apply_overwrites_to_context(context, overwrite)
assert context[”a”]["b”]["c”] == {”d”: 2, “e”: 3}

9999 93

43

Under review as a conference paper at ICLR 2026

J REPOSITORY DETAILS

Type Repository License #Instances #Files LoC
pydata/numexpr MIT 3 24 3.8k
keras-team/keras-preprocessing GPL-3.0 3 24 4.3k
MichaelGrupp/evo GPL-3.0 3 58 7.8k
quantumlib/OpenFermion Apache-2.0 1 346 40.7k
mljar/mljar-supervised MIT 4 163 19.3k
datamllab/rlcard MIT 1 192 12.8k
facebookresearch/fvcore Apache-2.0 1 57 6.8k
colour-science/colour BSD-3-Clause 1 654 159.9k
pyro-ppl/numpyro Apache-2.0 7 179 46.6k
ZFTurbo/Weighted-Boxes-Fusion MIT 2 15 2.3k
pollen-robotics/dtw GPL-3.0 1 8 0.2k
DLR-RM/stable-baselines3 MIT 3 94 14.5k
benedekrozemberczki/karateclub GPL-3.0 1 124 5.5k
pytorch/captum BSD-3-Clause 3 216 422k
uncertainty-toolbox/uncertainty-toolbox MIT 22 24 2.5k
py-why/causal-learn MIT 1 114 14.8k
CodeReclaimers/neat-python BSD-3-Clause 1 77 6.8k
pypose/pypose Apache-2.0 4 89 7.8k
explosion/sense2vec MIT 2 19 2.0k
docarray/docarray Apache-2.0 3 315 33.2k
salestorce/Merlion BSD-3-Clause 1 194 22.1k
maxpumperla/hyperas MIT 2 20 1.4k
stanfordnlp/dspy MIT 4 219 25.5k
intelligent-machine-learning/dlrover GPL-3.0 7 432 66.0k
obspy/obspy GPL-3.0 13 609 107.2k
automl/SMAC3 GPL-3.0 6 209 16.8k
qdrant/fastembed Apache-2.0 2 76 7.3k
Pyomo/pyomo GPL-3.0 3 1679 363.7k
rushter/MLAlgorithms MIT 1 69 3.4k
tensorly/tensorly GPL-3.0 12 159 15.8k
topoteretes/cognee Apache-2.0 1 843 454k
keon/algorithms MIT 3 406 13.1k

Scientific/Engineering |sympy/sympy GPL-3.0 1 1516 440.5k
D-Star-Al/dsRAG MIT 3 84 114k
microsoft/graphrag MIT 2 445 26.2k
circlemind-ai/fast-graphrag MIT 1 54 6.0k
cornellius-gp/gpytorch MIT 5 301 24.2k
rigetti/pyquil Apache-2.0 4 102 20.4k
deepcharles/ruptures BSD-2-Clause 1 48 1.9k
python-adaptive/adaptive BSD-3-Clause 3 41 7.2k
pgmpy/pgmpy MIT 8 169 46.1k
fairlearn/fairlearn MIT 1 163 18.8k
mathics/Mathics GPL-3.0 3 193 50.0k
geomstats/geomstats MIT 1 519 52.7k
sdatkinson/neural-amp-modeler MIT 2 61 7.1k
online-ml/river BSD-3-Clause 3 476 31.0k
NanoVNA-Saver/nanovna-saver Unknown 6 110 13.7k
UKPLab/sentence-transformers Apache-2.0 4 366 39.0k
bayesian-optimization/BayesianOptimization MIT 1 25 3.8k
sdv-dev/CTGAN GPL-3.0 1 29 2.1k
stumpy-dev/stumpy GPL-3.0 2 9% 23.1k
google-research/text-to-text-transfer-transformer Apache-2.0 2 38 8.6k
MouseLand/cellpose BSD-3-Clause 1 54 16.8k
google-deepmind/dm-haiku Apache-2.0 1 150 20.8k
frgfm/torch-cam Apache-2.0 1 24 1.7k
explosion/thinc MIT 3 157 17.1k
huggingtace/trl Apache-2.0 1 173 38.1k
facebookresearch/fairscale GPL-3.0 1 289 323k
lightly-ai/lightly MIT 1 738 67.1k
jina-ai/finetuner Apache-2.0 1 35 3.6k
tensorflow/datasets Apache-2.0 1 1454 113.0k
towhee-io/towhee Apache-2.0 1 707 419k
deepdoctection/deepdoctection Apache-2.0 2 229 323k
WenjieDu/PyPOTS BSD-3-Clause 1 616 43.8k
pytroll/satpy GPL-3.0 1 497 90.2k

44

https://github.com/pydata/numexpr
https://github.com/keras-team/keras-preprocessing
https://github.com/MichaelGrupp/evo
https://github.com/quantumlib/OpenFermion
https://github.com/mljar/mljar-supervised
https://github.com/datamllab/rlcard
https://github.com/facebookresearch/fvcore
https://github.com/colour-science/colour
https://github.com/pyro-ppl/numpyro
https://github.com/ZFTurbo/Weighted-Boxes-Fusion
https://github.com/pollen-robotics/dtw
https://github.com/DLR-RM/stable-baselines3
https://github.com/benedekrozemberczki/karateclub
https://github.com/pytorch/captum
https://github.com/uncertainty-toolbox/uncertainty-toolbox
https://github.com/py-why/causal-learn
https://github.com/CodeReclaimers/neat-python
https://github.com/pypose/pypose
https://github.com/explosion/sense2vec
https://github.com/docarray/docarray
https://github.com/salesforce/Merlion
https://github.com/maxpumperla/hyperas
https://github.com/stanfordnlp/dspy
https://github.com/intelligent-machine-learning/dlrover
https://github.com/obspy/obspy
https://github.com/automl/SMAC3
https://github.com/qdrant/fastembed
https://github.com/Pyomo/pyomo
https://github.com/rushter/MLAlgorithms
https://github.com/tensorly/tensorly
https://github.com/topoteretes/cognee
https://github.com/keon/algorithms
https://github.com/sympy/sympy
https://github.com/D-Star-AI/dsRAG
https://github.com/microsoft/graphrag
https://github.com/circlemind-ai/fast-graphrag
https://github.com/cornellius-gp/gpytorch
https://github.com/rigetti/pyquil
https://github.com/deepcharles/ruptures
https://github.com/python-adaptive/adaptive
https://github.com/pgmpy/pgmpy
https://github.com/fairlearn/fairlearn
https://github.com/mathics/Mathics
https://github.com/geomstats/geomstats
https://github.com/sdatkinson/neural-amp-modeler
https://github.com/online-ml/river
https://github.com/NanoVNA-Saver/nanovna-saver
https://github.com/UKPLab/sentence-transformers
https://github.com/bayesian-optimization/BayesianOptimization
https://github.com/sdv-dev/CTGAN
https://github.com/stumpy-dev/stumpy
https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/MouseLand/cellpose
https://github.com/google-deepmind/dm-haiku
https://github.com/frgfm/torch-cam
https://github.com/explosion/thinc
https://github.com/huggingface/trl
https://github.com/facebookresearch/fairscale
https://github.com/lightly-ai/lightly
https://github.com/jina-ai/finetuner
https://github.com/tensorflow/datasets
https://github.com/towhee-io/towhee
https://github.com/deepdoctection/deepdoctection
https://github.com/WenjieDu/PyPOTS
https://github.com/pytroll/satpy

Under review as a conference paper at ICLR 2026

Type Repository License #Instances #Files LoC
facebookresearch/multimodal BSD-3-Clause 2 280 38.2k
google-deepmind/android_env Apache-2.0 1 76 11.1k
Lightning-Al/lit-llama Apache-2.0 1 48 5.4k
explosion/spacy-llm MIT 5 153 12.7k
joblib/joblib BSD-3-Clause 2 88 15.7k

Scientific/Engineering bghira/SimpleTuner AGPL-3.0 1 254 87.0k
brian-team/brian2 GPL-3.0 4 304 57.9k
daavoo/pyntcloud MIT 3 93 4.6k
autorope/donkeycar MIT 1 163 22.3k
pytorch/tnt GPL-3.0 6 189 253k
chainer/chainerrl MIT 1 250 25.6k
apple/coremltools BSD-3-Clause 1 752 214.5k
davidaurelio/hashids-python MIT 1 3 0.4k
python-babel/babel BSD-3-Clause 6 71 12.7k
tobgu/pyrsistent MIT 1 43 6.3k
konradhalas/dacite MIT 35 29 1.9k
skorokithakis/shortuuid BSD-3-Clause 1 5 0.3k
HBNetwork/python-decouple MIT 2 10 0.5k
pimutils/vdirsyncer GPL-3.0 3 67 7.4k
DeppWang/youdaonote-pull MIT 1 7 1.1k
Jules-WinnfieldX/CyberDropDownloader GPL-3.0 1 81 8.5k
mewwts/addict MIT 7 4 0.6k
amoftat/sh MIT 1 4 4.2k
prometheus/client_python Apache-2.0 25 42 6.9k
keleshev/schema MIT 23 3 2.5k
Suor/funcy BSD-3-Clause 1 34 3.0k
pyeve/cerberus ISC 4 23 5.3k

Utilities celery/django-celery-beat GPL-3.0 4 49 4.2k
python-pendulum/pendulum MIT 1 173 18.8k
alecthomas/voluptuous BSD-3-Clause 8 9 3.0k
jd/tenacity Apache-2.0 10 20 3.2k
kennethreitz/maya MIT 4 8 1.6k
mahmoud/boltons GPL-3.0 2 62 11.9k
LKI/chinese-calendar MIT 1 16 2.3k
ReactiveX/RxPY MIT 12 405 39.6k
joke2k/django-environ MIT 16 20 2.4k
python-validators/validators MIT 9 64 3.1k
pytransitions/transitions MIT 1 53 10.1k
coursera-dl/coursera-dl LGPL-3.0 1 29 4.0k
more-itertools/more-itertools MIT 3 9 9.9k
agronholm/apscheduler MIT 1 66 9.6k
arrow-py/arrow Apache-2.0 7 20 14.8k
aio-libs/aiocache BSD-3-Clause 1 50 4.6k
PyFilesystem/pyfilesystem?2 MIT 1 106 13.4k
mjpost/sacrebleu Apache-2.0 1 42 5.2k
vi3k6i5/flashtext MIT 3 18 1.0k
google-research/arxiv-latex-cleaner Apache-2.0 3 7 1.9k
textstat/textstat MIT 22 123 3.2k
carpedm?20/emoji GPL-3.0 7 23 3.1k
summanlp/textrank MIT 4 20 4.2k
nidhalotf/deep-translator Apache-2.0 2 40 2.6k
rlchardjOn3s/parse MIT 10 8 1.5k
adbar/trafilatura Apache-2.0 2 41 21.7k
jsvine/markovity MIT 4 11 0.8k

Text Processing ssut/py-googletrans MIT 2 14 1.3k
google/textfsm Apache-2.0 1 10 3.3k
google/budou Apache-2.0 1 23 1.2k
jaraco/inflect Unknown 2 17 4.8k
pemistahl/lingua-py Apache-2.0 2 5 0.9k
pyparsing/pyparsing MIT 3 133 22.8k
stanfordnlp/stanza GPL-3.0 1 476 51.4k
sloria/TextBlob MIT 1 37 4.0k
seatgeek/fuzzywuzzy GPL-2.0 5 11 1.0k
amperser/proselint BSD-3-Clause 1 114 4.9k
Python-Markdown/markdown BSD-3-Clause 5 67 11.7k

45

https://github.com/facebookresearch/multimodal
https://github.com/google-deepmind/android_env
https://github.com/Lightning-AI/lit-llama
https://github.com/explosion/spacy-llm
https://github.com/joblib/joblib
https://github.com/bghira/SimpleTuner
https://github.com/brian-team/brian2
https://github.com/daavoo/pyntcloud
https://github.com/autorope/donkeycar
https://github.com/pytorch/tnt
https://github.com/chainer/chainerrl
https://github.com/apple/coremltools
https://github.com/davidaurelio/hashids-python
https://github.com/python-babel/babel
https://github.com/tobgu/pyrsistent
https://github.com/konradhalas/dacite
https://github.com/skorokithakis/shortuuid
https://github.com/HBNetwork/python-decouple
https://github.com/pimutils/vdirsyncer
https://github.com/DeppWang/youdaonote-pull
https://github.com/Jules-WinnfieldX/CyberDropDownloader
https://github.com/mewwts/addict
https://github.com/amoffat/sh
https://github.com/prometheus/client_python
https://github.com/keleshev/schema
https://github.com/Suor/funcy
https://github.com/pyeve/cerberus
https://github.com/celery/django-celery-beat
https://github.com/python-pendulum/pendulum
https://github.com/alecthomas/voluptuous
https://github.com/jd/tenacity
https://github.com/kennethreitz/maya
https://github.com/mahmoud/boltons
https://github.com/LKI/chinese-calendar
https://github.com/ReactiveX/RxPY
https://github.com/joke2k/django-environ
https://github.com/python-validators/validators
https://github.com/pytransitions/transitions
https://github.com/coursera-dl/coursera-dl
https://github.com/more-itertools/more-itertools
https://github.com/agronholm/apscheduler
https://github.com/arrow-py/arrow
https://github.com/aio-libs/aiocache
https://github.com/PyFilesystem/pyfilesystem2
https://github.com/mjpost/sacrebleu
https://github.com/vi3k6i5/flashtext
https://github.com/google-research/arxiv-latex-cleaner
https://github.com/textstat/textstat
https://github.com/carpedm20/emoji
https://github.com/summanlp/textrank
https://github.com/nidhaloff/deep-translator
https://github.com/r1chardj0n3s/parse
https://github.com/adbar/trafilatura
https://github.com/jsvine/markovify
https://github.com/ssut/py-googletrans
https://github.com/google/textfsm
https://github.com/google/budou
https://github.com/jaraco/inflect
https://github.com/pemistahl/lingua-py
https://github.com/pyparsing/pyparsing
https://github.com/stanfordnlp/stanza
https://github.com/sloria/TextBlob
https://github.com/seatgeek/fuzzywuzzy
https://github.com/amperser/proselint
https://github.com/Python-Markdown/markdown

Under review as a conference paper at ICLR 2026

Type Repository License #Instances #Files LoC
pew-org/pew MIT 1 28 1.3k
pschanely/CrossHair GPL-3.0 7 163 32.0k
dropbox/pyannotate Apache-2.0 4 25 3.9k
google/pinject Apache-2.0 1 41 3.7k
kapicorp/kapitan Apache-2.0 3 86 9.3k
python-injector/injector BSD-3-Clause 11 4 2.1k
eliben/pyelftools GPL-3.0 5 122 15.9k
cookiecutter/cookiecutter BSD-3-Clause 16 88 6.2k
nosarthur/gita MIT 10 11 2.2k
PyCQA/isort MIT 7 97 18.7k
SolidCode/SolidPython Unknown 1 35 4.1k
facebookincubator/Bowler MIT 5 20 2.5k
nschloe/tuna GPL-3.0 2 12 0.6k
dephell/dephell MIT 4 251 15.1k
ekalinin/nodeenv GPL-3.0 2 4 1.1k
getsentry/sentry-python MIT 4 398 67.4k
sqlalchemy/alembic MIT 6 101 39.5k
olotk/fusesoc BSD-2-Clause 3 47 6.1k
FactoryBoy/tactory_boy MIT 2 54 7.4k
pydoit/doit MIT 5 133 11.6k
pre-commit/pre-commit-hooks MIT 5 69 3.6k
PyCQA/pytlakes MIT 17 21 4.0k
pre-commit/pre-commit MIT 9 129 13.6k
facebookresearch/hydra MIT 5 308 32.5k
Shpota/github-activity-generator Apache-2.0 2 2 0.1k
platformio/platformio-core Apache-2.0 1 246 29.0k
fastmonkeys/stellar MIT 1 11 0.8k
zhanyong-wan/dongbei MIT 1 4 2.6k
openapi-generators/openapi-python-client MIT 3 299 19.8k
pythonprofilers/memory_profiler GPL-3.0 2 34 2.2k
mesonbuild/meson Apache-2.0 4 500 87.2k
trailofbits/graphtage LGPL-3.0 1 51 7.3k

Software Development koxudaxi/fastapi-code-generator MIT 6 50 1.8k
nbQA-dev/nbQA MIT 15 60 3.8k
breuleux/jurigged MIT 3 63 4.2k
google/yapt Apache-2.0 17 69 13.5k
bndr/pipreqs Apache-2.0 8 14 1.1k
nickstenning/honcho MIT 11 34 2.1k
cantools/cantools MIT 15 79 237k
dabeaz/curio GPL-3.0 3 96 10.2k
terryyin/lizard GPL-3.0 7 130 10.4k
watson-developer-cloud/python-sdk Apache-2.0 5 43 72.8k
basetenlabs/truss MIT 16 287 36.8k
rubik/radon MIT 1 29 3.8k
guardrails-ai/guardrails Apache-2.0 2 327 30.6k
Pythagora-io/gpt-pilot GPL-3.0 2 130 15.5k
SWE-bench/SWE-bench MIT 1 84 133k
noamgat/lm-format-enforcer MIT 1 25 2.9k
spulec/freezegun Apache-2.0 11 23 2.2k
crewAlInc/crewAl-tools MIT 7 197 17.0k
aws-1a/taskcat Apache-2.0 1 85 10.8k
enoch3712/ExtractThinker Apache-2.0 1 110 12.0k
weaveworks/gratanalib Apache-2.0 15 37 6.9k
Sceptre/sceptre GPL-3.0 7 111 15.4k
palantir/python-language-server MIT 1 62 5.1k
nschloe/perfplot GPL-3.0 9 7 0.6k
godo-ai/qodo-cover AGPL-3.0 3 73 10.5k
run-llama/llama_deploy MIT 1 94 5.9k
asottile/pyupgrade MIT 14 97 10.6k
firebase/firebase-admin-python Apache-2.0 5 74 221k
jendrikseipp/vulture MIT 6 44 2.9k
autoscrape-labs/pydoll MIT 2 105 21.4k
BerriAl/litellm GPL-3.0 1 1975 417.1k
jupyterhub/repo2docker BSD-3-Clause 8 100 8.1k
googleapis/python-genai Apache-2.0 4 190 559k

46

https://github.com/pew-org/pew
https://github.com/pschanely/CrossHair
https://github.com/dropbox/pyannotate
https://github.com/google/pinject
https://github.com/kapicorp/kapitan
https://github.com/python-injector/injector
https://github.com/eliben/pyelftools
https://github.com/cookiecutter/cookiecutter
https://github.com/nosarthur/gita
https://github.com/PyCQA/isort
https://github.com/SolidCode/SolidPython
https://github.com/facebookincubator/Bowler
https://github.com/nschloe/tuna
https://github.com/dephell/dephell
https://github.com/ekalinin/nodeenv
https://github.com/getsentry/sentry-python
https://github.com/sqlalchemy/alembic
https://github.com/olofk/fusesoc
https://github.com/FactoryBoy/factory_boy
https://github.com/pydoit/doit
https://github.com/pre-commit/pre-commit-hooks
https://github.com/PyCQA/pyflakes
https://github.com/pre-commit/pre-commit
https://github.com/facebookresearch/hydra
https://github.com/Shpota/github-activity-generator
https://github.com/platformio/platformio-core
https://github.com/fastmonkeys/stellar
https://github.com/zhanyong-wan/dongbei
https://github.com/openapi-generators/openapi-python-client
https://github.com/pythonprofilers/memory_profiler
https://github.com/mesonbuild/meson
https://github.com/trailofbits/graphtage
https://github.com/koxudaxi/fastapi-code-generator
https://github.com/nbQA-dev/nbQA
https://github.com/breuleux/jurigged
https://github.com/google/yapf
https://github.com/bndr/pipreqs
https://github.com/nickstenning/honcho
https://github.com/cantools/cantools
https://github.com/dabeaz/curio
https://github.com/terryyin/lizard
https://github.com/watson-developer-cloud/python-sdk
https://github.com/basetenlabs/truss
https://github.com/rubik/radon
https://github.com/guardrails-ai/guardrails
https://github.com/Pythagora-io/gpt-pilot
https://github.com/SWE-bench/SWE-bench
https://github.com/noamgat/lm-format-enforcer
https://github.com/spulec/freezegun
https://github.com/crewAIInc/crewAI-tools
https://github.com/aws-ia/taskcat
https://github.com/enoch3712/ExtractThinker
https://github.com/weaveworks/grafanalib
https://github.com/Sceptre/sceptre
https://github.com/palantir/python-language-server
https://github.com/nschloe/perfplot
https://github.com/qodo-ai/qodo-cover
https://github.com/run-llama/llama_deploy
https://github.com/asottile/pyupgrade
https://github.com/firebase/firebase-admin-python
https://github.com/jendrikseipp/vulture
https://github.com/autoscrape-labs/pydoll
https://github.com/BerriAI/litellm
https://github.com/jupyterhub/repo2docker
https://github.com/googleapis/python-genai

Under review as a conference paper at ICLR 2026

Type Repository License #Instances #Files LoC
kronenthaler/mod-pbxproj MIT 5 77 3.9k
langchain-ai/langchain-mcp-adapters MIT 1 18 1.6k
Instagram/MonkeyType GPL-3.0 5 34 5.9k
Delgan/loguru MIT 2 168 13.5k
gitpython-developers/GitPython BSD-3-Clause 2 88 18.3k
prospector-dev/prospector GPL-2.0 1 107 5.1k
hhatto/autopep8 MIT 7 65 10.2k
wemake-services/wemake-python-styleguide MIT 2 378 30.1k
fsspec/filesystem_spec BSD-3-Clause 17 104 24.3k
python-rope/rope LGPL-3.0 7 144 31.5k
procrastinate-org/procrastinate MIT 3 169 13.9k
itamarst/eliot Apache-2.0 2 68 8.9k
theskumar/python-dotenv BSD-3-Clause 3 18 2.1k
koxudaxi/datamodel-code-generator MIT 20 531 41.6k
coleiter/huey MIT 1 52 6.1k
aws-powertools/powertools-lambda-python MIT 2 1091 65.3k
nolar/kopf MIT 21 280 293k
python-lsp/python-Isp-server MIT 2 70 8.0k
pyocd/pyOCD Apache-2.0 1 386 61.8k
litestar-org/polyfactory MIT 3 141 11.2k

Software Development getnikola/nikola MIT 1 226 23.2k
cpplint/cpplint GPL-3.0 6 3 8.5k
faif/python-patterns Unknown 1 56 2.0k
kevin1024/vcrpy MIT 2 69 6.4k
conan-io/conan MIT 1 911 98.6k
agronholm/typeguard GPL-3.0 1 31 6.2k
adrienverge/yamllint GPL-3.0 22 68 11.5k
PyCQA/flake8-bugbear MIT 2 70 4.4k
eyurtsev/kor MIT 4 42 2.3k
spotify/luigi Apache-2.0 1 253 38.2k
griptape-ai/griptape Apache-2.0 4 1101 454k
cloudtools/troposphere BSD-2-Clause 1 575 77.4k
ethereum/py-evm MIT 1 408 41.9k
getlogbook/logbook GPL-3.0 1 69 6.7k
joke2k/faker MIT 2 737 341.5k
lark-parser/lark MIT 5 83 12.2k
terraform-compliance/cli MIT 4 54 6.7k
Beehivelnnovations/zen-mcp-server GPL-3.0 2 194 38.8k
pypa/pipenv MIT 1 643 129.0k
Yelp/mrjob GPL-3.0 5 218 46.4k
getpelican/pelican AGPL-3.0 10 50 12.8k
SmileyChris/django-countries MIT 1 31 3.5k
novnc/websockity LGPL-3.0 2 19 3.4k
marl0/wsgidav MIT 1 54 10.1k
strawberry-graphql/strawberry MIT 11 572 58.8k
Kludex/mangum MIT 1 21 3.5k
exentriquesolutions/nip.io GPL-3.0 1 5 1.1k
Shopity/shopity_python_api MIT 12 156 4.3k
googlemaps/google-maps-services-python Apache-2.0 2 31 3.0k
alexgolec/tda-api MIT 14 44 12.6k
adamghill/django-unicorn MIT 11 122 8.6k
Pylons/waitress GPL-3.0 21 46 10.7k

Internet requests-cache/requests-cache BSD-2-Clause 8 72 7.8k
graphqgl-python/graphene MIT 16 124 8.4k
deschler/django-modeltranslation BSD-3-Clause 2 35 7.4k
zauberzeug/nicegui MIT 1 701 38.0k
TransformerOptimus/SuperAGI MIT 7 398 21.6k
scrapy/scrapyd BSD-3-Clause 6 56 3.3k
koalalorenzo/python-digitalocean LGPL-3.0 15 44 5.3k
mwmbl/mwmbl AGPL-3.0 6 128 15.0k
ross/requests-futures GPL-3.0 1 5 0.4k
DedSeclnside/TorBot GPL-3.0 3 11 0.7k
python-hyper/hyper MIT 1 46 7.2k
pst/requests Apache-2.0 1 35 7.1k
Pylons/pyramid GPL-3.0 1 330 45.5k

47

https://github.com/kronenthaler/mod-pbxproj
https://github.com/langchain-ai/langchain-mcp-adapters
https://github.com/Instagram/MonkeyType
https://github.com/Delgan/loguru
https://github.com/gitpython-developers/GitPython
https://github.com/prospector-dev/prospector
https://github.com/hhatto/autopep8
https://github.com/wemake-services/wemake-python-styleguide
https://github.com/fsspec/filesystem_spec
https://github.com/python-rope/rope
https://github.com/procrastinate-org/procrastinate
https://github.com/itamarst/eliot
https://github.com/theskumar/python-dotenv
https://github.com/koxudaxi/datamodel-code-generator
https://github.com/coleifer/huey
https://github.com/aws-powertools/powertools-lambda-python
https://github.com/nolar/kopf
https://github.com/python-lsp/python-lsp-server
https://github.com/pyocd/pyOCD
https://github.com/litestar-org/polyfactory
https://github.com/getnikola/nikola
https://github.com/cpplint/cpplint
https://github.com/faif/python-patterns
https://github.com/kevin1024/vcrpy
https://github.com/conan-io/conan
https://github.com/agronholm/typeguard
https://github.com/adrienverge/yamllint
https://github.com/PyCQA/flake8-bugbear
https://github.com/eyurtsev/kor
https://github.com/spotify/luigi
https://github.com/griptape-ai/griptape
https://github.com/cloudtools/troposphere
https://github.com/ethereum/py-evm
https://github.com/getlogbook/logbook
https://github.com/joke2k/faker
https://github.com/lark-parser/lark
https://github.com/terraform-compliance/cli
https://github.com/BeehiveInnovations/zen-mcp-server
https://github.com/pypa/pipenv
https://github.com/Yelp/mrjob
https://github.com/getpelican/pelican
https://github.com/SmileyChris/django-countries
https://github.com/novnc/websockify
https://github.com/mar10/wsgidav
https://github.com/strawberry-graphql/strawberry
https://github.com/Kludex/mangum
https://github.com/exentriquesolutions/nip.io
https://github.com/Shopify/shopify_python_api
https://github.com/googlemaps/google-maps-services-python
https://github.com/alexgolec/tda-api
https://github.com/adamghill/django-unicorn
https://github.com/Pylons/waitress
https://github.com/requests-cache/requests-cache
https://github.com/graphql-python/graphene
https://github.com/deschler/django-modeltranslation
https://github.com/zauberzeug/nicegui
https://github.com/TransformerOptimus/SuperAGI
https://github.com/scrapy/scrapyd
https://github.com/koalalorenzo/python-digitalocean
https://github.com/mwmbl/mwmbl
https://github.com/ross/requests-futures
https://github.com/DedSecInside/TorBot
https://github.com/python-hyper/hyper
https://github.com/psf/requests
https://github.com/Pylons/pyramid

Under review as a conference paper at ICLR 2026

Type Repository License #Instances #Files LoC
aiortc/aioquic BSD-3-Clause 3 58 20.0k
MechanicalSoup/MechanicalSoup MIT 6 20 1.9k
django-json-api/django-rest-framework-json-api, BSD-2-Clause 2 77 9.0k
michaelhly/solana-py MIT 8 51 6.8k
rthalley/dnspython GPL-3.0 3 241 36.5k
django/channels BSD-3-Clause 2 45 3.2k

Internet miguelgrinberg/python-socketio MIT 3 95 12.5k
django/asgiref BSD-3-Clause 1 20 2.6k
django/daphne BSD-3-Clause 2 24 2.6k
aws/chalice Apache-2.0 1 110 37.7k
maxmind/GeolP2-python Apache-2.0 1 13 2.3k
scrapy/scrapy BSD-3-Clause 2 390 54.5k
graphql-python/gql MIT 5 117 21.3k
initstring/linkedin2username MIT 2 2 0.6k
authlib/authlib BSD-3-Clause 1 289 27.2k
casbin/pycasbin Apache-2.0 13 85 7.8k
al3xpOpOv/kernel-hardening-checker GPL-3.0 1 5 2.0k
quark-engine/quark-engine GPL-3.0 1 76 10.3k
obsidiantorensics/hindsight Apache-2.0 1 21 4.8k
GitGuardian/ggshield MIT 3 250 227k
salesforce/policy _sentry MIT 2 77 6.3k
CTFd/CTFd Apache-2.0 16 304 33.6k
oauthlib/oauthlib BSD-3-Clause 17 137 11.7k
jaraco/keyring Unknown 2 43 1.9k
mozilla/bleach GPL-3.0 3 53 14.6k
linkedin/qark GPL-3.0 5 68 3.1k
mschwager/fierce GPL-3.0 2 4 0.9k

Security django-guardian/django-guardian GPL-3.0 3 95 8.5k
QIN2DIM/hcaptcha-challenger GPL-3.0 1 105 8.9k
python-security/pyt GPL-2.0 1 248 9.2k
yandex/gixy GPL-3.0 2 48 4.5k
petertodd/python-bitcoinlib GPL-3.0 2 52 6.9k
OWASP/Nettacker Apache-2.0 1 63 6.7k
jazzband/djangorestframework-simplejwt MIT 1 48 3.9k
log2timeline/plaso Apache-2.0 3 887 93.3k
Yelp/detect-secrets Apache-2.0 2 158 10.5k
OWASP/pytm GPL-3.0 1 10 3.6k
pallets/itsdangerous BSD-3-Clause 3 14 1.0k
mitre/caldera Apache-2.0 2 169 16.5k
prowler-cloud/prowler Apache-2.0 4 2893 360.4k
certtools/intelmq AGPL-3.0 3 389 36.3k
smicallet/spiderfoot MIT 7 694 57.7k
androguard/androguard Apache-2.0 3 66 252k
dbcli/mssql-cli BSD-3-Clause 1 88 9.7k
msiemens/tinydb MIT 8 20 2.1k
datastax/python-driver Apache-2.0 1 251 51.1k
simonw/sqlite-utils Apache-2.0 11 55 14.0k
pynamodb/PynamoDB MIT 15 58 14.0k
dbcli/pgcli BSD-3-Clause 1 66 9.4k
duckdb/dbt-duckdb Apache-2.0 18 84 6.2k
qdrant/qdrant-client Apache-2.0 15 178 62.9k
Aiven-Open/pghoard Apache-2.0 6 65 13.6k
pgvector/pgvector-python MIT 5 72 3.8k

Database jazzband/dj-database-url BSD-3-Clause 2 3 0.8k
graphite-project/whisper Apache-2.0 5 19 2.7k
piskvorky/sqlitedict Apache-2.0 2 11 0.8k
kayak/pypika Apache-2.0 42 59 11.3k
datafold/data-diff MIT 1 70 135k
EnterpriseDB/barman GPL-3.0 9 99 659k
reata/sqllineage MIT 1 92 7.0k
aws/aws-sdk-pandas Apache-2.0 2 222 432k
activeloopai/deeplake Apache-2.0 1 55 7.3k
art049/odmantic ISC 2 156 8.7k
georgia-tech-db/evadb Apache-2.0 1 460 35.6k
andialbrecht/sqlparse BSD-3-Clause 3 34 5.2k

48

https://github.com/aiortc/aioquic
https://github.com/MechanicalSoup/MechanicalSoup
https://github.com/django-json-api/django-rest-framework-json-api
https://github.com/michaelhly/solana-py
https://github.com/rthalley/dnspython
https://github.com/django/channels
https://github.com/miguelgrinberg/python-socketio
https://github.com/django/asgiref
https://github.com/django/daphne
https://github.com/aws/chalice
https://github.com/maxmind/GeoIP2-python
https://github.com/scrapy/scrapy
https://github.com/graphql-python/gql
https://github.com/initstring/linkedin2username
https://github.com/authlib/authlib
https://github.com/casbin/pycasbin
https://github.com/a13xp0p0v/kernel-hardening-checker
https://github.com/quark-engine/quark-engine
https://github.com/obsidianforensics/hindsight
https://github.com/GitGuardian/ggshield
https://github.com/salesforce/policy_sentry
https://github.com/CTFd/CTFd
https://github.com/oauthlib/oauthlib
https://github.com/jaraco/keyring
https://github.com/mozilla/bleach
https://github.com/linkedin/qark
https://github.com/mschwager/fierce
https://github.com/django-guardian/django-guardian
https://github.com/QIN2DIM/hcaptcha-challenger
https://github.com/python-security/pyt
https://github.com/yandex/gixy
https://github.com/petertodd/python-bitcoinlib
https://github.com/OWASP/Nettacker
https://github.com/jazzband/djangorestframework-simplejwt
https://github.com/log2timeline/plaso
https://github.com/Yelp/detect-secrets
https://github.com/OWASP/pytm
https://github.com/pallets/itsdangerous
https://github.com/mitre/caldera
https://github.com/prowler-cloud/prowler
https://github.com/certtools/intelmq
https://github.com/smicallef/spiderfoot
https://github.com/androguard/androguard
https://github.com/dbcli/mssql-cli
https://github.com/msiemens/tinydb
https://github.com/datastax/python-driver
https://github.com/simonw/sqlite-utils
https://github.com/pynamodb/PynamoDB
https://github.com/dbcli/pgcli
https://github.com/duckdb/dbt-duckdb
https://github.com/qdrant/qdrant-client
https://github.com/Aiven-Open/pghoard
https://github.com/pgvector/pgvector-python
https://github.com/jazzband/dj-database-url
https://github.com/graphite-project/whisper
https://github.com/piskvorky/sqlitedict
https://github.com/kayak/pypika
https://github.com/datafold/data-diff
https://github.com/EnterpriseDB/barman
https://github.com/reata/sqllineage
https://github.com/aws/aws-sdk-pandas
https://github.com/activeloopai/deeplake
https://github.com/art049/odmantic
https://github.com/georgia-tech-db/evadb
https://github.com/andialbrecht/sqlparse

Under review as a conference paper at ICLR 2026

Type Repository License #Instances #Files LoC
jazzband/django-redis GPL-3.0 1 45 3.8k
kvesteri/sqlalchemy-utils GPL-3.0 1 169 13.0k

Database pudo/dataset MIT 1 10 1.4k
RDFLib/rdflib BSD-3-Clause 2 411 57.1k
coleifer/peewee MIT 7 87 378k
Supervisor/supervisor GPL-3.0 4 69 28.7k
alichtman/shallow-backup MIT 2 20 1.9k
jupyterhub/the-littlest-jupyterhub BSD-3-Clause 3 44 3.9k
containers/podman-compose GPL-2.0 3 82 11.5k
pyinfra-dev/pyinfra MIT 4 220 21.1k
borgmatic-collective/borgmatic GPL-3.0 15 274 53.6k
andreafrancia/trash-cli GPL-2.0 3 336 9.7k
jertel/elastalert2 Apache-2.0 106 123 33.2k
circus-tent/circus GPL-3.0 2 132 12.2k
patroni/patroni MIT 23 162 31.8k

System svinota/pyroute2 GPL-3.0 2 407 49.6k
docker/docker-py Apache-2.0 1 130 21.1k
gpustack/gpustack Apache-2.0 4 81 87.5k
pexpect/pexpect GPL-3.0 2 100 8.2k
liquidctl/liquidctl GPL-3.0 9 76 13.7k
giampaolo/psutil BSD-3-Clause 2 74 19.4k
facebookincubator/submitit MIT 1 30 3.7k
cloud-custodian/cloud-custodian Apache-2.0 3 1017 182.1k
tomerfiliba/plumbum MIT 1 78 9.9k
canonical/cloud-init Apache 2.0 7 571 1324k
overhangio/tutor AGPL-3.0 1 81 7.1k
martinrusev/imbox MIT 12 20 0.7k
websocket-client/websocket-client Apache-2.0 4 28 4.2k
hbldh/bleak MIT 1 67 10.6k
wee-slack/wee-slack MIT 1 92 19.6k
ktbyers/netmiko MIT 1 313 18.7k
crossbario/autobahn-python MIT 1 352 40.0k
scrapinghub/slackbot MIT 2 20 1.6k
FreeOpcUa/python-opcua LGPL-3.0 2 132 216.0k
sendgrid/sendgrid-python MIT 1 125 8.8k
taskig-python/taskiq MIT 8 139 6.8k
bear/python-twitter Apache-2.0 7 39 6.9k

Communications LonamiWebs/Telethon MIT 3 141 16.1k
jookies/jasmin Apache 2.0 2 169 29.7k
sshuttle/sshuttle LGPL-2.1 9 34 6.2k
nats-io/nats.py Apache-2.0 1 62 14.8k
slackapi/python-slack-sdk MIT 11 411 52.0k
Forethought-Technologies/AutoChain MIT 2 64 3.2k
FreeOpcUa/opcua-asyncio LGPL-3.0 5 196 317.3k
pinecone-io/canopy Apache-2.0 2 136 10.1k
celery/kombu BSD-3-Clause 2 167 28.5k
zeromq/pyzmgq BSD-3-Clause 1 172 15.4k
letta-ai/letta Apache-2.0 5 649 100.9k
element-hg/synapse AGPL-3.0 3 931 255.8k
lidatong/dataclasses-json MIT 14 38 3.7k
JelteF/PyLaTeX MIT 3 65 4.8k
wireservice/csvkit MIT 4 44 4.9k
alan-turing-institute/CleverCSV MIT 2 69 7.4k
msgpack/msgpack-python Apache 2.0 25 24 2.1k
lincolnloop/python-qrcode BSD 3-Clause License 1 35 3.0k
pdfminer/pdfminer.six MIT 6 60 20.2k

File Formats jerist/msgspec BSD-3-Clause 4 56 20.3k

) scrapy/parsel BSD-3-Clause 2 14 2.0k
pmaupin/pdfrw GPL-3.0 1 51 3.7k
sripathikrishnan/redis-rdb-tools MIT 1 21 2.8k
globocom/m3u8 GPL-3.0 46 20 4.6k
martinblech/xmltodict MIT 9 3 1.1k
jsvine/pdfplumber MIT 2 38 6.6k
chezou/tabula-py MIT 7 13 1.3k
mangiucugna/json_repair MIT 11 26 2.0k

49

https://github.com/jazzband/django-redis
https://github.com/kvesteri/sqlalchemy-utils
https://github.com/pudo/dataset
https://github.com/RDFLib/rdflib
https://github.com/coleifer/peewee
https://github.com/Supervisor/supervisor
https://github.com/alichtman/shallow-backup
https://github.com/jupyterhub/the-littlest-jupyterhub
https://github.com/containers/podman-compose
https://github.com/pyinfra-dev/pyinfra
https://github.com/borgmatic-collective/borgmatic
https://github.com/andreafrancia/trash-cli
https://github.com/jertel/elastalert2
https://github.com/circus-tent/circus
https://github.com/patroni/patroni
https://github.com/svinota/pyroute2
https://github.com/docker/docker-py
https://github.com/gpustack/gpustack
https://github.com/pexpect/pexpect
https://github.com/liquidctl/liquidctl
https://github.com/giampaolo/psutil
https://github.com/facebookincubator/submitit
https://github.com/cloud-custodian/cloud-custodian
https://github.com/tomerfiliba/plumbum
https://github.com/canonical/cloud-init
https://github.com/overhangio/tutor
https://github.com/martinrusev/imbox
https://github.com/websocket-client/websocket-client
https://github.com/hbldh/bleak
https://github.com/wee-slack/wee-slack
https://github.com/ktbyers/netmiko
https://github.com/crossbario/autobahn-python
https://github.com/scrapinghub/slackbot
https://github.com/FreeOpcUa/python-opcua
https://github.com/sendgrid/sendgrid-python
https://github.com/taskiq-python/taskiq
https://github.com/bear/python-twitter
https://github.com/LonamiWebs/Telethon
https://github.com/jookies/jasmin
https://github.com/sshuttle/sshuttle
https://github.com/nats-io/nats.py
https://github.com/slackapi/python-slack-sdk
https://github.com/Forethought-Technologies/AutoChain
https://github.com/FreeOpcUa/opcua-asyncio
https://github.com/pinecone-io/canopy
https://github.com/celery/kombu
https://github.com/zeromq/pyzmq
https://github.com/letta-ai/letta
https://github.com/element-hq/synapse
https://github.com/lidatong/dataclasses-json
https://github.com/JelteF/PyLaTeX
https://github.com/wireservice/csvkit
https://github.com/alan-turing-institute/CleverCSV
https://github.com/msgpack/msgpack-python
https://github.com/lincolnloop/python-qrcode
https://github.com/pdfminer/pdfminer.six
https://github.com/jcrist/msgspec
https://github.com/scrapy/parsel
https://github.com/pmaupin/pdfrw
https://github.com/sripathikrishnan/redis-rdb-tools
https://github.com/globocom/m3u8
https://github.com/martinblech/xmltodict
https://github.com/jsvine/pdfplumber
https://github.com/chezou/tabula-py
https://github.com/mangiucugna/json_repair

Under review as a conference paper at ICLR 2026

Type Repository License #Instances #Files LoC
.) landing-ai/agentic-doc Apache-2.0 1 13 6.0k
File Formats oomol-lab/pdi-craft AGPL-3.0 1 81 64k
raphaelvallat/pingouin GPL-3.0 2 40 7.7k
feature-engine/feature_engine BSD-3-Clause 58 228 26.7k
movingpandas/movingpandas BSD-3-Clause 23 36 7.2k

xflr6/graphviz MIT 1 75 3.7k

petl-developers/petl MIT 2 168 224k
pydata/pandas-datareader GPL-3.0 1 76 6.8k

graphistry/pygraphistry BSD-3-Clause 1 195 37.0k

sinaptik-ai/pandas-ai GPL-3.0 24 174 13.9k

peerchemist/finta LGPL-3.0 2 7 2.0k
electricitymaps/electricitymaps-contrib AGPL-3.0 2 261 34.8k
taynaud/python-louvain BSD-3-Clause 1 7 0.6k

ourownstory/neural _prophet MIT 11 66 14.1k

nteract/papermill BSD-3-Clause 3 38 4.9k

microsoft/TaskWeaver MIT 13 147 15.6k

. pyecharts/pyecharts MIT 1 128 14.4k

Data Analysis ildbc/pybaseball MIT 2 130 7.6k
intake/intake BSD-2-Clause 4 99 11.0k

unionai-oss/pandera MIT 3 249 474k

py-why/dowhy MIT 3 229 30.3k

Imfit/Imfit-py GPL-3.0 4 105 12.5k

bashtage/arch GPL-3.0 2 100 28.7k

lux-org/lux Apache-2.0 1 91 10.0k

rasbt/mlxtend GPL-3.0 16 210 19.5k

fugue-project/fugue Apache-2.0 1 223 29.1k

unit8co/darts Apache-2.0 2 239 81.0k
python-streamz/streamz BSD-3-Clause 2 38 6.7k

holoviz/datashader BSD-3-Clause 1 106 26.9k

Vispy/vispy GPL-3.0 4 557 55.6k

dlt-hub/dlt Apache-2.0 11 921 147.0k
python-visualization/folium GPL-3.0 1 101 7.4k

nbedos/termtosvg BSD-3-Clause 2 13 1.9k

bpython/bpython GPL-3.0 9 75 11.7k

hauntsaninja/pyp MIT 8 3 1.1k

jorgebastida/awslogs GPL-3.0 1 9 1.1k

rsalmei/alive-progress MIT 2 41 3.0k

jazzband/Watson MIT 1 21 3.6k

kellyjonbrazil/jc MIT 17 526 449k

bee-san/py What MIT 2 19 1.8k

nvbn/thefuck MIT 28 406 10.5k
peterbrittain/asciimatics Apache-2.0 1 105 16.3k

httpie/http-prompt MIT 2 33 4.4k

jarun/buku GPL-3.0 1 27 8.9k

Terminals mkaz/termgraph MIT 14 18 1.4k
gptme/gptme MIT 2 164 24.8k

laixintao/flameshow MIT 3 35 3.0k

online-judge-tools/oj MIT 10 32 5.4k

python-poetry/cleo MIT 2 108 7.9k

pimutils/khal MIT 7 57 12.6k
LazoVelko/Pokemon-Terminal GPL-3.0 1 38 1.5k

robusta-dev/holmesgpt MIT 3 338 53.0k

tartley/colorama BSD-3-Clause 1 23 1.4k

tmbo/questionary MIT 6 59 4.1k

docopt/docopt MIT 5 23 1.1k

dylanaraps/pywal MIT 7 26 1.2k

Textualize/rich MIT 5 188 293k

insanum/gcalcli MIT 4 34 4.5k

Other/Nonlisted Topic KMKfw/kmk_firmware GPL-3.0 6 289 20.4k
sec-edgar/sec-edgar Apache-2.0 1 31 3.9k

mlouielu/twstock MIT 2 23 1.3k

Office/Business beancount/beancount GPL-2.0 7 201 24.4k
burnash/gspread MIT 2 17 5.7k

jmcnamara/XIlsx Writer BSD-2-Clause 9 1394 554k

mintapi/mintapi MIT 2 21 3.1k

50

https://github.com/landing-ai/agentic-doc
https://github.com/oomol-lab/pdf-craft
https://github.com/raphaelvallat/pingouin
https://github.com/feature-engine/feature_engine
https://github.com/movingpandas/movingpandas
https://github.com/xflr6/graphviz
https://github.com/petl-developers/petl
https://github.com/pydata/pandas-datareader
https://github.com/graphistry/pygraphistry
https://github.com/sinaptik-ai/pandas-ai
https://github.com/peerchemist/finta
https://github.com/electricitymaps/electricitymaps-contrib
https://github.com/taynaud/python-louvain
https://github.com/ourownstory/neural_prophet
https://github.com/nteract/papermill
https://github.com/microsoft/TaskWeaver
https://github.com/pyecharts/pyecharts
https://github.com/jldbc/pybaseball
https://github.com/intake/intake
https://github.com/unionai-oss/pandera
https://github.com/py-why/dowhy
https://github.com/lmfit/lmfit-py
https://github.com/bashtage/arch
https://github.com/lux-org/lux
https://github.com/rasbt/mlxtend
https://github.com/fugue-project/fugue
https://github.com/unit8co/darts
https://github.com/python-streamz/streamz
https://github.com/holoviz/datashader
https://github.com/vispy/vispy
https://github.com/dlt-hub/dlt
https://github.com/python-visualization/folium
https://github.com/nbedos/termtosvg
https://github.com/bpython/bpython
https://github.com/hauntsaninja/pyp
https://github.com/jorgebastida/awslogs
https://github.com/rsalmei/alive-progress
https://github.com/jazzband/Watson
https://github.com/kellyjonbrazil/jc
https://github.com/bee-san/pyWhat
https://github.com/nvbn/thefuck
https://github.com/peterbrittain/asciimatics
https://github.com/httpie/http-prompt
https://github.com/jarun/buku
https://github.com/mkaz/termgraph
https://github.com/gptme/gptme
https://github.com/laixintao/flameshow
https://github.com/online-judge-tools/oj
https://github.com/python-poetry/cleo
https://github.com/pimutils/khal
https://github.com/LazoVelko/Pokemon-Terminal
https://github.com/robusta-dev/holmesgpt
https://github.com/tartley/colorama
https://github.com/tmbo/questionary
https://github.com/docopt/docopt
https://github.com/dylanaraps/pywal
https://github.com/Textualize/rich
https://github.com/insanum/gcalcli
https://github.com/KMKfw/kmk_firmware
https://github.com/sec-edgar/sec-edgar
https://github.com/mlouielu/twstock
https://github.com/beancount/beancount
https://github.com/burnash/gspread
https://github.com/jmcnamara/XlsxWriter
https://github.com/mintapi/mintapi

Under review as a conference paper at ICLR 2026

Type Repository License #Instances #Files LoC
almarklein/timetagger GPL-3.0 3 28 10.5k

Office/Business brndnmtthws/thetagang AGPL-3.0 2 28 6.6k
andreroggeri/pynubank MIT 5 23 1.5k

Education cosmicpython/code GPL-3.0 1 29 1.1k
fengsp/plan GPL-3.0 1 22 1.2k

Unknown Tearorpy dub MIT > 13 32k
Documentation scanapi/scanapi MIT 1 67 4.4k
mitmproxy/pdoc MIT 6 78 7.0k
Breakthrough/PySceneDetect BSD-3-Clause 1 49 8.3k

quodlibet/mutagen GPL-2.0 3 108 22.7k

SickChill/sickchill GPL-3.0 1 310 457k

beetbox/beets MIT 13 212 45.7k

mido/mido MIT 4 74 4.0k

ytdl-org/youtube-dl Unlicense 1 902 137.5k

Multimedia brycedrennan/imaginAlry MIT 1 337 49.5k
pytube/pytube Unlicense 4 39 5.2k

lhotse-speech/lhotse Apache-2.0 1 446 64.3k

Zulko/moviepy MIT 10 137 11.1k
SYSTRAN/faster-whisper MIT 2 19 3.0k

1mageio/imageio BSD-2-Clause 3 98 26.5k
spotDL/spotify-downloader MIT 1 82 10.0k

jasonacox/tinytuya MIT 1 67 10.5k

. gplozero/gpiozero GPL-3.0 8 148 15.0k

Home Automation g /5o, MIT 4 65 119k
thingsboard/thingsboard-gateway Apache-2.0 1 217 30.1k

Games/Entertainment niklasf/python-chess GPL-3.0 6 23 14.3k
Desktop Environment | sharkwouter/minigalaxy GPL-3.0 9 47 6.5k

51

https://github.com/almarklein/timetagger
https://github.com/brndnmtthws/thetagang
https://github.com/andreroggeri/pynubank
https://github.com/cosmicpython/code
https://github.com/fengsp/plan
https://github.com/jiaaro/pydub
https://github.com/scanapi/scanapi
https://github.com/mitmproxy/pdoc
https://github.com/Breakthrough/PySceneDetect
https://github.com/quodlibet/mutagen
https://github.com/SickChill/sickchill
https://github.com/beetbox/beets
https://github.com/mido/mido
https://github.com/ytdl-org/youtube-dl
https://github.com/brycedrennan/imaginAIry
https://github.com/pytube/pytube
https://github.com/lhotse-speech/lhotse
https://github.com/Zulko/moviepy
https://github.com/SYSTRAN/faster-whisper
https://github.com/imageio/imageio
https://github.com/spotDL/spotify-downloader
https://github.com/jasonacox/tinytuya
https://github.com/gpiozero/gpiozero
https://github.com/SoCo/SoCo
https://github.com/thingsboard/thingsboard-gateway
https://github.com/niklasf/python-chess
https://github.com/sharkwouter/minigalaxy

	Introduction
	Related Work
	TestExplora
	Benchmark Acquisition
	Model Inputs
	Evaluation Metrics

	Evaluation
	Experimental Design
	Evaluation Results
	Ablation on documentation

	Further Analysis
	Conclusion
	The Use of Large Language Model
	Action Run Script
	DocAgent Execution Process
	Searcher and Reader
	Writer
	Verifier

	Model Input Prompt Template
	White-box Template
	Black-box Template

	Repository Categories Analysis
	Case Study
	Dependency Analysis
	Frequency of actions at each turn
	Cases for LLM inference
	Repository Details

