
Under review as a conference paper at ICLR 2024

CLIP-GUIDED REINFORCEMENT LEARNING FOR
OPEN-VOCABULARY TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Open-vocabulary ability is crucial for an agent designed to follow natural lan-
guage instructions. In this paper, we focus on developing an open-vocabulary
agent through reinforcement learning. We leverage the capability of CLIP to
segment the target object specified in language instructions from the image ob-
servations. The resulting confidence map replaces the text instruction as input
to the agent’s policy, grounding the natural language into the visual information.
Compared to the giant embedding space of natural language, the two-dimensional
confidence map provides a more accessible unified representation for neural net-
works. When faced with instructions containing unseen objects, the agent converts
textual descriptions into comprehensible confidence maps as input, enabling it to
accomplish open-vocabulary tasks. Additionally, we introduce an intrinsic reward
function based on the confidence map to more effectively guide the agent towards
the target objects. Our single-task experiments demonstrate that our intrinsic re-
ward significantly improves performance. In multi-task experiments, through test-
ing on tasks out of the training set, we show that the agent, when provided with
confidence maps as input, possesses open-vocabulary capabilities.

Multi-Task Training

Learning:

Open-Vocabulary Eval

Novel:“hunt a horse”

Modified

MineCLIP

Modified

MineCLIP

Modified

MineCLIP

Modified

MineCLIP

Unified 2D Maps

“hunt a cow”

“hunt a pig”

Intrinsic
Reward

MLPMLP

PPO
Algorithm

MineCLIP
Image Encoder

MineCLIP
Image Encoder

Instruction: “hunt a cow”

aFocal

Figure 1: Overview of CLIP-guided Open-vocabulary Policy Learning (COPL). (left) COPL tack-
les open-vocabulary tasks by mapping the novel object into a comprehensible unified 2D confidence
map, relying on our modified MineCLIP. (right) The agent takes as input the image observation and
the confidence map of the target specified by the instruction. We train the agent by PPO with our
proposed focal reward derived from the confidence map to guide the agent toward the target.

1 INTRODUCTION

In the field of artificial intelligence, the ability of agents to understand and follow natural language
instructions in an open-ended manner is crucial (Brohan et al., 2022; 2023; Chen et al., 2023; Shah
et al., 2023). However, the scope of training content is always finite. Open-vocabulary tasks, where
the agent is instructed to interact with diverse objects, beyond the training scope, from the vast
realm of human vocabulary, represent a pivotal step towards creating general AI systems capable
of adapting to a wide range of real-world scenarios (Chen et al., 2023; Stone et al., 2023). As
a popular open-ended 3D game, Minecraft serves as an ideal testbed for learning and evaluating
open-vocabulary ability. At its core, Minecraft offers procedurally generated worlds with unlimited
size and a large variety of tasks ranging from navigation and combat to building and survival (Fan
et al., 2022; Wang et al., 2023b; Yuan et al., 2023; Wang et al., 2023a; Zhu et al., 2023). Compared
with canonical game environments such as Go (Silver et al., 2016), Atari (Mnih et al., 2013), and

1

Under review as a conference paper at ICLR 2024

StarCraft (Vinyals et al., 2019), Minecraft mirrors the complexity of real-world challenges and offers
a wide range of objects and tasks with natural language instructions.

To equip an agent with open-vocabulary ability, the integration of a vision-language model (VLM) is
promising (Wu et al., 2023). A VLM aligns images and language vocabularies into the same feature
space, bridging the gap between visual observations and natural language instructions. Therefore,
it has the capability to ground the agent’s unseen text, e.g., names of novel objects, into visual
images, enabling the agent to comprehend instructions not encountered during training. Thanks to
MineCLIP (Fan et al., 2022), a VLM pre-trained on Internet-scale Minecraft videos from YouTube,
developing an open-vocabulary agent in Minecraft has become more accessible. Initially, MineCLIP
was merely used as a tool to measure the similarity between a sequence of visual observations and
the instruction, serving as an intrinsic reward for reinforcement learning (Fan et al., 2022). Recent
advancement has taken a further step to exploit the capabilities of MineCLIP. STEVE-1 (Lifshitz
et al., 2023) converts natural language instructions into the embedding space via the MineCLIP
encoder and leverages this embedding to guide VPT, a foundation model of Minecraft behaviors
(Baker et al., 2022). This innovation steps towards open-vocabulary agents, as it enables the agent
to comprehend diverse and free-form language instructions.

While MineCLIP has already demonstrated its power through STEVE-1, its capabilities are yet to
be fully explored. As a model fine-tuned from CLIP (Radford et al., 2021), MineCLIP inherits
most characteristics of CLIP. Recent works in computer vision have extensively adopted CLIP as a
foundation model for open-vocabulary object detection (Gu et al., 2021; Kuo et al., 2022; Zang et al.,
2022) and open-vocabulary segmentation (Ding et al., 2022; Rao et al., 2022; Liang et al., 2023),
leveraging its rich knowledge. Moreover, CLIP even exhibits remarkable segmentation capabilities
and explainability without fine-tuning (Zhou et al., 2022; Li et al., 2023). These findings indicate
that MineCLIP would also possess the capability to locate and segment the target object specified in
the language instruction from the image observation in Minecraft.

The ability of MineCLIP to perform segmentation provides three key inspirations for enhancing
agent learning in Minecraft. Firstly, taking as input the location information of the target object
would facilitate training and improve performance, as it offers a direct means of grounding natural
language into the image. Practical research in robotics has proven that models with such location
input show superior performance compared to text input (Stone et al., 2023). Secondly and most
significantly, the segmentation is open-vocabulary. Therefore, when the agent receives instructions
containing novel objects not encountered in the training phase, the segmentation remains effective.
Lastly, it is noticeable that the intrinsic reward calculated by MineCLIP (Fan et al., 2022) has one
limitation: it is insensitive to the distance to the target object (Radford et al., 2021; Cai et al., 2023).
Fortunately, with the segmentation result, the pixel area of the target object can serve as a surrogate
for distance, providing more information to calculate a better intrinsic reward.

In this paper, we propose a CLIP-guided Open-vocabulary Policy Learning method, namely COPL.
We generate a confidence map of the target object specified in the language instruction via our
modified MineCLIP. We extend MineCLIP with modifications inspired by MaskCLIP (Zhou et al.,
2022) so that it can segment the specified object from the image. As illustrated in Figure 1 (left),
our approach can convert instructions into unified two-dimensional maps. To leverage this result,
we first design an intrinsic reward that takes into account the pixel area and location of the target
object in the image observation. By doing so, we address the deficiency of the original MineCLIP
reward (Fan et al., 2022). Furthermore, we integrate the resulting confidence map into the policy
input, instead of text input or other task indicators, as illustrated in Figure 1 (right). Based on
this adjustment, our agent is able to handle open-vocabulary tasks through multi-task reinforcement
learning on only a limited set of instructions.

We evaluate COPL on basic skill learning and open-vocabulary generalization in Minecraft. Firstly,
we conduct a group of single-task experiments to show that our refined intrinsic reward significantly
outperforms the MineCLIP reward in enabling the agent to successfully acquire various challenging
basic skills. Then we extend our evaluation to instruction-following scenarios, where we train the
agent with a set of instructions. In our test, the agent exhibits the capacity to execute instructions
involving previously unseen targets, effectively demonstrating its open-vocabulary ability. Though
we implement and evaluate COPL in Minecraft, we believe our method is extendable to other similar
open-world environments and draws insights into the integration of VLM and reinforcement learning
for training open-vocabulary agents.

2

Under review as a conference paper at ICLR 2024

MLPMLP

LNLN

LNLN

MSAMSA

Modified
MineCLIP Image

Encoder (ViT)

MineCLIP
Text Encoder

cowTarget

Negative
words

Te
m

p
o

ra
lT

ra
n

sf
o

rm
er

pig

grass

pig

grass Embedding Alignment

Text Embeddings

.34

.35

.28

.17

.55

.21

.12

.47

.01

.35

.07

.25

.05

.35

.05

.38

.28

.20

.47

.05

MLPMLP

LNLN

LNLN

MSAMSA

MLP

LN

LN

MSA

CLS

Patches

q
k

v

Se
lf

-a
tt

en
ti

on
Se

lf
-a

tt
en

ti
on

The last block in ViT

CLS

Patches

q
k

v

Se
lf

-a
tt

e
n

ti
o

n
Se

lf
-a

tt
e

n
ti

o
n

cowTarget

Negative
words

Te
m

p
o

ra
l T

ra
n

sf
o

rm
er

pig

grass

pig

grass

Embedding Alignment

.34

.35

.28

.17

.55

.21

.12

.47

.01

.35

.45

.53

.25

.82

.10

The last block in ViT

Sc
al

ed
 D

o
t-

Pr
o

d
u

ct
 A

tt
en

ti
o

n

Frozen Weights

Patch Embeddings

.45 Class Probability

Text Embeddings

MineCLIP
Text Encoder

Modified
MineCLIP Image

Encoder (ViT)

Patches

CLS q
k
v

q
k
v

MLPMLP

LNLN

LNLN

MSAMSA

Confidence
Map

Figure 2: Process of segmentation via MineCLIP. The modified MineCLIP image encoder takes as
input the image and outputs patch embeddings, which are subsequently processed by the temporal
transformer to guarantee embedding alignment. The MineCLIP text encoder encodes the target
name along with a list of negative words. The probability of the target’s presence on each patch is
calculated based on the similarities between patch embeddings and text embeddings.

2 PRELIMINARY

Problem Statement. In this paper, by open-vocabulary task, we mean that the agent is instructed
to interact with diverse objects beyond the training scope. More specifically, we focus on object-
centric tasks and the open-vocabulary ability over target objects. To formalize, we denote the set
of objects with which the agent learns to interact during the training phase as Ct, and the set of
objects with which the agent is required to interact during the execution phase as Ce. To test the
open-vocabulary ability of the agent, Ce consists of objects that are not in Ct. For example, during
training, the agent learns to accomplish language instructions “hunt a cow” and “hunt a sheep”.
However, during execution, it will encounter instructions like “hunt a horse” or “hunt a chicken”,
where neither “horse” nor “chicken” appears in the instructions during training. Note that we do
not consider open-vocabulary ability concerning actions (we leave it as future work). Therefore,
instructions during execution should have the same behavior patterns as those learned in training.
For instance, when training with “hunt sth.” and “harvest sth.”, testing with “explore the world” is
not considered.

Given that we choose reinforcement learning to train the agent, a similar problem is zero-shot gen-
eralization in reinforcement learning (Kirk et al., 2023). The difference between zero-shot gener-
alization and open-vocabulary tasks is that the former focuses on the agent’s adaptability to unseen
contexts, including environments with different dynamics or backgrounds, while the latter cares
about how to generalize the learned skill to unseen target objects specified by instructions. Both
problems demand adaptability and generalization but differ in the range of scenarios they address.

MineCLIP for Minecraft RL. MineCLIP is a vision-language model pre-trained on Internet-scale
Minecraft videos from YouTube (Fan et al., 2022). This model learns the alignment between video
clips (consisting of 16 frames) and natural language. Similar to CLIP (Radford et al., 2021),
MineCLIP adopts a ViT (Dosovitskiy et al., 2020) as the image encoder and a GPT (Radford et al.,
2019) as the text encoder. The main difference between MineCLIP and CLIP is that MineCLIP
takes as input a sequence of 16 images. Therefore, MineCLIP incorporates an additional module
to aggregate the 16 embeddings generated by the image encoder. The proposed two mechanisms
include a temporal transformer (MineCLIP[attn]) and direct average pooling (MineCLIP[avg]). In
this paper, we choose the former as our base model due to its better performance in Programmatic
tasks compared to the latter (Fan et al., 2022). For reinforcement learning in Minecraft, MineCLIP
provides an intrinsic reward function Ri : G × S16 → R, representing the similarity between the
observation sequence of the previous 16 steps [st−15, · · · , st−1, st] and the task prompt g.

3 METHOD

In this section, we detail the implementation of our COPL method addressing open-vocabulary
tasks in Minecraft. We introduce the modification to MineCLIP (Fan et al., 2022) and the process of
segmenting the target object specified by the language instruction (Section 3.1). This process yields
a confidence map, where each element represents the probability of the specified target’s presence.
Based on this confidence map, we present a simple but effective intrinsic reward to guide the agent

3

Under review as a conference paper at ICLR 2024

(a) cow (b) pig (c) sword

(d) sheep (e) flower (f) tree

Figure 3: Segmentation instances for targets: (a) cow, (b) pig, (c) sword, (d) sheep, (e) flower, and
(f) tree. Left: The original image. Right: The confidence map of the target. The darker blue the
patch, the higher the probability of the target’s presence on it.

toward the target, facilitating the learning of basic skills during training (Section 3.2). We integrate
the confidence map, which contains essential spatial information of the specified target, into the
policy as input (Section 3.3). This integration equips the agent with open-vocabulary ability by
grounding the novel object into a comprehensible input, i.e., the confidence map.

3.1 SEGMENTATION VIA MINECLIP

Prior to segmentation, we must extract the correct target that the agent needs to interact with from
the provided language instruction. Consider an example instruction: “hunt a cow in plains with a
diamond sword”. In this case, it is “cow” that should be extracted from the instruction, rather than
“plains” or “diamond sword”, for the following segmentation. This can be easily done by large
language models (LLMs). Details can be found in Appendix A.1.

In the standard CLIP (Radford et al., 2021), the image encoder, a ResNet (He et al., 2016) or ViT
(Dosovitskiy et al., 2020), aggregates the visual features from all spatial locations through attention
pooling. Recent works (Zhou et al., 2022; Li et al., 2023) reveal that these features on each spatial
location contain rich local information so that they can be used to perform zero-shot pixel-level
predictions. In brief, the cosine similarities between these features and the outputs of the CLIP text
encoder are also valid and informative. Concretely, MaskCLIP (Zhou et al., 2022) makes use of the
value-embedding of each spatial location in the last attention module, while CLIPSurgery (Li et al.,
2023) studies the feature of each spatial location in the final output and introduces an additional path.
Inspired by MaskCLIP, we make adaptations to MineCLIP architecture to generate a confidence map
for a specified target without fine-tuning.

To begin, we introduce the modification to the vision pathway of MineCLIP. We make changes to
extract dense features from the last block of ViT. As illustrated in the rightmost part of Figure 2, the
scaled dot-product attention in multi-head attention (Vaswani et al., 2017) module is removed, while
the value-embedding transformation is retained. Then the transformed embeddings excluding that
of CLS token are fed into the remaining modules within the ViT to obtain the final embedding of
each patch. In this way, these patch embeddings share the same space as the original ViT output. As
shown in Figure 2, the modified image encoder outputs patch embeddings instead of image embed-
ding. However, these embeddings are not yet aligned with the embedding space of MineCLIP. In
MineCLIP, the image encoder is followed by a temporal transformer that aggregates the embeddings
of 16 images. Therefore, these patch embeddings also need to pass through the temporal transformer
to guarantee alignment. Notably, these embeddings do not form a temporal sequence together as the
input of the transformer. Instead, each patch embedding is individually processed by the tempo-
ral transformer, treated as a sequence of length 1. In this way, we obtain patch embeddings in the
MineCLIP embedding space.

In the language pathway, no modification is made to the MineCLIP text encoder. The target name
is encoded using the text encoder, along with a list of negative words. We construct a negative word
list containing objects that frequently appear in Minecraft. For a detailed description of the word
list, please refer to Appendix A.2. Given the patch embeddings encoded through the modified image
encoder and the temporal transformer in the same embedding space of MineCLIP, we can calculate
cosine similarities between patch embeddings and text embeddings, following the same approach as

4

Under review as a conference paper at ICLR 2024

Frame 25

(a) rmc : 0.856, rf : 0.029

Frame 35

(b) rmc : 0.574, rf : 0.046

Frame 45

(c) rmc : 0.600, rf : 0.071

Figure 4: Comparison between MineCLIP reward rmc and focal reward rf at Frame 25, 35, and 45,
in one episode of the task “milk a cow”. From (a) to (c), our focal reward consistently increases as
the agent approaches the target cow, while the MineCLIP reward varies in an uncorrelated way.

CLIP. Subsequently, we use softmax with the same temperature used in MineCLIP to determine the
probabilities of objects’ presence on each patch. Finally, we extract and reshape the probabilities
of the target object to form the confidence map. The resulting confidence map consists of the same
number of elements as the patches, with each element representing the probability of the target’s
presence on the corresponding patch. Examples of the confidence maps are shown in Figure 3.

3.2 FOCAL REWARD

As noted in Cai et al. (2023), the MineCLIP reward, which relies on the similarity between the
agent’s preceding image observations and the provided instruction, is uncorrelated with the dis-
tance between the agent and the target. This phenomenon is demonstrated in Figure 4, where the
MineCLIP reward does not consistently increase as the agent gets closer to the target. Consequently,
in practice, the agent trained with the MineCLIP reward tends to “stare at” the target at a distance,
rather than approaching it. This tendency obstructs the agent from learning some hard-exploration
skills, particularly those that require multiple times of interactions with the targets, such as hunting.

Fortunately, the confidence map of the target contains rich spatial information that can mitigate the
limitations of the original MineCLIP reward. The area occupied by the target in the image can serve
as a proxy for estimating the distance to the target, based on the principle that the closer the target is
to the agent, the larger its area in the image and vice versa. Therefore, a reward proportional to the
area of the target would guide the agent towards the target effectively. Additionally, we argue that
the agent should be encouraged to aim at the target, i.e., adjust the perspective to center the target in
the field of view. This would help the agent further stabilize its orientation and increase the chance of
interacting with the target when it is close enough. In Minecraft, interaction can only occur when the
cursor in the center of the agent view aligns with the target. Moreover, when multiple target objects
are present in the view, the agent should learn to focus on a single target rather than attempting to
keep all of them in view. This could also be interpreted in a more general way, such as humans
usually place the target at the center of the visual field for better perception and interaction.

Based on these principles, we introduce an intrinsic reward function named focal reward. At each
time step t, it is computed as the mean of the Hadamard product between the target confidence map
mc

t , and a Gaussian kernel denoted as mk:

rft = mean
(
mc

t ◦mk
)
. (1)

Here, mc
t and mk share the same dimensions with height H and width W . Each element of the

Gaussian kernel is defined as:

mk
i,j = exp

(
− (i− µ1)

2

2σ2
1

− (j − µ2)
2

2σ2
2

)
, i ∈ {1, ...,H}, j ∈ {1, ...,W}, (2)

where µ1 = (H + 1)/2, σ1 = H/3, µ2 = (W + 1)/2, and σ2 = W/3. This reward function is
designed to be directly proportional to the area occupied by the target and inversely proportional to
the distance between the target patches and the center of the view. As illustrated in Figure 4, when
the agent approaches the target cow, the region of high confidence becomes larger and closer to the
center, and consequently, our focal reward increases consistently.

The confidence map generated from the modified MineCLIP may sometimes contain noisy activa-
tion (Zhou et al., 2022; Li et al., 2023). Therefore, we process the raw confidence map to enhance
its quality before using it to compute the intrinsic reward. Firstly, we set the value corresponding to

5

Under review as a conference paper at ICLR 2024

the patch where a word from the negative word list has the highest probability instead of the target
to zero. This operation diminishes the influence of noisy activation on non-target patches. Secondly,
we set values in the confidence map lower than a threshold τ = 0.2 to zero, while those higher than
this threshold are set to one, so as to amplify the distinction between patches corresponding to the
target and those unrelated to it. We ablate the Gaussian kernel and denoising process in Section 4.1.

3.3 OPEN-VOCABULARY POLICY LEARNING

To train an instruction-following agent, the conventional practice involves directly taking the natu-
ral language instruction as input into the policy network (Khandelwal et al., 2022; Mu et al., 2022;
Du et al., 2023). These instructions are typically encoded using a recurrent network or a language
model such as BERT (Kenton & Toutanova, 2019). In contrast, we extract the target object from
the instruction using ChatGPT (OpenAI, 2022) and subsequently convert it into a two-dimensional
matrix, i.e., the confidence map. Our underlying assumption is that this two-dimensional spatial
representation offers more intuitive and accessible information for the policy network compared to
the intricate space of language embeddings. When facing an instruction containing the name of an
unseen target object during execution, our method grounds this novel text into the two-dimensional
map, rendering it comprehensible to the policy network. As a result, the agent can follow the guid-
ance of the confidence map, navigate towards the novel target object, and finally interact with it.

In our implementation, we adopt the network architecture of MineAgent (Fan et al., 2022), which
uses the MineCLIP image encoder to process image observations and MLPs to encode other infor-
mation such as pose. We introduce an additional branch to encode the confidence map and fuse these
features through concatenation. The policy network takes this fused multi-modality feature as input
and outputs action distribution. Details regarding the policy network’s architecture are available in
Appendix B.2. We use PPO (Schulman et al., 2017) as the base RL algorithm and train the agent
with reward rt = renvt +λrft , where renv denotes the environmental reward and λ is a hyperparam-
eter controlling the weight of the focal reward. According to the empirical results in Appendix B.4,
we simply set λ = 5 for all experiments in the paper as we do not want to bother tuning this hyper-
parameter. We employ the multi-task reinforcement learning paradigm, where the agent is trained
to finish tasks in a predefined instruction set. Unlike typical multi-task reinforcement learning, our
agent’s learning objective is to not only master the training tasks but also to understand the mapping
between the confidence map and the target object within the image observation in order to perform
zero-shot transfer to novel instructions.

4 EXPERIMENTS

We conduct experiments in MineDojo (Fan et al., 2022), a Minecraft simulator that offers diverse
open-ended tasks. We perform single-task experiments to evaluate the effectiveness of our proposed
focal reward. Then we extend our evaluation to multi-task experiments, and most importantly, open-
vocabulary tasks. Details about Minecraft environments and RL hyperparameters in our experiments
are described in Appendix B.1 and Appendix B.4, respectively.

4.1 SINGLE-TASK EXPERIMENTS

Our single-task evaluation consists of tasks learning four challenging basic skills: hunt a cow, hunt
a sheep, hunt a pig, and hunt a chicken. In each task, the agent spawns in plains biome alongside
several animals. The agent will receive a reward from the environment if it successfully kills the
target animal. The difficulty of these basic skills lies in that animals, once attacked, will attempt
to flee, requiring the agent to keep chasing and attacking the target animal. More details about the
Minecraft task settings are available in Appendix B.3.1.

Evaluation. We compare our focal reward with the following baselines: (1) MineCLIP reward (Fan
et al., 2022) based on the similarity between image observations and the instruction “hunt a {animal}
on plains with a diamond sword”; (2) NDCLIP reward (Tam et al., 2022), an intrinsic reward for
exploration that measures the novelty of observation’s MineCLIP embedding; (3) Sparse reward, i.e.,
training the agent with the environmental reward only. Results are reported in Figure 5. Each curve
shows the mean success rate of four runs with different seeds and shaded regions indicate standard
error (the same applies hereinafter). We can observe that only our focal reward leads to the mastery

6

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Focal
MineCLIP
NDCLIP

Sparse

(a) hunt a cow

0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Focal
MineCLIP
NDCLIP

Sparse

(b) hunt a sheep

0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Su
cc

es
s r

at
e

Focal
MineCLIP
NDCLIP

Sparse

(c) hunt a pig

0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6)

0.0

0.1

0.2

0.3

0.4

Su
cc

es
s r

at
e

Focal
MineCLIP
NDCLIP

Sparse

(d) hunt a chicken
Figure 5: Learning curves of PPO with focal reward, MineCLIP reward, NDCLIP reward, and envi-
ronmental sparse reward only, on four Minecraft tasks.

0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Focal
Focal [raw]
Focal [delta]

(a) hunt a cow

0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Focal
Focal [raw]
Focal [delta]

(b) hunt a sheep

0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Focal
Focal w/o Gaussian

(c) hunt a cow

0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Focal
Focal w/o Gaussian

(d) hunt a sheep
Figure 6: (a)(b) Learning curves of PPO with focal reward and its variants. (c)(d) Learning curves
of PPO with focal reward and focal reward without Gaussian kernel.

of all four skills by guiding the agent to consistently approach the target. In contrast, the MineCLIP
reward fails because it cannot capture the distance between the agent and the target, offering limited
benefit to these tasks. The failure of NDCLIP reward suggests that exploration provides minimal
assistance in learning these challenging skills due to the huge observation space of Minecraft.

Variants and Ablation. To further investigate our focal reward, we compare it with two variants:
Focal[raw], which uses the raw confidence map without denoising to compute the intrinsic reward,
and Focal[delta], defined as rδt = rft − rft−1. The results in Figures 6(a) and 6(b) demonstrate that
our denoising process improves the effectiveness of the focal reward. We suppose that the poor
performance of Focal[delta] may be linked to its sensitivity to segmentation noise, as it relies on
differences in focal reward between two steps, making it susceptible to minor fluctuations in seg-
mentation. In addition, we test the effectiveness of the Gaussian kernel, as presented in Figures 6(c)
and 6(d). We modify the environment settings to ensure that there are two target animals. The results
prove the significance of the Gaussian kernel. Without this kernel, the reward may guide the agent
to include both target animals in the view to acquire a high reward, hindering it from approaching
either of them. In contrast, our focal reward addresses this problem by providing more reward in the
center, thereby encouraging the agent to focus on a single target.

4.2 MULTI-TASK AND OPEN-VOCABULARY EXPERIMENTS

We conduct multi-task experiments to verify the effectiveness and open-vocabulary capability of
COPL. Given that tasks in Minecraft require different behavior patterns, we design two task do-
mains, the hunt domain and the harvest domain. The hunt domain consists of four instructions
in plains biome: “hunt a cow”, “hunt a sheep”, “hunt a pig”, and “hunt a chicken”. These tasks
share a common behavior pattern: repeatedly approach the target, aim at it, and attack. The har-
vest domain contains two instructions in plains biome, “milk a cow” and “shear a sheep”, and
two instructions in flower forest biome, “harvest a flower” and “harvest leaves”. Tasks in the
harvest domain are individually easier than those in the hunt domain but demand disparate behavior
patterns. For example, “harvest a flower” requires the attack action while the other tasks require the
use action. More details about the task settings are available in Appendix B.3.3.

Evaluation. We compare COPL with two baselines: (1) EmbCLIP (Khandelwal et al., 2022), uti-
lizing the target embedding provided by the MineCLIP text encoder as input; (2) One-Hot, a naive
multi-task baseline, using a one-hot vector as the task indicator. All these methods are trained with
the focal reward and the only difference is their target representations. In the hunt domain, as shown
in Figure 7(a), COPL significantly outperforms other baselines, indicating that the confidence map
provides a more accessible and informative target representation compared to the language embed-
ding and one-hot vector, respectively. Notably, One-Hot surpasses EmbCLIP, suggesting that the
intricate language embedding of the target may have a negative impact on multi-task learning. In

7

Under review as a conference paper at ICLR 2024

0.0 0.4 0.8 1.2 1.6 2.0
Steps (1e6)

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s r

at
e

COPL
EmbCLIP
One-Hot

(a) learning curves

cow sheep pig chicken llama horse spider mushroom
Tasks

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

COPL Cai 2023 STEVE-1

(b) success rates

cow sheep pig chicken llama horse spider mushroom
Tasks

0.0

0.3

0.6

0.9

1.2

Pr
ec

isi
on

COPL Cai 2023 STEVE-1

(c) precisions

Figure 7: (a) Learning curves of COPL, EmbCLIP, and One-Hot in the hunt domain. (b) Success
rates and (c) precisions of COPL, Cai et al. (2023), and STEVE-1 on each hunt task. Solid × marks
and their error bars represent the mean and variance of COPL, respectively. Hollow marks denote
the performance of a single model, so they do not have error bars. Novel tasks are highlighted.

0.0 0.3 0.6 0.9 1.2 1.5
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

COPL
EmbCLIP
One-Hot

(a) learning curves

milk wool flower leaves
Tasks

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

COPL
STEVE-1

(b) success rates

milk water wool mushroom sand
Tasks

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

COPL
EmbCLIP

STEVE-1

(c) success rates

milk water wool mushroom
Tasks

0.0

0.3

0.6

0.9

1.2

Pr
ec

isi
on

COPL EmbCLIP STEVE-1

(d) precisions

Figure 8: (a) Learning curves of COPL, EmbCLIP, and One-Hot in the harvest domain. (b) Success
rates of COPL and STEVE-1 on each training task. (c) Success rates and (d) precisions of COPL,
EmbCLIP, and STEVE-1 on each test harvest task. Novel tasks are highlighted.

contrast, the harvest domain presents a different picture. As illustrated in Figure 8(a), all methods
achieve similar performance. These results suggest that when tasks become easy enough, the impact
of the target representation’s complexity diminishes. These methods’ learning curves on each task
are available in Appendix B.5. We also benchmark COPL against two recent Minecraft basic skill
models trained via imitation learning, Cai et al. (2023)1 and STEVE-1 (Lifshitz et al., 2023). COPL
outperforms both models significantly across all tasks, as shown in Figures 7(b) and 8(b).

Open-Vocabulary Generalization. Given that the two domains involve distinct behavior patterns,
we conduct separate evaluations to assess the open-vocabulary ability of COPL models trained in
the hunt domain and the harvest domain. Besides four learning instructions, we test the hunt do-
main model with four novel instructions in plains biome, “hunt a llama”, “hunt a horse”, “hunt
a spider”, and “hunt a mushroom cow”. The results in Figure 7(b) show that COPL effectively
transfers the learned skill to unseen targets, achieving high success rates. Additionally, we define
precision as the number of correct kills on the specified target divided by the number of kills on
any animal. The high precision, as reported in Figure 7(c), proves COPL’s ability to distinguish the
target from other animals, rather than indiscriminately attacking them. STEVE-1 shows poor per-
formance across all hunt tasks except “hunt a spider”. We suppose that its base model, VPT (Baker
et al., 2022), possesses a strong prior on killing specific animals like spiders and heavily affects the
behavior of STEVE-1 on following other hunting instructions. Cai et al. (2023) achieves relatively
higher success rates on “hunt a cow”, “hunt a sheep”, and “hunt a pig” due to these tasks being in its
training set. Its lower performance on other tasks indicates its limitations in open-vocabulary ability.
“Hunt a mushroom cow” is an exception and we hypothesize that this is because the mushroom cow
is similar to the cow in shape and texture.

Considering the diverse behavior patterns and tools used in the harvest domain, we test our har-
vest domain model using three groups of instructions: (1) “milk a cow” and “harvest water” in
river biome, both requiring the agent to use an empty bucket; (2) “shear a sheep” and “shear
a mushroom cow” in plains biome, both requiring the agent to use shears; (3) “harvest sand”
in river biome, sharing a similar attack behavior with “harvest a flower” but equipped a unseen
tool, a diamond shovel. Results are depicted in Figures 8(c) and 8(d). Precision here is defined as
the number of times correctly harvesting the specified target divided by the number of times har-
vesting any target declared in the group’s instructions. Our results reveal that although COPL and

1We do not evaluate the performance of Cai et al. (2023) in the harvest domain because the authors have not
yet released the model trained for harvest tasks.

8

Under review as a conference paper at ICLR 2024

EmbCLIP show similar performance on training tasks, COPL exhibits advantages on novel tasks,
achieving higher success rates and precisions compared to EmbCLIP. This indicates that better open-
vocabulary ability emerges from converting language into a simple two-dimensional representation.
STEVE-1 achieves a decent performance only on “harvest sand” due to its powerful digging skills.

5 RELATED WORK

Minecraft Research. Broadly, challenges in Minecraft can be categorized into high-level task plan-
ning and low-level skill learning. For high-level planning, where agents must make decisions on
which skills to employ sequentially based on the given instruction, the field has converged towards
leveraging the Large Language Model (LLM) (Nottingham et al., 2023; Wang et al., 2023b;a; Yuan
et al., 2023; Zhu et al., 2023). Regarding learning low-level skills, the difficulty lies in the absence
of well-defined dense reward and a vast variety of objects to interact with in Minecraft. Unlike the
convergence in high-level planning approaches, two distinct routes have emerged in low-level learn-
ing. The first route, represented by MineCLIP (Fan et al., 2022), utilizes the reward derived from the
alignment between text and video clip or other manually designed reward for reinforcement learning
(Yuan et al., 2023). The second one follows the principles of VPT (Baker et al., 2022), where skills
are acquired through imitation learning based on large-scale demonstration (Cai et al., 2023; Lifshitz
et al., 2023). Our work falls in the scope of low-level skill learning with reinforcement learning.

Instruction-Following RL. Language has been widely explored in goal-conditioned reinforcement
learning for its compositional structure (Luketina et al., 2019). This feature allows goal-conditioned
policies to better capture the latent structure of the task space and generalize to unseen instructions
that combine seen words (Oh et al., 2017; Chan et al., 2019; Jiang et al., 2019; Colas et al., 2020;
Mirchandani et al., 2021). With the development of LLM and VLM, language also becomes a means
of providing intrinsic rewards in reinforcement learning. The similarity or correlation between in-
structions and current states provides dense rewards to guide the agent’s learning more effectively
(Fan et al., 2022; Kwon et al., 2022; Mahmoudieh et al., 2022; Du et al., 2023). Our work stands
out by enabling the policy to generalize to instructions that contain previously unseen targets.

CLIP for Embodied AI. CLIP (Radford et al., 2021) provides diverse usage for AI research. We
categorize these applications into three areas: encoding, retrieving and locating. Encoding, the most
common use of CLIP, leverages CLIP encoders to represent images and/or texts (Shridhar et al.,
2022; Khandelwal et al., 2022; Majumdar et al., 2022). Our work also utilizes the MineCLIP image
encoder to process raw image observations. Retrieving mostly involves navigation tasks, where
CLIP assists in selecting the most matching image from a set based on the given instruction (Dorbala
et al., 2022; Bucker et al., 2023; Chen et al., 2023; Shah et al., 2023). The most relevant usage to our
work is locating, which applies methods like MaskCLIP (Zhou et al., 2022) or GradCAM (Selvaraju
et al., 2017) on CLIP to determine the position of the specific object in images (Wang et al., 2022;
Gadre et al., 2023; Zhang et al., 2023). Based on the object location, agents can conduct planning
with a depth detector (Gadre et al., 2023) or imitation learning (Wang et al., 2022; Zhang et al.,
2023). In contrast, our work focuses on training agents via reinforcement learning with information
solely extracted from image observations, without any extra spatial information or demonstration.

6 CONCLUSION

In this paper, we propose COPL, a novel approach designed to address open-vocabulary tasks in
Minecraft, leveraging the wealth of knowledge about Minecraft encoded in MineCLIP (Fan et al.,
2022). Through comprehensive evaluations, we prove COPL’s effectiveness in acquiring multiple
basic skills and its open-vocabulary ability. Additionally, we demonstrate the advantages of training
policies through reinforcement learning: the performance is not dependent on the quality and dis-
tribution of demonstration, allowing the trained policy to handle tasks that are challenging but less
common in human-collected data, such as hunting animals (Baker et al., 2022). Furthermore, our
work demonstrates the potential of integrating multimodal models, such as VLM, into reinforcement
learning. Our method can be applied to other similar open-world environments by grounding natural
language instructions into visual data and guiding the agent toward targets likewise. We hope COPL
could contribute to the development of agents capable of understanding and responding to natural
language instructions. Future work could focus on grounding language that describes actions and
learning tasks requiring more complicated manipulation.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. Advances in Neural Information Processing Systems, 35:24639–24654,
2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Arthur Bucker, Luis Figueredo, Sami Haddadin, Ashish Kapoor, Shuang Ma, Sai Vemprala, and
Rogerio Bonatti. Latte: Language trajectory transformer. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pp. 7287–7294. IEEE, 2023.

Shaofei Cai, Zihao Wang, Xiaojian Ma, Anji Liu, and Yitao Liang. Open-world multi-task control
through goal-aware representation learning and adaptive horizon prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13734–13744, 2023.

Harris Chan, Yuhuai Wu, Jamie Kiros, Sanja Fidler, and Jimmy Ba. Actrce: Augmenting experience
via teacher’s advice for multi-goal reinforcement learning. arXiv preprint arXiv:1902.04546,
2019.

Boyuan Chen, Fei Xia, Brian Ichter, Kanishka Rao, Keerthana Gopalakrishnan, Michael S Ryoo,
Austin Stone, and Daniel Kappler. Open-vocabulary queryable scene representations for real
world planning. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pp.
11509–11522. IEEE, 2023.

Cédric Colas, Tristan Karch, Nicolas Lair, Jean-Michel Dussoux, Clément Moulin-Frier, Peter
Dominey, and Pierre-Yves Oudeyer. Language as a cognitive tool to imagine goals in curiosity
driven exploration. Advances in Neural Information Processing Systems, 33:3761–3774, 2020.

Zheng Ding, Jieke Wang, and Zhuowen Tu. Open-vocabulary panoptic segmentation with maskclip.
arXiv preprint arXiv:2208.08984, 2022.

Vishnu Sashank Dorbala, Gunnar A Sigurdsson, Jesse Thomason, Robinson Piramuthu, and Gau-
rav S Sukhatme. Clip-nav: Using clip for zero-shot vision-and-language navigation. In Workshop
on Language and Robotics at CoRL 2022, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2020.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. arXiv preprint arXiv:2302.06692, 2023.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in Neural Information Processing Systems, 35:
18343–18362, 2022.

Samir Yitzhak Gadre, Mitchell Wortsman, Gabriel Ilharco, Ludwig Schmidt, and Shuran Song.
Cows on pasture: Baselines and benchmarks for language-driven zero-shot object navigation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
23171–23181, 2023.

10

Under review as a conference paper at ICLR 2024

Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object detection via vision
and language knowledge distillation. In International Conference on Learning Representations,
2021.

William H Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela
Veloso, and Ruslan Salakhutdinov. Minerl: a large-scale dataset of minecraft demonstrations.
In Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 2442–
2448, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yiding Jiang, Shixiang Shane Gu, Kevin P Murphy, and Chelsea Finn. Language as an abstrac-
tion for hierarchical deep reinforcement learning. Advances in Neural Information Processing
Systems, 32, 2019.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Apoorv Khandelwal, Luca Weihs, Roozbeh Mottaghi, and Aniruddha Kembhavi. Simple but effec-
tive: Clip embeddings for embodied ai. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14829–14838, 2022.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything. arXiv:2304.02643, 2023.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of zero-shot gener-
alisation in deep reinforcement learning. Journal of Artificial Intelligence Research, 76:201–264,
2023.

Weicheng Kuo, Yin Cui, Xiuye Gu, AJ Piergiovanni, and Anelia Angelova. Open-vocabulary object
detection upon frozen vision and language models. In The Eleventh International Conference on
Learning Representations, 2022.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. In The Eleventh International Conference on Learning Representations, 2022.

Yi Li, Hualiang Wang, Yiqun Duan, and Xiaomeng Li. Clip surgery for better explainability with
enhancement in open-vocabulary tasks. arXiv preprint arXiv:2304.05653, 2023.

Feng Liang, Bichen Wu, Xiaoliang Dai, Kunpeng Li, Yinan Zhao, Hang Zhang, Peizhao Zhang,
Peter Vajda, and Diana Marculescu. Open-vocabulary semantic segmentation with mask-adapted
clip. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 7061–7070, 2023.

Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, and Sheila McIlraith. Steve-1: A generative
model for text-to-behavior in minecraft. arXiv preprint arXiv:2306.00937, 2023.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas, Edward Grefen-
stette, Shimon Whiteson, and Tim Rocktäschel. A survey of reinforcement learning informed by
natural language. arXiv preprint arXiv:1906.03926, 2019.

Parsa Mahmoudieh, Deepak Pathak, and Trevor Darrell. Zero-shot reward specification via
grounded natural language. In International Conference on Machine Learning, pp. 14743–14752.
PMLR, 2022.

11

Under review as a conference paper at ICLR 2024

Arjun Majumdar, Gunjan Aggarwal, Bhavika Devnani, Judy Hoffman, and Dhruv Batra. Zson:
Zero-shot object-goal navigation using multimodal goal embeddings. Advances in Neural Infor-
mation Processing Systems, 35:32340–32352, 2022.

M Minderer, A Gritsenko, A Stone, M Neumann, D Weissenborn, A Dosovitskiy, A Mahendran,
A Arnab, M Dehghani, Z Shen, et al. Simple open-vocabulary object detection with vision trans-
formers. arxiv 2022. arXiv preprint arXiv:2205.06230, 2022.

Suvir Mirchandani, Siddharth Karamcheti, and Dorsa Sadigh. Ella: Exploration through learned
language abstraction. Advances in Neural Information Processing Systems, 34:29529–29540,
2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Jesse Mu, Victor Zhong, Roberta Raileanu, Minqi Jiang, Noah Goodman, Tim Rocktäschel, and
Edward Grefenstette. Improving intrinsic exploration with language abstractions. Advances in
Neural Information Processing Systems, 35:33947–33960, 2022.

Kolby Nottingham, Prithviraj Ammanabrolu, Alane Suhr, Yejin Choi, Hannaneh Hajishirzi, Sameer
Singh, and Roy Fox. Do embodied agents dream of pixelated sheep?: Embodied decision making
using language guided world modelling. arXiv preprint arXiv:2301.12050, 2023.

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task generalization with
multi-task deep reinforcement learning. In International Conference on Machine Learning, pp.
2661–2670. PMLR, 2017.

OpenAI. Introducing chatgpt. https://openai.com/blog/chatgpt, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou,
and Jiwen Lu. Denseclip: Language-guided dense prediction with context-aware prompting.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
18082–18091, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Dhruv Shah, Błażej Osiński, Sergey Levine, et al. Lm-nav: Robotic navigation with large pre-
trained models of language, vision, and action. In Conference on Robot Learning, pp. 492–504.
PMLR, 2023.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways for robotic
manipulation. In Conference on Robot Learning, pp. 894–906. PMLR, 2022.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

12

https://openai.com/blog/chatgpt

Under review as a conference paper at ICLR 2024

Austin Stone, Ted Xiao, Yao Lu, Keerthana Gopalakrishnan, Kuang-Huei Lee, Quan Vuong, Paul
Wohlhart, Brianna Zitkovich, Fei Xia, Chelsea Finn, et al. Open-world object manipulation using
pre-trained vision-language models. arXiv preprint arXiv:2303.00905, 2023.

Allison Tam, Neil Rabinowitz, Andrew Lampinen, Nicholas A Roy, Stephanie Chan, DJ Strouse,
Jane Wang, Andrea Banino, and Felix Hill. Semantic exploration from language abstractions
and pretrained representations. Advances in Neural Information Processing Systems, 35:25377–
25389, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023a.

Renhao Wang, Jiayuan Mao, Joy Hsu, Hang Zhao, Jiajun Wu, and Yang Gao. Programmatically
grounded, compositionally generalizable robotic manipulation. In The Eleventh International
Conference on Learning Representations, 2022.

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, explain, plan and
select: Interactive planning with large language models enables open-world multi-task agents.
arXiv preprint arXiv:2302.01560, 2023b.

Jianzong Wu, Xiangtai Li, Shilin Xu Haobo Yuan, Henghui Ding, Yibo Yang, Xia Li, Jiangning
Zhang, Yunhai Tong, Xudong Jiang, Bernard Ghanem, et al. Towards open vocabulary learning:
A survey. arXiv preprint arXiv:2306.15880, 2023.

Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie, Penglin Cai, Hao Dong, and Zongqing
Lu. Plan4mc: Skill reinforcement learning and planning for open-world minecraft tasks. arXiv
preprint arXiv:2303.16563, 2023.

Yuhang Zang, Wei Li, Kaiyang Zhou, Chen Huang, and Chen Change Loy. Open-vocabulary detr
with conditional matching. In European Conference on Computer Vision, pp. 106–122. Springer,
2022.

Tong Zhang, Yingdong Hu, Hanchen Cui, Hang Zhao, and Yang Gao. A universal semantic-
geometric representation for robotic manipulation. arXiv preprint arXiv:2306.10474, 2023.

Chong Zhou, Chen Change Loy, and Bo Dai. Extract free dense labels from clip. In European
Conference on Computer Vision, pp. 696–712. Springer, 2022.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin Li,
Lewei Lu, Xiaogang Wang, et al. Ghost in the minecraft: Generally capable agents for open-world
enviroments via large language models with text-based knowledge and memory. arXiv preprint
arXiv:2305.17144, 2023.

13

Under review as a conference paper at ICLR 2024

A SEGMENTATION DETAILS

A.1 EXTRACTING TARGETS VIA LLM

In order to extract the target name from a natural language instruction, we resort to ChatGPT (Ope-
nAI, 2022). We input the following prompt:

You are an assistant agent in Minecraft. I will tell you an instruction
that describes a task, and then you answer me what entity (name of blocks
or animals) I need to aim at in order to complete this task in Minecraft.
Suppose that I already have all the required inventories. Please follow
the example below.

Task: "chop a tree"

Thinking: "’Chop a tree’ means breaking a wood block. So the target
entity is **wood**."

Target: "wood"

Task: "harvest milk"

Thinking: "’Harvest milk’ means obtaining milk from a cow. So the
target entity is **cow**."

Target: "cow"

Task: "harvest wool"

Thinking:

The reply of ChatGPT is as follows:

"’Harvest wool’ means obtaining wool from a sheep. So the target entity
is sheep."

Target: "sheep"

This result shows that ChatGPT understands the underlying relationship between the target item
wool and the target animal sheep based on its prior knowledge about Minecraft. We also try some
other instructions without telling the name of the true target entity:

We:

Task: "obtain beef"

Thinking:

ChatGPT:

"’Obtain beef’ means obtaining beef meat from a cow. So the target
entity is cow."

Target: "cow"

We:

Task: "obtain mutton"

Thinking:

ChatGPT:

"’Obtain mutton’ means obtaining mutton meat from a sheep. So the target
entity is sheep."

Target: "sheep"

Certainly, ChatGPT works on instructions containing the target entity directly:

We:

Task: "harvest a flower"

Thinking:

14

Under review as a conference paper at ICLR 2024

ChatGPT:

"’Harvest a flower’ means obtaining a flower from the environment. So
the target entity is a flower."

Target: "flower"

We:

Task: "hunt a cow"

Thinking:

ChatGPT:

"’Hunt a cow’ means hunting and killing a cow to obtain its drops, such
as beef and leather. So the target entity is a cow."

Target: "cow"

A.2 NEGATIVE WORDS

For better segmentation, the negative word list should contain names of objects that frequently ap-
pear in Minecraft. To this end, we utilize the TF-IDF algorithm to select top-100 words from the
subtitles of YouTube videos (Fan et al., 2022), excluding stop words like “we” and “is”, as well as
modal particles such as “yeah” and “uh”. Additionally, we filter out verbs and some irrelevant nouns
from the top-100 words to reduce noise. The final negative word list is shown below:

diamond, block, village, house, iron, farm, chest, dragon, redstone, water, tree, zombie, sword,
stone, door, armor, lava, fish, portal, chicken, wood, wall, glass, cave, stair, bed, torch, fire, creeper,
island, food, slab, book, head, button, apple, skeleton, potion, spider, egg, pickaxe, arrow, boat,
horse, hopper, box, wool, table, seed, cow, brick, trap, dog, bow, dirt, roof, leaves, sand, window,
bucket, coal, hole, pig, ice, bone, stick, flower, tower, sheep, grass, sky

Furthermore, in constructing text embeddings, we employ prompt engineering to improve zero-shot
ability on classification (Radford et al., 2021). Same as MaskCLIP (Zhou et al., 2022), we utilize 85
prompt templates such as “a photo of many {}.”. The mean of these embeddings is set to be the text
embedding of the target. During segmentation, if the target object already exists in the list, it will be
removed from the list in advance.

A.3 SEGMENTATION RESULTS

We provide more examples of confidence maps, as illustrated in Figure 9. Our modified MineCLIP
effectively locates these target objects.

(a) chicken (b) horse (c) llama

(d) spider (e) mushroom cow (f) sand

Figure 9: Confidence map instances of targets: (a) chicken, (b) horse, (c) llama, (d) spider, (e)
mushroom cow, and (f) sand.

A.4 OFF-THE-SHELF OBJECT DETECTION MODELS

We choose two recent off-the-self object detection models, OWL-ViT (Minderer et al., 2022) and
Grounding DINO (Liu et al., 2023), to evalute their effectiveness in Minecraft. As illustrated in

15

Under review as a conference paper at ICLR 2024

Figure 10 and Figure 11, both object detection models show inaccurate detection in Minecraft.
Specifically, they confuse certain objects, such as cows and pigs or horses and llamas, and fail to
detect some objects like sheep. This can be attributed to the significant domain gap between the
stylized, blocky visuals of Minecraft and the real-world images these models were trained on. For
example, pigs and sheep in Minecraft may look different from those in the real world. Therefore,
we cannot directly implement these off-the-shelf object detection models in Minecraft to replace
our modified MineCLIP module introduced in Section 3.1. Besides, adapting these object detection
models to the Minecraft domain requires extensive labeled data with bounding boxes, which will
take a lot of workforce to complete. In contrast, our modified MineCLIP inspired by MaskCLIP
(Zhou et al., 2022) can realize segmentation in Minecraft without any fine-tuning.

(a) cow (b) pig (c) sword (d) sheep (e) flower (f) llama

Figure 10: Detection results of OWL-ViT (Minderer et al., 2022).

(a) cow (b) pig (c) sword (d) sheep (e) flower (f) horse

Figure 11: Detection results of Grounding DINO (Liu et al., 2023).

A.5 DETAILED EVALUATION FOR GROUNDING DINO

We further evaluate the effectiveness of Grounding DINO (Liu et al., 2023) in Minecraft domain.
As illustrated in Figure 12, Grounding DINO cannot discriminate between different animals. For
example, for an image containing a cow and a pig, when provided with different target words,
Grounding DINO consistently identifies the cow as the target. Similar situation occurs to horses and
llamas. In contrast, our method exhibits clear distinctions between these animals, as demonstrated
in Figure 13. In addition, the high accuracy of COPL on unseen instructions also proves our efficacy,
as shown in Figure 7(c).

(a) RGB image (b) cow (c) sheep (d) pig (e) llama (f) horse

(g) RGB image (h) cow (i) sheep (j) pig (k) llama (l) horse

Figure 12: Examples of Gounding DINO for different objects in the same image.

An approach of enhancement is to use a set of target words for object detections, similar to our
constructed negative word list. Therefore, we also provide a simple word set for Grounding DINO:
cow(0), sheep(1), pig(2), chicken(3), horse(4), llama(5), spider(6), mushroom cow(7), flower(8),
tree(9), sword(10), grass(11). These words encompass most objects in the following evaluation
images, as shown in Figure 14. The numbers in the parentheses after each word correspond to the
labels of bounding boxes in the follwing figures.

16

Under review as a conference paper at ICLR 2024

(a) RGB image (b) cow (c) sheep (d) pig (e) llama (f) horse

(g) RGB image (h) cow (i) sheep (j) pig (k) llama (l) horse

Figure 13: Examples of our method for different objects in the same image.

The results of Grounding DINO detection using this word set are demonstrated in Figure 15. De-
spite being provided with a word set tailored for object detection, Grounding DINO struggles to
accurately identify animals. For example, it cannot identify pig, sheep, and chicken, and misidentify
a mushroom cow as llama in the last image and a llama as a mushroom cow in the fourth image.
To further investigate potential factors impacting detection, we conduct variations in the word set.
Removing a strong background word, grass, from the list, as illustrated in Figure 16, does not alle-
viate inaccurate detection. Another variant we attempt is adding a prefix “minecraft” to each word.
As reported in Figure 17, we find that such “domain prompt” does not yield improved detection
results either. By these exhaustive evaluations, we show that the performance of Grounding DINO
is notably limited by the domain gap between the real world and Minecraft.

Figure 14: Orignial RGB images for evaluation.

Figure 15: Gounding DINO detection results with a given word set.

Figure 16: Gounding DINO detection results with a given word set without grass.

Figure 17: Gounding DINO detection results with a given word set where words are prefixed with
“minecraft”.

B POLICY LEARNING DETAILS

B.1 OBSERVATION SPACE AND ACTION SPACE

The observation space adopted in our experiments consists of RGB, compass, GPS, voxels, and
biome index. The shape and description of each modality are listed in Table 1. We simplify the orig-

17

Under review as a conference paper at ICLR 2024

inal action space of MineDojo (Fan et al., 2022) into a 2-dimensional multi-discrete action space.
The first dimension contains 12 discrete actions about movement: no op, move forward, move back-
ward, move left, move right, jump, sneak, sprint, camera pitch -30, camera pitch +30, camera yaw
-30, and camera yaw +30. The second dimension includes 3 discrete actions about interacting with
items: no op, attack, and use.

Table 1: Observation space adopted in our experiments.

Modality Shape Description

RGB (3, 160, 256) Ego-Centric RGB frames.
Compass (4,) Sine and cosine of yaw and pitch.

GPS (3,) GPS location of the agent.
Voxels (27,) Indices of 3× 3× 3 surrounding blocks.

Biome ID (1,) Index of the environmental biome.

B.2 NETWORK ARCHITECTURE

MineCLIP
image

encoder

Flatten

MLP
[128, 128, 128]

Image Confidence map

MLP
[128, 128, 128]

Emb (8)

MLP
[128, 128, 128]

MLP
[128, 128, 128]

MLP
[128, 128, 128]

Emb (8)

Voxels Biome_IDGPSCompass

MLP
[128, 128, 128]

Emb (8)

Previous action

Policy head Value head

Concatenation

GRU [256]

MLP [256, 256, 256]MLP [256, 256, 256]

MLP [512]

Figure 18: Network architecture of COPL agent.

The input of COPL agent includes observations from the environment listed in Table 1, the agent’s
action taken at last time step at−1, and the confidence map. As illustrated in Figure 18, all inputs
except the RGB image are processed by MLPs with three hidden layers and ReLU activation. In
this step, voxels, biome index, and previous action are first embedded into dense vectors. The
RGB image is processed using the MineCLIP image encoder to generate an embedding. All these
processed features are concatenated and processed by an MLP with one hidden layer and ReLU
activation. Then a GRU layer is implemented to integrate the historical information. The policy
head and the value head take as input the output of GRU and both process it using an MLP with
three hidden layers and ReLU activation. The policy head generates the distribution of actions, and
the value head outputs the estimated value of the current state. Some variants are as follows: (1)
Single-task model: In single-task experiments, the agent does not take as input the confidence map;
(2) EmbCLIP (Khandelwal et al., 2022): The branch of confidence map is replaced by the MineCLIP
text encoder processing the target name; (3) One-Hot: The branch of confidence map is replaced by
an MLP processing the one-hot vector which indicates the index of the current task. The MLP has
one hidden layer with size 32 and ReLU activation.

18

Under review as a conference paper at ICLR 2024

B.3 ENVIRONMENT SETTINGS

B.3.1 SINGLE-TASK

Our single-task experiments include four tasks: hunt a cow, hunt a sheep, hunt a pig, and hunt a
chicken. The parameters we used to make environments in MineDojo are listed in Table 2. In all
tasks, the agent spawns in plains biome holding a diamond sword. Several animals including
the target spawn near the agent. The agent will receive a +100 reward after successfully killing the
target animal. Each episode is limited to a maximum of 200 steps. The challenge lies in the fact
that animals will flee after being attacked, thus requiring the agent to keep chasing the target and
attacking. Killing a cow, sheep, or pig requires at least two attacks, while killing a chicken only
requires at least one attack. Although it takes fewer attacks to kill a chicken, aiming at the small
size of the chicken poses an additional challenge. For ablation experiments on Gaussian kernel, we
double the initial animals and increase the animal spawn range to 10.

Table 2: Single-task settings in our experiments.

Task Target Initial Animals Range1 Inventory Biome Length2

hunt a cow cow cow, sheep, pig 7 diamond sword plains 200
hunt a sheep sheep cow, sheep, pig 7 diamond sword plains 200
hunt a pig pig cow, sheep, pig 7 diamond sword plains 200

hunt a chicken chicken cow, sheep, chicken 7 diamond sword plains 200
1 Range indicates the spawn range of initial animals.
2 Length indicates the maximum length of one episode.

B.3.2 MORE SINGLE-TASK EXPERIMENTS

We conduct additional single-task experiments on three harvest tasks including milk a cow, shear a
sheep, and chop a tree, where MineCLIP reward achieves nonzero success rates. The environment
parameters for each task can be found in Table 3. As shown in Figure 19, our focal reward outper-
forms MineCLIP reward on milk a cow and shear a sheep. Regarding chop a tree, our focal reward
and MineCLIP reward achieve similar performance, both with 3 out of 4 runs having learned this
skill. To break a wood block, the agent needs to continuously take attack actions for around 6 steps.
Therefore, we believe that the main challenge for RL in this task lies in exploration. It is difficult for
an RL algorithm, such as PPO, with a stochastic policy to explore and exploit a behavior pattern that
requires consecutive actions over 6 steps, especially given the sparse environmental reward signal.
Using an off-policy RL algorithm or self-imitation may help address this problem.

Table 3: Single-task settings in additional experiments.

Task Target Initial Animals Range Inventory Biome Length

milk a cow milk bucket cow, sheep, pig 10 bucket plains 200
shear a sheep wool cow, sheep, pig 10 shears plains 200

chop a tree log cow, sheep, pig 7 golden axe forest 200

B.3.3 MULTI-TASK

Hunt domain. The hunt domain consists of four instructions: “hunt a cow”, “hunt a sheep”, “hunt
a pig”, and “hunt a chicken”. At the start of each episode, one instruction is randomly selected, and
an environment is built with the parameters listed in Table 4. The agent will receive a +100 reward
after successfully killing the target animal specified in the instruction. If the agent mistakenly kills
the animal which is the target of other instructions, no reward is given and the episode ends. This
setup encourages the agent to attack the correct animal rather than indiscriminately attacking any
animal. The open-vocabulary evaluation for the hunt domain also contains four instructions: “hunt a
mushroom cow”, “hunt a spider”, “hunt a llama”, and “hunt a horse”. The environment parameters

19

Under review as a conference paper at ICLR 2024

0 1 2 3 4 5
Steps (1e5)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Focal
MineCLIP
Sparse

(a) milk a cow

0 1 2 3 4 5
Steps (1e5)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Focal
MineCLIP
Sparse

(b) shear a sheep

0 1 2 3 4 5
Steps (1e5)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Focal
MineCLIP
Sparse

(c) chop a tree

Figure 19: Learning curves of PPO with focal reward, MineCLIP reward, and environmental sparse
reward only, on three Minecraft tasks: (a) milk a cow, (b) shear a sheep, and (c) chop a tree.

can be found in Table 5. We slightly increase the maximum episode length for “hunt a spider”, “hunt
a llama”, and “hunt a horse”, given that killing them requires more attacks as a result of their higher
health compared to other animals. For each instruction, we run the test model for 100 episodes to
calculate its success rate and precision (same in the harvest domain).

Table 4: Multi-task settings in the hunt domain.

Instruction Target Initial Animals Range Inventory Biome Length

“hunt a cow” cow cow, sheep, pig, chicken 10 diamond sword plains 500
“hunt a sheep” sheep cow, sheep, pig, chicken 10 diamond sword plains 500
“hunt a pig” pig cow, sheep, pig, chicken 10 diamond sword plains 500

“hunt a chicken” chicken cow, sheep, pig, chicken 10 diamond sword plains 500

Table 5: Open-vocabulary evaluation settings in the hunt domain.

Instruction Target Initial Animals Range Inventory Biome Length

“hunt a
mushroom cow”

mushroom
cow

mushroom cow, spi-
der, llama, horse

10 diamond sword plains 500

“hunt a spider” spider mushroom cow, spi-
der, llama, horse

10 diamond sword plains 800

“hunt a llama” llama mushroom cow, spi-
der, llama, horse

10 diamond sword plains 800

“hunt a horse” horse mushroom cow, spi-
der, llama, horse

10 diamond sword plains 800

Harvest domain. The harvest domain consists of four instructions: “milk a cow”, “shear a sheep”,
“harvest a flower”, and “harvest leaves”. Same as the hunt domain, one instruction is randomly
selected at the start of each episode, and an environment is generated with the parameters listed in
Table 6. The agent will receive a +100 reward after successfully acquiring the target item. If the
agent mistakenly acquires the target item corresponding to other instructions, no reward is given and
the episode ends. Note that the target item required to finish the task may not always be the same as
the target object that the agent needs to approach. For example, in the instruction “milk a cow”, the
target item is a milk bucket, while the target object that the agent needs to approach is a cow. The
environment parameters of instructions for open-vocabulary evaluation in the harvest domain can be
found in Table 7. We group these instructions in terms of the inventory used to finish the task so that
we can calculate the meaningful precision.

Here we introduce the behavior patterns required by the harvest domain instructions. “Milk a cow”
and “harvest water” require the agent to approach the target object (cow/water), aim at it, and take
use action. “Harvest a flower” and “harvest sand” require the agent to approach the target object
(flower/sand), aim at it, take attack action to break it, and move closer to pick up the dropped item.
“Shear a sheep” and “harvest leaves” are the same except that they require taking use action instead

20

Under review as a conference paper at ICLR 2024

Table 6: Multi-task settings in the harvest domain.

Instruction Target1 Initial Animals Range Inventory Biome Length

“milk a cow” milk bucket cow, sheep, pig 10 bucket plains 200
“shear a sheep” wool cow, sheep, pig 10 shears plains 200

“harvest a flower” red flower cow, sheep, pig 10 - flower forest 200
“harvest leaves” leaves cow, sheep, pig 10 shears flower forest 200

1 Target here represents the parameter for making a MineDojo environment, i.e., the target item required
to finish the task. It differs from the target object specified in the instruction.

Table 7: Open-vocabulary evaluation settings in the harvest domain.

Instruction Target Initial Animals Range Inventory Biome Length

“milk a cow” milk bucket cow, sheep, mush-
room cow

10 bucket river 200

“harvest water” water bucket cow, sheep, mush-
room cow

10 bucket river 200

“shear a sheep” wool cow, sheep, mush-
room cow

10 shears plains 200

“shear a
mushroom cow”

mushroom cow, sheep, mush-
room cow

10 shears plains 200

“harvest sand” sand cow, sheep, mush-
room cow

10 diamond shovel river 200

of attack action. In all these tasks except “harvest sand”, the agent needs only one attack or use
action to finish the task. Therefore, individually, the harvest tasks are easier than the hunt tasks.
“Harvest sand” requires the agent to continuously attack three times to break the sand block.

B.4 HYPERPARAMETERS

PPO Hyperparameters. In our experiments, we use PPO as our base RL algorithm. Table 8 lists the
hyperparameters for PPO across all tasks. Unlike MineAgent (Fan et al., 2022), our implementation
does not include self-imitation learning and action smoothing loss. We find that vanilla PPO is able
to achieve high performance in our experiments.

Table 8: Hyperparameters for PPO across all tasks.
Hyperparameter Value

num steps 1000
num envs 4

num minibatches 4
num epoches 8
GAE lambda 0.95

discounted gamma 0.99
entropy coef 0.005

PPO clip 0.2
learning rate 1e-4

optimizer Adam
recurrent data chunk length 10

gradient clip norm 10.0
network initialization orthogonal
normalize advantage true

21

Under review as a conference paper at ICLR 2024

Coefficient of the intrinsic reward. To determine the optimal scale of intrinsic reward that can
effectively guide reinforcement learning while avoiding conflicts with the environmental reward,
we conduct an experiment to evaluate the performance of our focal reward with different λ values.
Figure 20 illustrates the performance of our focal reward with different λ including 0.5, 5, and 50
on milk a cow, shear a sheep, hunt a cow and hunt a sheep. Focal reward with λ = 5 outperforms
λ = 50 and λ = 0.5 on all tasks. This indicates that λ = 5 is a suitable choice that demonstrates
robust performance across multiple tasks and multiple domains, including both hunt and harvest
domains. Therefore, we consistently set λ = 5 for all experiments in the main text.

Regarding the MineCLIP reward, we set the coefficient to 1.0, following the original setting of
MineAgent. The optimal coefficient of ND reward in Tam et al. (2022) for find task is 0.003, and its
sparse environmental reward is 1.0. However, in our experiments where the environmental reward
is 100, we decided to increase the coefficient for NDCLIP from 0.003 to 0.3.

0 1 2 3 4 5
Steps (1e5)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

= 50
= 5
= 0.5

(a) milk a cow

0 1 2 3 4 5
Steps (1e5)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s r

at
e

= 50
= 5
= 0.5

(b) shear a sheep

0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

= 50
= 5
= 0.5

(c) hunt a sheep

0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

= 50
= 5
= 0.5

(d) hunt a sheep

Figure 20: Learning curves of PPO using the focal reward with different λ on four Minecraft tasks:
(a) milk a cow, (b) shear a sheep, (c) hunt a cow, and (d) hunt a sheep.

Gaussian kernel design. The introduction of a Gaussian kernel is to guide the agent to center a
target object within its field of view. The Gaussian kernel should create a high contrast between the
center and the edge, as well as between the edge and areas outside the field of view. Therefore, the
variance of the Gaussian kernel would influence the performance of the focal reward. To evaluate the
impact of different variances, we conduct an experiment with σ = (H/5,W/5), σ = (H/3,W/3),
and σ = (H/2,W/2). As illustrated in Figure 21, σ = (H/3,W/3) outperforms the others. We
suppose that a wider Gaussian kernel with σ = (H/2,W/2) fails to provide sufficient contrast
between the center and the edge. Conversely, a narrower Gaussian kernel with σ = (H/5,W/5)
cannot provide sufficient contrast between the edge and areas outside the field of view.

0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

 = (H/5, W/5)
 = (H/3, W/3)
 = (H/2, W/2)

w/o Gaussian

(a) hunt a cow

0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

 = (H/5, W/5)
 = (H/3, W/3)
 = (H/2, W/2)

w/o Gaussian

(b) hunt a sheep

Figure 21: Learning curves of PPO using the focal reward with different Gaussian variances on (a)
hunt a cow, and (b) hunt a sheep.

B.5 MULTI-TASK PERFORMANCE

We show the learning curves of COPL, EmbCLIP, and One-Hot on each task. As illustrated in Fig-
ures 22 and 23, the results on each task are consistent with the overall results observed in Figures 7(a)
and 8(a).

Given that in our open-vocabulary evaluation for the hunt domain (Table 5 and Figures 7(b)
and 7(c)), initial animals do not contain animals in training set, we conduct an additional evalu-
ation. In this evaluation, initial animals consist of cow, sheep, pig, chicken, llama, and horse, while
other settings are the same as Table 5. The results show that our model achieve 50.0(±8.1)% success
rate and 88.3(±4.8)% precision for “hunt a llama”, and 46.5(±9.8)% success rate and 90.3(±3.4)%

22

Under review as a conference paper at ICLR 2024

precision for “hunt a horse”, indicating that the presence of training animals has no impact on the
generalization performance of our model. COPL fully captures the relation between the confidence
map and the task objectives, thereby unaffected by the animals it encountered during training.

0.0 0.4 0.8 1.2 1.6 2.0
Steps (1e6)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Su
cc

es
s r

at
e

COPL
EmbCLIP
One-Hot

(a) “hunt a cow”

0.0 0.4 0.8 1.2 1.6 2.0
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

COPL
EmbCLIP
One-Hot

(b) “hunt a sheep”

0.0 0.4 0.8 1.2 1.6 2.0
Steps (1e6)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Su
cc

es
s r

at
e

COPL
EmbCLIP
One-Hot

(c) “hunt a pig”

0.0 0.4 0.8 1.2 1.6 2.0
Steps (1e6)

0.0

0.1

0.2

0.3

0.4

Su
cc

es
s r

at
e

COPL
EmbCLIP
One-Hot

(d) “hunt a chicken”

Figure 22: Learning curves of COPL, EmbCLIP, and One-Hot on four hunt instructions: (a) “hunt
a cow”, (b) “hunt a sheep”, (c) “hunt a pig”, and (d)“hunt a chicken”.

0.0 0.3 0.6 0.9 1.2 1.5
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

COPL
EmbCLIP
One-Hot

(a) “milk a cow”

0.0 0.3 0.6 0.9 1.2 1.5
Steps (1e6)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Su
cc

es
s r

at
e

COPL
EmbCLIP
One-Hot

(b) “shear a sheep”

0.0 0.3 0.6 0.9 1.2 1.5
Steps (1e6)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Su
cc

es
s r

at
e

COPL
EmbCLIP
One-Hot

(c) “harvest a flower”

0.0 0.3 0.6 0.9 1.2 1.5
Steps (1e6)

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Su
cc

es
s r

at
e

COPL
EmbCLIP
One-Hot

(d) “harvest leaves”

Figure 23: Learning curves of COPL, EmbCLIP, and One-Hot on four harvest instructions: (a) “milk
a cow”, (b) “shear a sheep”, (c) “harvest a flower”, and (d)“harvest leaves”.

B.6 BASELINES IMPLEMENTATION

MineCLIP. We adopt the provided prompt templates in MineDojo to design task prompts for
MineCLIP reward computation. For hunt tasks, we use the prompt “hunt a {animal} on plains
with a diamond sword”. For harvest tasks in Appendix B.3.2, we use the prompts “obtain milk from
a cow in plains with an empty bucket”, “shear a sheep in plains with shears”, and “chop trees to
obtain log with a golden axe”, respectively.

Cai et al. (2023). We use the released plains model2 for evaluation.

cow sheep pig chicken
Tasks

0.00

0.05

0.10

0.15

0.20

Su
cc

es
s r

at
e

"kill" "hunt" "combat"

Figure 24: Success rates of STEVE-1 with
different prompts.

STEVE-1. We use the released model3 for evalu-
ation. However, STEVE-1 (Lifshitz et al., 2023) is
designed for another simulator, MineRL (Guss et al.,
2019), with a different action space from Mine-
Dojo. We build a wrapper to map STEVE-1’s ac-
tions into the action space of MineDojo. As noted
in the STEVE-1 paper, prompt engineering signif-
icantly impacts its performance. Therefore, we at-
tempt three templates for the hunt domain tasks in-
cluding “kill a {animal}”, “hunt a {animal}”, and
“combat a {animal}”. As shown in Figure 24, “kill
a {animal}” achieves the highest performance and
STEVE-1 cannot understand the original instruction
“hunt a {animal}” at all. Consequently, we use “kill a {animal}” as prompts given to STEVE-
1 for the experiments in the main text. For tasks in the harvest domain, we use prompts “milk a
cow”, “shear a sheep”, “break a flower”, “break leaves”, “collect water”, “shear a mushroom”, and
“collect sand”, respectively. The verbs break and collect are selected by referring to the prompts

2https://github.com/CraftJarvis/MC-Controller
3https://github.com/Shalev-Lifshitz/STEVE-1

23

https://github.com/CraftJarvis/MC-Controller
https://github.com/Shalev-Lifshitz/STEVE-1

Under review as a conference paper at ICLR 2024

provided in the STEVE-1 paper. “Milk a cow”, “shear a sheep”, and “shear a mushroom cow”
follow original instructions, as we find that “collect {milk/wool/mushroom}” does not work.

C SUPPLEMENTARY EXPERIMENTS

C.1 GROUNDED SAM EVALUATION

In order to conduct a side-by-side comparison between Grounded SAM (Liu et al., 2023; Kirillov
et al., 2023) and our method, we Google searched “minecraft [object name] screenshot” in image
tab, and selected the first two images that includes objects and has them fully in field of view. The
evaluation objects includes pig, cow, sheep, mushroom cow, tree, flower, horse, and torch. We
follow the setting in the official demo4 to evaluate the effectiveness of Grounded SAM on detecting
these objects in Minecraft. Additionally, we include a negative class “grass”. For reference, we also
provide the 2D confidence maps generated by our method.

Figure 25: Comparison between Grounded SAM and our method on eight objects.

The detection results of two methods are illustrated in Figure 25. For a more detailed evaluation, we
quantify the number of objects present in each image, the number detected by Grounded SAM, and
the number detected by our method. These quantitative results are summarized in Table 9. Across all
images, there are 28 target objects in fact. Grounded SAM is able to successfully identify 15 objects,
which translates to a detection rate of 53.6%. In contrast, our method demonstrates a significantly

4https://github.com/IDEA-Research/Grounded-Segment-Anything/blob/main/
grounded_sam_colab_demo.ipynb

24

https://github.com/IDEA-Research/Grounded-Segment-Anything/blob/main/grounded_sam_colab_demo.ipynb
https://github.com/IDEA-Research/Grounded-Segment-Anything/blob/main/grounded_sam_colab_demo.ipynb

Under review as a conference paper at ICLR 2024

higher efficacy, successfully detecting 26 of the 28 objects, achieving a detection rate of 92.9%.
There are two failures in our method. One is the sunflower in the bottom-right corner of the first
flower image, and the other is the torch in the second torch image. In both cases, our method actually
generates some activation in the target patches, but it does not cover the entire object (flower) or is
relatively weak (torch). We regard them as failures for a more strict result.

Table 9: Detection result statistics of Grounded SAM and our method on eight objects.

objects # of objects # of Grounded SAM # of ours

pig 3 3 3
cow 3 2 3

sheep 2 0 2
mushroom cow 4 0 4

tree 6 6 6
flower† 4 2 3
horse 2 1 2
torch 4 1 3
total 28 15 26

† We also count the two flowers held in players’ hands.

0 1 2 3 4 5
Steps (1e5)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Su
cc

es
s r

at
e

Focal
Grounded SAM
Sparse

Figure 26: Learning curves of PPO with focal re-
ward, Grounded SAM reward and environmental
sparse reward only, on task shear a sheep.

We also conduct a single-task experiment on
shear a sheep to compare the effectiveness
of the reward calculated by our method and
by Grounded SAM quantitatively. In detail,
we provide Grounded SAM with the observa-
tion image and the target object name “sheep”,
along with a negative class “grass”, and ob-
tain a segmentation map of the target “sheep”.
This map is then used in place of mc

t in Equa-
tion (1) to calculate the reward. As illustrated in
Figure 26, the performance of Grounded SAM
is only similar to that of sparse reward, im-
plying that the segmentation map generated by
Grounded SAM is noisy and could not provide accurate location information of about target object
“sheep”.

C.2 ANIMAL ZOO EXPERIMENT

We conduct a multi-task experiment following the Animal Zoo setting in the original MineCLIP
paper (Fan et al., 2022). This experiment aims to compare the effectiveness of our focal reward and
the MineCLIP reward in multi-task RL. The detailed settings are listed in Table 10. Consistent with
the original paper, we implement the policy network taking as input the whole task prompt, rather
than a confidence map or only the target name.

Table 10: Multi-task settings in Animal Zoo.

Prompt Initial Animals Range Inventory Biome Length

“hunt a cow” cow, sheep, pig 10 diamond sword plains 500
“hunt a sheep” cow, sheep, pig 10 diamond sword plains 500
“milk a cow” cow, sheep, pig 10 bucket plains 500

“shear a sheep” cow, sheep, pig 10 shears plains 500

25

Under review as a conference paper at ICLR 2024

The results are shown in Figure 27. The MineCLIP reward guides the agent to complete two easier
tasks, milk a cow and shear a sheep, but fails in two more difficult hunting tasks. In contrast, our
focal reward enables the agent to achieve significant success rates in all tasks. On the one hand,
our focal reward improves the learning speed on two easier tasks. On the other hand, our focal
reward notably outperforms the MineCLIP reward on two harder tasks where the MineCLIP reward
fails. These results, along with those from single-task experiments in Figure 5, demonstrate the
superiority of our focal reward over MineCLIP reward. We also conduct additional tests to evaluate
the generalization ability of the multi-task policy learned with our focal reward. The policy achieves
a 0(±0)% success rate for the prompt “hunt a pig” and 2.3(±1.9)% success rate for “hunt a chicken”,
suggesting that four training language prompts or instructions are insufficient for learning an open-
vocabulary policy.

0.0 0.4 0.8 1.2 1.6 2.0
Steps (1e6)

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s r

at
e

Focal
MineCLIP

(a) hunt a cow

0.0 0.4 0.8 1.2 1.6 2.0
Steps (1e6)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Su
cc

es
s r

at
e

Focal
MineCLIP

(b) hunt a sheep

0.0 0.4 0.8 1.2 1.6 2.0
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Focal
MineCLIP

(c) milk a cow

0.0 0.4 0.8 1.2 1.6 2.0
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Focal
MineCLIP

(d) shear a sheep

Figure 27: Learning curves of multi-task PPO with focal reward and MineCLIP reward on four
Animal Zoo tasks.

26

	Introduction
	Preliminary
	Method
	Segmentation via MineCLIP
	Focal Reward
	Open-Vocabulary Policy Learning

	Experiments
	Single-Task Experiments
	Multi-Task and Open-Vocabulary Experiments

	Related Work
	Conclusion
	Segmentation Details
	Extracting Targets via LLM
	Negative Words
	Segmentation Results
	Off-the-shelf Object Detection Models
	Detailed Evaluation for Grounding DINO

	Policy Learning Details
	Observation Space and Action Space
	Network Architecture
	Environment Settings
	Single-Task
	More Single-Task Experiments
	Multi-Task

	Hyperparameters
	Multi-Task Performance
	Baselines Implementation

	Supplementary Experiments
	Grounded SAM Evaluation
	Animal Zoo Experiment

