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ABSTRACT

DNA encoded libraries (DELs) are used for rapid large-scale screening of small
molecules against a protein target. These combinatorial libraries are built through
several cycles of chemistry and DNA ligation, producing large sets of DNA-tagged
molecules. Training machine learning models on DEL data has been shown to be
effective at predicting molecules of interest dissimilar from those in the original
DEL. Machine learning chemical property prediction approaches rely on the as-
sumption that the property of interest is linked to a single chemical structure. In
the context of DNA-encoded libraries, this is equivalent to assuming that every
chemical reaction fully yields the desired product. However, in practice, multi-
step chemical synthesis sometimes generates partial molecules. Each unique DNA
tag in a DEL therefore corresponds to a set of possible molecules. Here, we lever-
age reaction yield data to enumerate the set of possible molecules corresponding
to a given DNA tag. This paper demonstrates that training a custom GNN on this
richer dataset improves accuracy and generalization performance.

1 INTRODUCTION

Discovery of new small molecules that can be used as pharmaceutical drugs often starts with screen-
ing against a target protein of interest involved in a disease pathway. DNA Encoded Libraries (DELs)
are used to rapidly screen large, diverse sets of small molecules against such proteins Clark et al.
(2009). In these libraries, individual molecules are constructed from simpler molecular fragments
called building blocks that are combined through several cycles of chemistry and DNA ligation,
producing a large number of DNA-barcoded molecules. Libraries are produced through a massively
parallelized method, “split-and-pool” where after each cycle of chemistry and DNA ligation, the
products are pooled into one well and then dispersed out for the next round of chemistry and DNA
ligation Clark (2010). This allows for the production of libraries which contain over 108 unique
DEL molecules. These molecules are incubated with the target protein, and remaining molecules
that are not bound are washed away, so only the bound molecules remain. The bound molecules
are disassociated from the target and the process is repeated, resulting in an increased proportion of
molecules that bind the target remaining after each round of selection. The DNA is then amplified
and sequenced to identify the molecules that bind to the protein of interest.

The DEL synthesis process can, however, cause several chemical structures to carry the same DNA
barcode. When a building block is added at each cycle, a chemical reaction occurs and only a
percentage of the reaction’s products produce the desired output. This percentage is referred to
as the reaction yield. As the DNA tag is added at each cycle regardless of the completion of the
chemistry reaction, a full DNA barcode may correspond instead to an incomplete (partial) product
or an unexpected byproduct Satz (2016). For a three cycle library and a given DNA barcode, there
are three reaction steps each of which succeeds with a given probability. Hence, a given barcode may
correspond to a three cycle product (trisynthon), a two cycle product (disynthon), a one cycle product
(monosynthon), or other possible side products. We can estimate the reaction yields before library
construction by quantifying individual building block yields in a set of validation experiments. The

1



Published at the MLDD workshop, ICLR 2022

Figure 1: Mixture of molecules in a three cycle library. Simulated yields and corresponding propor-
tions of products in the final mixture are shown.

possible products for a three cycle library (excluding byproducts) are shown in figure 1 along with
sample proportions in the final mixture.

Multiple libraries of DEL molecules can be pooled together. This pool of molecules is incubated
with the target protein, unbound molecules are washed away and bound molecules are separated
from the target protein. This process is repeated three times to eliminate non-binding molecules
Clark et al. (2009). The remaining molecules’ DNA tags can then be amplified and sequenced, thus
identifying potential binders.

A source of variability in the sequencing read count is that the molecules will not have uniform
counts in the starting pool. To account for this effect, the pool can be sequenced before selection
(dilute library sequencing or DLS) McCarthy et al. (2020).

Additionally, molecules could come through in sequencing simply because they bind the matrix
and not the target protein itself. To measure this effect, the pools can also be screened without the
presence of the target. The counts from this experiment are referred to as the ”no target control”
(NTC) counts. Some molecules could also appear to be enriched in selections for several targets,
indicating that the molecule may be promiscuous and bind to several targets indiscriminately Satz
(2016).

In this paper, we formulate a model that incorporates partial products in the probabilistic modeling
of the counts, using the probabilistic framework described in Lim et al. (2021). We use a single GNN
to predict enrichments of the full product, but also to predict enrichments of partial products. These
enrichments are then combined to estimate the read counts for a given DNA sequence. To estimate
the weights of the partial products, we show that using the yields from the validation experiments
provide a marked improvement over using constant data.

To evaluate the generalization capabilities of our model trained on DEL data, we examine the per-
formance of our model on molecules from external vendors that are different from those in the
synthesized libraries. In this work, we use a validation set of 142 molecules from an external vendor
that were screened against the protein of interest. The binding affinities were determined based on
experiments performed in our own laboratory, producing a consistent, comparable training set.

2 RELATED WORK

Several approaches to training machine learning models on DNA-encoded library selection data
have been recently been proposed. McCloskey et al. (2020) de-noised three cycle DEL data by
aggregating counts across all combinations of two building blocks and training a GNN on the result-
ing dataset. This approach can be interpreted as a way to only model 2-cycle partial products with

2



Published at the MLDD workshop, ICLR 2022

constant proportions, without taking into account the full three-cycle product. Lim et al. (2021) pre-
sented a negative log-likelihood regression modeling approach to DELs that took into account both
the binding counts to the target and to the NTC on trisynthons. Finally, Ma et al. (2021) presented
a negative binomial regression modelling approach trained on trisynthon data. Their approach pro-
vides a principled way to incorporate all the factors driving read counts, such as matrix binding,
promiscuity, target binding. We leverage this flexible framework to incorporate partial product in-
formation.

The neural network architecture employed in this paper is a message passing graph neural network
Gilmer et al. (2017). GNNs have been successfully used for molecular property prediction in DELs
Lim et al. (2021); Ma et al. (2021); McCloskey et al. (2020) and also in a variety of property predic-
tion problem formulations Chen et al. (2018).

Work by Komar & Kalinic (2020) presented an approach for de-noising DNA encoded libraries that
included modeling the yield data and modeling partial products but did not provide a model for
predicting affinity on new molecules.

3 METHODOLOGY

3.1 DATASET

To build the dataset, we use a combination of fifteen proprietary DEL libraries, totalling 700 million
unique molecules. These libraries were built in-house and screened in-house against a difficult
nucleic acid binding protein target. The resulting selection was then sequenced, producing 200
million individual sequence reads corresponding to 90 milllion individual molecules. From these,
about 4 million molecules were determined to be significant binders to the protein target.

To increase the number of negative examples, we added one million molecules that were sequenced
but bound only to the NTC or to other targets and another million molecules that were not sequenced
but were present in the initial libraries. We split this dataset into train and test sets using a Murcko
scaffold split Landrum.

3.2 PARTIAL PRODUCT DATA

To enrich this dataset with partial products, we computed all the possible two-building block and
three-building block molecules corresponding to a given DNA sequence. Initial tests including the
single building block partial products did not lead to any improvement in model performance and
were therefore excluded from the final dataset. The theoretical proportion of each partial product
was then computed from the estimated building block yields.

3.3 MODEL

The goal of this work is to learn a model that outputs the enrichment of a molecule i against a target,
Rtarget,i, and against the NTC, RNTC,i. This model can then be used to screen commercial libraries
for other molecules that bind to the target of interest.

Following Ma et al. (2021), we model the read counts as following a negative binomial distribution
whose mean is driven by multiple factors. However, for a given DNA tag/read count pair, we take
into account both full and possible partial products as being factors driving the total read count. An
overview of the approach and model architecture is shown in figure 2.

The read count of a DNA tag i in either the NTC or target selection experiment is modeled by a
negative binomial distribution with a mean parameter µi and a dispersion parameter α : Ctarget,i ∼
NB(µtarget,i, αtarget) and CNTC,i ∼ NB(µNTC,i, αNTC). The α values are obtained through a
negative binomial regression before training.
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Figure 2: An overview of the model architecture. The trisynthon and disynthons are enumerated.
Each of them is passed through a GNN which outputs the predicted target enrichment (affinity), pre-
dicted NTC enrichment, and the predicted adjustment to the product proportion. These enrichments
can be directly used in the testing phase, or combined with other factors to obtain the predicted
counts.

For the µi values, we assume that binding enrichment of the molecules corresponding to tag i against
a given target (Btarget,i) is due to a combination of the enrichment of the corresponding trisynthon
(Rtri,i) and three possible disynthons (Rdi1,i,Rdi2,i, Rdi3,i):

Btarget,i = ptri,iRtri,i +Σ3
j=1pdij ,iRdij ,i (1)

where the p values correspond to the proportions of the trisynthons and disynthons that are present
in the final mixture. Similarly, we assume that enrichment of the molecules in the NTC (BNTC,i) is
also due to a combination of the enrichment in the trisynthon and disynthons:

BNTC,i = ptri,iRNTC,tri,i +Σ3
j=1pdij ,iRNTC,dij ,i. (2)

We assume that the counts for a given DNA tag against the target are due to a combination of the
binding enrichment to the target, the binding enrichment in the NTC experiment, the starting mate-
rial estimated using the DLS experiment (Cdls,i), and promiscuous binding counts (Cpromiscuity,i).

Thus, we set the mean parameter of the negative binomial distribution as

µi,target = σ(Btarget,i+βNTC ·BNTC,i+βDLSpdlsi+βpromiscuitycpromiscuity+βconstant) (3)

Here, the β values are learned by negative binomial regression on the training set and σ is the softplus
function. Similarly, the counts for a given DNA tag against the NTC are explained by the binding
enrichment to the NTC, the DLS counts (Cdls,i), and promiscuous binding counts (Cpromiscuity,i).
Hence,

µi,NTC = σ(BNTC,i + β′
DLSpdls,i + β′

promiscuitycpromiscuity + β′
constant). (4)

We examine two different ways of estimating the proportion of product k, pk. The first is to set these
values based on our internal reaction yield dataset: pk,lab. To refine this approach, and take into
account the possible noise in the yield measurements, we propose to adjust the estimated proportion
with a learned parameter for each molecule: pk,adjust. In this case, pk = σ(pk,adjust + pk,lab).

To learn the enrichment values, Rtarget,molecule and RNTC,molecule, we employ two similar models.
The input to both is a molecular graph corresponding to a chemical product. The Weave atom
featurizer Kearnes et al. (2016) is used to encode the atoms and a canonical bond featurizer Li
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et al. (2021) is employed to encode the bonds between atoms. For the first model, we use a single
message passing graph neural network Li et al. (2021) followed by a sequence to sequence layer
Vinyals et al. (2015). This outputs a 128 dimensional encoding that is transformed using two distinct
fully connected networks into Rtarget,i and RNTC,i. The second model is identical except that the
128 dimensional encoding is also transformed into pk,adjust through an additional fully connected
network. These models are tuned on the training set using batch sizes of 32 and an Adam optimizer
Kingma & Ba (2014) with a learning rate of 10−3 for 15 epochs.

Following Ma et al. (2021), for a given DNA barcode example i, the negative binomial loss for the
target and NTC values can be written as

Lvalue,i = − log(P (cvalue,i | µvalue,i, αvalue) (5)

where the P is the probability mass function of the negative binomial distribution parameterized by
µvalue,i and αvalue. The full loss for example i is

Li = Ltarget,i + Lntc,i + γ · (R2
target,i +R2

NTC,i) (6)

During the validation phase of the model when it is used to screen external models, the Rtarget,i

values are used to rank the binding affinities of the compounds to the target.

4 RESULTS AND DISCUSSION

We evaluate our model with the full product proportion data against three different models. The first
is a model where the only source of binding enrichment is the trisynthons. (Btarget,i = ptri,iRtri,i,
BNTC,i = ptri,iRNTC,tri,i). In the second model, the only source of binding enrichment is the
disynthons. (Btarget,i = Σ3

j=1pdij ,iRdij ,i, BNTC,i = Σ3
j=1pdij ,iRNTC,dij ,i).

Figure 3: Loss and R2 scores on the test data set. Figure A shows the negative binomial loss on the
test data set. Figure B shows the the R2 score between the target protein counts and the generated
µtarget,i counts. Figure C shows the the R2 score between the NTC counts and the generated µNTC,i

counts.

In the third model, we assume that each reaction produces a 70% yield, so all pdij ,i = 0.147 and
all ptri,i = 0.147. For each of the four models described above, we ran an experiment where the
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product proportions are fixed and an additional experiment where an adjustment to the proportions
is learned as described above. The results are shown in figure 3.
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Figure 4: Area under the ROC curve on 150 external molecules for various models

One evaluation metric is performance on the testing set which is a subset of the internal DEL data.
When we evaluate the model against testing data from the internal DEL data set, we calculate the
loss and examine the R2 scores of between the µntc and µtarget values and the true counts.

Across the two approaches to modelling the product proportions, the trisynthon-only model pro-
duces noticeably worse results. This is likely evidence of the fact that the trisynthons data by it-
self is too noisy to produce reliable estimates and does not capture all of the DEL products. The
disynthon-only model produces worse results than the full model but better results than the trisyn-
thon model. This suggests that a large amount of the binding of a DNA tag can be explained by the
disynthon products. It appears that modeling disynthons is not only a de-noising step, but is also an
integral portion of the data. The model with constant yields performs slightly worse, highlighting
the importance of modeling the yield and product proportion values. The model with the learned
adjustments to yields shows improved performance, likely due to noise in the laboratory processes
where several rounds of purification are performed.

To estimate the generalization ability of the learned model, we test its performance on a dataset
of 150 molecules from commercial vendors. The binding affinities were measured internally,
and the molecules were classified as binders or non-binders to the target. The enrichment values
Rtarget,moecule are used for predicting the binding affinity. The area under the receiver operating
characteristic (ROC) curve for various models is shown in figure 4. On this dataset, the full model
with learned yields outperforms the remaining models.

5 CONCLUSION

DNA encoded libraries are powerful tools for screening large small molecule libraries against a
target protein. In this work, we present a modeling approach that leverages information about full
and partial products in DELs and their proportions. We demonstrate that our approach that models
full and partial products as well as their proportions outperforms models with only some of the
products or a model that does not include proportions of the products. Using only full product
(trisynthon) data can produce datasets that are too noisy to support effective training, while also
inadequately describing the underlying data. Using only partial (disynthon) data is an effective
approach to aggregating and de-noising DEL data, but altogether disregards potentially useful data.
Moreover, our approach can be used to identify molecules on an external data set that are strong
binders to a target protein of interest.
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