
Under review as a conference paper at ICLR 2022

BENCHMARKING SAMPLE SELECTION STRATEGIES
FOR BATCH REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Training sample selection techniques, such as prioritized experience replay (PER),
have been recognized as of significant importance for online reinforcement learn-
ing algorithms. Efficient sample selection can help further improve the learning
efficiency and the final performance. However, the impact of sample selection for
batch reinforcement learning algorithms, where we aim to learn a near-optimal
policy exclusively from the offline logged dataset, has not been well studied.
In this work, we investigate the application of non-uniform sampling techniques
in batch reinforcement learning. In particular, we compare six variants of PER
based on various heuristic priority metrics that focus on different aspects of the
offline learning setting. These metrics include temporal-difference error, n-step re-
turn, self-imitation learning objective, pseudo-count, uncertainty, and likelihood.
Through extensive experiments on the standard batch RL datasets, we find that
non-uniform sampling is also effective in batch RL settings. Furthermore, there is
no single metric that works in all situations. Our findings also show that it is in-
sufficient to avoid the bootstrapping error in batch reinforcement learning by only
changing the sampling scheme.

1 INTRODUCTION

A key question in machine learning is to select the suitable training samples (Katharopoulos &
Fleuret, 2018). Many prior works proved that an appropriate sample selection strategy, i.e., removing
redundant data or selecting samples according to their hardness, usually significantly improves the
learning efficiency and final performance (Bengio et al., 2009; Schaul et al., 2015; Fan et al., 2017).
Similarly, sample selection also plays a crucial role in reinforcement learning (RL) (De Bruin et al.,
2018). A notable example is the sample selection problem for experience replay (ER) in off-policy
RL (Fedus et al., 2020), where an agent reuses stored experiences from a buffer while interacting
with the environment. For example, Prioritized Experience Replay (PER) (Schaul et al., 2015),
which samples high error transitions more frequently, is now widely used in different state-of-the-
art (SOTA) off-policy RL algorithms (Barth-Maron et al., 2018; Hessel et al., 2018; Kapturowski
et al., 2018).

Batch RL, also known as offline RL, refers to the problem of learning a near-optimal policy from a
fixed offline buffer (Lange et al., 2012). Due to the wide availability of logged-data and the increas-
ing computing power, batch RL holds the promise for successful real-world applications (Levine
et al., 2020). Especially for the scenarios where collecting online data is time-consuming, dan-
gerous or unethical, i.e., robotics, self-driving cars and medical treatments (Gulcehre et al., 2020).
While most off-policy RL algorithms are applicable in the offline setting, they usually suffer from
the bootstrapping error (Fujimoto et al., 2018b; Kumar et al., 2019) due to out-of-distribution (OOD)
state-action pairs. Different solutions are proposed to mitigate this problem, i.e., adding constraints
(Fujimoto et al., 2018b; Wu et al., 2019), imitating behavior policy (Chen et al., 2019; Zolna et al.,
2020), learning dynamics models (Yu et al., 2020; Kidambi et al., 2020; Argenson & Dulac-Arnold,
2020), incorporating uncertainties (Wu et al., 2021), learning ensembles (Agarwal et al., 2020), or
learning pessimistic value functions (Kumar et al., 2020; Buckman et al., 2020; Jin et al., 2021).

Unlike the wide application of PER in online off-policy RL, the non-uniform sampling strategy is
largely ignored in recent batch RL algorithms. Inspired by the success of PER (Schaul et al., 2015)
in the online setting, one natural question to ask is that what is the counterpart of PER in batch RL?

1

Under review as a conference paper at ICLR 2022

This problem is appealing for several reasons: (1) In some real-world applications, the size of the
offline dataset is usually increasing though we have no access to the real environment. For example,
we would have ever-growing medical records from the hospitals (Raghu, 2019), or recorded videos
from dash cams (Yu et al., 2018). (2) As the D4RL offline benchmark (Fu et al., 2020) shows that
– for most existing methods, more samples do not necessarily lead to better performance. That is, a
batch RL agent sometimes under-performs in a large combined buffer. Given the success achieved
by PER in online RL, we are curious that if similar technique could help to develop more robust
batch RL agents (Fujimoto et al., 2020).

Some prior works proposed different sample selection strategies in batch RL. For example, Optimal
Sample Selection (OSS) (Rachelson et al., 2011) introduced a meta-learning algorithm which se-
lects optimal samples according to a cross entropy search method for tree-based Fitted Q-Iteration
(FQI) (Ernst et al., 2005) with a known dynamics model. Recently, Best-Action Imitation Learning
(BAIL) (Chen et al., 2019) proposed to select high-performing samples with a learned value func-
tion in behavior cloning. Another related line of research is to reweight sampled transitions. For
example, Advantage-Weighted Regression (AWR) (Peng et al., 2019) and Advantage-weighted Be-
havior Model (ABM) (Siegel et al., 2020) both used reward-weighted regression (Peters et al., 2010)
to learn the policy. Further, Uncertainty Weighted Actor Critic (UWAC) (Wu et al., 2021) adopted
a dropout-uncertainty estimation method (Gal & Ghahramani, 2016) and reweighted samples ac-
cording to their estimated uncertainties. However, it is unclear which sample selection strategy is
preferred in batch RL, thereby demanding more investigations.

To this end, in this work, we study the sample selection problem in batch RL (De Bruin et al., 2018).
We follow the PER framework by assigning samples with different priorities (Schaul et al., 2015).
Crudely, there are two types of metrics to evaluate sample importance. Firstly, we can design a
heuristic metric based on our prior knowledge, i.e., temporal-difference (TD) error. Secondly, we
can use an end-to-end approach to learn a metric for each sample, for example, we can use off-
policy evaluation (OPE) methods (Voloshin et al., 2019; Fu et al., 2021) to evaluate the goodness of
current policy as the metric. However, existing OPE methods usually need to learn a model for each
evaluation (Le et al., 2019), which makes the learning-based metric approach to be computationally
expensive. Therefore, in this paper, we focus on the heuristic metric-based approach and leave the
learning-based metric approach for future work. In particular, we benchmark six variants of PER
based on different heuristic priority metrics in order to understand which sample selection strategy
might be preferred in batch RL.

2 PRELIMINARIES

2.1 BATCH REINFORCEMENT LEARNING

We consider the standard Markov Decision Process (MDP) (Puterman, 2014)M = 〈S,A, T, r, γ〉.
S and A denote the state and action spaces. T (s′|s, a) and r(s, a) represent the dynamics and
reward function, and γ ∈ [0, 1) is the discount factor. A policy π(a|s) defines a mapping from state
to distributions over actions. The goal of an RL agent is to learn a policy π(a|s) that maximizes the
expected cumulative discounted reward J(π) := Eπ [

∑∞
t=0 γ

trt]. The performance of the policy
can be defined by the Q-function Qπ(s, a) := Eπ [

∑∞
t=0 γ

trt|s0 = s, a0 = a] and value function
V π(s) := Eπ [

∑∞
t=0 γ

trt|s0 = s], where Eπ[·] is the expected result when following the policy π.
Once given the optimalQ-functionQ∗(s, a) = arg maxπ Q

π(s, a), we can derive an optimal policy
as π∗(a|s) = arg maxaQ

∗(s, a) (Sutton & Barto, 2018).

In (tabular) Q-learning, we solve for the Q∗ by iterating the Optimality Bellman Operator T ∗, de-
fined as T ∗Q(s, a)← r+ γmaxa′ Q(s′, a) (Bertsekas & Tsitsiklis, 1996). To solve problems with
large state space, we can use a parameterized Q-function Qθ(s, a) to approximate Q∗. In practice,
we optimize the parameters by a µ-weighted L2 projection Πµ(Q) (Fu et al., 2019), which mini-
mizes the empirical Bellman error loss: Πµ(Q) = minθ E(s,a,r,s′)∼µ

[
(T ∗Qθ(s, a)−Qθ(s, a))2

]
.

Batch RL, also known as offline RL, aims to learn a near-optimal policy from a fixed dataset (Lange
et al., 2012) D, representing a series of timestep tuples (st, at, rt, st+1). Furthermore, the dataset
can be collected by agents with different policies from different control tasks, including non-RL
policies, such as human demonstrations (Levine et al., 2020). Some early works such as Fitted Q-
Iteration (FQI) (Ernst et al., 2005) and Neural Fitted Q-Iteration (NFQ) (Riedmiller, 2005), which

2

Under review as a conference paper at ICLR 2022

formulate the original RL problem as a sequence of supervised regression problem, are shown to be
sample efficient in solving various real-world problems (Pietquin et al., 2011; Cunha et al., 2015).
On the other hand, some recent studies show that current deep off-policy RL algorithms usually
fail in challenging batch RL problems due to bootstrapping error (Fujimoto et al., 2018b; Kumar
et al., 2019). That is, the OOD action a′ might lead to unrecoverable over-estimation error through
max operator in the Bellman backup. The over-estimation problem is particularly detrimental in the
offline setting where the agent has no access to interact with the real environment to get the feedback
to fix the estimation error (Kumar et al., 2020).

2.2 NON-UNIFORM SAMPLING WITH EXPERIENCE REPLAY

Experience replay (ER) (Lin, 1992) has been a de facto component for modern deep RL algorithms.
By reusing previous collected experiences from the replay buffer, ER helps to reduce sample com-
plexity and stabilize training in off-policy RL (Mnih et al., 2013; Lillicrap et al., 2015). For some
real-world problems where collecting online data is expensive or time consuming, i.e., robotics or
self-driving cars, the ability to learn good policies from pre-collected data is crucial for successful
real-world applications (Cabi et al., 2019).

A number of works (Schaul et al., 2015; Andrychowicz et al., 2017; Liu et al., 2019; Sun et al.,
2020; Fujimoto et al., 2020) show that applying different non-uniform sampling strategies in ER
can significantly improve the learning efficiency. Especially for problems where there are many
redundant transitions (Schaul et al., 2015), or the reward signal is sparse (Andrychowicz et al., 2017).
A notable example is the Prioritized Experience Replay (PER) (Schaul et al., 2015), where the
probability of sampling a certain transition (st, at, rt, st+1) is proportional to the absolute TD error.
However, it is still an open question that which priority metric is optimal to value the importance of
samples (De Bruin et al., 2018).

3 RELATED WORK

3.1 SAMPLE SELECTION WITH EXPERIENCE REPLAY

Many prior works have sought to analyze the mechanism of experience replay, both empirically
(De Bruin et al., 2018; Fedus et al., 2020) and theoretically (Fujimoto et al., 2020; Li et al., 2021).
Similar to our work, (De Bruin et al., 2018) investigated a number of proxies, i.e., age, TD error, and
exploration noise, to decide which experience to store in the replay buffer and how to sample from
the replay buffer. Likewise, (Fu et al., 2019) used a “unit-testing” framework to study Q-learning
with function approximators and found that a sampling scheme with wider coverage improves per-
formance. Further, (Fedus et al., 2020) conducted a systematic analysis of experience replay in
Q-learning methods and provided two insights – (1) Increasing the buffer capacity is preferable,
because it has a broader data coverage. (2) Decreasing the age of the oldest policy improves the
performance, because it contains more high-quality on-policy data. While these insights help us
to understand the mechanism of experience replay, they are less practical in the batch RL setting,
where the given offline dataset is fixed (Lange et al., 2012).

A number of variants of ER have been introduced to further improve the learning efficiency (Schaul
et al., 2015; Andrychowicz et al., 2017; Novati & Koumoutsakos, 2019; Liu et al., 2019; Sun et al.,
2020). One of the most popular variants is the Prioritized Experience Replay (PER) (Schaul et al.,
2015), which proposed to use the absolute TD error |δ(i)| as the priority metric and the probability
of sampling the i-th transition is:

p(i) =
pαi∑
j p

α
j

, pi = |δ(i)|+ ε or pi =
1

rank(i)
, (1)

where α is a hyper-parameter, ε is a small positive constant to avoid zero priority, priority pi is
the value of |δ(i)| or the inverse rank of |δ(i)|. In addition, Hindsight Experience Replay (HER)
(Andrychowicz et al., 2017) proposed to re-label visited state as goal states to overcome hard ex-
ploration problems with sparse rewards. Competitive Experience Replay (CER) Liu et al. (2019)
later introduced an automatic exploratory curriculum by formulating an exploration competition be-
tween two agents. On the other hand, Remember and Forget Experience Replay (ReF-ER) (Novati &
Koumoutsakos, 2019) classified samples as “near-policy” and “far-policy” by the importance weight

3

Under review as a conference paper at ICLR 2022

ρ = π(a|s)/µ(a|s) between current policy π and the behavior policy µ, and compute gradients only
with near-policy samples. Similarly, Attentive Experience Replay (AER) (Sun et al., 2020) selects
samples according to the similarities between the transition state and current state.

Recently, Loss-Adjusted Prioritized (LAP) experience replay (Fujimoto et al., 2020) built the con-
nection between the non-uniform sampling scheme in PER and loss functions. It shows that any loss
function L1 evaluated with uniform sampling (i ∼ D1) is equivalent to another loss function L2 that
is evaluated with non-uniformly sampled data (i ∼ D2):

Ei∼D1
[∇QL1(δ(i))] = Ei∼D2

[
pD1

(i)

pD2(i)
∇QL1(δ(i))

]
= Ei∼D2

[∇QL2(δ(i)),] (2)

where δ(i) is the TD error of the i-th sample and the two loss functions follows ∇QL2(δ(i)) =
pD1

(i)

pD2
(i)∇QL1(δ(i)). Moreover, Valuable Experience Replay (VER) (Li et al., 2021) proved that the

absolute TD error |δ(i)| is an upper-bound of different value metrics of experiences in Q-learning.

3.2 SAMPLE SELECTION IN BATCH REINFORCEMENT LEARNING

A pioneering work that applied sample selection strategy in batch RL is the Optimal Sample Selec-
tion (OSS) method (Rachelson et al., 2011). More specifically, OSS is a model-based RL (MBRL)
approach (Sutton & Barto, 2018) where a known dynamics model is available to generate Monte
Carlo rollouts for policy evaluation. Moreover, OSS introduced a meta-learning algorithm to se-
lect optimal samples according to the cross entropy search method (Rubinstein & Kroese, 2004) for
tree-based Fitted Q-Iteration (FQI) (Ernst et al., 2005). Recently, Best-Action Imitation Learning
(BAIL) (Chen et al., 2019) proposed to learn a special value function Vφ(s), called upper envelope,
that upper bounds the cumulative discounted return Gi =

∑T
t=i γ

t−irt from starting from state si
to the end of the episode (max horizon T). The learned upper envelope Vφ(S) is then used to filter
high-quality samples to train a behavior cloning policy (Pomerleau, 1991).

Another related line of research is to reweight samples (Tirinzoni et al., 2018; Peng et al., 2019; Wu
et al., 2021). Unlike previous methods that actively select samples from the buffer, these methods
still adopt uniform sampling while assigning different weights to each sample to compute the loss
function. For example, Advantage-Weighted Regression (AWR) (Peng et al., 2019) first formulated
the RL problem as a supervised regression problem, and then used a learned value function to train
the policy π(a|s) via reward-weighted regression (Peters et al., 2010), which assigns higher weights
to samples with large advantage values. Similarly, Advantage-weighted Behavior Model (ABM)
(Siegel et al., 2020) adopted reward-weighted regression in policy training to focus more on good
actions. On the other hand, Uncertainty Weighted Actor Critic (UWAC) (Wu et al., 2021) used
Monte Carlo Dropout (Gal & Ghahramani, 2016) to approximate the epistemic uncertainty (Kendall
& Gal, 2017) for samples in batch RL dataset. The goal of UWAC is to assign lower weights to
samples with higher epistemic uncertainty in order to mitigate the bootstrapping error caused by
OOD state-action pairs (Fujimoto et al., 2018b; Kumar et al., 2019).

4 METHODOLOGY

4.1 BACKBONE ALGORITHMS

In this work, we select TD3BC (Fujimoto & Gu, 2021) and PER (Schaul et al., 2015) as the backbone
algorithms for benchmarking sample selection strategies in batch RL. TD3BC is a minimalist batch
RL algorithm which simply adds a behavior cloning term to the TD3 algorithm (Fujimoto et al.,
2018a). While being simple, TD3BC achieves comparable performance w.r.t. other SOTA batch
RL algorithms (Kostrikov et al., 2021; Kumar et al., 2020) on the standard batch RL benchmark
(Fu et al., 2020). Moreover, TD3BC is able to run significantly faster than previous methods by
removing additional computations overheads.

In particular, TD3BC made two small modifications upon the origin TD3 algorithm (Fujimoto &
Gu, 2021). Firstly, it adds a behavior cloning regularization term to the policy update in order to
keep the learned policy π to stay close to the behavior policy µ:

π = arg max
π

E(s,a)∼D
[
λQ(s, π(s))− (π(s)− a)2

]
, (3)

4

Under review as a conference paper at ICLR 2022

where λ is a parameter to trade-off RL and imitation. Secondly, it normalizes the states s in the
offline dataset by s′ = (s− sµ)/sσ where sµ and sσ are the mean and stander deviation.

In terms of the non-uniform sampling strategy, we follow the PER framework (Schaul et al., 2015) in
which the probability to sample transition i is p(i) = pαi /

∑
j p

α
j , where pi is the priority of transition

i and parameter α determines how much prioritization is used. In this paper, we investigate the
problem of how the choice of priority metric matters in batch RL. We use both the proportional PER
and rank-based PER in the experiment depending on the used priority metric. Proportional PER is
a more popular baseline, while rank-based PER is more robust to outliers especially when different
metrics have inconsistent scales.

4.2 PROPOSED METRICS

Here, we introduce six different priority metrics that we use in the experiment. We select these
metrics based on prior insights of what data might be preferred in batch RL. Depending on whether
the metric changes in the experiment, we could further divide them into static and dynamic metrics.
A summary of these metrics is shown in Table 1.

Table 1: List of proposed metrics. Depending on if the value is fixed during training, we divide them
into static and dynamic metrics. Some metrics are more computationally expensive, i.e., requiring a
dynamics model or behavior policy.

Metric Type Motivation Prioritization Extra computation

TD-Error Dynamic Reducing redundant samples Proportional PER -

N-step Return Static Selecting good samples Rank PER -

GSIL Dynamic Selecting good samples Proportional PER A second buffer

Pseudo-count Static Avoiding OOD samples Rank PER Hash table

Uncertainty Static Avoiding OOD samples Rank PER Probabilistic ensemble

Likelihood Static Being more on-policy Rank PER Behavior policy

TD error. We first select the TD error as our primary baseline, and test how well does the naı̈ve
PER (Schaul et al., 2015) perform in the batch RL setting. We adopt the most popular proportional
PER, and the priority for the i-th transition is pi = |δ(i)| + ε, where |δ(i)| is the absolute TD error
and ε is a small positive constant to avoid zero priority. The motivation of using TD error to select
samples is that small absolute TD error samples contain less information for our model to learn from
(Moore & Atkeson, 1993).

N-step return. Secondly, we select the n-step return as the proxy to evaluate the goodness of sam-
ples. Uncorrected n-step return has been shown to be an effective technique that greatly improves
performances (Hessel et al., 2018; Fedus et al., 2020; Rowland et al., 2020). Similar to the idea of
BAIL (Chen et al., 2019), we hypothesis that samples with higher n-step return is more likely to be
high-quality samples. Unlike Monte Carlo return which requires a full trajectory, n-step return are
much more practical in real-world problems, where we usually only have partial trajectories without
a terminal state. Specifically, the n-step return for transition i is RNi =

∑N−1
t=0 γtri+t, where N is

the horizon length. Notice that, the n-step return is fixed during the experiment which we only need
to compute once in the data pre-processing step. Given the different reward scales across tasks, we
use a rank based PER in the experiment pi = 1/rank(RNi).

Generalized SIL. Our third metric is inspired by the Self-Imitation Learning (SIL) (Oh et al., 2018),
which exploits past good experiences. In particular, SIL imitates past good experiences by optimiz-
ing following actor-critic loss function:

Lsilvalue =
1

2
‖ [R− Vθ(s)]+ ‖

2, Lsilpolicy = − log πθ(a|s) [R− Vθ(s)]+ (4)

whereR =
∑∞
t=0 γ

trt is the cumulative discounted return starting from state s after taking action a,
and [x]+ = max(0, x). The motivation of SIL is intuitive that policy πθ(a|s) should imitate action

5

Under review as a conference paper at ICLR 2022

a if it is high-performing, such that R > Vθ(s). Generalized Self-Imitation Learning (GSIL) (Tang,
2020) later extends the original SIL to deterministic actor-critic setting with n-step TD-learning. We
follow GSIL to set the priority for the i-th transition to be pi =

[
RNi −Qθ(si, ai)

]
+

+ ε, where RNi
is the n-step return and ε is a small positive constant.

Pseudo-count. Although batch RL do not concern the exploration problem (Osband et al., 2016).
We can still borrow some insights from an exploration perspective to distinguish useful samples. For
example, in the experiment, we test the efficacy of Pseudo-count (Ostrovski et al., 2017; Tang et al.,
2017) for sample selection in batch RL. We follow the #Exploration (Tang et al., 2017) model to
use locality-sensitive hashing (LSH) method, i.e., SimHash (Charikar, 2002), to convert continuous
state s ∈ RD to discrete k-dimension hash codes:

φ(s) = sgn(Ag(s)) ∈ {−1, 1}k, (5)

where g(·) is an optional preprocessing function and A ∈ Rk×D is a random matrix. In the batch
RL dataset, a small pseudo-count Ni of a state-action pair (si, ai) means the dataset has insufficient
coverage around these data. Hence, it would be more likely to suffer from the OOD sample problem
when learning from these samples. In the experiment, we use a rank-based PER and set the priority
of the i-th sample to be pi = 1/rank(Ni).

Uncertainty. Inspired by UWAC (Wu et al., 2021), we also attempt to use the epistemic un-
certainty to evaluate the sample importance. UWAC adds a dropout layer before every weight
layer (Gal & Ghahramani, 2016) and approximate uncertainty of state-action pair (s, a) by the
variance of predicted Q(s, a). To exactly analyze how does the uncertainty-based sampling in-
fluence the performance, we adopt the probabilistic ensemble (Chua et al., 2018) method in-
stead of change the origin TD3BC model. Specifically, we first train an ensemble of M prob-
abilistic dynamic models {T1, T2, · · · , TM} (Pineda et al., 2021), where each dynamic model
Ti(st+1|st, at) = N (µθi(st, at),Σθi(st, at)) outputs a Gaussian distribution with diagonal covari-
ances parameterized by θi. For the i-th transition (si, ai, ri, si+1), we approximate its epistemic
uncertainty by the standard deviation of σi = std ({µθ1(si, ai), · · · , µθM (si, ai)}). We use a rank-
based PER to assign higher priority to samples with smaller uncertainty, that is pi = 1/rank(σ−1i).

Likelihood. The last metric we test in the experiment is the likelihood of the behavior model
(Kostrikov et al., 2021). Similar to previous constrained based batch RL algorithms (Fujimoto et al.,
2018b; Wu et al., 2019; Kumar et al., 2019), we want to make the learned policy π(a|s) to stay
close to the behavior policy µ(a|s). Therefore, we first learned a behavior policy with a mixture of
Gaussian model (Kostrikov et al., 2021) and used the likelihood as the priority. We use a rank-based
PER where pi = 1/rank(logµ(ai|si)) is the priority for the i-th sample.

5 EXPERIMENT

In this section, we compare different PER variants with the proposed metrics on a variety of batch
RL continuous control tasks (Fu et al., 2020). We seek to address the following questions in the
experiments: (1) Does non-uniform sampling scheme also help to improve the performance in batch
RL? (2) Which priority metric is preferred in the batch RL setting?

Datasets. We evaluate different sample selection strategies on the widely-used D4RL gym Mu-
joco benchmark (Todorov et al., 2012; Fu et al., 2020), including three environments (halfcheetah,
hopper, and walker2d) and five dataset types (random, medium, medium-replay, medium-expert,
expert), yielding a total of 15 datasets. These datasets differ in many aspects, e.g., number of tran-
sitions, quality of behavior policy, and data coverage. We seek to validate the robustness of each
sample selection strategy in different domains.

Experiment setup. For the backbone algorithm, we use the author-provided implementation for
TD3BC 1. We maintain two replay buffers for the GSIL metric as in the origin paper 2 (Tang, 2020),
where the first buffer stores single-step transitions to train TD3 and the second buffer stores n-step
transitions to compute the GSIL loss. In addition, we use the MBRL-Lib 3 (Pineda et al., 2021) to

1https://github.com/sfujim/TD3 BC
2https://github.com/robintyh1/nstep-sil
3https://github.com/facebookresearch/mbrl-lib

6

Under review as a conference paper at ICLR 2022

train the probabilistic ensemble, and implement the SimHash according to EPG 4 (Houthooft et al.,
2018). Parameters for the PER are taken from the original paper (Schaul et al., 2015). We follow
exactly the same experimental setup as (Fujimoto & Gu, 2021), in which we train for 1 million time
steps and evaluate every 5000 time steps for 10 episodes. More details are in the Appendix.

Results. We report the final performance of different priority metrics in Table 2 and plot the learn-
ing curves in Figure 1. We make several observations: (1) Non-uniform sampling strategy is also
effective in batch RL, for example, the most performant method in each environment is usually a
non-uniform sampling strategy. (2) There is no single metric that is consistently the best performer.
(3) In some environments, such as Hopper-Medium and Hopper-Expert, different sampling schemes
perform very similar. In light of these results, we conclude that offline datasets are quite compli-
cate and multiple factors can influence the sample priority. In environments with relatively low
dimensions, such as Hopper, the learned policy is less affected by the sampling scheme.

Table 2: Performance of different priority metrics in the D4RL datasets. We report the average
normalized score over the final 10 evaluations over 3 seeds (± standard deviation).

Uniform TD-Error Nstep-Return GSIL Pseudo-Count Uncertainty Likelihood

R
an

do
m HalfCheetah 11.2± 1.3 11.1± 1.1 10.3± 0.6 9.1± 2.0 11.3± 1.3 11.4± 1.2 11.0± 0.6

Hopper 11.0± 0.0 10.9± 0.1 11.0± 0.0 10.9± 0.0 11.1± 0.0 10.8± 0.1 11.0± 0.0
Walker2d 0.9± 0.6 1.7± 1.1 2.6± 0.8 5.1± 0.3 2.4± 0.6 2.3± 1.7 1.8± 0.6

M
ed

iu
m HalfCheetah 42.9± 0.1 42.8± 0.3 43.9± 0.5 43.2± 0.2 43.3± 0.4 42.9± 0.4 42.4± 0.1

Hopper 99.9± 0.1 99.6± 0.4 99.4± 0.6 99.8± 0.1 99.7± 0.1 99.8± 0.1 99.8± 0.2
Walker2d 77.3± 0.9 78.2± 1.0 77.3± 1.2 77.9± 1.3 77.2± 0.7 76.9± 0.6 79.4± 0.6

M
ed

iu
m

R
ep

la
y HalfCheetah 43.1± 0.4 43.3± 0.1 43.5± 0.5 42.8± 0.2 43.3± 0.5 43.4± 0.2 43.3± 0.0

Hopper 32.1± 1.3 30.3± 0.8 31.4± 0.7 30.6± 1.9 31.9± 0.3 31.1± 1.8 31.7± 1.6
Walker2d 24.3± 4.6 23.8± 2.5 17.4± 2.7 15.2± 9.4 29.0± 3.6 26.4± 1.0 24.8± 1.1

M
ed

iu
m

E
xp

er
t HalfCheetah 92.4± 1.5 96.9± 1.7 87.8± 3.4 96.5± 2.1 91.3± 1.7 88.0± 3.3 84.4± 4.0

Hopper 112.0± 0.1 106.2± 1.1 110.7± 1.7 111.6± 0.9 112.2± 0.0 109.8± 2.2 111.4± 0.6
Walker2d 95.7± 4.2 96.9± 3.0 90.8± 2.6 103.1± 4.1 96.9± 4.6 103.9± 2.1 81.4± 23.6

E
xp

er
t HalfCheetah 105.9± 0.7 103.5± 1.5 102.4± 1.6 105.4± 1.0 104.0± 1.2 103.8± 0.2 104.5± 0.9

Hopper 112.3± 0.0 112.2± 0.1 112.2± 0.1 112.1± 0.1 112.2± 0.1 111.8± 0.6 44.6± 47.9
Walker2d 105.0± 2.0 104.5± 1.8 105.5± 1.7 103.8± 1.3 104.2± 1.1 105.9± 0.4 104.1± 3.3

Beat baseline - 5 4 5 8 6 5

Sampling scheme and bootstrapping error. We also plot the learned Q1 function in TD3 (Figure
2) to check for the bootstrapping error problem (Fujimoto et al., 2018b; Kumar et al., 2019). We can
see that all the sampling schemes learn explosive Q values in the Walker2d-Random environment,
which implies that non-uniform sampling schemes fail to avoid the bootstrapping error. In addition,
we can observe that the sampling scheme affects the learnedQ function, where the likelihood metric
usually learns a relatively smaller Q values and N-step return metric learns a relatively higher Q
values. This corresponds to the inductive bias of each metric. For example, a transition with higher
N-step return is more likely to have large single-step return, which leads to higher Q values in the
Bellman backup. On the other hand, in the experiment, a transition with high likelihood is more
likely to have lower reward. This may because most transitions in the dataset are at early stage of
a trajectory, which have lower rewards. In addition, from figure 2, we can also observe that the
bootstrapping error is not the only problem which prevents us to learn a good offline policy. For
example, we did not suffer from severe bootstrapping error in HalfCheetah-Random and Hopper-
Random environment, but we still fail to exploit the offline dataset to learn performant policies.
This maybe the fixed behavior cloning parameter to be overly-constrained in such datasets with low
data-quality. Thus, we believe that there is promise in further improving performance by relaxing
the fixed behavior cloning parameter through a dynamic evaluation of current data-quality.

Some problems of the proposed metrics. Here, we summarize some shortcomings of the heuristic
metric-based sample selection strategies. Firstly, we may need extra computations to compute the
priority metrics (Table 1). For example, training the probability ensemble to estimate the sample

4https://github.com/openai/EPG

7

Under review as a conference paper at ICLR 2022

Figure 1: Results are averaged across 3 random seeds with shaded areas representing the standard
deviation. We can observe that non-uniform sampling strategies is also effective in batch RL, and
there is no priority metric that works in all situations.

Figure 2: Learned Q1 function in TD3. We can observe that non-uniform sampling schemes fail to
avoid the bootstrapping error as in the Walker2d-Random environment.

8

Under review as a conference paper at ICLR 2022

uncertainty would be quite time-consuming. In addition, these extra models require further parame-
ter tuning which may be problematic in the offline setting. Secondly, another critical problem of the
metric-based sample selection method is that how exact is the metric for selecting a good sample.
For example, a transition with low uncertainty or high likelihood is not necessarily a good sample
for policy learning. Instead, it might be better to use these metrics as thresholds to filter bad samples.
In particular, a low uncertainty transition may not be a good sample, but a high uncertainty transition
is more likely to be a bad one. Thirdly, in the experiment, we compute the priority metric metric for
transition (si, ai, ri, si+1) based the current state-action pair (si, ai). However, in the batch RL set-
ting, the bootstrapping error comes from the OOD state-action pair (si+1, ai+1). Therefore, it might
be more effective to compute the priority metric based on the next state-action pair (si+1, ai+1). We
leave these shortcomings for future work.

6 CONCLUSION AND FUTURE WORK

In this paper, we perform empirical analysis on non-uniform sample selection strategies in batch
reinforcement learning (RL). In particular, we compare different variants of Prioritized Experience
Replay (PER) based on various heuristic sample priority metrics, including temporal-difference er-
ror, n-step return, self-imitation learning objective, pseudo-count, uncertainty and likelihood. Our
experiments show that non-uniform sampling is also effective in the batch RL setting. However,
there is no single priority metric that work in all situations, which shows that the offline datasets are
quite complicate and multiple factors can influence the sample priority. A shortcoming of our work
is that the proposed metric only focus on current state-action pairs and requires extra computations.
A future direction is to learn a priority metric end-to-end with off-policy policy evaluation (OPE)
methods. Another interesting future direction is to utilize unsupervised representation learning, i.e.,
self-supervised learning, to extract useful hidden representations to assist the sample selection task
in batch RL.

REFERENCES

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International Conference on Machine Learning, pp. 104–114. PMLR,
2020.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. arXiv
preprint arXiv:1707.01495, 2017.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva Tb,
Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic
policy gradients. arXiv preprint arXiv:1804.08617, 2018.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena Scientific, 1996.

Jacob Buckman, Carles Gelada, and Marc G Bellemare. The importance of pessimism in fixed-
dataset policy optimization. arXiv preprint arXiv:2009.06799, 2020.

Serkan Cabi, Sergio Gómez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott Reed,
Rae Jeong, Konrad Zolna, Yusuf Aytar, David Budden, Mel Vecerik, et al. Scaling data-
driven robotics with reward sketching and batch reinforcement learning. arXiv preprint
arXiv:1909.12200, 2019.

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing, pp. 380–388, 2002.

9

Under review as a conference paper at ICLR 2022

Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, Qing Deng, and Keith Ross.
Bail: Best-action imitation learning for batch deep reinforcement learning. arXiv preprint
arXiv:1910.12179, 2019.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. arXiv preprint arXiv:1805.12114,
2018.

Joao Cunha, Rui Serra, Nuno Lau, Luı́s Seabra Lopes, and Antóio JR Neves. Batch reinforce-
ment learning for robotic soccer using the q-batch update-rule. Journal of Intelligent & Robotic
Systems, 80(3):385–399, 2015.

Tim De Bruin, Jens Kober, Karl Tuyls, and Robert Babuska. Experience selection in deep reinforce-
ment learning for control. Journal of Machine Learning Research, 19, 2018.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6:503–556, 2005.

Yang Fan, Fei Tian, Tao Qin, Jiang Bian, and Tie-Yan Liu. Learning what data to learn. arXiv
preprint arXiv:1702.08635, 2017.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In International Con-
ference on Machine Learning, pp. 3061–3071. PMLR, 2020.

Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks in deep q-
learning algorithms. In International Conference on Machine Learning, pp. 2021–2030. PMLR,
2019.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Justin Fu, Mohammad Norouzi, Ofir Nachum, George Tucker, Ziyu Wang, Alexander Novikov,
Mengjiao Yang, Michael R Zhang, Yutian Chen, Aviral Kumar, et al. Benchmarks for deep off-
policy evaluation. arXiv preprint arXiv:2103.16596, 2021.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
arXiv preprint arXiv:2106.06860, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587–1596. PMLR, 2018a.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. 2018b.

Scott Fujimoto, David Meger, and Doina Precup. An equivalence between loss functions and non-
uniform sampling in experience replay. arXiv preprint arXiv:2007.06049, 2020.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gomez Colmenarejo, Kon-
rad Zolna, Rishabh Agarwal, Josh Merel, Daniel Mankowitz, Cosmin Paduraru, et al. Rl un-
plugged: Benchmarks for offline reinforcement learning. arXiv e-prints, pp. arXiv–2006, 2020.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Thirty-second AAAI conference on artificial intelligence, 2018.

Rein Houthooft, Richard Y. Chen, Phillip Isola, Bradly C. Stadie, Filip Wolski, Jonathan Ho, and
Pieter Abbeel. Evolved policy gradients. arXiv preprint arXiv:1802.04821, 2018.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pp. 5084–5096. PMLR, 2021.

10

Under review as a conference paper at ICLR 2022

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent ex-
perience replay in distributed reinforcement learning. In International conference on learning
representations, 2018.

Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with
importance sampling. In International conference on machine learning, pp. 2525–2534. PMLR,
2018.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? arXiv preprint arXiv:1703.04977, 2017.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning,
pp. 5774–5783. PMLR, 2021.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Off-policy deep reinforcement learning without
exploration. Stabilizing off-policy q-learning via bootstrapping error reduction. arXiv preprint
arXiv:1906.00949, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning, pp. 45–73. Springer, 2012.

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In Inter-
national Conference on Machine Learning, pp. 3703–3712. PMLR, 2019.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Ang A Li, Zongqing Lu, and Chenglin Miao. Revisiting prioritized experience replay: A value
perspective. arXiv preprint arXiv:2102.03261, 2021.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine learning, 8(3-4):293–321, 1992.

Hao Liu, Alexander Trott, Richard Socher, and Caiming Xiong. Competitive experience replay.
arXiv preprint arXiv:1902.00528, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Andrew W Moore and Christopher G Atkeson. Prioritized sweeping: Reinforcement learning with
less data and less time. Machine learning, 13(1):103–130, 1993.

Guido Novati and Petros Koumoutsakos. Remember and forget for experience replay. In Interna-
tional Conference on Machine Learning, pp. 4851–4860. PMLR, 2019.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In International
Conference on Machine Learning, pp. 3878–3887. PMLR, 2018.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29:4026–4034, 2016.

11

Under review as a conference paper at ICLR 2022

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In International conference on machine learning, pp. 2721–2730. PMLR,
2017.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Twenty-Fourth
AAAI Conference on Artificial Intelligence, 2010.

Olivier Pietquin, Matthieu Geist, Senthilkumar Chandramohan, and Hervé Frezza-Buet. Sample-
efficient batch reinforcement learning for dialogue management optimization. ACM Transactions
on Speech and Language Processing (TSLP), 7(3):1–21, 2011.

Luis Pineda, Brandon Amos, Amy Zhang, Nathan O Lambert, and Roberto Calandra. Mbrl-lib: A
modular library for model-based reinforcement learning. arXiv preprint arXiv:2104.10159, 2021.

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neu-
ral computation, 3(1):88–97, 1991.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Emmanuel Rachelson, François Schnitzler, Louis Wehenkel, and Damien Ernst. Optimal sample
selection for batch-mode reinforcement learning. In Proceedings of the 3rd International Confer-
ence on Agents and Artificial Intelligence (ICAART 2011), 2011.

Aniruddh Raghu. Reinforcement learning for sepsis treatment: Baselines and analysis. 2019.

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural reinforce-
ment learning method. In European conference on machine learning, pp. 317–328. Springer,
2005.

Mark Rowland, Will Dabney, and Rémi Munos. Adaptive trade-offs in off-policy learning. In
International Conference on Artificial Intelligence and Statistics, pp. 34–44. PMLR, 2020.

Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: A unified approach to monte
carlo simulation, randomized optimization and machine learning. Information Science & Statis-
tics, Springer Verlag, NY, 2004.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Ne-
unert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing
what worked: Behavioral modelling priors for offline reinforcement learning. arXiv preprint
arXiv:2002.08396, 2020.

Peiquan Sun, Wengang Zhou, and Houqiang Li. Attentive experience replay. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pp. 5900–5907, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. # exploration: A study of count-based exploration for deep
reinforcement learning. In 31st Conference on Neural Information Processing Systems (NIPS),
volume 30, pp. 1–18, 2017.

Yunhao Tang. Self-imitation learning via generalized lower bound q-learning. arXiv preprint
arXiv:2006.07442, 2020.

Andrea Tirinzoni, Andrea Sessa, Matteo Pirotta, and Marcello Restelli. Importance weighted trans-
fer of samples in reinforcement learning. In International Conference on Machine Learning, pp.
4936–4945. PMLR, 2018.

12

Under review as a conference paper at ICLR 2022

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Cameron Voloshin, Hoang M Le, Nan Jiang, and Yisong Yue. Empirical study of off-policy policy
evaluation for reinforcement learning. arXiv preprint arXiv:1911.06854, 2019.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua Susskind, Jian Zhang, Ruslan Salakhutdinov, and
Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. arXiv preprint
arXiv:2105.08140, 2021.

Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, and Trevor
Darrell. Bdd100k: A diverse driving video database with scalable annotation tooling. arXiv
preprint arXiv:1805.04687, 2(5):6, 2018.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv preprint
arXiv:2005.13239, 2020.

Konrad Zolna, Alexander Novikov, Ksenia Konyushkova, Caglar Gulcehre, Ziyu Wang, Yusuf Ay-
tar, Misha Denil, Nando de Freitas, and Scott Reed. Offline learning from demonstrations and
unlabeled experience. arXiv preprint arXiv:2011.13885, 2020.

13

Under review as a conference paper at ICLR 2022

A APPENDIX

Here, we introduce some details of our experiments. For the PER model, we use the hyperparameters
recommended in the origin paper (Schaul et al., 2015), and set α = 0.6, β = 0.4. For the N-step
return metric, we select the N to be 20. For the GSIL metric, we follow the same experiment setup
as in the origin GSIL paper (Tang, 2020). For the pseudo-count metric, we select the key dimension
for Simhash by computing the 25% quantile and 50% quantile number (see Table 3). A small key
dimension would lead to too many collisions while a large key dimension would lead to sparse
collisions. We highlight the selected parameter for each environment we used in the experiment.
For the uncertainty metric, we train an probabilistic ensemble with 7 models with early stopping.
We use the default training parameters as in the MBRL-LIB (Pineda et al., 2021) package. For
the likelihood metric, we use the official FBRC (Kostrikov et al., 2021) code to learn the behavior
policy.

Table 3: Quantile number of the pseudo-count of each state-action pair in the offline dataset.

Key Dimension 16 24 32 48 64 128

Quantile 25% 50% 25% 50% 25% 50% 25% 50% 25% 50% 25% 50%

R
an

do
m HalfCheetah 29 85 1 3 1 1 1 1 1 1 1 1

Hopper 1068 4377 321 1697 62 343 6 42 2 11 1 1
Walker2d 56 201 2 10 1 3 1 1 1 1 1 1

M
ed

iu
m HalfCheetah 670 3288 112 727 21 188 3 28 1 4 1 1

Hopper 562 1931 125 626 41 208 7 43 2 13 1 1
Walker2d 99 443 6 40 1 7 1 2 1 1 1 1

M
ed

iu
m

R
ep

la
y HalfCheetah 7 29 1 3 1 1 1 1 1 1 1 1

Hopper 57 205 8 37 2 10 1 1 1 1 1 1
Walker2d 6 18 1 2 1 1 1 1 1 1 1 1

M
ed

iu
m

E
xp

er
t HalfCheetah 838 4309 192 1241 23 210 4 43 1 8 1 1

Hopper 405 1354 73 326 26 135 4 23 1 4 1 1
Walker2d 218 1069 14 90 3 23 1 2 1 2 1 1

E
xp

er
t HalfCheetah 638 3831 149 947 23 198 2 12 1 2 1 1

Hopper 1032 3683 175 718 25 123 4 24 2 8 1 1
Walker2d 160 655 17 103 4 25 1 3 1 1 1 1

14

	Introduction
	Preliminaries
	Batch Reinforcement Learning
	Non-uniform Sampling with Experience Replay

	Related Work
	Sample Selection with Experience Replay
	Sample Selection in Batch Reinforcement Learning

	Methodology
	Backbone Algorithms
	Proposed Metrics

	Experiment
	Conclusion and Future work
	Appendix

