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Abstract

We propose FACtored Multi-Agent Centralised policy gradients (FACMAC), a new
method for cooperative multi-agent reinforcement learning in both discrete and con-
tinuous action spaces. Like MADDPG, a popular multi-agent actor-critic method,
our approach uses deep deterministic policy gradients to learn policies. However,
FACMAC learns a centralised but factored critic, which combines per-agent util-
ities into the joint action-value function via a non-linear monotonic function, as
in QMIX, a popular multi-agent Q-learning algorithm. However, unlike QMIX,
there are no inherent constraints on factoring the critic. We thus also employ a
nonmonotonic factorisation and empirically demonstrate that its increased rep-
resentational capacity allows it to solve some tasks that cannot be solved with
monolithic, or monotonically factored critics. In addition, FACMAC uses a cen-
tralised policy gradient estimator that optimises over the entire joint action space,
rather than optimising over each agent’s action space separately as in MADDPG.
This allows for more coordinated policy changes and fully reaps the benefits of a
centralised critic. We evaluate FACMAC on variants of the multi-agent particle
environments, a novel multi-agent MuJoCo benchmark, and a challenging set of
StarCraft II micromanagement tasks. Empirical results demonstrate FACMAC’s
superior performance over MADDPG and other baselines on all three domains.

1 Introduction

Significant progress has been made in cooperative multi-agent reinforcement learning (MARL) under
the paradigm of centralised training with decentralised execution (CTDE) [27, 18] in recent years,
both in value-based [41, 31, 37, 32, 44, 30] and actor-critic [23, 9, 36, 13, 8] approaches. Most
popular multi-agent actor-critic methods such as COMA [9] and MADDPG [23] learn a centralised
critic with decentralised actors. The critic is centralised to make use of all available information (i.e.,
it can condition on the global state and the joint action) to estimate the joint action-value function
Qtot, unlike a decentralised critic that estimates the local action-value function Qa based only on
individual observations and actions for each agent a.3 Even though the joint action-value function
∗Equal contribution. Correspondence to: Bei Peng <bei.peng@liverpool.ac.uk>
†Work done while the authors were at the University of Oxford.
3COMA learns a single centralised critic for all cooperative agents due to parameter sharing. For each

agent the critic has different inputs and can thus output different values for the same state and joint action.
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these actor-critic methods can represent is not restricted, in practice they significantly underperform
value-based methods like QMIX [31] on the challenging StarCraft Multi-Agent Challenge (SMAC)
[35] benchmark [33, 32].

In this paper, we propose a novel approach called FACtored Multi-Agent Centralised policy gradients
(FACMAC), which works for both discrete and continuous cooperative multi-agent tasks. Like
MADDPG, our approach uses deep deterministic policy gradients [20] to learn decentralised policies.
However, FACMAC learns a single centralised but factored critic, which factors the joint action-value
function Qtot into per-agent utilities Qa that are combined via a non-linear monotonic function, as
in the popular Q-learning algorithm QMIX [31]. While the critic used in COMA and MADDPG is
also centralised, it is monolithic rather than factored.4 Compared to learning a monolithic critic, our
factored critic can potentially scale better to tasks with a larger number of agents and/or actions. In
addition, in contrast to other value-based approaches such as QMIX, there are no inherent constraints
on factoring the critic. This allows us to employ rich value factorisations, including nonmonotonic
ones, that value-based methods cannot directly use without forfeiting decentralisability or introducing
other significant algorithmic changes. We thus also employ a nonmonotonic factorisation and
empirically demonstrate that its increased representational capacity allows it to solve some tasks that
cannot be solved with monolithic, or monotonically factored critics.

In MADDPG, a separate policy gradient is derived for each agent individually, which optimises
its policy assuming all other agents’ actions are fixed. This could cause the agents to converge to
sub-optimal policies in which no single agent wishes to change its action unilaterally. In FACMAC,
we use a new centralised gradient estimator that optimises over the entire joint action space, rather
than optimising over each agent’s action space separately as in MADDPG. The agents’ policies are
thus trained as a single joint-action policy, which can enable learning of more coordinated behaviour,
as well as the ability to escape sub-optimal solutions. The centralised gradient estimator fully reaps
the benefits of learning a centralised critic, by not implicitly marginalising over the actions of the
other agents in the policy-gradient update. The gradient estimator used in MADDPG is also known
to be vulnerable to relative overgeneralisation [47]. To overcome this issue, in our centralised
gradient estimator, we sample all actions from all agents’ current policies when evaluating the joint
action-value function. We empirically show that MADDPG can quickly get stuck in local optima in a
simple continuous matrix game, whereas our centralised gradient estimator finds the optimal policy.
While Lyu et al. [24] recently show that merely using a centralised critic (with per-agent gradients
that optimise over each agent’s actions separately) does not necessarily lead to better coordination
between agents, our centralised gradient estimator re-establishes the value of using centralised critics.

Most recent works on continuous MARL focus on evaluating their algorithms on the multi-agent
particle environments [23], which feature a simple two-dimensional world with some basic simulated
physics. To demonstrate FACMAC’s scalability to more complex continuous domains and to stimulate
more progress in continuous MARL, we introduce Multi-Agent MuJoCo (MAMuJoCo), a new,
comprehensive benchmark suite that allows the study of decentralised continuous control. Based
on the popular single-agent MuJoCo benchmark [5], MAMuJoCo features a wide variety of novel
robotic control tasks in which multiple agents within a single robot have to solve a task cooperatively.

We evaluate FACMAC on variants of the multi-agent particle environments [23] and our novel
MAMuJoCo benchmark, which both feature continuous action spaces, and the challenging SMAC
benchmark [35], which features discrete action spaces. Empirical results demonstrate FACMAC’s
superior performance over MADDPG and other baselines on all three domains. In particular,
FACMAC scales better when the number of agents (and/or actions) and the complexity of the task
increases. Results on SMAC show that FACMAC significantly outperforms stochastic DOP [46],
which recently claimed to be the first multi-agent actor-critic method to outperform state-of-the-art
valued-based methods on SMAC, in all scenarios we tested. Moreover, our ablations and additional
experiments demonstrate the advantages of both factoring the critic and using our centralised gradient
estimator. We show that, compared to learning a monolithic critic, learning a factored critic can: 1)
better take advantage of the centralised gradient estimator to optimise the agent policies when the

In MADDPG, each agent learns its own centralised critic, as it is designed for general multi-agent learning
problems, including cooperative, competitive, and mixed settings.

4We use “centralised and monolithic critic” and “monolithic critic” interchangeably to refer to the centralised
critic used in COMA and MADDPG, and “centralised but factored critic” and “factored critic” interchangeably
to refer to the critic used in our approach.
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number of agents and/or actions is large, and 2) leverage a nonmonotonic factorisation to solve tasks
that cannot be solved with monolithic or monotonically factored critics.

2 Background

We consider a fully cooperative multi-agent task in which a team of agents interacts with the same
environment to achieve some common goal. It can be modeled as a decentralised partially observable
Markov decision process (Dec-POMDP) [28] consisting of a tupleG = 〈N , S, U, P, r,Ω, O, γ〉. Here
N ≡ {1, . . . , n} denotes the finite set of agents and s ∈ S describes the true state of the environment.
At each time step, each agent a ∈ N selects a discrete or continuous action ua ∈ U , forming a joint
action u ∈ U ≡ Un. This results in a transition to the next state s′ according to the state transition
function P (s′|s,u) : S ×U× S → [0, 1] and a team reward r(s,u). γ ∈ [0, 1) is a discount factor.
Due to the partial observability, each agent a ∈ N draws an individual partial observation oa ∈ Ω
from the observation kernelO(s, a). Each agent learns a stochastic policy πa(ua|τa) or a deterministic
policy µa(τa), conditioned only on its local action-observation history τa ∈ T ≡ (Ω×U)∗. The joint
stochastic policy π induces a joint action-value function: Qπ(st,ut) = Est+1:∞,ut+1:∞ [Rt|st,ut],
where Rt =

∑∞
i=0 γ

irt+i is the discounted return. Similarly, the joint deterministic policy µ induces
a joint action-value function denotedQµ(st,ut). We adopt the centralised training with decentralised
execution (CTDE) paradigm [27, 18], where policy training can exploit extra global information that
might be available and has the freedom to share information between agents during training. However,
during execution, each agent must act with only access to its own action-observation history.

VDN and QMIX. VDN [41] and QMIX [31] are Q-learning algorithms for cooperative MARL
tasks with discrete actions. They both aim to efficiently learn a centralised but factored action-value
function Qπtot, using CTDE. To ensure consistency between the centralised and decentralised policies,
VDN and QMIX factor Qπtot assuming additivity and monotonicity, respectively. More specifically,
VDN factors Qπtot into a sum of the per-agent utilities: Qπtot(τ ,u;φ) =

∑n
a=1Q

πa
a (τa, ua;φa).

QMIX, however, represents Qπtot as a continuous monotonic mixing function of each agent’s utilities:
Qπtot(τ ,u, s;φ, ψ) = fψ

(
s,Qπ1

1 (τ1, u1;φ1), . . . , Qπnn (τn, un;φn)
)
, where ∂fψ

∂Qa
≥ 0,∀a ∈ N . This

is sufficient to ensure that the global arg max performed on Qπtot yields the same result as a set
of individual arg max performed on each Qπaa . Here fψ is approximated by a monotonic mixing
network, parameterised by ψ. Monotonicity can be guaranteed by non-negative mixing weights.
These weights are generated by separate hypernetworks [12], which condition on the full state s.
QMIX is trained end-to-end to minimise the following loss:

L(φ, ψ) = ED
[(
ytot −Qπtot(τ ,u, s;φ, ψ)

)2]
, (1)

where the bootstrapping target ytot = r + γmaxu′ Q
π
tot(τ

′,u′, s′;φ−, ψ−). Here r is the global
reward, and φ− and ψ− are parameters of the target Q and mixing network, respectively, as in DQN
[26]. The expectation is estimated with a minibatch of transitions sampled from an experience replay
buffer D [21]. During execution, each agent selects actions greedily with respect to its own Qπaa .

MADDPG. MADDPG [23] is an extension of DDPG [20] to multi-agent settings. It is an actor-
critic, off-policy method that uses the paradigm of CTDE to learn deterministic policies in continuous
action spaces. In MADDPG, a separate actor and critic is learned for each agent, such that each agent
can have its own arbitrary reward function. It is therefore applicable to either cooperative, competitive,
or mixed settings. We assume each agent a has a deterministic policy µa(τa; θa), parameterised by
θa (abbreviated as µa), and let µ = {µa(τa; θa)}na=1 be the set of all agent policies. In MADDPG, a
centralised and monolithic critic that estimates the joint action-value function Qµa (s, u1, . . . , un;φa)
is learned for each agent a separately. The critic is said to be centralised as it utilises information
only available to it during the centralised training phase, the global state s5 and the actions of all
agents, u1, . . . , un, to estimate the joint action-value function Qµa , which is parameterised by φa.
This joint action-value function is trained by minimising the following loss:

L(φa) = ED
[(
ya −Qµa (s, u1, . . . , un;φa)

)2]
, (2)

5If the global state s is not available, the centralised and monolithic critic can condition on the joint
observations or action-observation histories.

3



where ya = ra + γQµa (s′, u′1, . . . , u
′
n|u′a=µa(τ ′a;θ−a );φ

−
a ). Here ra is the reward received by each

agent a, u′1, . . . , u
′
n is the set of target policies with delayed parameters θ−a , and φ−a are the parameters

of the target critic. The replay buffer D contains the transition tuples (s, s′, u1, . . . , un, r1, . . . , rn).

The following policy gradient can be calculated individually to update the policy of each agent a:

∇θaJ(µa) = ED
[
∇θaµa(τa)∇uaQµa (s, u1, . . . , un)

∣∣
ua=µa(τa)

]
, (3)

where the current agent a’s action ua is sampled from its current policy µa when evaluating the joint
action-value function Qµa , while all other agents’ actions are sampled from the replay buffer D.

3 FACMAC

In this section, we propose a new approach called FACtored Multi-Agent Centralised policy gradients
(FACMAC) that uses a centralised but factored critic and a centralised gradient estimator to learn
continuous cooperative tasks. We start by describing the idea of learning a centralised but factored
critic. We then discuss our new centralised gradient estimator and demonstrate its benefit in a simple
continuous matrix game. Finally, we discuss how we adapt our method to discrete cooperative tasks.

3.1 Learning a Centralised but Factored Critic

Learning a centralised and monolithic critic conditioning on the global state and the joint action can
be difficult and/or impractical when the number of agents and/or actions is large [13]. We thus employ
value function factorisation in the multi-agent actor-critic framework to enable scalable learning
of a centralised critic in Dec-POMDPs. Another key advantage of adopting value factorisation in
an actor-critic framework is that, compared to value-based methods, it allows for a more flexible
factorisation as the critic’s design is not constrained. One can employ any type of factorisation,
including nonmonotonic factorisations that value-based methods cannot directly use without forfeiting
decentralisability or introducing other significant algorithmic changes.

Specifically, in FACMAC, all agents share a centralised critic Qµtot that is factored as:

Qµtot(τ ,u, s;φ, ψ) = gψ
(
s, {Qµaa (τa, ua;φa)}na=1

)
, (4)

where φ and φa are parameters of the joint action-value function Qµtot and agent-wise utilities Qµaa ,
respectively. In our canonical implementation which we refer to as FACMAC, gψ is a non-linear
monotonic function parametrised as a mixing network with parameters ψ, as in QMIX [31]. To
evaluate the policy, the centralised but factored critic is trained by minimising the following loss:

L(φ, ψ) = ED
[(
ytot −Qµtot(τ ,u, s;φ, ψ)

)2 ]
, (5)

where ytot = r + γQµtot(τ
′,µ(τ ′;θ−), s′;φ−, ψ−). Here D is the replay buffer, and θ−, φ−, and

ψ− are parameters of the target actors, critic, and mixing network, respectively.

Leveraging the flexibility of our approach, namely the lack of restrictions on the form of the critic,
we also explore a new nonmonotonic factorisation with full representational capacity. The joint
action-value function Qµtot is represented as a non-linear nonmonotonic mixing function of per-agent
utilities Qµaa . This nonmonotonic mixing function is parameterised as a mixing network, with a
similar architecture to gψ in FACMAC, but without the constraint of monotonicity enforced by
using non-negative weights. We refer to this method as FACMAC-nonmonotonic. Additionally, to
better understand the advantages of factoring a centralised critic, we also explore two additional
simpler factorisation schemes. These include factoring the centralised critic Qµtot into a sum of
per-agent utilities Qµaa as in VDN (FACMAC-vdn), and as a sum of Qµaa and a state-dependent bias
(FACMAC-vdn-s). Our value factorisation technique is general and can be readily applied to any
multi-agent actor-critic algorithms that learn centralised and monolithic critics [23, 9, 8].

3.2 Centralised Policy Gradients

To update the decentralised policy of each agent, a naive adaptation of the deterministic policy
gradient used by MADDPG (shown in (3)) is

∇θaJ(µa) = ED
[
∇θaµa(τa)∇uaQ

µ
tot(τ , u1, . . . , un, s)

∣∣
ua=µa(τa)

]
. (6)
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Figure 1: The overall FACMAC architecture. (a) The decentralised policy networks. There is a
sampling step since we sample from the categorical distribution when using discrete actions. (b) The
centralised but factored critic. (c) The non-linear monotonic mixing function.

Compared to the policy gradient used in MADDPG, the updates of all agents’ individual deterministic
policies now depend on the single shared factored critic Qµtot, as opposed to learning and utilising a
monolithic critic Qµa for each agent. However, there are two main problems in both policy gradients.
First, each agent optimises its own policy assuming all other agents’ actions are fixed, which could
cause the agents to converge to sub-optimal policies in which no single agent wishes to change its
action unilaterally. Second, both policy gradients make the corresponding methods vulnerable to
relative overgeneralisation [47] as, when agent a ascends the policy gradient based on Qµa or Qµtot,
only its own action ua is sampled from its current policy µa, while all other agents’ actions are
sampled from the replay buffer D. The other agents’ actions thus might be drastically different from
the actions their current policies would choose. This could cause the agents to converge to sub-optimal
actions that appear to be a better choice when considering the effect of potentially arbitrary actions
from the other collaborating agents.

In FACMAC, we use a new centralised gradient estimator that optimises over the entire joint
action space, rather than optimising over each agent’s actions separately as in both (3) and (6), to
achieve better coordination among agents. In addition, to overcome relative overgeneralisation, when
calculating the policy gradient we sample all actions from all agents’ current policies when evaluating
Qµtot. Our centralised policy gradient can thus be estimated as

∇θJ(µ) = ED
[
∇θµ∇µQµtot(τ , µ1(τ1), . . . , µn(τn), s)

]
, (7)

where µ = {µ1(τ1; θ1), . . . , µn(τn; θn)} is the set of all agents’ current policies and all agents share
the same actor network parameterised by θ. However, it is not a requirement of our method for all
agents to share parameters in this manner.

If the critic factorisation is linear, as in FACMAC-vdn, then the centralised gradient is equivalent to
the per-agent gradients that optimise over each agent’s actions separately. This is explored in more
detail by DOP [46], which restricts the factored critic to be linear to exploit this equivalence. A major
benefit of our method then, is that it does not place any such restrictions on the critic. As remarked
by Lyu et al. [24], merely using a centralised critic with per-agent gradients does not necessarily lead
to better coordination between agents due to the two problems outlined above. Even with a factored
critic, methods that use stochastic policy gradients can still suffer from the problems caused by the
per-agent gradients if a fully factored stochastic policy is used. Our centralised gradient estimator,
which uses deterministic policies and optimises over the entire joint action space, is required in order
to fully take advantage of a centralised critic.

Figure 1 illustrates the overall FACMAC architecture. For each agent a, there is one policy network
that decides which individual action (discrete or continuous) to take. There is also one critic network
for each agent a that estimates the individual agent utilities Qa, which are then combined into the
joint action-value function Qtot via a non-linear monotonic mixing function as in QMIX. Qtot is
then used by our centralised gradient estimator to help the actor update its policy parameters.

To show the benefits of our new centralised gradient estimator, we compare MADDPG with the
centralised policy gradient (CPG) against the original MADDPG on a simple continuous cooperative
matrix game with two agents. Figure 10 in Appendix D.1 illustrates this matrix game. There is a
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(a) (b)

Figure 2: (a) Mean test return on Continuous Matrix Game. (b) Left: Per-agent policy gradient at the
origin. For agent 1 (similarly for agent 2) it is 0 since the gradient term assumes the other agent’s
action to be fixed and thus it only considers the relative improvements along the dotted line (agent
1’s own action space). Right: Our centralised policy gradient correctly determines the gradient for
improving the joint action.

narrow path (shown in red) starting from the origin (0, 0) to (1, 1), in which the reward gradually
increases. Everywhere else there is a small punishment moving away from the origin, increasing
in magnitude further from the origin. Experimental results are shown in Figure 2(a). MADDPG
quickly gets stuck in the local optimum within 200k timesteps, while MADDPG (with CPG) robustly
converges to the optimal policy. Figure 2(b) visualises the differences between the per-agent and
centralised policy gradients, demonstrating that the per-agent policy gradient can be wrong in our
continuous matrix game and our centralised policy gradient is necessary to take advantage of the
centralised critic. In Section 5, we further demonstrate the benefits of our centralised gradient
estimator in more complex tasks.

3.3 Discrete Policy Learning

As FACMAC requires differentiable policies and the sampling process of discrete actions from a cate-
gorical distribution is not differentiable, we use the Gumbel-Softmax estimator [14] to enable efficient
learning of FACMAC on cooperative tasks with discrete actions. The Gumbel-Softmax estimator is a
continuous distribution that approximates discrete samples from a categorical distribution to produce
differentiable samples. Moreover, we use the Straight-Through Gumbel-Softmax Estimator [14] to
ensure the action dynamics during training and evaluation are the same. Specifically, during training,
we sample discrete actions ua from the original categorical distribution in the forward pass, but
use the continuous Gumbel-Softmax sample xa in the backward pass to approximate the gradients:
∇θaua ≈ ∇θaxa. We can then update the agent’s policy using our centralised policy gradient:
∇θJ(x) ≈ ED

[
∇θx∇xQxtot(τ , x1, . . . , xn, s)

]
, where x = {x1, . . . , xn} is the set of continuous

samples that approximates the discrete agent actions. The softmax temperature hyperparameter τ is
set to be 1 in our experiments.

4 Multi-Agent MuJoCo

The evaluation of continuous MARL algorithms has recently been largely limited to the simple
multi-agent particle environments [23]. We believe the lack of diverse continuous benchmarks is
one factor limiting progress in continuous MARL. To demonstrate FACMAC’s scalability to more
complex continuous domains and to stimulate more progress in continuous MARL, we develop
Multi-Agent MuJoCo (MAMuJoCo), a novel benchmark for continuous cooperative multi-agent
robotic control. Starting from the popular fully observable single-agent robotic MuJoCo [42] control
suite included with OpenAI Gym [5], we create a wide variety of novel scenarios in which multiple
agents within a single robot have to solve a task cooperatively.

This design offers important benefits. It facilitates comparisons to existing literature on both the fully
observable single-agent domain [29], as well as settings with low-bandwidth communication [45].
More importantly, it allows for the study of novel MARL algorithms for decentralised coordination
in isolation (scenarios with multiple robots may add confounding factors such as spatial exploration),
which is currently a gap in the research literature. MAMuJoCo also includes scenarios with a
larger and more flexible number of agents, which takes inspiration from modular robotics [49, 19].
Compared to traditional robots, modular robots are more versatile, configurable, and scalable. We thus
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Figure 3: Agent partitionings for MAMuJoCo environments: A) Manyagent Swimmer, B) 3-
Agent Hopper [3x1], C) 2-Agent HalfCheetah [2x3], D) 6-Agent HalfCheetah [6x1], E) 2-Agent
Humanoid and 2-Agent HumanoidStandup (each [1x9,1x8]), F) 2-Agent Walker [2X3], G) 2-Agent
Reacher [2x1], H) 2-Agent Ant [2x4], I) 2-Agent Ant Diag [2x4], J) 4-Agent Ant [4x2], and K)
Manyagent Ant. Colours indicate agent partitionings. Each joint corresponds to a single controllable
motor. Split partitions indicate shared body segments. Square brackets indicate [(number of agents) x
(joints per agent)]. Joint IDs are in order of definition in the corresponding OpenAI Gym XML asset
files [5]. Global joints indicate degrees of freedom of the center of mass of the composite robotic
agent.

develop two scenarios named ManyAgent Swimmer and ManyAgent Ant, in which one can configure
an arbitrarily large number of agents (within the memory limits), each controlling a consecutive
segment of arbitrary length.

Single-robot multi-agent tasks in MAMuJoCo arise by first representing a given single robotic agent
as a body graph, where vertices (joints) are connected by adjacent edges (body segments), as shown
in Figure 3. We then partition the body graph into disjoint sub-graphs, one for each agent, each of
which contains one or more joints that can be controlled. Note that in ManyAgent Swimmer (see
Figure 3A) and ManyAgent Ant (see Figure 3K), the number of agents are not limited by the given
single robotic agent. See Appendix B for more details about MAMuJoCo.

5 Experimental Results

In this section we present our experimental results on our cooperative variants of the continuous
simple tag environment introduced by Lowe et al. [23] (we refer to this environment as Continuous
Predator-Prey), our novel continuous benchmark MAMuJoCo, and the challenging SMAC6 [35]
benchmark with discrete action spaces. In discrete cooperative tasks, we compare with state-of-the-art
multi-agent actor-critic algorithms MADDPG [23], COMA [9], CentralV [9], DOP [46], VDAC-mix
[40], and value-based methods QMIX [31] and QPLEX [44]. In continuous cooperative tasks, we
compare with MADDPG [23] and independent DDPG (IDDPG), as well as COVDN and COMIX,
two novel baselines described below. We also explore different forms of critic factorisation to better
understand the advantages of factoring a centralised critic. More details about the environments,
experimental setup, and training details are included in Appendix D and E. Code is available at
https://github.com/oxwhirl/facmac.

COVDN and COMIX. We find that not many multi-agent value-based methods work off the shelf
with continuous actions. To compare FACMAC against value-based approaches in continuous
cooperative tasks, we use existing continuousQ-learning approaches in single-agent settings to extend
VDN and QMIX to continuous action spaces. Specifically, we introduce COVDN and COMIX, which
use VDN-style and QMIX-style factorisation respectively and both perform approximate greedy
action selection using the cross-entropy method (CEM) [7]. CEM is a sampling-based derivative-free

6We utilise SC2.4.10., which is used by the latest PyMARL [35] framework. The original results reported in
Samvelyan et al. [35] and Rashid et al. [33] use SC2.4.6. Performance is not always comparable across versions.
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(a) 3 agents and 1 prey (b) 6 agents and 2 preys (c) 9 agents and 3 preys

Figure 4: Mean episode return on Continuous Predator-Prey with different number of agents and
preys. The mean across 5 seeds is plotted and the 95% confidence interval is shown shaded. The
numbers in square brackets in the figure legend represent the number of random seeds used to run
each method (similarly for all other figures).

Figure 5: Mean episode return on different MAMuJoCo tasks. In ManyAgent Swimmer, we configure
the number of agents to be 10, each controlling a consecutive segment of length 2. The mean across
7 seeds is plotted and the 95% confidence interval is shown shaded.

heuristic search method that has been successfully used to find approximate maxima of nonconvex
Q-networks in single-agent robotic control tasks [15]. The centralised but factored Qtot allows us to
use CEM to sample actions for each agent independently and to use the per-agent utility Qa to guide
the selection of maximal actions. We do not consider COVDN and COMIX significant algorithmic
contributions but instead merely baseline algorithms. See Appendix C for more details about them.

FACMAC outperforms MADDPG and other baselines in both discrete and continuous action
tasks. Figure 4 and 5 illustrate the mean episode return attained by different methods on Continuous
Predator-Prey with varying number of agents and different MAMuJoCo tasks, respectively. We
can see that FACMAC significantly outperforms MADDPG on all these continuous cooperative
tasks, both in terms of absolute performance and learning speed. On discrete SMAC tasks, Figure 6
shows that FACMAC performs significantly better than MADDPG on 4 out of 6 maps we tested, and
achieves similar performance to MADDPG on the other 2 maps. Additionally, on all 6 SMAC maps,
FACMAC significantly outperforms all multi-agent actor-critic baselines (COMA, CentralV, DOP,
and VDAC-mix), while DOP is recently claimed to be the first multi-agent actor-critic method that
outperforms state-of-the-art valued-based methods on SMAC. FACMAC is also competitive with
state-of-the-art value-based methods (QMIX and QPLEX), with significantly better performance
on MMM, bane_vs_bane, MMM2, and 27m_vs_30m. These results demonstrate the benefits of our
method for improving performance in challenging cooperative tasks with discrete and continuous
action spaces.

In Continuous Predator-Prey, FACMAC-vdn scales better than FACMAC when the number of agents
increases. However, on MAMuJoCo, FACMAC-vdn performs drastically worse than FACMAC in
2-Agent Humanoid and ManyAgent Swimmer (with 10 agents), demonstrating the necessity of the
non-linear mixing of agent utilities and conditioning on the central state information in order to
achieve competitive performance in such tasks. Furthermore, on SMAC, Figure 13 in Appendix
F shows that FACMAC is noticeably more stable than FACMAC-vdn and FACMAC-vdn-s across
different maps, and achieves significantly better performance on the super hard map MMM2.

Interestingly, we find that FACMAC performs similarly to COMIX on both Continuous Predator-Prey
and MAMuJoCo tasks. As FACMAC and COMIX use the same value factorisation as in QMIX
and are both off-policy, this suggests that, in these continuous cooperative tasks, factorisation of the

8



Figure 6: Median test win % on six different SMAC maps, including 2s3z (easy), MMM (easy),
2c_vs_64zg (hard), bane_vs_bane (hard), MMM2 (super hard), and 27m_vs_30m (super hard). The
median across 5 seeds is plotted and the 25− 75% percentiles is shown shaded. The performance of
the heuristic-based algorithm is shown as a dashed line. We report the median instead of the mean as
recommended by Samvelyan et al. [35] in order to avoid the effect of any outliers.

joint Q-value function plays a greater role in performance than the underlying algorithmic choices.
On SMAC, however, FACMAC performs significantly better than QMIX on MMM, bane_vs_bane,
MMM2, and 27m_vs_30m. For instance, on bane_vs_bane, a task with 24 agents, while QMIX
struggles to find the optimal policy with 2 million timesteps, FACMAC, with exactly the same value
factorisation, can quickly recover the optimal policy and achieve 100% test win rate. This shows the
convergence advantages of policy gradient methods in this type of multi-agent settings [43].

FACMAC scales better as the number of agents (and/or actions) and the complexity of the task
increases. As shown in Figure 4(b) and 4(c), MADDPG performs poorly if we increase the number
of agents in Continuous Predator-Prey, while both FACMAC and FACMAC-vdn achieve significantly
better performance. The monolithic critic in MADDPG simply concatenates all agents’ observations
into a single input vector, which can be quite large when there are many agents and/or entities and
make it more difficult to learn a good critic. Factoring the critic enables scalable critic learning,
by combining individual agent utilities that condition on much smaller observations into a joint
action-value function. On MAMuJoCo (shown in Figure 5), similarly, the largest performance gap
between FACMAC and MADDPG can be seen on ManyAgent Swimmer (with 10 agents), a task
with the largest number of agents among three MAMuJoCo tasks tested.

On SMAC (shown in Figure 6), the largest performance gap between FACMAC and MADDPG
can be seen on the challenging MMM2 and 27m_vs_30m with a large number of agents, which are
classified as 2 super hard SMAC maps due to current methods’ poor performance [35]. We can see
that FACMAC is able to learn to consistently defeat the enemy, whereas MADDPG fails to learn
anything useful in both tasks. The second largest performance gap between FACMAC and MADDPG
can be seen on the hard map 2c_vs_64zg, where MADDPG not only performs significantly worse but
also exhibits significantly more variance than FACMAC across seeds. While there are only 2 agents
in this scenario, the number of actions each agent can choose is the largest among all 6 maps tested as
there are 64 enemies. These results further demonstrate that FACMAC scales better when the number
of agents (and/or actions) and the complexity of the tasks increases.

Factoring the critic can better take advantage of our centralised gradient estimator to optimise
the agent policies when the number of agents and/or actions is large. We conduct ablation
experiments to investigate the influence of factoring the critic and using the centralised gradient
estimator in our method. FACMAC (without CPG) is our method without the centralised policy
gradient. It uses a naive adaptation of the deterministic policy gradient used in MADDPG (shown in
(6)). Thus, the only difference between FACMAC (without CPG) and MADDPG is that the previous
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one learns a non-linearly factored critic while the latter one learns a monolithic critic. We also
evaluate MADDPG with our centralised policy gradient and refer to it as MADDPG (with CPG).

Figure 7: Ablations for different FACMAC com-
ponents on SMAC and MAMuJoCo tasks.

Figure 7 shows the ablation results on SMAC
and MAMuJoCo. We can see that FACMAC
(without CPG) performs significantly better than
MADDPG on both SMAC maps tested, demon-
strating the advantages of factoring the critic in
challenging coordination problems. With the cen-
tralised policy gradient, MADDPG (with CPG)
performs significantly better than MADDPG on
2c_vs_64zg. However, on the harder map MMM2,
MADDPG with both policy gradients fail to learn
anything useful. By contrast, FACMAC signifi-
cantly outperforms FACMAC (without CPG) on
MMM2, and has lower variance across seeds on
2c_vs_64zg. Furthermore, on ManyAgent Swim-
mer with 2 agents, our centralised gradient esti-
mator does not affect the performance of both MADDPG and FACMAC. However, on the same
task with 10 agents, using the centralised gradient estimator significantly improves the learning
performance when learning a factored critic. These results demonstrate that factoring the critic can
better take advantage of our centralised gradient estimator to optimise the agent policies when the
number of agents and/or actions is large.

Figure 8: Mean episode return on (Left) Contin-
uous Matrix Game and (Right) a variant of our
Continuous Predator-Prey task (with 3 agents and
1 prey) with nonmonotonic value functions.

Nonmonotonically factored critics can solve
tasks that cannot be solved with monolithic
or monotonically factored critics. In our
multi-agent actor-critic framework, there are no
inherent constraints on factoring the critic, we
thus also employ a nonmonotonic factorisation
and refer to it as FACMAC-nonmonotonic (as
discussed in Section 3.1). As shown in Figure
8 (left), on our continuous matrix game (as dis-
cussed in Section 3.2), FACMAC-nonmonotonic
can robustly learn the optimal policy, while both
FACMAC and MADDPG converge to some sub-optimal policy within 200k timesteps. On a variant
of Continuous Predator-Prey task (see Appendix D.2 for more details about this task) with non-
monotonic value functions (i.e., an agent’s ordering over its own actions depends on other agents’
actions [25]), Figure 8 (right) shows that both FACMAC and MADDPG fail to learn anything useful,
while FACMAC-nonmonotonic successfully learns to capture the prey. These results demonstrate
that nonmonotonically factored critics can solve tasks that cannot be solved with monolithic or
monotonically factored critics.

It is important to note that the relative performance of FACMAC and FACMAC-nonmonotonic is
task dependent. On the original Continuous Predator-Prey task (with 3 agents and 1 prey), FACMAC-
nonmonotonic yields similar performance to FACMAC (see Figure 12 in Appendix F). On SMAC
(see Figure 13 in Appendix F), FACMAC-nonmonotonic performs similarly to FACMAC on easy
maps, but exhibits significantly worse performance on harder maps. This shows that, in this type of
tasks, using an unconstrained factored critic could lead to an increase in learning difficulty. We thus
expect FACMAC-nonmonotonic to be more useful in tasks with nonmonotonic value functions.

6 Conclusion

This paper presented FACMAC, a multi-agent actor-critic method that learns decentralised policies
with a centralised but factored critic, working for both discrete and continuous cooperative tasks. We
showed the advantages of both factoring the critic and using the new centralised gradient estimator in
our approach. We also introduced a novel benchmark suite MAMuJoCo to demonstrate FACMAC’s
scalability to more complex continuous tasks. Our results on three different domains demonstrated
FACMAC’s superior performance over existing MARL algorithms. Future work will explore more
forms of nonmonotonic factorisation to tackle tasks with nonmonotonic value functions.
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