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Abstract

Model-based reinforcement learning uses a learned dynamics model to imagine actions and
select those with the best expected outcomes. An experience replay buffer collects the out-
comes of all actions executed in the environment, which is then used to iteratively train the
dynamics model. However, as the complexity and scale of tasks increase, training times and
memory requirements can grow drastically without necessarily retaining useful experiences.
Continual learning proposes a more realistic scenario where tasks are learned in sequence,
and the replay buffer can help mitigate catastrophic forgetting. However, it is not realis-
tic to expect the buffer to infinitely grow as the sequence advances. Furthermore, storing
every single experience executed in the environment does not necessarily provide a more
accurate model. We argue that the replay buffer needs to have the minimal necessary size
to retain relevant experiences that cover both common and rare states. Therefore, we pro-
pose using an uncertainty-based replay buffer filtering to enable an effective implementation
of continual learning agents using model-based reinforcement learning. We show that the
combination of the proposed strategies leads to reduced training times, smaller replay buffer
size, and less catastrophic forgetting, all while maintaining performance.

1 Introduction

Model-Based Reinforcement Learning (MBRL) has gained popularity due to its tendency to have a lower
sample complexity compared to model-free algorithms (Lillicrap et al., 2015; Haarnoja et al., 2018). MBRL
agents function by building a model of the environment in order to predict trajectories of future states
based on imagined actions (Hafner et al., 2019). An MBRL agent maintains an extensive history of its
experiences, its actions in response to them, and their resulting reward in an experience replay buffer. This
stored information is used to train a dynamics model that iteratively predicts the outcomes of the imagined
actions into a trajectory of future states. At each time step, the agent executes only the first action in the
trajectory and then the model re-imagines a new trajectory given that result (Nagabandi et al., 2018; Rao,
2010; Chua et al., 2018).

By leveraging internal models to anticipate and plan, MBRL fosters dynamic adaptation to changing en-
vironments (Nagabandi et al., 2019). This adaptability makes MBRL a promising approach for continual
learning scenarios. For many real-world applications, tasks are presented in a sequence of arbitrary length,
accruing repetitive experiences which need to be learned efficiently. In most cases when the sequence is long,
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Figure 1: Workflow. The blue boxes showcase a single-task MBRL setting (Sec. 3, 4), and the task sequence
describes a continual reinforcement learning setting (Sec. 6, 7). Highlighted in red, our method (UBER,
Sec. 5) filters data added to the buffer.

it becomes unfeasible or inefficient to store all experiences and train the model on all the multiple tasks at
once. Therefore, continual learning (CL) proposes to learn the tasks one at a time as they are presented to
the agent (Mnih et al., 2013; Normandin et al., 2021). However, when learning a single task without any
further help, performance in previous tasks decreases, which is known as catastrophic forgetting (McCloskey
& Cohen, 1989; Kirkpatrick et al., 2017). A way to mitigate catastrophic forgetting is the usage of an
experience replay buffer, which retains experiences from previous tasks used to enhance the training of the
model and avoid forgetting previously learned tasks (Masana et al., 2022; Normandin et al., 2021).

Furthermore, extending training becomes a concern when accumulating similar or repetitive experiences in
an unlimited replay buffer. Schaul et al. (2016) showed that transitions in a replay buffer can be more
or less surprising, redundant, or task-relevant, potentially leading to a buffer inundated with redundant
information which consequently under-represents other important states. Conversely, a buffer that is too
small will be unlikely to retain enough relevant experiences, leading to minimal or no impact on the training
of the model (Isele & Cosgun, 2018). Ideally, the size of the buffer should be the minimal amount required
to capture sufficient detail for all relevant states to be learned (Zhang & Sutton, 2017). Note that, in the
continual learning setting, knowing a priori all relevant states is unfeasible without extensive exploration or
having access to future knowledge.

We argue that these problems can be subverted by employing a strategy that avoids retaining experiences in
the buffer which the model has already sufficiently mastered. Therefore, in this work we propose a method,
depicted in Figure 1, that determines what gets admitted into the replay buffer in the first place, as measured
by the uncertainty of the model when learning them. Only those experiences which provide value to the
model are added, thus also limiting the size of the buffer to the minimal amount needed to avoid forgetting
previously learned tasks. We further evaluate our method in a proposed continual learning setting that
processes a series of tasks sequentially and aims to mitigate forgetting. Therefore, our contributions are:

• Development of a method for estimating model uncertainty when predicting imagined trajectories.

• A novel approach to retain relevant experiences in the replay buffer.

• Introduction of two racing-related environments with multiple circuits for sequential task learning.

• Evaluation of generalization and catastrophic forgetting in a continual learning setting.

2



Published in Transactions on Machine Learning Research (02/2025)

The adoption of these strategies enables the MBRL model to self-manage the buffer size, including under
the CL setting. We consider these strategies to be critical as a starting point toward the implementation of
effective and stable continual learning agents.

The remaining of this manuscript is divided as follows. Details about related work are presented in Section 2.
After, this manuscript is divided into two main parts: single task MBRL and our proposed method to filter
the experiences retained in the replay buffer, and the expansion towards continual learning settings. First,
Section 3 provides background on MBRL methods, followed by a motivation experiment which highlights the
importance of the replay buffer size in Section 4, and our proposed uncertainty-based filtering in Section 5.
Second, we expand MBRL adaptation towards CL settings in Section 6, and provide an experimental analysis
in Section 7. Finally, we provide discussion of the limitations and conclusions in Section 8.

2 Related Work

Model-based Reinforcement Learning. MBRL has been applied in real-world control tasks, such
as robotics (Zhu et al., 2020). Compared to model-free approaches, MBRL tends to be more sample-
efficient (Deisenroth et al., 2013). MBRL can be grouped into four main categories (Zhu et al., 2020).
Dyna-style algorithms optimize policies using samples from a learned world model (Sutton, 1990). Model-
augmented value expansion methods, such as MVE (Oh et al., 2017), use model-based rollouts to enhance
targets for model-free temporal difference updates. Analytic value gradients can be used when a differentiable
world model is available, which adjust the policy through gradients (e.g. using Gaussian processes for the
dynamics model (Deisenroth & Rasmussen, 2011)). Model predictive control (MPC) and shooting methods
use planning to select actions, but have the drawback of being computationally intensive (Rao, 2010; Chua
et al., 2018). The present work belongs to the last group.

Neural networks efficiently reduce sample complexity for problems with high-dimensional non-linear dynam-
ics (Nagabandi et al., 2018). MBRL approaches need to induce potential actions which will be evaluated
with a dynamics model to choose those with best reward. Random shooting MPC methods artificially
generate large number of actions and can be used to select optimal actions (Camacho et al., 2004). Neu-
ral networks are a suitable alternative to families of equations used to model the environment dynamics
in MBRL (Williams et al., 2017), although they tend to make overconfident incorrect predictions. Thus,
quantifying predictive uncertainty becomes crucial. Ensembles of probabilistic networks proved a good alter-
native to their Bayesian counterparts in determining predictive uncertainty (Lakshminarayanan et al., 2016).
Furthermore, an extensive analysis about the types of model that better estimate uncertainty in the MBRL
setting favored ensembles of probabilistic networks (Chua et al., 2018). The authors identified two types
of uncertainty: aleatoric (inherent to the process) and epistemic (resulting from datasets with too few data
points). Combining uncertainty aware probabilistic ensembles in the trajectory sampling of the MPC with a
cross entropy controller demonstrated asymptotic performance comparable to SAC but with sample efficient
convergence. The MPC, however, is still computationally expensive (Chua et al., 2018; Zhu et al., 2020).
Quantifying predictive uncertainty provides a measure of confidence in an imagined trajectory. Remonda
et al. (2021) utilized this concept to avoid unnecessary replanning by relying on sequences of actions the
model is confident in, thereby reducing computations. Similarly, our approach aims to determine reliable
predictions from the dynamics model in relation to the imagined actions, but as a foundation for managing
the growth of the experience replay buffer.

Use of Experience Replay in MBRL. While an uncertainty-aware dynamics model helps to mitigate
the risks of prediction overconfidence, other challenges remain, such as the shifting of the state distribution
as the model trains. Experience replay was introduced by Lin (1992), and has been further improved upon.
One variation of this is prioritized experience replay (Schaul et al., 2016), which aims to make learning
more efficient by prioritizing transitions that are more relevant for learning, rather than sampling transitions
uniformly from the replay buffer, as typically done in reinforcement learning. This method improves how
the model samples experiences from the already-filled replay buffer, but does not address how the replay
buffer is filled in the first place. Additionally, neither work addresses the importance of the size of the replay
buffer as a hyperparameter (Zhang & Sutton, 2017). Our approach limits the replay buffer by only adding
experiences that should improve future prediction capacity and keeps training time bounded to a minimum.
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Task-Agnostic Continual Learning. We assume that agents can train on a sequence of relatively similar
tasks of arbitrary length. Specifically, we aim for continuous task-agnostic reinforcement learning (Nor-
mandin et al., 2021), where task boundaries are not observed and transitions may occur gradually (Zeno
et al., 2021). However, we specifically focus on the incremental case where the continual learning system
learns each task from a sequence without access to previous tasks before receiving a new one. Xie & Finn
(2021) develop a method that exploits data collected from previous tasks using importance sampling, al-
though with the requirement of the agent knowing when tasks change. In our case, the task identifier is never
available during training and the model has no explicit information about task transitions. In such context,
an incremental learner can be seen as an autonomous agent learning over an endless stream of tasks, where
the agent has to: i) continually adapt in a non-stationary environment, ii) retain memories which are useful,
iii) manage compute and memory resources over a long period of time (Khetarpal et al., 2020; Thrun, 1994).
Our proposed approach satisfies these three requirements. Ammar et al. (2015) focus on agents that acquire
knowledge incrementally by learning multiple tasks consecutively over their lifetime. Their approach rapidly
learns high performance safe control policies based on previously learned knowledge and safety constraints on
each task, accumulating knowledge over multiple consecutive tasks to optimize overall performance. Knowl-
edge is shared via a latent basis that captures reusable components of the learned policies. The latent basis
is then updated with newly acquired knowledge. This results in an accelerated learning of new task and an
improvement in the performance of existing models without retraining on their respective tasks.

Several works propose task-agnostic methods that do not require task information to perform continual
reinforcement learning. They propose strategies to address the challenge of deciding which experiences
to discard from a filled experience replay, a departure from the conventional First-In-First-Out (FIFO)
approach commonly adopted. Isele & Cosgun (2018) augmented the standard FIFO buffer by selectively
storing experiences over four retaining strategies: favoring surprise, prioritizing high rewards, aligning with
the global training distribution (reservoir sampling (Vitter, 1985)), and ensuring broad coverage of the
state space. They found that reservoir sampling effectively prevents catastrophic forgetting. Rolnick et al.
(2019) proposed the CLEAR method. CLEAR, utilizes experience replay buffers to prevent forgetting.
The method involves actor-critic training, integrating both new and replayed experiences. This approach
adopts distributed training based on the Importance Weighted Actor-Learner Architecture (Espeholt et al.,
2018). A single learning network receives both new and replayed experiences from multiple acting networks,
which have their weights updated asynchronously to align with the learning network. Training is done using
the V-Trace off-policy learning algorithm, applying truncated importance weights to adjust for off-policy
distribution shifts. Kessler et al. (2023) demonstrated that MBRL is appropriate for the continual learning
setting, evaluating strategies both for adding to and sampling from the buffer. Their findings indicate that
reservoir sampling facilitates a balanced representation of experiences in the replay buffer, which in turn
helps to mitigate forgetting. However, these works address the problem of sampling and discarding data
from a replay buffer. In contrast, our focus is on determining what gets admitted into the replay buffer in
the first place, which does not require setting a replay buffer size in advance.

3 Model Based Reinforcement Learning

3.1 Preliminaries

We consider unknown stochastic dynamical systems which we formulate as a finite-horizon Markov Decision
Process (Bellman, 1957). At each time t, the agent is at a state st ∈ S, executes an action at ∈ A, and receives
from the environment both a reward rt = r(st, at) and a new state st+1 according to a transition function
f : S × A → S. When training a reinforcement learning policy, the goal is to maximize the accumulated
reward obtained from the environment. This can be adapted to the infinite horizon setting by maximizing
the sum of discounted rewards Rt =

∑∞
i=t γ

(i−t)r(si, ai), where γ ∈ [0, 1].

Instead, the random shooting MPC family of MBRL algorithms artificially generates a huge amount of
potential future actions, given a current state st, to select the optimal action. MBRL attempts to learn a
discrete time dynamics model f̂ = (st, at) to predict the future state ŝt+∆t

of executing action at at state
st. To reach a state into the future, the dynamics model iteratively evaluates sequences of actions, at:t+H =
(at, . . . , at+H−1) over a longer horizon H, to maximize their discounted reward

∑t+H−1
i=t γ(i−t)r(si, ai). These
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sequences of actions with predicted outcomes are called imagined trajectories. The dynamics model f̂ is an
inaccurate representation of the transition function f and the future is only partially observable. So, the
controller executes only a single action at in the trajectory before solving the optimization again with the
updated state st+1. The process is formalized in Algorithm 1. The dynamics model f̂θ is learned with data
Denv, collected on the fly. With f̂θ, the simulator starts and the controller is called to plan the best trajectory
resulting in a∗

t:t+H . Only the first action of the trajectory a∗
t is executed in the environment and the rest

is discarded. This is repeated for TH number of steps. The data collected from the environment is added
to Denv and f̂θ is trained further. The process repeats for N iterations. Note that generating imagined
trajectories requires subsequent inference of the dynamics model to chain predicted future states st+n with
future actions up to the task horizon, making it only partially parallelizable.

Algorithm 1 MBRL
1: Init D with one iteration of a random controller
2: for Iteration i = 1 To N do
3: Train f̂ given D
4: for t = 0 To TH do
5: a∗

t:t+H ← ComputeOptimalT rajectory(st, f̂)
6: Execute a∗

t from optimal actions a∗
t:t+H

7: D ← D ∪ {st, a∗
t , st+1} // Record outcome

8: end for
9: end for

Dynamics model. We use a probabilistic model to
model a probability distribution of next state given
current state and an action. To be specific, we use
a regression model realized using a neural network
similar to Lakshminarayanan et al. (2016) and Chua
et al. (2018). The last layer of the model outputs
parameters of a Gaussian distribution that models
the aleatoric uncertainty (the uncertainty due to the
randomness of the environment). Its parameters are
learned together with the parameters of the neural
network. To model the epistemic uncertainty (the
uncertainty of the dynamics model due to generalization errors), we use ensembles with bagging where the
members of the ensemble are identical and only differ in the initial weight values. Each element of the
ensemble has as input the current state st and action at and is trained to predict the difference between st

and st+1, instead of directly predicting the next step. Thus the learning objective for the dynamics model
becomes, ∆s = st+1 − st. f̂θ outputs the probability distribution of the future state ps(t+1) from which we
can sample the future step and its confidence ŝ, ŝσ = f̂θ(s, [a]). Where the confidence sσ captures both,
epistemic and aleatoric uncertainty.

Algorithm 2 Get Optimal Trajectory - Planning
1: Input: current state sinit, dynamics model f̂
2: Initialize P particles, sp

τ , with the initial state, sinit

3: for at:t+H ∼ CEM(.), 1 To CEMSamples do
4: Propagate state particles sp

τ using TS and f̂ |{D, at:t+H}

5: Evaluate actions as
t+H∑
τ=t

1
P

∑
p = 1P r(sp

τ , aτ )

6: Update CEM(.) distribution
7: end for
8: return a∗

t:t+H

Trajectory Generation. Each ensemble element
outputs the parameters of a normal distribution. To
generate trajectories, P particles are created from
the current state, sp

t = st, which are then propa-
gated by: sp

t+1 ∼ f̂b(sp
t , at), using a particular boot-

strap element b ∈ {1, ..., B}. Chua et al. (2018) ex-
perimented with diverse methods to propagate par-
ticles through the ensemble. The TS∞ method de-
livered the best results. It refers to particles never
changing the initial bootstrap element. Doing so, re-
sults in having both uncertainties separated at the
end of the trajectory. Specifically, aleatoric state variance is the average variance of particles of same boot-
strap, whilst epistemic state variance is the variance of the average of particles of same bootstrap indexes.
We use also TS∞.

Planning. To select the best course of action leading to sH , MBRL generates a large number of trajectories
K and evaluates them in terms of reward. To find the actions that maximize reward, we used the cross
entropy method (CEM) (Botev et al., 2013), an algorithm for solving optimization problems based on cross-
entropy minimization. CEM gradually changes the sampling distribution of the random search so that the
rare-event is more likely to occur and estimates a sequence of sampling distributions that converges to a
distribution with probability mass concentrated in a region of near-optimal solutions. Algorithm 2 shows
the use of CEM to get the optimal sequence of actions a∗

t:t+H

Reliable imagination. Random shooting MBRL methods are computationally intensive, as they require
evaluating a sequence of actions with the dynamics model for each trajectory generated. BICHO (Remonda
et al., 2021) is a method that improves the runtime and training time of MBRL by reducing the computational
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cost. It does this by continuing to act on an imagined trajectory until it can no longer be trusted, and then
replans. The BICHO method employs a probabilistic approach to determining the reliability of a trajectory
and decide when to replan. This allows for efficient exploitation of trusted trajectories while reducing
computational costs. Our approach exploits the BICHO mechanism to evaluate the reliability of trajectories
in order to filter out unnecessary additions to the replay buffer.

3.2 Baseline methods

We describe and compare the relevant baseline methods used in this work, highlighting key properties and
their respective implementations (see also Table 1).

• PETs: Standard shooting MBRL which uses a replay buffer of infinite size. We use the imple-
mentation from the authors of PETs (Chua et al., 2018). It represents an upper bound to assess
performance when retaining everything in the buffer.

• Scratch: We also include a baseline in which the model is trained from scratch for each individual
task of the training tasks set. This means that once the model is trained on a particular task, we
evaluate its performance on a separate test task set. Prior to transitioning to a new task, we discard
both the model parameters and the experiences present in the replay buffer associated with that
task. This baseline serves the purpose of demonstrating the model’s performance without the benefit
of additional experiences obtained from solving other tasks. For this baseline, we utilize an infinite
buffer allocated for each task. As a result, we anticipate that this approach will yield the lowest
performance scores in terms of overall performance, generalization capability, and forgetting.

• VanillaFIFO: To manage the continuously growing experience replay buffer, we evaluate a straight-
forward first-in, first-out (FIFO) strategy. Once the buffer size is fixed, new experiences are added
until the buffer is full. Subsequently, for each new experience added, the oldest experience in the
buffer is removed to accommodate the new one. We also evaluate the impact of different buffer sizes.

• Adaptative FIFO (A-FIFO): Since VanillaFIFO retains only the latest experiences, it has a bias
towards more recent tasks. Following inspiration from other online and offline incremental learning
settings (Prabhu et al., 2020; Masana et al., 2022; Mai et al., 2022), we propose to reduce an adaptive
version of the FIFO (adaptive-FIFO) which always retains the latest experiences from previous tasks
equally distributed among all the tasks seen. Given a reply buffer of E maximum experiences, at
task T we store a maximum of E/T experiences for each task, following the FIFO strategy. When
a new task is added, the necessary oldest memories from each task are removed to make room for
the new task experiences. We consider that these baselines are a more representative strategy for
an continual learning setting, although it does not achieve all the same properties as our proposed
approach. While Adaptive-FIFO offers a more balanced strategy for a continual learning setting,
it has two limitations when comparing to our method. Task number awareness: i. The method
requires prior knowledge of the total number of tasks, which is not always feasible in real-world,
dynamic scenarios. ii. Task Transition Awareness: Adaptive-FIFO requires an indication or marker
of when a task transition occurs. This awareness is often unrealistic, as transitions in CL can be
subtle or even seamless.

• Reservoir sampling (RS) (Isele & Cosgun, 2018; Vitter, 1985) augments VanillaFIFO by selec-
tively storing experiences aligning with the global training distribution to ensure coverage of the
state space. Isele & Cosgun (2018) found that RS effectively prevents catastrophic forgetting.

3.3 Environments

We evaluate the methods in the CartPole and Reacher environment provided by the MuJoCo (Todorov et al.,
2012) physics engine. Additionally, we introduce our own proposed environments related to racing, including
Masspoint and a Non-linear Bicycle model. The choice of CartPole and Reacher environments is based on
their established use in RL research, allowing for meaningful comparisons with existing approaches. By
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introducing our own racing-related environments, we can further assess the methods’ effectiveness in more
complex scenarios, which are well-suited for continual RL. (see details in the Appendix).

CartPole (CP). Inverted pendulum problem, which involves balancing a pole on a cart. It has movable
cart that travels along a frictionless track. On top of the car a pole with one end attached to the cart, is
standing upright. The goal is to keep the pole upright for as long as possible by moving the cart left or right.
The agent receives a reward of 1 for every time step the pole remains upright.

Reacher (RE). A robotic arm, with 6 Degrees of Freedom, aiming to reach a target position in space.
Given the multiple joints and their rotations. The reward function aims to minimize the distance between
the end effector and the target position.

Masspoint (MP). An extended version of the Masspoint environment proposed by Thananjeyan et al.
(2020). It is a navigation task in which a point mass moves toward a specified goal. We modified the agent’s
goal so that it must move as quickly as possible without deviating from a given path. The complexity of
each task is determined by the geometry of the path. The reward is set to maximize speed while minimizing
deviation from the path.

Non-linear Bicycle Model (Bike). This model captures vehicle dynamics with greater fidelity and
features higher action and observation dimensions compared to MassPoint. It considers aerodynamics, tire
dynamics, and rolling resistance. Additionally, we have integrated track boundaries to enhance the realism
and challenge of the simulation. The control variables include steering and a combined throttle and brake
system. The reward system is designed to maximize speed, and the episode ends if the car goes off track.

4 Motivation experiment
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Figure 2: Performance of algorithms in (top to bottom) Cartpole, Reacher, and Masspoint. From left to
right column: episode reward, time per episode (s), cumulative number of observations stored in the replay
buffer. The x-axis is the number of training episodes.

In this section, we present a motivational experiment designed to analyze the growth of the replay buffer
and training time when utilizing a typical MBRL method with different buffer sizes. For this experiment, we
specifically employ PETs (Chua et al., 2018) on a single task. This setup intentionally mimics a controlled
environment with abundant and redundant data, demonstrating how standard MBRL algorithms handle
such redundancies. We aim to highlight why a standard MBRL technique falls short for continual learning.
We compare an unbounded buffer size and a FIFO with different buffer sizes. We evaluate performance
based on per-episode reward, per-episode wall time, and replay buffer size.

Results in the CP, RE, and Masspoint environments are depicted in Figure 2 top, middle, and bottom, re-
spectively. Figure 2-left shows comparable reward per episode, while FIFO variants exhibit a cyclic reward,
which we attribute to forgetting and regaining experiences. Results for reward in CP and RE are consistent.
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FIFO rewards for Masspoint are more stable. The training time per episode (Figure 2-middle) for Vanil-
laFIFO variants stabilizes after reaching the maximum buffer size. The wall time for PETs exhibits linear
growth and takes substantially longer than FIFO to complete an episode (i.e., it takes longer to update the
model as the replay buffer grows linearly).

These results shed light on the stability issues from an under-tuned replay buffer within a MBRL context,
as well as the increasing training time when employing an excessively large replay buffer. These findings
underscore the challenges that these issues pose to the practical applicability of MBRL in CL scenarios.
Namely, the lack of memory management consequently hinders compute management and impairs learning
as the agent cannot determine which experiences are useful.

Adding experiences to the replay buffer. We posit that it would be preferable to retain only those
experiences that could not be adequately anticipated by the model during each episode in the environment.
Essentially, we would like to only add to the replay buffer observations for which the model issued a poor
prediction, as retaining redundant experiences will fill the buffer with unnecessary data and reduce its
capacity to store meaningful, hard-to-predict observations. On the contrary, we would like to avoid filling
the replay buffer or updating the model on observations that the model is good at predicting. We contend
that these two elements will lead eventually to a balanced replay buffer, which will contain only relevant
observations and will contribute to the objective of incremental learning. In the following section, we further
describe our proposed approach.

5 UBER: Uncertainty-Based Experience Replay

Continual reinforcement learning requires the MBRL agent to adapt in a non-stationary environment, re-
taining memories that are useful whilst avoiding catastrophic forgetting, and effectively manage compute
and memory resources over a long period of time (Khetarpal et al., 2020). We address these issues with our
proposed method, UBER.

We propose Algorithm 3 for selecting which experiences to include in the replay buffer. In the event of
an unreliable future, the algorithm replans the future trajectory and adds the current observation to the
buffer. By doing so, unnecessary replanning and additions to the buffer are avoided, reducing computation
time and the size of the buffer. The optimal actions a∗

t:t+H are calculated using the GetOptimalTrajectory
function (as outlined in Algorithm 2) based on the current state of the environment st and the model f̂ .
The future trajectory and its uncertainty, p∗

r(t+1:t+1+H), are then determined by using a∗
t:t+H and st with f̂ .

The flag unreliableModel is set to true when the algorithm determines that the imagined trajectory is not
trustworthy. Depending on its value, further calculations and additions to the replay buffer may be avoided,
reducing computation time and the size of the buffer. If unreliableModel is False, the next predicted action
is executed in the environment. Subsequent actions from a∗

t:t+H are executed until the model is unreliable
or the environment reaches the maximum number of steps, TH . The process is repeated for the maximum
number of iterations allowed per task. Hereby, the buffer stores only experiences for which the model could
not predict (imagine) its outcome.

Uncertainty estimation. To determine when the predictions given by the dynamics model are still trust-
worthy, we utilize the BICHO method introduced by Remonda et al. (2021). BICHO evaluates the validity
of the current trajectory by making probability estimates of the projected future reward, ensuring that it
does not deviate significantly from the imagined future reward p∗

r and that the uncertainty in the model
remains low. BICHO is built under the assumption that if certain parts of the trajectory do not vary, their
projected reward will align with the model’s imagination with a certain level of confidence. To achieve this,
after calculating a trajectory, the distribution of rewards p∗

r is calculated for H steps in the future. At each
step of the environment, whether a replanning step was skipped or not, a new trajectory p′

r of H steps is
projected, starting from the state st provided by the environment and using actions a∗

t+i from the imagined
trajectory. We use a distance metric to find how much these two distributions change after each time step
in the environment. If the change is > β then unreliableModel is True. We can control how many steps
ahead we would like to compare the two distributions. The comparison is done for LA steps (< H), which
is a hyper parameter to tune. If the two distributions differ significantly, then the trajectory is unreliable.
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Algorithm 3 UBER
1: Initialize dynamics model f̂ parameters; Initialize replay buffer D with an iteration of a random controller
2: unreliableModel = T rue and trainModel = F alse
3: for Iteration l = 1 to N do
4: if trainModel then Train f̂ given D
5: for t = 0 to TH do
6: if unreliableModel then
7: Get a∗

t:t+H from ComputeOptimalT rajectory (st, f̂)
8: Get p∗

r(t+1:t+H) given (st, f̂ , a∗
t:t+H) // Use f̂ to predict H rewards ahead

9: i = 0
10: else
11: i += 1
12: end if
13: Get first action at from available optimal actions a∗

t:t+H

14: Execute in the environment first action a∗
t from remaining optimal actions a∗

t:t+H to obtain st+1 and rt+1
15: Discard first action and keep the rest a∗

t = a∗
t+1:t+H

16: // Uncertainty Estimation
17: uncertaintyScore = Compute uncertaintyScore
18: if uncertaintyScore > β then unreliableModel = TRUE else unreliableModel = False
19: if unreliableModel then
20: Record outcome: D ← D ∪ {st, at, st+1}
21: // Updates on novel information
22: if new_data_in D > new_data_threshold ∗ length(D) then
23: trainModel = True
24: end if
25: end if
26: end for
27: end for

Algorithm 4 Get Uncertainty Score
Input: i, p∗

r(t+1:t+H) and LA

1: Get p′
r(t+1:t+H) from ComputeT rajectoryP robs (st, f̂ , a∗

t:t+H)
2: L = min(H, LA - i, MPD) // Calculate number of steps ahead to consider
3: UncertaintyScore = W assersteinDistance(p′

r(t+1:t+L)||p∗
r(t+i+1:t+i+L))

4: return UncertaintyScore

That is, if the projected reward differs from the imagined one the outcome of the actions is uncertain. We
empirically evaluate different metrics and found that the Wasserstein distance (Bellemare et al., 2017) is
more stable and performs better than KL-Divergence.

Maximum prediction distance. Even for a model that has converged, accurately predicting trajectories
of great length is infeasible. Recalculations at the end of trajectories are inevitable and do not necessarily
indicate the presence of new information, but rather the limitations of the successful model in a complex
environment. Therefore, we exclude such recalculations from the buffer. The maximum prediction distance
(MPD) sets a cutoff point for a trajectory and regulates the strictness of the filtering mechanism.

Updates on novel information. Over-training the dynamics model leads to instabilities due to overfitting.
This problem is exacerbated when the replay buffer contains just the minimum essential data. If we only
filter the replay buffer, continuously updating the parameters of the dynamics model will eventually lead to
overfitting. Instead, our method updates the parameters of the dynamics model only when there is sufficient
new information in the replay buffer.

5.1 Motivation experiment including UBER
The primary purpose of the proposed algorithm is for the resulting replay buffer to retain only relevant,
non-redundant, experiences that will be useful for learning a single task. This experiment is intended to
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show that even when learning a single task throughout long training sessions, our method retains sufficient
experiences to solve the task while curtailing buffer growth and unnecessary model updates.

Figure 2 top shows the results obtained in CP. Figure 2-mid-right shows the size of the replay buffer during
training. We observe that while the replay buffer grows in the case of PETs, the size of the buffer derived
from UBER is comparably flat: the buffer resulting from UBER is 10x smaller. The training time per episode
(Figure 2 mid-left) remains nearly constant and lower for UBER. FIFO variants achieve a stable wall-time
after reaching the max buffer size. The wall time for PETs exhibits linear growth and takes substantially
longer than both FIFO and UBER to complete an episode (i.e., it takes longer to update the model as the
replay buffer grows linearly). Figure 2-left shows comparable reward per episode for PETs and UBER, whilst
FIFO variants exhibit a cyclic reward, which we attribute to forgetting and regaining experiences. Results
for reward in Figure 2 CP and RE (row 2) are consistent. FIFO rewards for Masspoint are more stable.

Discarding Model Parameters. To further demonstrate that our algorithm retains relevant samples
while maintaining a minimal buffer size, we evaluate the methods by retaining and discarding model pa-
rameters. First, we train each method to convergence and save the replay buffer. then, we discard the
network parameters, retrain the model using only the replay buffer from the previous step, and evaluate its
performance. For each method, we report both upper and lower performance bounds. The starting point for
buffer size selection is the size obtained from UBER. From there, we explore larger and smaller sizes in fixed
increments. The upper bound corresponds to a buffer size beyond which further increases do not improve
performance. Further, we gradually reduce the buffer size until the algorithm can no longer solve the task.
This experiment aims to highlight the sensitivity of traditional MBRL methods to buffer size selection. If
the experiences in the buffer are truly essential, performance should remain unchanged after discarding the
model parameters.

Figure 3 illustrates the efficacy of each method when either retaining or discarding network parameters post-
training. Across all environments, UBER maintains a relatively small buffer while sustaining performance,
even after discarding the model parameters, retraining, and testing. The minimal performance drop after
discarding weights demonstrates that UBER effectively covers the state space while maintaining a compact
replay buffer with only relevant experiences. Notably, UBER generally performs on par with RS while
offering the key advantage of not requiring a pre-set buffer size. This highlights an important distinction:
RS and FIFO exhibit significant sensitivity to buffer size, whereas UBER mitigates this issue.

Figure 4: Steps Added to the Replay Buffer. Per-step re-
ward and cumulative steps added to the replay buffer for an un-
trained (left), partially trained (middle), and fully trained model
(right) in Masspoint. The plots show that UBER reduces redun-
dant experiences as training progresses.

Experiences added. Figure 4 shows
the buffer growth in Masspoint when ex-
periences are added to the replay buffer
by UBER. When the model is untrained,
many experiences are added throughout
the episode. However, after the model
is trained, UBER stops adding experi-
ences to the buffer as the model can pre-
dict them. As a result, new experiences
are considered redundant and unneces-
sary for the model. The results sup-
port our claim that UBER achieves a
much smaller, intelligently populated re-
play buffer containing only relevant infor-
mation, without needing to know task boundaries or set a fixed buffer size, while still maintaining perfor-
mance.

6 Towards continual learning

Applying MBRL to a continual learning setting is a promising avenue for research since the dynamics
model could constantly improve and adapt dynamically to changes in the environment. Many real-world
applications can be broken into sequences of tasks of arbitrary length, which, in some cases, support a more
realistic learning regime for the agent. Although capturing the complete dynamics requires exposure to
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Figure 3: Effect of Model Parameters Retention and Discard. The left columns show results from
training to convergence and subsequent testing. The middle columns show outcomes of discarding network
parameters post-training while preserving experiences in the replay buffer and testing. Both left and middle
columns show performance percentage relative to PETs. The right columns compare the relative size of
the replay buffer to the PETs. Minimal performance drop after discarding weights shows UBER effectively
covers the state space, maintaining a minimal replay buffer size with relevant experiences.

longer sessions of CL, we argue that as the model learns, the experience buffer and training time should
diminish when the tasks share some similarities with previously learned ones. Arbitrarily long repetitive
tasks lead to increasing redundancy in the experience replay, which constantly grows indefinitely with all
collected experiences. However, we pose that for a scalable CL setting, the experience replay buffer should
be limited to those experiences that properly represent the common and rare events, excluding experiences
that do not provide new information to the buffer. This serves two purposes: first, to avoid an infinitely
growing buffer as the sequence grows longer, and second, to provide better support and less redundancy
from the experience replay.

The Cartpole and Reacher environments are typical benchmarks in RL that emphasize short-term, episodic
adjustments to either maintain or reach a specific state. However, real-world settings often require continual
learning with long-term adaptations, evolving contexts, and the integration of past knowledge into new
tasks. We propose using the racing environment, which is diverse and versatile. It can accommodate
various track geometries and shapes, and incorporates overtaking, cornering, and fuel management. This
diversity provides a richer learning landscape compared to more constrained tasks like Cartpole or Reacher.
By focusing on racing environments, we can gain deeper insights into the strengths and weaknesses of our
algorithms, pushing the boundaries of continual learning.

6.1 Scenarios and task implementation

To further test our method we show that our approach helps to mitigate catastrophic forgetting. When
using a fixed replay buffer size, it is important to ensure that the appropriate maximum buffer size is
chosen (Zhang & Sutton, 2017). If this value is undertuned, important experiences can be jettisoned, and
catastrophic forgetting can occur. The continual learning setting exacerbates this effect because, without
knowing the number of tasks, the buffer size cannot be determined in advance. Thus, we experiment in
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Task Agnostic Continual Reinforcement Learning where the model is not aware of tasks or task transitions.
In addition, the tasks in the environments overlap, in the sense that some experiences are redundant and
may occur similarly in many tasks while other experiences appear rarely or even exclusively in some tasks.
This setting requires algorithms to retain releevant collection of experiences to succeed and to achieve strong
performance with less data. To test the existence of these characteristics, after training on each train task,
the methods are each tested on the test tasks. The model must remember what it learned by training on
each sub-task and apply this knowledge to navigate a more complex, unseen task. The scenarios offer such
characteristics by building on tasks aiming to traverse a path according to some imposed policy (be fast,
reduce energy use).

MassPoint tasks. Tasks are defined as segments or as entire tracks. Tasks are defined by the geometry of
the path to be followed. EASY Tasks (T01-T08) consist of straightforward and brief segments that make
up the Barcelona circuit. MID tasks (T9-T11), these represent three segments of the Barcelona circuit.
Note that these MID tasks partially comprise one or more EASY Task. Refer to Figures 8, 9 and 10 in
the appendix. HARD Tasks (T12-T14), these tasks involve complete tracks. They are RedBullRing (T12),
Barcelona (T13), and a simpler Oval (T14). In all tasks, except for T02 and T04, the objective is to achieve
maximum speed. However, in tasks T02 and T04, a specific target speed is set. This demonstrates that our
model is not only capable of driving at its fastest but can also maintain a designated speed.

Bike tasks. Similar to MassPoint, we defined a set of tasks to evaluate performance and generalization to
unseen complex tasks. EASY tasks: The sub-tasks (T01, T02, T03, T04, T05, T06, T07, T08, T09) that
form parts of the Barcelona (T10) circuit. HARD tasks: The three complete tracks. Barcelona (T10), Red
Bull Ring (T11), and Oval (T12). Refer to Figures 11 and 12 in the appendix.

6.2 Evaluation metrics
When evaluating in continual learning scenarios, we need to adapt the metrics to reflect the performance
based on the current performance of the model, the forgetting of previous tasks, and the generalization
towards future tasks. Let M be the task performance matrix where each element Mij represents the perfor-
mance of the algorithm on test task Tj after being trained on train task Ti. The diagonal elements of the
matrix represent the immediate performance of the algorithm on a task right after training on that same
task. This is denoted by Mii, such that the algorithm is tested on task Ti immediately after being trained
on task Ti.

After the algorithm finishes training on the last training task Tm, its performance is evaluated across all
test tasks Tj , for j=1, 2, . . . , n, which corresponds to the last row in the matrix. This provides the per-
formance of the algorithm on all tasks after training on the whole sequence, by averaging over the row:
Mm = 1

n

∑n
j=1 Mmj . This is one of the main metrics used to report performance over a sequence of tasks (Nor-

mandin et al., 2021; Masana et al., 2022).

For task Tj , forgetting is reported as the difference between the performance of the algorithm when it was
learned and after training on all tasks, Fj = Mjj − Mmj . This measures how much the performance on a
task has deteriorated after the algorithm has been trained on all subsequent tasks (Chaudhry et al., 2018).
We report the average forgetting across all tasks: 1

n

∑n
j=1(Mjj −Mmj).

Finally, for measuring the generalization capabilities of the algorithm, we can evaluate the model on unseen
tasks. These would correspond to the values above the diagonal of M . However, we also measure the
performance on unseen tasks Uj (tasks not included in the training sequence) after the algorithm learns all
training tasks. This measures how well the algorithm can apply the knowledge learned during training to
new, unseen tasks.

7 Experimental analysis/results

7.1 Experimental Protocol

We conduct three runs for each hyperparameter configuration: varying the β parameter for UBER, and
the buffer size for the other methods. All other hyperparameters are kept consistent with the settings from
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Name Easy → Hard Easy+Mid → Hard All → All

Buff Size Perf. Buff Size Perf. Buff Size Perf.

PETs 37150 100.0 37150 100.0 97150 100.0
Scratch 6300 11.0 6300 97.7 21000 33.6
FIFO 2000 2000 10.4 2000 96.6 2000 48.9
FIFO 20k 20000 100.0 20000 99.9 20000 96.5
FIFO 50k 37150 100.0 37150 100.0 50000 98.8
A-FIFO250 250 1.3 250 80.3 250 89.5
A-FIFO500 500 2.6 500 94.6 500 99.8
A-FIFO1000 1000 5.2 1000 98.5 1000 100.1
RS125 125 0.7 125 89.3 125 98.8
RS250 250 1.3 250 95.2 250 99.1
RS500 500 2.6 500 98.0 500 99.4
RS1000 1000 5.2 1000 99.4 1000 99.4
UBER(β=1.4) 966 5.0 966 93.4 1558 99.4
UBER(β=1.1) 1390 6.8 1390 99.6 1698 99.4
UBER(β=0.9) 1942 9.4 1942 100.0 2303 99.3
UBER(β =0.7) 2712 12.7 2712 100.0 3225 99.5

Figure 5: Generalization and Performance in Masspoint. The top row presents performance plots
showing generalization trends: (left) training on EASY tasks and testing on HARD tasks; (center) training
on EASY and MID tasks and testing on HARD tasks; (right) training and testing on all difficulty levels.
The x-axis (log scale) represents the number of experiences in the replay buffer, while the y-axis represents
normalized rewards. The table below summarizes numerical results. Black cross is PETs.

the motivation experiment. Each run uses different random seeds and initial conditions. PETs is treated
as a special case of VanillaFIFO, where the buffer size is effectively infinite, allowing all experiences to be
retained indefinitely. For VanillaFIFO, A-FIFO, and RS, we evaluate different buffer sizes to assess the
adaptive algorithm’s ability to dynamically adjust and optimize memory usage based on the task at hand.
For UBER, we build on our single-task experiments, keeping the same hyperparameters to validate their
generalizability in more complex scenarios. However, we also explore a range of β values to analyze its effect
on performance. This experiment is set in a Task Agnostic Continual RL setting, where the model is not
aware of tasks or task transitions. We utilize both the Masspoint racing environment and the more complex
NonLinear Bicycle model, defining different tasks with varying levels of complexity.
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7.2 Masspoint

We evaluate PETs, VanillaFIFO, Scratch, A-FIFO, RS, and UBER with various buffer sizes. PETs and
Scratch use virtually infinite buffers. VanillaFIFO and A-FIFO are tested with different buffer sizes, and
UBER with various values of β. For VanillaFIFO, buffer sizes are BS ∈ 2000, 20000, 50000. For A-FIFO,
buffer sizes are BS ∈ 250, 350, 500, 1000, 2000. For UBER, β values close to 1.1 are tested β ∈ 0.7, 0.9, 1.1, 1.4.

We assess performance in terms of per-episode reward, and replay buffer size. Each task is trained for
30 episodes in each task and then tested in the test tasks for a single episode. We report, generalization
to unseen tasks, final performance in seen tasks, and forgetting. Each test result is normalized by divid-
ing it by the maximum theoretical value, calculated as the top speed multiplied by the task’s time steps.
Normalized Value = Episode Reward

Top Speed×Task Time Steps .

Generalization to unseen tasks. Figure 5-left shows the generalization from EASY to unseen HARD
tasks. PETs showed excellent generalization to hard tasks. VanillaFIFO with sufficient buffer size achieved
performance similar to PETs, but with a smaller buffer, it failed due to filtering out important examples.
Scratch failed to generalize. A-FIFO’s performance varied with changes in buffer size. This indicates that
A-FIFO is sensitive to the choice of replay buffer size. RS shows a similar trend while UBER achieved same
performance as PETs and A-FIFO with a significantly smaller buffer.

Figure 5-middle shows the generalization from MID to unseen HARD tasks. Similar to the previous case,
PETs generalized well. Vanilla with 50k and 20k samples achieved comparable performance to PETs, while
Vanilla with 2k samples underperformed. A-FIFO’s behavior was consistent with the previous case. UBER
achieved optimal performance with 1700 examples, which is 23% less examples than A-FIFO and just a 4%
of the total examples collected by PETs.

Same-Distribution Testing. Figure 5 (right) shows the test performance on the same tasks used during
training, including EASY, MID, and HARD tasks. VanillaFIFO’s performance declines after the buffer size
reaches 20k samples, indicating an increasing need for buffer size as more tasks are introduced. A-FIFO and
RS achieve optimal performance with only 1k steps, demonstrating the value of information from all tasks.
UBER performs consistently well across different tested hyperparameters. With a β of 1.1, UBER’s final
buffer size is 37% smaller than A-FIFO’s and only 1.5% of PETs’ buffer size.

Forgetting. Figure 6 illustrates the forgetting metrics for each method and different hyperparameters. The
models are trained on tasks T1 to T14. After completing each training task, the model is tested across all
tasks encountered up to that point. The y-axis in each figure represents the forgetting metric, while the
x-axis indicates the last task completed before the respective test. A negative number indicates forgetting,
while a positive number indicates an improvement in performance.
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RS250 0.30
RS1000 0.02
UBERβ0.9 0.00

Figure 6: Forgetting in Masspoint. Most methods exhibit forgetting
when the buffer size is reduced. UBER maintains performance while keeping
the buffer size to a minimum. The table shows the sum average forgetting
for each method (↓ lower is better).

Note that the forgetting met-
ric assesses the extent of for-
getting but does not account
for the model’s absolute per-
formance on the test tasks. As
a result, a model may exhibit
poor overall performance yet
show minimal forgetting. This
explains why certain methods
experience a reduction in for-
getting after encountering new
tasks, leading to a positive for-
getting trend. This trend oc-
curs because the model’s per-
formance improves after en-
countering a new task, con-
tributing to an overall im-
provement.
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As expected, PETs has zero forgetting due to its infinitely large buffer. Conversely, Scratch has the highest
forgetting rate, as it does not retain any information from previous tasks. With VanillaFIFO, reducing the
buffer size limit leads to observable forgetting. In the case of A-FIFO, there is virtually no forgetting for
buffer sizes larger than 500. However, reducing the buffer size limit results in an increase in forgetting. RS
follows a similar trend. In the case of UBER, forgetting is virtually zero for all the tested hyperparameters
except for β 1.4. This is expected, as UBER retains experiences only when the model is not confident enough.

Summary. Our results in the Masspoint environment reveal that an undertuned fixed buffer size leads to
poor performance and that the non-filtering algorithms hit the buffer size cap and throwing away valuable
experiences, resulting in the model forgetting how to properly solve tasks that were trained early on. This
is detrimental in the three aspects investigated in this experiment: generalization, forgetting and same-
distribution testing. While PETs successfully excels in the evaluated aspects, it does so at the cost of having
an unbounded buffer and increasing training time, making it unsuitable for the CL setting. Scratch training
failed due to a lack of retaining important information when switching tasks. A-FIFO and RS have a good
performance, but at the cost of having to tune the replay buffer size, making it dependent on the number
of tasks in hand, which is not feasible in the CL setting. UBER keeps the number of examples collected
to a minimum without having to tune the replay buffer size, keeping the training time at a minimum and
effectively addresses catastrophic forgetting. It is the only method presented in this work suitable for the
Continual Learning setting as it is the only method whose RB size does not need to be tuned depending on
the number of tasks.

7.3 Non linear Bicycle model

We evaluate PETs, VanillaFIFO, A-FIFO, RS, and UBER, omitting Scratch due to its poor performance
in this environment. For VanillaFIFO, we evaluated buffer sizes of BS ∈ 25000, 50000. For A-FIFO, we
evaluated buffer sizes of BS ∈ 5000, 10000, 25000, 50000. For UBER, we evaluated different values of β
close to 1.5 × 10−4, which gave the best results in the preliminary single-task study: β ∈ {2.5 × 10−4, 5.0 ×
10−4, 1.5 × 10−4, 1.0 × 10−4}. For RS, we used buffer sizes of 5000 and 10000. We assess performance in
terms of the number of steps (simulator time) to finish a task and replay buffer size. Each method is trained
for 30 episodes per task and then tested on the test tasks for a single episode.

Unlike the Masspoint environment, the number of steps per episode in this environment is variable, lacking a
theoretical upper bound. Therefore, we normalized the results for each task by calculating the percentage of
performance drop relative to PETs (the best-performing method). We subtracted the PETs task time from
the resulting task time to get the delta (dt = task time − PETs task time), and then normalized it using
p = 1 − dt

max_delta . Models were tested and trained on EASY, HARD and ALL tasks.

Generalization to Unseen Complex Tasks. Figure 7 (left) shows the generalization from EASY to
unseen HARD tasks for each method with different hyperparameters. No method generalizes well to hard
tasks, with each showing a significant drop in performance compared to PETs at convergence. However,
increased experience leads to slightly better generalization. In the very low sample regime, RS performs
worse than UBER, but at 10k samples, RS outperforms UBER. UBER’s core design focuses on retaining the
experiences most useful for the current task, making it less robust when the target task is out-of-distribution.
This selective retention works well for within-distribution tasks but may struggle when transitioning to sig-
nificantly different tasks. In contrast, RS performs better in this specific setting due to its diverse experience
buffer, which is beneficial when dealing with a small number of tasks. However, RS does not scale as well to
scenarios involving more tasks, since the buffer size needs to be carefully tuned. These results suggest that
achieving strong generalization may require training on a broader set of diverse tasks.

Same-Distribution Testing. For EASY to EASY tasks (Figure 7 center left), methods with larger buffers
perform better. UBER maintains reasonable performance with a very low buffer. When training on all
tasks and testing on hard tasks (Figure 7 center right), and training on ALL tasks and testing on ALL tasks
(Figure 7 right), VanillaFIFO performs well but requires a hand-tuned buffer. Plots show a clear increase in
performance with larger buffer sizes. UBER performs similarly to RS and better than A-FIFO. PETS shows
a slight performance drop when training on ALL tasks and testing on ALL tasks, indicating that redundant
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PETs 26905 58% 26905 91% 80752 100%
FIFO25k 25000 42% 25000 90% 25000 58%
FIFO50k 28362 78% 28362 89% 50000 100%
A-FIFO5k 5000 27% 5000 78% 5000 59%
A-FIFO10k 10000 24% 10000 83% 10000 95%
A-FIFO25k 25000 35% 25000 80% 25000 99%
A-FIFO50k 27351 51% 27351 82% 50000 99%
RS5000 5000 18% 5000 58% 5000 59%
RS10000 10000 91% 10000 90% 10000 100%
UBER(β=0.00050) 4819 39% 4819 77% 5767 95%
UBER(β=0.00025) 9156 40% 9156 80% 11486 97%
UBER(β=0.00015) 9940 25% 9940 82% 14412 99%
UBER(β=0.00010) 18544 40% 18544 77% 27773 100%

Figure 7: Generalization and Performance in the Nonlinear Bicycle Environment. The top row
presents performance plots: (left) train on EASY tasks and test on HARD tasks (generalization); (center)
train on EASY and test on EASY; (right) train on ALL and test on HARD. The x-axis (log scale) represents
the number of experiences in the replay buffer, while the y-axis represents the performance drop relative to
PETs. Below, the table summarizes numerical results for different buffer sizes and methods.

data is detrimental in this case. Other methods do not exhibit this issue and require smaller buffer sizes.
UBER’s advantage lies in not needing to set the buffer size, making it suitable for a larger number of tasks.

Summary. The results follow a similar trend to the MassPoint experiment in the same-distribution setting,
but all methods perform poorly in the generalization setting, highlighting the complexity of the tasks. Our
experiments show that UBER performs well independently of the number of tasks.

8 Discussion and Conclusion

The replay buffer enhances the stability of deep neural networks in RL and is an essential component of
several algorithms. However, analyses of replay buffers are relatively scarce. Recently, research has begun
to focus on analyzing the contents and strategies for managing the replay buffer in RL agents (Fedus et al.,
2020), as well as in supervised learning (Aljundi et al., 2019). In this work, we contribute to this body of
research by analyzing and proposing strategies to manage the growth of the replay buffer in model-based RL.
In this setting, our studies show that UBER maintains a leaner and more relevant collection of experiences
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Method Retention Strategy Buffer Size Buffer Specification Task Transition Aware
PETs Greedy Fixed Automatic (All and Keep) No
PETs Scratch Greedy Fixed Automatic (All and Discard) Yes
FIFO FIFO Fixed Manual (Hyper-parameter) No
A-FIFO Adaptive Fixed Manual (Hyper-parameter) Yes
RS Replacement Fixed Manual (Hyper-parameter) No
UBER Adaptive Flexible Automatic No

Table 1: Comparison of continual reinforcement learning properties for MBRL algorithms.

in the replay buffer than do baseline algorithms. These characteristics of the proposed algorithm, we posit,
result in strong test performance with less data and greater stability.

Comparing UBER with Existing Replay Buffer Strategies. Table 1 provides a comparative overview
of the replay buffer management strategies across various methods. Most methods employ a greedy retention
strategy with a fixed buffer size. Methods like FIFO and A-FIFO utilize first-in-first-out or adaptive strategies
with manual hyper-parameter tuning. In contrast, UBER distinguishes itself by using an adaptive retention
strategy and a flexible buffer size with automatic management, which eliminates the need for extensive
pre-tuning.

It is important to note that RS and UBER are inherently different, and each has their own strengths. UBER
addresses a problem that cannot be directly addressed with RS, namely the continuous interaction and
learning in the environment when we have no information about the cap size of the experience replay buffer.
UBER’s key advantage lies in not requiring a predefined buffer size. This flexibility is particularly beneficial
in dynamic, never-ending or multi-task settings, where pre-determining the optimal buffer size is challenging.
Our core contribution is a method that automatically optimizes the replay buffer without requiring preset
sizes.

Future Work. Having managed growth, there are several aspects we would like to turn to in the future:
i) identifying task boundary from the novelty of experiences, ii) managing what to forget for limited size
buffers, iii) managing what to remember / refresh when a change in task is evident. This would allow
to run agents for arbitrary time without having to deal with size of the buffer and would offer promising
opportunities for deploying MBRL in a CL setting.

UBER could be used to prioritize entries in the replay buffer where the model was uncertain. Indeed,
prioritized buffer strategies support the usage of experience once it is in the buffer, but as stated by Schaul
et al. (2016), strategies for what to add and when (our work) are important open avenues for research.
We did not explore our methods in environments where the tasks have interfering dynamics. But, if the
dynamics change, poor predictions by the model will result in adding experiences to the replay buffer. What
happens if interfering tasks occur permanently is an interesting follow up.

Expanding the experiments to high-dimensional or additional multi-task settings, such as MetaWorld, is out-
side the scope of the current study. UBER is implemented on top of PETs, which rely on explicitly modeling
the environment dynamics and incorporating domain knowledge into the dynamics model. Implementing
UBER into state-of-the-art MBRL algorithms would facilitate expansion to high-dimensional visual inputs
and represent a promising research direction for future work.

Conclusion. We proposed strategies that comply with requirements for continual learning. Our approach
retains only memories which are useful: it obtains lean and diverse replay buffers capturing both common and
sporadic experiences with sufficient detail for prediction in longer learning sessions. Our approach manages
compute and memory resources over longer periods: it deals with the unbounded growth of the replay buffer,
its training time and instability due to catastrophic forgetting. These results offer promising opportunities
for deploying MBRL in a continual learning setting.
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Appendix

9 Mass point tasks - Task definition

Tasks are defined as segments of the Barcelona track (T13) or as entire tracks. Tasks are defined by the
geometry of the path to be followed. In all tasks, except for T02 and T04, the objective is to achieve
maximum speed. However, in tasks T02 and T04, a specific target speed is set. This demonstrates that our
model is not only capable of driving at its fastest but can also maintain a designated speed. The specific
definitions of the tasks are as follows: HARD Tasks (T12-T14): Displayed in Figure 8, these tasks involve
complete tracks. From left to right, they are RedBullRing (T12), Barcelona (T13), and a simpler Oval (T14).
MID Tasks (T9-T11): As seen in Figure 9, these represent three segments of the Barcelona circuit. EASY
Tasks (T01-T08): Figure 10 depicts these tasks. They consist of straightforward and brief segments that
make up the Barcelona circuit (T13).

Figure 8: HARD tasks (T12-T14) for the Masspoint environment. In each figure, the x-axis and y-axis
represent the x,y coordinates of the path the mass point bot should follow. The red dot denotes the starting
position. Top left-to-right: RedBullRing (T12), Barcelona (T13), and a simpler Oval (T14), respectively.

Figure 9: MID tasks (T9-T11) for the Masspoint environment. In each figure, the x-axis and y-axis represent
the x,y coordinates of the path the mass point bot should follow. The red dot denotes the starting position.
Left-to-right: Sector1 (T09), Sector2 (T10), and a Sector3 (T11) of the Barcelona circuit (T13).

Figure 10: EASY tasks (T01-T08) for the Masspoint environment. In each figure, the x-axis and y-axis
represent the x,y coordinates of the path the mass point bot should follow. The red dot denotes the starting
position. These are sub-tasks taken from the Barcelona circuit (T13)

10 Non-linear Bicycle Model - Task definition

In the Non-linear Bicycle Model environment, we have defined a set of tasks. Figure 11 presents the three
complete tracks: Barcelona (T10), RedBullRing (T11) and Oval (T12), displayed in the left, middle, and
right images, respectively. Figure 12 illustrates the sub-tasks (T01, T02, T03, T04, T05, T06, T07, T08,
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T09) that form parts of the Barcelona circuit. The x-axis and y-axis in each figure denote the x,y coordinates
of the track path’s center. The model receives data about the track borders, the objective is to ensure the
car remains within the track.

Figure 11: Tasks for the Non-linear bike model environment. The x-axis and the y-axis of each figure
represents the x, y coordinates of the path to be followed by the car. Left-to-right: Barcelona (T10),
RedBullRing (T11) and Oval (T12)

Figure 12: Sub-tasks for the Non-linear bike model environment derived from the Barcelona circuit (T10).
In each figure, the x-axis and y-axis denote the x and y coordinates of the path the car should follow. Top
row, left-to-right: (T01, T02, T03, T04, T05). Bottom row, left-to-right: (T06, T07, T08, T09).

11 Maximum Prediction Distance

A parameter of interest when using UBER is the maximum prediction distance (MPD). This parameter is
based on the idea that even if a model has reached convergence, in certain environments, predicting very long
trajectories is not feasible. Therefore, recalculations are necessary at the end of such extended trajectories.
These recalculations do not necessarily indicate the arrival of new or unseen information, but instead reflect
the limitations of a successful model in a complex environment. As a result, we would prefer not to add
these experiences to the buffer.

The cutoff for what is considered a great length trajectory can be adjusted, allowing us to fine-tune the
strictness of UBER’s filtering mechanism. For example, in Ex.1 and Ex.2, we set the maximum prediction
distance to 1 to apply the strictest filtering of the replay buffer.

In Figure 13, we evaluate the effect of MPD on UBER’s performance in the cartpole environment, focusing
on its impact on recalculation rates and replay buffer size. As shown in Figure 13, all models converge
successfully, though they display slight differences in recalculation rates and buffer filtering. The strictest
setting, MPD=1, results in the smallest buffer but slightly higher recalculation rates compared to models
with MPD=2 and MPD=4.

These results indicate that MPD is a useful tool for adjusting the strictness of UBER’s buffer filtering.
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Figure 13: Performance of the examined algorithms in Cartpole using different maximum prediction distances
(MPD). The blue line represents UBER with an MPD=1. The red line is UBER with an MPD=2. The green
line is UBER with an MPD=4. From left to right column: episode reward, time per episode (s), cumulative
number of observations stored in the replay buffer, new experiences added to the buffer per episode.

12 Hyperparameters

Table 2 shows the hyper parameters used to train UBER. Look-ahead refers to the number of steps ahead
UBER uses to asses the quality of the imagined trajectories. β controls the sensitivity of UBER to inform
whether a trajectory is still valid or not. New Data Train Threshold refers to the amount of fresh data that
must be added to the replay buffer before the UBER algorithm triggers the training of the dynamics model.

Cartpole Reacher Masspoint
Look-Ahead 1 1 1
β 0.005 0.004 1.5
Training episodes 100 100 30/task
CEM population 400 400 400
CEM # elites 40 40 40
CEM # iterations 5 5 5
CEM α 0.1 0.1 0.1
MPD 1 10 1

Table 2: Hyperparameters used for UBER implementation.

13 Environments

We evaluate the methods on agents in the CartPole and Reacher environment provided by the Mu-
JoCo (Todorov et al., 2012) physics engine. Additionally, we introduce our own proposed environments
related to racing, including Masspoint and a Non-linear Bicycle model. We utilize these environments to
assess the performance of our methods. The choice of CartPole and Reacher environments is based on
their established use in reinforcement learning research, allowing for meaningful comparisons with existing
approaches. Introducing our own racing-related environments, such as Masspoint and Non-linear Bicycle,
enables us to evaluate the methods’ adaptability and effectiveness in scenarios beyond the conventional ones.

13.1 CartPole (CP)

An inverted pendulum problem, which involves balancing a pole on a cart. It has movable cart that travels
along a frictionless track. On top of the car a pole with one end attached to the cart, is standing upright.
The objective is to prevent the pole from falling over. The state variables, represented by S ∈ R4, include:
the position of the cart along the track, the velocity of the cart, angle of the pole relative to vertical, the
angular velocity of the pole. The action space (R1) is continuous, allowing the agent to apply a force F to
the cart, where F can vary within a predefined range: −Fmax ≤ F ≤ Fmax. The goal is to keep the pole
upright for as long as possible by moving the cart left or right. The episode ends after a time limit (TaskH)
of 200 steps has been exceeded. The Trajectory horizon set for the controller (H), is 25. The agent receives
a reward of 1 for every time step the pole remains upright.
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13.2 Reacher (RE)

The Reacher task involves a robotic arm with 6 Degrees of Freedom (6-DoF) aiming to reach a target
position in space, given the multiple joints and their rotations. State Variables: joint angles for each of the
6 joints, angular velocities for each joint, current position (x, y, z) of the end effector, target position (x, y,
z). Actions: the action space is continuous, allowing the agent to apply torques to each of the 6 joints. The
torque applied to each joint can vary within a predefined range: −Tmax ≤ Ti ≤ Tmax, for i = 1, . . . , 6. The
state space in this case is S ∈ R17 and the actions space is A ∈ R7. We set TaskH to 150 and H to 25.
The reward function aims to minimize the distance between the end effector and the target position. The
agent receives a reward based on the negative Euclidean distance between the current end effector position
and the target.

13.3 Masspoint (MP)

We also included an extended version of the Masspoint environment proposed by Thananjeyan et al. (2020).
Masspoint is a navigation task in which a point mass navigates to a given goal. It is a 5-dimensional
(x, y, vx, vy, ρ) state domain (S ∈ R5). Where (x, y) is the position of the agent, (vx, vy) its speed, and ρ is
the distance between the agent and the closest point to a given path. The agent can exert force in cardinal
directions (A ∈ R2) and experiences drag coefficient ψ. We use ψ = 0.6 and included noise in the starting
position. We modified the goal of the agent so that it must move as fast as possible without deviating from
a given path. Each task and its complexity is then determined by the geometry of the path to be followed.
The reward is calculated as r = V (1 − |ρ|). Where V is the speed of the agent and ρ the distance to the
task’s path. We set H to 25, and TaskH depends on the task.

13.4 Non-linear Bicycle Model (Bike)

We introduce a new environment based on a Non-linear Bicycle Model, capturing vehicle dynamics with
greater fidelity and featuring higher action and observation dimensions than MassPoint. The bicycle model
simplifies a four-wheeled vehicle to a two-wheeled bicycle. This model considers aerodynamics, tire dynamics,
and rolling resistance. Additionally, we have integrated track boundaries to enhance the realism and challenge
of the simulation. The control variables are steering and combined throttle and brake. The state variables
are the position (x, y, ψ), velocity (ẋ, ẏ, ψ̇), and acceleration (ẍ, ÿ, ψ̈), throttle, steering angle δ, out-of-
track, going backwards, and the distance to the reference path. Our objective is to learn the underlying
dynamics model. To achieve this, we train the model to predict accelerations based on current velocities
and accelerations. By integrating twice, we obtain the position and can predict trajectories. The complexity
of each task depends on the geometry of the designated path. To ensure the model can generalize across
different tracks, we deliberately omit the x, y, ψ from the observations. Note that the model still needs to
infer the x, y, ψ positions, but it must do so based on the current state and the predicted accelerations. The
reward aims to maximize the speed, and the episode is terminated if the car goes off track.

Vehicle dynamics. The state includes the position variables x, y, ψ, their first derivatives ẋ, ẏ, ψ̇, their
second derivatives ẍ, ÿ, ψ̈, Throttle, δ, out-of-track, going-backwards, and closest-distance-to-path. x and y
represent the coordinates of the center of mass in an inertial frame (X, Y). ψ is the inertial heading. ẋ and ẏ
are the longitudinal and lateral speeds in the body frame, respectively. ψ̇ denotes the yaw rate. δ represents
the steering wheel angle. Throttle is the combined signal of the throttle and brake pedal, representing the
external longitudinal force. out-of-track and going-backwards are boolean signals, indicating when the model
is off the track or moving in reverse, respectively. Closest-distance-to-path measures the nearest distance to
the designated path. Our objective is to learn the underlying dynamics model. To achieve this, we train
the model to predict accelerations based on current velocities and accelerations. By integrating twice, we
obtain the position and can predict trajectories. We introduce noise into the initial position and velocity.
The complexity of each task hinges on the geometry of the designated path.

The nonlinear continuous time equations that describe a dynamics bicycle model in an inertial frame are:
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ẍ = ψ̇ẏ + ax (1)
ÿ = −ψ̇ẋ+ ay (2)

ψ̈ = Ffy · Lf · cos(δ) − Fry · Lr

Iz
(3)

Ẋ = ẋ cosψ − ẏ sin(ψ) (4)
Ẏ = ẋ sinψ + ẏ cos(ψ) (5)

Where ay is
∑

Fy

m which are the sum of lateral forces include a simplified tire model, aerodynamics and
rolling resistance (see the pseudo code). Fcf and Fcr denote the lateral tire forces at the front and rear
wheels, respectively, in coordinate frames aligned with the wheels.

Learned dynamics model. The dynamics model aims to predict the next state given the current state
(e.g. speed and accelerations) and controls (steer, throttle and brake). With a good estimate of the future
state, we expect to reliably predict trajectories on a finite horizon. We train f̂θ to predict the dynamics of
the vehicle, hence the accelerations of the car which can be then integrated twice to recover position.

Applying Newton’s second law yields
∑

Fy

m = ay, where ay is the vehicle’s inertial acceleration at the gravity
center in the direction of the y axis, m is the total mass of the car, and

∑
Fy is the summation of the lateral

forces. Two terms contribute to ay: acceleration due to the motion in the y axis v̇y, from which the position
is recovered by integrating and the centripetal acceleration vxψ̈ (Rajamani, 2011):

ay =
∑
Fy

m
= v̇y + vxψ̇ ∴ v̇y = ay − vxψ̇ (6)

Similarly, equation equation 7 defines ax, where v̇y is the acceleration in the x axis and vyψ̈ is the centripetal
acceleration:

ax = v̇x − vyψ̇ ∴ v̇x = ax + vyψ̇ (7)

Which can then be integrated to recover the position of the vehicle. We split the state vector in kinematic

state variables sk and dynamics state variables sd, s =
(

sk

sd

)
. The kinematic part of the state is sk =

(px, py, ψ)⊺ and the dynamic part is sd = (vx, vy, ψ̇, R)⊺ and the actions a are given by (S, T,B,G)⊺ (Kong
et al., 2015):

sk(t+ 1) = sk(t) + k(s(t))∆t (8)

The coordinate transformation matrix k defined by equation 9 maps the position vector from the vehicle to
the inertial frame of reference.

k(s) =

cos(ψ)vx − sin(ψ)vy

sin(ψ)vx + cos(ψ)vy

ψ̇

 (9)

The full state space equation which we define as the dynamics model (F) becomes:

F(st,at) = st+1 =
(

sk

sd

)
t

+
(

k(s)
fθ(sd,a)

)
t

∆t (10)

Where the dynamic part is:
sd(t+ 1) = sd(t) + fθ(sd(t),a(t))∆t (11)
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We get the learning objective for the neural networks as:

y = sd(t+ 1) − sd(t)
∆t =

(
v̇x, v̇y, ψ̈

)⊺ (12)

Thus, the neural network model is: (
v̇x, v̇y, ψ̈

)⊺
t+1 = fθ(sd(t),a(t)) (13)

13.5 Pseudo code

epsilon = 1e-6
c_a = 1.36 # Aerodynamics coefficient
c_r1 = 0.01 # Road rolling resistance
max_steer = radians (30.0) # [rad] max steering angle
L = 2.9 # [m] Wheel base of vehicle
dt_physics = 0.1 # [s] physics sampling time
Lr = L / 2.0 # [m]
Lf = L - Lr
Cf = 1600.0 * 2.0 # N/rad # Front tires coefficient
Cr = 1700.0 * 2.0 # N/rad # Rear tires coefficient
Iz = 2250.0 # kg/m2 # Inertia
m = 1500.0 # kg # mass of the vehicle

def next_state(delta , throttle):
# scale from -1,1 to to -max steer max steer
delta = delta * max_steer
delta = clip(delta , -max_steer , max_steer)

# Position in the non -intertial frame of reference
x = x + x’ * cos(psi) * dt - y’ * sin(psi) * dt
y = y + x’ * sin(psi) * dt + y’ * cos(psi) * dt
psi = psi + psi’ * dt
psi = normalize_angle(psi)

# forces
Ffy = -Cf * arctan2 (((y’ + Lf * psi’) / (x’ + epsilon) - delta), 1.0)
Fry = -Cr * arctan2 ((y’ - Lr * psi’) / (x’ + epsilon), 1.0)
# Aerodynamics
F_aero = c_a * x’ ** 2
# Road rolling resistance
R_x = c_r1 * x’
F_load = F_aero + R_x

# Dynamics -> to be learned by the NN
x’’ = (throttle - Ffy * sin(delta) / m - F_load / m + y’ * psi’)
y’’ = (Fry / m + Ffy * cos(delta) / m - x’ * psi’)
psi’’ = ((Ffy * Lf * cos(delta) - Fry * Lr) / Iz)

# Velocities relative to the body frame
x’ = x’ + x’’ * dt
y’ = y’ + y’’ * dt
psi’ = psi’ + psi’’ * dt
t += dt
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