Under review as submission to TMLR

Towards Scalable Language-lmage Pre-training
for 3D Medical Imaging

Anonymous authors
Paper under double-blind review

Abstract

The scalability of current language-image pre-training for 3D medical imaging, such as CT
and MRI, is constrained by the need for radiologists to manually curate raw clinical studies.
In this work, we pioneer pre-training directly on uncurated studies, which both aligns more
closely with the clinical workflow and provides a natural path to scalability. However, the
unique structure of such data presents new challenges for existing model architectures, which
were originally designed for 2D slices or single 3D scans. To address this, we introduce a novel
hierarchical attention mechanism inspired by the intrinsic hierarchy of radiology data: slice,
scan, and study. We denote our framework as Hierarchical attention for Language-Image
Pre-training (HLIP). Trained on 220K studies with 3.13 million scans for brain MRI and 240K
studies with 1.44 million scans for head CT, HLIP achieves state-of-the-art performance, e.g.,
+10.5% balanced ACC on the proposed publicly available brain MRI benchmark Pub-Brain-5;
+8.3% and +1.7% macro AUC on head CT benchmarks CQ500 and RSNA, respectively.
HLIP also exhibits strong generalizability on existing 3D medical language-image pre-training
benchmarks, e.g., +4.3% macro AUC on the Rad-ChestCT benchmark when pre-trained on
CT-RATE. These results demonstrate that, with HLIP, directly pre-training on uncurated
clinical datasets is a scalable and effective direction for language-image pre-training in 3D
medical imaging. Code will be released upon acceptance.

1 Introduction

Language-supervised pre-training is well-suited for radiology, where each study comprises medical images paired
with a corresponding radiologist’s report. This natural alignment between visual and textual information has
motivated the adaptation of language-image pre-training methods, such as CLIP (Zhang et al. [2022a; Radford
et al.l [2021]), to learn clinically meaningful radiology representations. CLIP-based models are especially
notable for their clinical utility: they demonstrate strong zero-shot transfer performance on diagnostic
tasks (Hamamci et al., [2024; Blankemeier et al. 2024)), and their encoders consistently improve performance
on multimodal learning benchmarks (Bai et al., 2024; [Shui et al., 2025)). In the domain of 2D medical imaging,
such as chest X-rays, language-supervised pre-training is a key driver for integrating computer vision into
clinical workflows (Boecking et al, 2022; \Wang et all 2022b; Tiu et al.| 2022]).

However, language-image pre-training in 3D medical imaging has yet to reach the scale or performance
demonstrated in 2D modalities. For instance, chest X-ray CLIP models have been trained on a 500K
corpus (Wang et al.l [2022b; |Tiu et al.| 2022; [You et al.| 2023), achieving human-level performance on multiple
diagnostic tasks (Tiu et al., [2022). In contrast, progress in 3D medical imaging remains limited, with existing
models underperforming relative to their 2D counterparts (Hamameci et all |2024; Bai et al., |2024). We
attribute the performance gap between 2D and 3D language-image pre-training to two primary factors: data
annotation that constrains the training scale, and architectural limitations arising from the complexity of 3D
medical imaging.
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Figure 1: Tllustration of (a) an uncurated study for a patient. While previous work has relied on annotation
and curation, HLIP enables language-image pre-training directly on uncurated data. (b) Despite training
on large-scale domain-specific datasets, naively modeling the uncurated study with a vanilla ViT, e.g., by
randomly selecting a scan at each training step*, encoding scans independently before study aggregation, or
directly encoding the entire study*, yields performance only comparable to the SOTA trained on PubMed
corpus, whereas HLIP outperforms these by a large margin.

Computed tomography (CT) and magnetic resonance imaging (MRI) generate 3D volumetric images across
various anatomical regions, including the brain, chest, and abdomen. As illustrated in Figure[I] a standard MRI
study typically includes several sequences (e.g., T1-weighted, T2-weighted, and FLAIR), each contributing
distinct diagnostic information. Similarly, CT studies often include scans acquired with varying orientations
or scanner settings within the same study. To perform language-image pre-training for such data, a common
strategy is to curate datasets by having radiologists manually select a representative scan or slice from each
study, as shown in Figure (a) (Blankemeier et al., [2024; [Hamamci et al., |2024; [Bai et al., [2024; |[Shui et al.,
2025)), which presents a significant barrier to the scalability. In contrast, pre-training on uncurated studies
aligns more closely with real-world practice and readily expands the data scale, as it imposes no additional
burden on radiologists. Despite this, the unique structure of such data presents new challenges for current
visual encoders, which were originally designed for 2D images or single 3D scans (Dosovitskiy et al., [2020; |Liu
et al.,|2021; Ryali et al.|[2023). As shown in Figure b), even trained on a large-scale domain-specific dataset,
naively encoding uncurated studies with the Vision Transformer (ViT) (Dosovitskiy et al., 2020) results in
only comparable zero-shot transferability to the state-of-the-art (SOTA) biomedical CLIP (Nie et al., 2025)
trained on the PubMed corpus. Particularly, encoding the entire study can produce tokens on the order of
10*, which both incurs substantial computational overhead and limits performance (Barbero et al., 2024)).

In this work, we first address the key barriers to scaling language-image pre-training for 3D medical imaging
by pioneering the use of uncurated studies. Second, to effectively extract features from such data, we
introduce a novel hierarchical attention mechanism leverages the natural hierarchy of radiology data: slice,
scan, and study. We name this framework Hierarchical attention for Language-Image Pre-training (HLIP).
Unlike architectural designs such as Swin (Liu et al} [2021)), MViT (Fan et al., [2021} [Li et al., [2022b)), and
Hiera (Ryali et al|2023), HLIP leverages the inherent data structure to define the attention scope, making it
suitable for uncurated studies that contain multiple 3D scans. Compared to window attention that captures
only local features, slice or scan attention can capture all diagnostic features while also providing constructive
priors for learning study representations. Moreover, slice and scan attention is already much lighter than
study attention, and such minimal adaptation of the original ViT remains orthogonal to flash attention (Daol
et al.l [2022)) and patch dropout (Li et al., [2023), further reducing the computational burden.
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Trained on our health system, HLIP outperforms the SOTA on the proposed publicly
available brain MRI benchmark, Pub-Brain-5, by 10.5% balanced ACC; and surpasses the head CT foundation
model (Zhu et al., 2025) by 8.3% and 1.7% macro AUC on the CQ500 (Chilamkurthy et al., |2018) and
RSNA (Flanders et al., 2020)) benchmarks, respectively. HLIP also demonstrates strong generalizability on
the curated 3D medical language-image pre-training benchmark CT-RATE (Hamamci et all [2024), which
contains only one scan per study, outperforming the SOTA 2023) by 4.3% macro AUC on the
external evaluation Rad-ChestCT (Draelos et al.l |2021)). Our paper makes the following contributions:

e We introduce HLIP, an effective and scalable language-image pre-training framework for uncurated 3D
medical imaging, that leverages a novel hierarchical attention mechanism derived from the natural structure
of radiology data.

e We conduct the largest-scale training for 3D medical imaging to date, using 220K studies with 3.13 million
scans for brain MRI and 240K studies with 1.44 million scans for head CT.

o We demonstrate the state-of-the-art performance on multiple benchmarks spanning diverse modalities and
anatomical regions, including brain MRI, head CT and chest CT.

o We release the following assets to the public: a brain MRI benchmark for zero-shot classification, an
effective language-image pre-training implementation for 3D medical imaging, the pre-training recipe, and
model checkpoints.

2 Related Work

Language-Image Pre-training in Radiology has been developed for 2D and 3D medical imaging,
facilitated by public datasets such as CheXpert (Irvin et al., [2019)), MIMIC-CXR (Johnson et al., [2019),
and CT-RATE (Hamamci et al [2024)). In 2D imaging, techniques such as local alignment (Huang et al.
2021} Wang et al., 2022a; Miiller et all [2022), knowledge enhancement (Wang et al.) 2022b; [Wu et al.
2023)), and longitudinal analysis (Bannur et al. 2023 have been explored. CheXZero (Tiu et al. 2022
demonstrates strong empirical results comparable to those of human experts in the domain of chest X-rays.
BiomedCLIP (Zhang et al., 2023a) and ConceptCLIP have been trained on more than 15
million sample pairs, achieving strong performance across modalities, including radiology. In addition, other
works (Boecking et all, 2022} [You et all [2023} [Zhang et all, 2023b]) have also contributed significant insights
and achieved impressive performance. 3D medical imaging offers a more comprehensive view of anatomical
structures. However, due to its computational cost and limited data availability, several studies (Cao et al.
[2024; [Wang et al., 2024; He et al.l 2024)) focus on bridging the domain gap between 2D and 3D. For example,
UniMedI (He et al., 2024 learns a shared feature space for both 2D and 3D modalities and demonstrates
improvements across both. BIUD (Cao et al. [2024) distills 3D representations from a well-trained 2D

model (Tiu et al., |2022), significantly improving data efficiency.

More recently, aided by advances in hardware and the availability of public datasets (Hamamci et al.l [2024)),
several studies (Hamamci et al, 2024} |Bai et al., 2024} [Shui et al.| |2025} [Lai et al. 2025) have performed
language-image pre-training on 3D imaging, surpassing methods (Cao et al.l 2024)) that still rely on 2D
representations. Specifically, CT-CLIP (Hamamci et al) [2024) has been pre-trained on 20,000 paired chest
CT scans and reports. M3D explores a versatile multi-modal large language model designed
for universal 3D medical imaging analysis. fVLM (Shui et al., 2025) proposes a fine-grained pre-training
framework that relies on segmentation to perform organ alignment. However, while these methods have
demonstrated promising performance on various tasks such as zero-shot abnormality detection and report
generation, several factors limit their training scalability and real-world applicability. For example, CT-CLIP
and M3D are constrained to curated studies containing only a single imaging scan. Such studies rely heavily
on human annotation and also fail to reflect real-world scenarios, where studies typically include multiple
scans. fVLM further depends on a segmentation model, which introduces bias from segmentation quality and
largely limits its scalability and generalizability. Moreover, these methods suffer from inefficient modeling of
3D medical imaging, leading to small batch sizes (e.g., 48), which are insufficient for effective language-image
pre-training (Radford et al., 2021)).
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Efficient Language-Image Pre-training is crucial, as it directly affects the number of sample pairs
seen during training and contrasted per batch, two key factors of model capacity. Existing hierarchical
architectures (Liu et al., [2021; |Hamamci et al. [2024)) have been widely adopted to improve efficiency. However,
as analyzed in Appendix [E:2] these models may be less efficient than commonly assumed in the context
of 3D medical imaging, even when compared with the original ViT. From the architecture perspective,
components such as relative position embedding are expensive for 3D inputs and is not compatible with recent
advancements like flash attention (Dao et al.l [2022). From the training perspective, FLIP (Li et al. 2023)
demonstrates a favorable trade-off by randomly removing 50% of tokens during training. However, models
that require a fixed activation shape (Liu et al.l 2021} |Li et al., 2022bga; [Ryali et al., [2023)) cannot benefit
from this strategy. Moreover, many works in radiology (Matsoukas et al.l |2022; [Tiu et al., [2022; |Zhao & Shen),
2024; [Shui et al., [2025) have demonstrated the benefits of the universal feature learned by MAE (He et al.|
2022)). Therefore, modeling 3D medical imaging with minimal adaptation of the original ViT (Dosovitskiy
et al.l |2020)) is a promising research direction and stands to benefit from recent advancements such as flash
attention, patch dropout, and pre-trained models.

3 Method

Our goal is to perform language-image pre-training on uncurated studies. Given a study S € RM*IXDxHxW
where M denotes the number of single-channel 3D scans, and D, H, and W represent the depth, helght
and width dimensions of each scan, respectively. Following the V1T (Dosov1tsk1y et al., 2020)), each scan is
divided into a grid of non-overlapping volumes of size (L; , I;L[ , o). These volumes are prOJected into visual
tokens F, € RVX¢ where N = M x d x h x w is the total number of tokens and ¢ denotes the number of
channels. As N can be on the order of 104, computing self-attention over all tokens throughout the ViT
backbone is prohibitive in memory and also limits performance (Barbero et al., |2024)). We introduce a novel
hierarchical attention mechanism guided by the inherent data hierarchy of uncurated studies, enabling lighter
self-attention while introducing effective priors derived from this hierarchy: slice, scan, and study.

3.1 Hierarchical Attention Mechanism

The radiology data exhibits an inherent hierarchical structure for each patient, and our proposed hierarchical
attention mechanism mirrors this structure. As illustrated in Figure 2] the data for an individual patient
comprises three levels:

e The study contains M imaging scans, whose modalities and acquisition planes are selected by a radiologist
based on the clinical context. Collectively, these M scans contain all the visual information required for
radiologic diagnosis.

e The scan contains D slices. While a single scan conveys only partial context of the full study, it still
captures the complete extent of the target pathology.

e The adjacent slices contains % consecutive slices within a single scan. Although it conveys only partial
information about the target pathology, the slices can capture focal diagnostic features.

We explore a simple hierarchical attention mechanism grounded in this structure. Specifically, as shown in
Figure [2] we compute self-attention independently within each hierarchical level:

e Study attention computes a single self-attention operation over all N tokens in a study. The I/O
complexity (Aggarwal & Vitterl [1988) of the study attention is Q(N? + N x ¢) (Dao et all 2022), as
detailed in Appendix [E]

e Scan attention computes M independent self-attention operations, each over d x h X w tokens within a
2
single scan. The I/O complexity of the scan attention is Q(% + N x ¢).

e Slice attention computes M x d independent self-attention operations, each over h x w tokens within a
group of adjacent slices. The I/O complexity of the slice attention is Q(+— irxa TN xc).
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Figure 2: Illustration of (a) the radiology data hierarchy for a single patient, including the study, single scan,
and adjacent slices. Our hierarchical attention mechanism mirrors this hierarchy and computes self-attention
independently within each level. (b) Our HLIP framework incorporates a visual encoder that performs
attention at different levels. In practice, lightweight slice or scan attention with a few study attention layers
suffices to extract features from the full study.

The proposed hierarchical attention mechanism contrasts with existing methods that modify attention
computation using convolution (Fan et al., 2021} [Li et al. 2022b)), pooling (Ryali et al., |2023)), or shifted
windows , all of which require either regular activation shapes or attention masks. Our
mechanism relies solely on a simple reshape operation, as there is no overlap between different scans or groups
of adjacent slicesﬂ allowing greater flexibility for uncurated studies that comprise multiple scans. As shown
in Figure [2] each layer in the ViT can perform attention at any level. In practice, we evenly divide the ViT
backbone into four subsets of layers (e.g., three layers per subset for the 12-layer ViT-B) and apply study
attention only to the last layer of each subset, while the remaining layers perform the lighter scan or slice
attention. Moreover, this intentionally simple design also enables seamless integration with recent efficiency

advances such as patch dropout (Li et al [2023)) and flash attention (Dao et al., 2022).

3.2 Implementation

Model. Our visual encoder is a MAE pre-trained ViT-B 2022). The input is rescaled to [0,1] and
normalized with MAE’s averaged mean and std. Compared to the original ViT designed for 2D RGB images,
our vision encoder only has three differences: (1) each scan is divided into 3D volumes instead of 2D patches;
(2) the positional embedding encodes 3D spatial coordinates within each scan, along with an additional
dimension to distinguish different scans; The cls token is minimally adapted to propagate information across
layers that perform different hierarchies of attention.

For (1), which employs a convolution layer (He et al., |2022), we adopt average inflation initialization (Zhang

2022b)). Specifically, we first sum the 2D weights along the channel dimension to accommodate
D

a single-channel input, then replicate them 7 times to construct the 3D weights, and finally scale by a
factor of %. We set the token size as (8,16,16) by default. For (2), we tile the pre-trained 2D positional
embedding Pp,qe € RPX®*¢ with a 1D sinusoidal positional embedding for slices, Py € R4%¢, and another
for scans, Pseqn € RMmezxe  Af indicates the maximum number of scans our model can process without
interpolation. During training, to construct a batch, we randomly sample M scans along with M positional
embeddings from Pi.q,, which forms the final positional embedding P € RMxdxhxwxe = \We set Mp.,=40

and M=10 by default. For (3), the cls token may lose gradient continuity across different hierarchies. To

"'With the original attention layer unchanged, study attention takes the input of size (B, M x d x h x w, c); scan attention
takes the input of size (B X M, d X h X w, c¢); and slice attention takes the input of size (B x M x d, h X w, c), where B
denotes the batch size.
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address this issue while maintaining the efficiency of our architecture, we propagate the cls token using a
combination of cloning and averaging. For example, when transitioning from the study to scan attention layer,
we distribute the cls token across M scans by cloning. In the reverse direction, we aggregate information from
M cls tokens into a single cls token by averaging them. The transition between other hierarchies (e.g., study
and slice or scan and slice) follows the same procedure. Empirically, we find this strategy to be sufficient,
performing better than alternatives such as weighted average or global pooling at the end of the encoder.

For uncurated datasets, we use scan attention with 4 evenly distributed study attentions. A curated dataset
with only one scan per study corresponds to the special case of M=1 in our scenario. For such datasets, we
employ slice attention with 4 evenly distributed scan attentions; We use PubMedBERT as
our text encoder. Model configurations are provided in Appendix

Datasets. Given that HLIP enables pre-training on real-world, clinical studies, we collect two datasets
within our health system, namely Brain MRI220K and HeadCT240K. BrainMRI220K contains 220,993 MRI
studies. We hold out 992 studies for hyperparameter tuning using the retrieval task. In the training split, the
number of scans per study ranges from 1 to 162, with the third quartile at 17; the number of slices per scan
ranges from 5 to 500, with the third quartile at 80. HeadCT240K contains 244,253 CT studies for training
and 998 held-out studies. The number of scans per study ranges fro 1 to 71, with the third quartile at 6; the
number of slices per scan ranges from 5 to 500, with the third quartile at 110. More details about these two
datasets are provided in Appendix [A]

Preprocessing. We do not standardize the orientation or spacing. Instead, we consistently align the depth
dimension with the through-plane axis of each scan, and then resize it to a fixed shape of (48,224,224). As
this differs from prior practice (Blankemeier et al., [2024; [Hamamci et al., 2024; |Shui et al. 2025)), we provide a
discussion in Appendix For brain MRI, we apply [0.5,99.5] percentile clipping to the intensity values.
For head CT, we expand each scan into three separate scans, with Hounsfield Unit (HU) values truncated to
[0,120] for soft tissue, [-20,180] for blood vessels, and [-800,2000] for bone.

Pre-training. Our implementation builds upon OpenCLIP (Cherti et all [2023) and FLIP 2023).
We apply 25% patch dropout by default as regularization and acceleration. We do not apply additional
augmentation or unmasked fine-tuning. Training 20 epochs on our uncurated datasets takes ~1 day with a
batch size of 256 on 8 L40 GPUs. More details are provided in Appendix [B-2]

4 Experiments

We apply HLIP to brain MRI, head CT, and chest CT. For brain MRI, we construct a new benchmark
for zero-shot classification, using public datasets (Dufumier et al.l [2022 [Liu et al.| [2023; Baid et al.| [2021}
[LaBella et al. [2023; Moawad et al.l [2024; Kazerooni et all, 2024; [Rudie et al., [2024; Link et al [2024). For
head CT and chest CT, we follow evaluation protocols from previous work (Hamamci et al. [2024; Shui et al.|
[2025; Zhu et al., 2025)). Experiments on our uncurated brain MRI and head CT datasets underscore the
importance of effective modeling and demonstrate superior performance of HLIP over current foundation
models (Zhang et al., 2023a; Nie et al., [2025; Zhu et al., 2025; |Yang et al., |2024). Experiments on curated
chest CT datasets (Draelos et al., 2021} Hamamci et al.,[2024) further isolate the effectiveness of the proposed
hierarchical attention mechanism. Finally, we conduct comprehensive ablation and analysis.

4.1 Brain MRI

Pub-Brain-5. To the best of our knowledge, no publicly available benchmark exists for zero-shot transfer
evaluation on brain MRI taskrﬂ To this end, we construct a benchmark, named Pub-Brain-5, based on
existing publicly available brain MRI datasets. Pub-Brain-5 comprises 18,343 studies drawn from Open-
BHB (Dufumier et al.,[2022), the Stroke dataset (Liu et al},[2023), BraT$ 2023 (Baid et al.,[2021} [LaBella ct al.,
2023; Moawad et al., [2024; [Kazerooni et all [2024), NYU-Mets (Link et all [2024)), and UCSF-Mets (Rudie
et al.,|2024). It spans five classes: healthy (3,984), acute stroke (2,871), glioma (1,614), meningioma (1,141),
and metastasis (8,733). For each study, the number of scans ranges from 1 to 14. We also construct a subset

2BrainMD l, 2024) is not publicly available due to an unexpected privacy policy.
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Table 1: Results of zero-shot classification on Pub-Brain-5 and Pub-Brain-5-GT. We report balanced accuracy,
with the best results highlighted in bold and the second-best result highlighted in underline. "+annotation"
indicates only predicting on lesion-containing slices which are manually annotated.

Anomaly Detection

Method Tumor Disease
Stroke Glioma Meningioma Metastasis mean
Pub-Brain-5
BiomedCLIP
(Zhang et al}, 2023a) 64.7 87.8 63.6 59.8 69.0 50.4 31.5
ConceptCLIP
(Nie et al}, 2025) 66.8 91.9 57.7 67.9 71.1 35.7 30.9
Prima
(Follon et al} [2025) 78.8 89.3 70.8 64.7 75.9 42.8 31.6
ViT (our impl) 72.8 93.4 72.9 63.1 75.6 45.7 43.4
HLIP (ours) 91.5 89.2 79.2 78.1 84.5 63.3 63.9
Pub-Brain-5-GT
Biomed CLIP 66.7 88.2 63.8 74.6 73.3 46.2 33.1
+annotation 86.4 94.1 75.8 75.0 82.8 45.7 45.3
ConceptCLIP 69.6 92.1 57.8 69.5 72.3 35.2 31.6
+annotation 93.6 97.8 70.8 76.8 84.8 39.4 50.8
Prima 61.2 81.0 87.7 53.4 70.8 45.9 314
ViT (our impl) 76.7 93.5 58.2 58.2 71.7 42.1 43.5
HLIP (ours) 95.0 89.2 79.6 73.4 84.3 54.8 61.3

of Pub-Brain-5, namely Pub-Brain-5-GT, which contains lesion-containing slice annotations derived from the
original segmentation ground truth. Pub-Brain-5-GT comprises 8,944 studies covering the same five classes:
healthy (3,984), acute stroke (2,372), glioma (1,350), meningioma (1,000), and metastasis (238). We evaluate
three zero-shot tasks: (i) binary anomaly detection (i.e., distinguishing pathological from healthy studies);
(ii) three-way tumor classification; and (iii) five-way disease classification.

Baselines. We first evaluate the zero-shot transferability of two biomedical CLIP models on our benchmark:
BiomedCLIP (Zhang et al., |2023al) and ConceptCLIP (Nie et al., |2025). Since both models require 2D
inputs, we generate study predictions by applying average pooling to the outputs across all slices. We
acknowledge that slices without lesions introduce noise for these 2D baselines; however, this is an intrinsic
limitation of such models. We support these two baselines on Pub-Brain-5-GT, where predictions are made
only on lesion-containing slices, while HLIP continues to take the raw study as input. In addition, we
evaluate Prima (Hollon et al., |2025)), which represents the vquae + hierarchical transformer architecture
family (Hamamci et al., [2024; Hollon et al., |2025)), as well as a vanilla ViT that encodes the entire study.

Implementation Details. We use the prompt " This brain MRI shows: {disease}." to perform zero-shot
inference (Radford et al.| 2021)) with biomedical CLIP models. HLIP and the vanilla ViT are trained on
BrainMRI220K as described in Section while Prima (Hollon et al.| [2025]) is re-trained on the same dataset
using the training recipe provided in the original paper. These three models employ the prompt "This MRI
study shows: {disease.}" during zero-shot transfer.

Results. Given both benchmarks are imbalanced, we report balanced accuracy (ACC) in Table On
Pub-Brain-5, HLIP demonstrates superior performance over all baseline models, outperforming the second-best
baseline by 20.5% ACC in disease classification. On Pub-Brain-5-GT, we observe a substantial performance
boost for two biomedical CLIP models (Zhang et al.l |2023a; [Nie et al., |2025) when predictions are restricted
to lesion-containing slices, underscoring the fairness of our evaluation for these models even on uncurated
studies. Notably, in disease classification, ConceptCLIP (Nie et al. [2025) achieves 50.8% ACC, outperforming
Prima (Hollon et all [2025)) and the vanilla ViT trained on our large-scale domain-specific datasets, indicating
that merely scaling up data is not a sufficient solution for language-image pre-training in 3D medical imaging.
On the other hand, HLIP achieves the new SOTA 61.3% ACC, attributable to the effectiveness of the proposed
hierarchical attention mechanism.
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Figure 3: Results of linear-probe and zero-shot evaluations on the CQ500 (Chilamkurthy et al 2018) and
RSNA (Flanders et al. [2020)) datasets. We report AUC for each class. In linear-probe, represents Google

CT (Yang et al, 2024); green represents FM-HeadCT (Zhu et al.l [2025)); and blue represents our HLIP. In
zero-shot evaluation, represents the vanilla ViT and blue represents our HLIP.

4.2 Head CT

Implementation Details. We apply HLIP to HeadCT240K, as described in Section [3.2] For linear-probe
evaluation, we benchmark HLIP on CQ500 (Chilamkurthy et al., 2018) and RSNA (Flanders et al., [2020)),
exactly following the train-test split and hyperparameters of FM-HeadCT (Zhu et al.,|2025)). For zero-shot
evaluation, we evaluate HLIP on the full CQ500 and RSNA datasets and compare it with the vanilla ViT
also trained on the same Head CT240K datasetﬂ We employ the prompt " This CT study shows: {disease}."
during zero-shot transfer.

Results. Consistent with FM-HeadCT 2025)), we report the area under the ROC curve (AUC)
for each class in Figure |3] In linear-probe evaluation, HLIP demonstrates superior performance over FM-
HeadCT (Zhu et all, [2025), which is pre-trained on 361,663 studies using DINOv2 (Oquab et all, 2023), and
the Google-CT (Yang et all 2024) foundation model. Specifically, on the CQ500 dataset (Chilamkurthy et al.)
, HLIP outperforms both FM-HeadCT and Google-CT with macro AUC improvements of 8.3% and
12.2%, respectively; on the RSNA dataset (Flanders et al., [2020]), HLIP achieves macro AUC improvements of
1.7% and 5.8% over the these baselines, respectively. Outperforming current foundation models demonstrates
the clinical significance of HLIP. In zero-shot evaluation, HLIP consistently outperforms the vanilla ViT,
achieving macro AUC improvements of 10.0% on CQ500 and 2.4% on RSNA, further demonstrating the
effectiveness of the proposed hierarchical attention mechanism.

4.3 Chest CT

Implementation Details. Following CT-CLIP (Hamamci et al.l [2024) and fVLM (Shui et al [2025)), we
apply HLIP to the CT-RATE (Hamamci et al., 2024)) training set, then perform internal validation on its test
split and external validation on the full Rad-ChestCT dataset (Draelos et al., [2021). The implementation
details differ from those in Section Following prior works (Cao et al. 2024} [Shui et all, 2025), we
standardize each scan to a spacing of (3mm,1mm, 1mm), truncate HU values to [-1150,350], construct mini-
batches with a center crop of size (112,336,336), and apply a token size of (8,24,24). We also use
CXR-BERT (Boecking et al., 2022) as the text encoder. Other than the aforementioned modifications, all
remaining settings are exactly the same as those described in Section HLIP is trained for 20 epochs
without patch dropout. Using a batch size of 512 on 4 A40 GPUs, training completes within 6 hours,
significantly faster than prior works (Hamamci et al.l [2024} |Shui et al.| [2025)), which require several days even
with more advanced computational resources. More details are provided in Appendix

3Recent CLIP models for 3D medical imaging, such as Merlin (Blankemeier et al [2024) and M3D (Bai et al.[2024), are excluded
from our baselines, as they perform no better than random guessing in zero-shot evaluation on CQ500 and RSNA.
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Table 2: Results of multi-label zero-shot evaluation on the CT-RATE (Hamamci et al.l 2024) test split for
internal validation and the Rad-ChestCT (Draelos et al., [2021) for external validation. The best results are
highlighted in bold.

Method Internal Validation (CT-RATE) External Validation (Rad-ChestCT)
AUC ACC F1  Precision Recall AUC ACC F1  Precision Recall
Supervised by Original Reports
CT-CLIP
QHamamci e al.L |2024D 73.3 66.9 70.8 32.6 -- 63.3 599 64.7 34.1 --
BIUD

‘ 9024) 71.3 68.1 71.6 33.8 67.3 629 60.6 652 33.7 59.6

Merlin
QBlankemeier = al-l; |2024D 72.8 67.2 709 33.7 70.1 644 619 66.3 34.8 61.0
HLIP (ours) 7T 71.4  74.7 37.9 73.0 72.3 68.4 72.1 40.4 66.7
Supervised by Qwen Summarized Reports
fVLM
(Shui ot al], [2025) 77.8 71.8 75.1 37.9 72.8 68.0 64.7 68.8 37.4 64.6
HLIP (ours) 78.7 T2.4 75.5 38.4 74.1 71.7 67.7 71.4 39.8 66.9
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Figure 4: Ablation study on the Pub-Brain-5 (a)-(d) and Rad-ChestC'T (Draelos et all 2021) dataset (e)-(h).
We report balanced accuracy (ACC) on both datasets.

Results. Consistent with fVLM (Shui et al.| [2025), we report the area under ROC curve (AUC); balanced
accuracy (ACC); weighted F1-score (F1); recall; and precision for multi-label zero-shot classification in Table
When pre-trained with original reports, HLIP outperforms second-best models by 4.9% AUC on internal and
7.9% AUC on external validation. When pre-trained with reports summarized by large language models (e.g.,
Qwen , as used by fVLM), HLIP outperforms fVLM by 0.9% and 3.7% AUC on internal and
external validation, respectively. These results demonstrate that, compared with other components such as
the VQ-VAE (Van Den Oord et al 2017)) tokenizer (used by CT-CLIP) and anatomical-guided fine-grained
alignment (used by fVLM), the proposed hierarchical attention is a more effective and generalizable adaptation
for language-image pre-training in 3D medical imaging.

4.4 Ablation Study

In Figure [, we present an ablation study on the key components of our visual encoder, including the cls

token propagating strategy (Figure @ and [4e)); the location of dense attention (Figure @l and ; and the
number of dense attention layers (Figure

nd [4c). We additionaly investigate the batch size in Figure @l
and [4h] a factor overlooked in previous work (Hamamci et al., [2024} [Shui et all, [2025).
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Figure 5: Qualitative results of zero-shot diagnosis on the Rad-ChestCT (Draelos et al., [2021]) and BraTS (Baid
et al., [2021; LaBella et al.| 2023) datasets. The first row shows the original clinical scans with pathologic
regions outlined (dashed red). The second row shows activation maps (Chefer et al.| [2021). HLIP identifies
the pathologic regions across multiple groups of adjacent chest CT slides (left) and brain MRI scans (right).

CLS token. When propagating the cls token across different attention levels, in addition to the default
averaging setting, we also consider two alternative scenarios: (i) replacing the cls token with global average
pooling at the end of the visual encoder (none); and (ii) applying weighted averaging using an attention
pooling (learned). As shown in Figures [4a] and aggregating the cls token by averaging proves to be the
most effective approach. This result demonstrates that more complex components are not necessary to
achieve better performance.

Location of dense attention layers. In Figure 4b|and [4f] we consider alternative locations of the global
attention layer: study attention for uncurated datasets, where each study contains multiple scans, and scan
attention for curated datasets, where each study contains a single scan. Compared with distributions such as
placing all global attention layers at the front or all at the end, we find that evenly distributed global attention
layers yield the best performance. This is because they enable the model to capture global information at
multiple feature levels.

Number of dense attention layers. In Figure [4c|and we investigate the number of global attention
layers, where 0 and 12 correspond to two implementations of vanilla ViT. We find that 4 global attention
layers are sufficient to capture global information, outperforming both 0 layers, which lack global information,
and 12 layers, which lack the constructive priors provided by slice or scan attention.

Batch size. Previous work (Hamamci et al., 2024} [Shui et al 2025)) used only small batch sizes (e.g., 48)
during the pre-training. In Figure [Ad] and [4h] we investigate this factor, which has been widely recognized as
important in language-image pre-training, in the context of 3D medical imaging. We find that language-image
pre-training in 3D medical imaging still benefits from larger batch sizes, underscoring the importance of
memory-friendly designs such as our hierarchical attention mechanism.

4.5 \Visualizations

In Figure 5] we visualize the activation maps of HLIP, following |Chefer et al.| (2021) in the zero-shot setting
on Rad-ChestCT (Draelos et al., [2021) and BraTS (Baid et al. [2021; [LaBella et all 2023]). Although HLIP
mainly employs lightweight local attention layers, these visualization results demonstrate the effectiveness of
a few global attention layers in enabling HLIP to attend to visual features globally. Specifically, for chest
CT (curated, single scan), HLIP attends to pathologic regions across different slices, e.g., slice Z and Z+8, by
leveraging scan attention. For brain MRI (uncurated, multiple scans), HLIP attends to pathologic regions
across different scan types, e.g., FLAIR and T1W+contrast, by leveraging study attention. This demonstrates
the effectiveness HLIP in modeling the hierarchical structure of 3D medical imaging.
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4.6 Clinical Translation of HLIP 935 90
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MRI studies covering 52 diagnoses and ~15K head
CT studies covering 83 diagnoses. We report macro
AUC in Figure [6a] and [fb] HLIP consistently outper-
-for;n.s VlTesu(lito.r eidl dlzgn(ﬁs are presented Figure 6: Prospective testing results on (a) 52 brain
- Figures L an 10 Appendix MRI diagnoses and (b) 83 head CT diagnoses.

(a) 52 brain MRI diagnoses  (b) 83 head CT diagnoses

5 Conclusion

In this work, we pioneer language-image pre-training directly on uncurated 3D medical imaging studies
containing multiple scans, together with a novel hierarchical attention mechanism that effectively extracts
visual features. These two contributions form HLIP, a scalable and effective pre-training framework for
3D medical imaging. Despite its simplicity in both concept and practice, HLIP achieves state-of-the-art
performance on multiple benchmarks across diverse modalities and anatomical regions, including brain MRI,
head CT, and chest CT. These results demonstrate that directly pre-training on uncurated clinical datasets
is a scalable and effective paradigm for language-image pre-training in 3D medical imaging. We hope our
work facilitates large-scale language-image pre-training in other health systems and inspires future machine
learning research on scalable approaches for real-world clinical data.
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Appendix

o [Al Dataset
. Implementation
« [C} Prospective Evaluation
« D} Statistical Analysis
o [E} Complexity
[E} Discussion

A Dataset

As mentioned in Section this section provides additional details on the two datasets we collected:

BrainMRI220K and HeadCT240K. For other datasets, such as CT-RATE (Hamamci et al., 2024
ChestCT (Draelos et al., 2021)), BraTS 2023 (Menze et al. 2014; Bakas et al., [2017; Baid et al., [2021; I

, Rad-

LaBella

et al., 2023; Moawad et al.l [2024; Kazerooni et al., 2024), NYU-Mets (Link et al.,

2024), UCSF-Mets (Rudie

et al., 2024), RSNA (Flanders et al., 2020)), and CQ500 (Chilamkurthy et al., 2018
original publications. Additionally, we include a discussion of our preprocessing strategy.

A.1 BrainMRI220K
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# Sagittal

80,000 3 20
% 70,000 S 600,000
§ ‘é’ = 1.75
< 60,000 = 500,000 S 15
§ 50,000 % 400,000 | E 125
40,000
g ™ 300,000 g Lo
& 30.000 - S o5
° ~— 200,000 4 )
3 20,000 2 H# 05
;: 10,000 § 100,000 025
0 #* 0- 0.0
0 25 50 75 100 125 150
# scans per study (binned by 5) # slices per scan (binned by 5) # scans per acquisition plane
(a) # scans per study (b) # slices per scan (c) # scans per acqusition plane
Figure 7: Statistic results on BrainMRI220K.
10°
104 4
%]
Q9
k]
=
-+t
0
H*

103- | | | | | |
102 ""“ “ 4 y “ ‘ “II‘ y " u ‘
mUU:EmmmmummU><:m>cmmur_‘*—>.>c>.mmmmmmm‘—mmm‘—mmmwmwmmm:mg:>.
2@ s pLas [ o g @ 5 2
22958020 cEESE S S EUR S ESOSEYEEEEEREEEREERDDSE288ERSTE
OO0OE2o0uglpPoocl0L5EY B98¢t n 2o w=08ococ0cco o 0 o o O 22 oR S>>0 O
= T 32y 222U 3G 0o0mIcEVec2mS TS 8280222520202538cccs5€£8wmm22E87
.‘9.‘9E=en‘g_%gg‘q;%""EQEEuJEmgﬁ.QUEZEQGGGQE"‘cGé"ﬂﬁttEmmngaagg
0058 au< g o - 2 o ° 5 o £ Ccg® = £Ew 0 =8 © 0 L v — > =4 55
c=00 & e >3320 99— 0O Ss8=Ygo c gl () c8zET00PlEgEgocmYo-952582
£ o% @ < =1 I 5 ®©% = ° S20 3 s T T > g c 0o c 9 0 E © < =
SCssrssge82y -9058 2=5 OBc2RI B T2ccgeC2300E58=2858253
§ TS sgfc85Z §VUEZ % §E<FS 66 “TGESEZIITERS SUEIE
< 88 25 255 5 @35 ¢ 353955 <3 s g88TBsu-Sy Zy $EF
x O SE 52w o8 ¢ @850 B3 C 08358 o2 =3 ¢cg
X 4 Z o 2 = ) [l <] o ©
T n = o k= T - 8 2L c o c o<
25 (s} s} a3 SoE5c 4 Eo S
@ apgcy n > ©
> c 500 2 =1
S o €S>85 = c
c o = © 3 [7] =

G 3 £8 £

QE =V} <

Figure 8: Diagnosis distribution on BrainMRI220K.



Under review as submission to TMLR

The distributions of the number of scans per study, slices per scan, and scans per acquisition view in the
BrainMRI220K dataset are shown in Figure[7} Specifically, the number of scans per study ranges from 1 to
162, with the third quartile at 17. In total, there are 3.13 million scans from 220,001 MRI studies. All scans
are acquired with through-plane spacing equal to or smaller than 4mm. The number of slices per scan ranges
from 5 to 500, with the third quartile at 80. Each scan is originally acquired from a different view, with the
ratio between axial, coronal, and sagittal views being 5:1:2. Moreover, we show the distribution of 52 brain
MRI diagnoses in Figure |8 based on keyword statistics extracted from the reports.

A.2 HeadCT240K
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Figure 10: Diagnosis distribution on HeadCT240K.

The distributions of the number of scans per study, slices per scan, and scans per acquisition view in the
HeadCT240K dataset are shown in Figure [0} Specifically, the number of scans per study ranges from 1 to 71,
with the third quartile at 6. In total, there are 1.44 million scans from 244,253 CT studies. All scans are
acquired with through-plane spacing equal to or smaller than 4mm. The number of slices per scan ranges from
5 to 500, with the third quartile at 110. Each scan is originally acquired from a different view, with the ratio
between axial, coronal, and sagittal views being 8:3:3. Moreover, we show the distribution of 83 head CT
diagnoses in Figure based on keyword statistics extracted from the reports.
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A.3 Discussion

To the best of our knowledge, this is the first work to handle 3D medical datasets at the scale of Brain-
MRI220K and HeadCT240K, which comprise millions of scans. Our preprocessing strategy, introduced in
Section follows standard practices where possible, but also diverges due to the scale and diversity of
our dataset. Specifically, percentile clipping for brain MRI and HU value truncation for head CT follow
standard practices (Ma et all [2024; |Zhu et all [2025). For head CT, we do not concatenate scans with
different HU truncations along the channel dimension, as our method is capable of processing multiple
scans simultaneously. However, our strategy regarding orientation and spacing may differ from established
preprocessing pipelines (Isensee et al., 2021; |[Blankemeier et al., 2024; [Hamamci et al.,|2024; [Shui et al., 2025)).

Orientation. CT and MRI scans are acquired using different planes, including axial, coronal, and sagittal.
Isotropic data are rare in routine radiology studies; the through-plane spacing is typically larger than the
in-plane spacing. In the context of batch construction, where all samples in a batch must share the same
shape, standardizing the orientation can lead to downsampling along the in-plane axes and upsampling
along the through-plane axis. Upsampling in pixel space does not introduce new information, whereas
downsampling results in information loss. From the perspective of data augmentation, the orientation can
change when 3D random rotation is applied (Isensee et al., [2021). So, why do we standardize the orientation
at the beginning then augment it during training? Instead, we consistently align the first dimension (depth)
with the through-plane axis. Please note that the in-plane orientation is still standardized as RP, RI, or PI.
We treat the diversity of acquisition planes (as shown in Figure [7c|and Figure in our dataset as a form of
natural data augmentation.

Spacing. Standardizing spacing across the entire dataset is a common practice in medical image segmentation
to ensure that convolution filters interpret anatomical structures consistently (Isensee et al., [2021)). However,
HyperSpace (Joutard et al., |2024) demonstrates that, with appropriate spacing augmentation, model can learn
spacing-invariant features with sufficient spacing augmentation. Given the diversity of spacing settings (as
shown in Figure and Figure in our dataset, we believe it naturally occupies sufficient spacing
augmentation for the model to learn spacing-equivariant features. Therefore, when constructing a batch, we
first resize each volume to (48,256,256), and then apply a center crop to obtain (48,224,224). Here, 48
represents the median number of slices, which does not substantially distort the original scan.

M scans per study. As the number of scans per study varies, we randomly sample M = 10 scans per study
at each training step to construct a batch. An equal number of positional embeddings is also sampled for
these M scans from a total of M.« = 40 positional embeddings at each step. This means the model is
exposed to Myax different positions over the course of training, while observing M positions at each step.
This is analogous to a dropout strategy, with a scan dropout rate of 1 — MM . During evaluation, the model

is able to process studies containing up to My.x scans without the need fgﬁxinterpolation.

B Implementation

In this section, we summarize the model configuration described in Section and provide details of the
pre-training setup referenced in both Section [3.2] and Section For linear probing evaluation on head CT,
we refer readers to FM-HeadCT (Zhu et al., 2025).

B.1 Chest CT

The model architecture and pre-training configuration for chest CT are summarized in Table [|and Table [
respectively. These configurations closely follows prior works such as CT-CLIP (Hamamci et al., 2024),
OpenCLIP (Cherti et al., 2023)), and BiomedCLIP (Zhang et al. |2023a). In the pre-training configuration,
we report the base learning rate corresponding to a batch size of 64. During training, we follow the linear

. . . . _ batch_size
learning rate scaling rule (Li et al., 2023): Ir = base_lr x 24=g5t=¢

The diseases used for zero-shot evaluation are listed in Table [5| This setup is consistent with fVLM (Shui
et al., [2025)) and all methods reported in Table
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Table 3: Model (Chest CT)
config value
projection linear
embed dim 512

Visual Encoder
slice attn index

input size
patch size
patch dropout

VIT-B (Dosovitskiy et al., [2020)
(0,1;3,4;6,7;9,10)

(112,336,336)
(8,24,24)
0.0

Text Encoder
context length

CXR—BERT (Boecking et al., |2022))

512 (Hamamci et al., [2024)

Table 4: Pre-training (Chest CT)

config value
image precision float32
window [-1150,350]
mean, std [0.449,0.226]
report original
optimizer AdamW (Loshchilov & Hutter, [2017)
51, B2 0.9, 0.98 (radford et al.||2021)
base Ir le-5
0.2

weight decay
Ir schedule
warmup steps
numerical precision

CcOoSINe (Loshchilov & Hutter 2016
47 (Shui et all} |2025)
amp

Table 5: Evaluation (Chest CT)
Rad-ChestCT (pracos et al|[2021)

CT-RATE (tamamci et al} [2024)

Emphysema
Atelectasis
Lung nodule
Lung opacity
Pulmonary fibrotic sequela
Pleural effusion
Mosaic attenuation pattern
Peribronchial thickening
Consolidation
Bronchiectasis
Interlobular septal thickening
Cardiomegaly
Pericardial effusion
Coronary artery wall calcification
Hiatal hernia
Arterial wall calcification

emphysema

atelectasis

nodule
opacity
fibrosis

pleural_effusion

0

bronchial_wall_thickening
consolidation
bronchiectasis
septal_thickening
cardiomegaly
pericardial_effusion
calcification

hernia

calcification

B.2 Brain MRI/Head CT

Table 6: Model (Brain MRI/Head CT)

config value
projection linear
embed dim 512

Visual Encoder

input size
patch size
patch dropout

VIT-B (Dosovitskiy et al.| |2020)

(48,224,224)
(8,16,16)
0.25

Text Encoder
context length

PubMedBERT (cu et all|2020)

256 (Zhang et all |2023a)

Table 7: Pre-training (Brain MRI/Head CT)

config value
image precision uint8
truncate [0.05,0.95]
mean, std [0.449,0.226]
report Prima (Hollon et all |2025)
optimizer AdamW (Loshchilov & Hutter, [2017)
51, B2 0.9, 0.95 (Li et a1, |2023)
base Ir le-4
weight decay 0.2
Ir schedule cosine (Loshchilov & Hutter, [2016)
warmup steps 2000
numerical precision amp

The model architecture and pre-training configuration for brain MRI/head CT are summarized in Table [6]
and Table [7] respectively. We process the reports using the method proposed in Prima (Hollon et al., [2025]),
which leverages a large language model to summarize the original radiologist reports and reduce biases related
to writing style, grammar, and wording habits. Given the rapid development of modern language models, we
do not consider this fully automatic text processing applied to existing radiologist reports to be equivalent to
the data curation pipeline on the visual side, which relies on radiologists and imposes additional burdens.
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C Prospective Evaluation
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Figure 11: Prospective evaluation on 52 brain MRI diagnoses.
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Figure 12: Prospective evaluation on 83 head CT diagnoses.

We present the detailed results of the prospective evaluation conducted within our health system for 52 brain
MRI diagnoses and 83 head CT diagnoses in Figure [I1] and Figure

AUC for HLIP (bluc) and the vanilla ViT (

respectively. We report linear-probe
). HLIP demonstrate consistent improvement.
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D Statistical Analysis

We investigate statistical metrics for HLIP and the original ViT on the Pub-Brain-5 dataset. First, using
the zero-shot prompt reported in the paper, " This brain MRI shows: {disease}.", we find that the p-value
between the two models is less than 0.0001. We then perform inference using four additional prompts: " This
brain MRI shows: likely {disease}.", " This brain MRI shows: {disease} identified.", " This brain MRI shows:
suggesting {disease}.", and "This brain MRI shows: compatible with {disease}." Under the five prompts
considered, the 5-way disease classification performance is 63.443 g for HLIP and 40.64 ¢ for ViT. This result
demonstrates a clear benefit of the HLIP methodology over the original ViT.

Table 8: Results of zero-shot classification on Pub-Brain-5. We report the balanced accuracy of HLIP under
five prompts.

Anomaly Detection )
Tumor Disease

Stroke Glioma  Meningioma Metastasis mean

Pub-Brain-5 86.9+6.0 924+48 76.1+£34 849+49 854£37 623£14 63.4+£38
Pub-Brain-5-GT 90.4+5.2 925+50 76.3+3.3 774£69 841+£37 538=£09 59.3£3.7

In Table [§] we additionally report the full results of HLIP under this setting on the Pub-Brain-5 and
Pub-Brain-5-GT benchmark, for reference in future work.

E Complexity

In this section, we analyze the computational efficiency of the proposed hierarchical attention mechanism
from both theoretical and practical perspectives.

E.1 Analysis

Given a sequence length of N, model dimension of ¢, the matrices Q, K,V € RY*¢, The output O € RV*¢
of standard self-attention is computed as:

S=Qx KT e RV*N: P =softmaz(S) e RV*N, O0=PV (1)

where S and P require Q(N?) memory access; @, K, V, O requires Q(N x ¢) memory access. Therefore, the
I/O complexity for a standard self-attention over N tokens is:

Q(N? + N x ¢) (2)

The S requires (N2 x ¢) multiply-add operations; P requires Q(N?) multiply-add operations; O requires
Q(N? x ¢) multiply-add operations. Therefore the compute complexity for a standard self-attention over N
tokens is:

Q(N? x ¢) (3)

Study Attention. In our scenario, the sequence length of a study is N = M x d x h x w. The study
attention is a standard self-attention over all N tokens. Therefore the I/O complexity and the compute
complexity of the study attention is Q(N? + N x ¢) and Q(N? x c), respectively, as shown in Equation [2| and
Equation [3]

Scan Attention. The scan attention is M standard self-attention operations, each over % tokens. Therefore
replace N with £ in Equation [2| and Equation [3| resulting in Q(i\% + &xc) and Q(Aj\/[]—z x ¢) for I/O and
compute complexity of each self-attention operations, therefore the total I/O and compute complexity of the

scan attention are Q(NV; + N X ¢) and Q(J]VT; X ¢), respectively.

Slice Attention. The slice attention is M x d standard self-attention operations, each over ﬁ tokens.
Therefore, similar to the scan attention the total I/O and compute complexity of the slice attention are

Q(ijé\rjd + N X ¢) and Q(%jd X c), respectively.
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E.2 Experiments

We conduct experiments comparing ViT (Dosovitskiy et al., [2020), the 3D Swin Transformer imple-
mented in MONAI (Cardoso et all 2022), and our HLIP visual encoder. Since Swin is not com-
patible with multi-scan inputs, the experiment is conducted on a single-channel 3D input of shape
(B,1,224,224,224), where B=1 denotes the batch size. Both ViT and HLIP use a ViT-Base architecture
with patch_size=(16,16,16). The Swin Transformer is configured with dim=128, patch_size=(4,4,4),
window_size=(7,7,7), depth=(2,2,12,2), and head=(4,8,16,32). Following the original Swin Trans-
former (Liu et al., [2021]) while matching the model size.

Table 9: Practical Complexity.

model size (M) throughput (img/s; T=better) memory (G; J=better)

ViT 88.2 9.0 6.6
Swin 87.9 9.9 8.0
HLIP (ours) 88.2 17.5 4.1

All experiments are conducted on a single A40 GPU. We report the model size, throughput and training
memory for each model. To measure throughput, we include 100 warm-up iterations and compute the average
over 1000 forward passes. As shown in Table [0} Swin is slightly faster than the original ViT but lags behind
our HLIP visual encoder. Swin also consumes more memory during training due to the large codebook
of relative position embeddings constructed for 3D inputs. Moreover, Swin is not compatible with flash
attention, which has been integrated into PyTorch 2.0 and supports a wide range of GPUs.

F Discussion

In this work, we present HLIP, a scalable language—image pre-training framework for 3D medical imaging.
For health systems that have accumulated large volumes of data over the past decades, HLIP offers a new
direction for learning transferable representations. In this section, we provide additional discussion, including
both the limitations and future directions for readers interested in pursuing this line of research.

Study Curation. In this work, we collect all studies from our health system, resulting in an imbalanced
pre-training dataset. Building on findings from the natural image domain, we believe that developing a
systematic approach to construct a more balanced pre-training dataset is an important direction for future
work. Please note that this curation should occur at the study level and therefore does not impose additional
burden on radiologists, unlike selecting representative scans or slices.

Zero-shot Transferability. We observe that zero-shot transferability does not always correlate with the
number of training studies, in contrast to the findings of [Udandarao et al. (2024). For example, although
keyword search yields more patients with meningioma or metastasis than with glioma, zero-shot performance
on glioma is substantially higher. We hypothesize that this discrepancy arises from fundamental differences
between natural image and medical imaging datasets. For natural image datasets such as ImageNet, the
relationship between the number of positive instances in the training corpus and zero-shot performance
is approximately log-linear. This observation implicitly assumes a small or near-zero Bayes error rate, for
example, when differentiating boats from dogs. In contrast, in medical imaging, diagnosing meningioma and
metastasis is challenging for multifaceted reasons, including lesion size, radiographic features, and anatomical
location, which leads to a higher error rate compared to glioma.

Scale. Even at its current scale of 200K studies, the largest to date, our dataset remains far smaller than
training scales in the natural image domain, which typically involve billions of samples. Although collected
from a neuro-radiology system, we find that other organ systems such as the spine, abdomen, and knee
occasionally appear in our dataset, and the current model demonstrates promising zero-shot transferability to
these organs as well. Therefore, we believe there is no barrier to training a model on more comprehensive data,
including different organ systems (e.g., brain, cardiac, chest, abdomen) and modalities (e.g., CT and MRI).
Since no human labeling burden is involved, we expect the training scale to expand to millions of samples in
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the near future. As the dataset scales further, especially when encompassing multiple organ systems and
modalities, the underlying patterns will become more complex. Therefore, we believe that larger batch sizes
will be necessary. Although our hierarchical attention mechanism introduces no additional computational
burden, we rely on both flash attention and gradient checkpointing to achieve a batch size of 256 on 8 140
GPUs. Further increasing the batch size will require either a gradient accumulation strategy or additional
computational resources. Moreover, as the dataset scales up, larger models may prove beneficial but will also
require additional computational resources.

Vision-Language Model. Although current vision-language models achieve impressive performance even
on medical tasks, we believe these general-purpose models will reach a bottleneck when sufficient specialist
medical data are not available on the internet. On the other hand, as with other language-supervised visual
encoders, HLIP’s visual encoder could facilitate the development of vision language models under current
frameworks. Therefore, we expect to see a radiology specialist vision—language model that can operate on
entire studies in the near future.

Dataset Release Policy. The assets introduced in this work, including a new brain MRI benchmark for
zero-shot classification, an effective language-image pre-training implementation for 3D medical imaging,
the pre-training recipe, and the model checkpoints, will be fully publicly available. However, we are unable
to release the BrainMRI220K and HeadCT240K datasets alongside this work due to privacy constraints
associated with neuroimaging data. We plan to release a synthetic dataset in the future, where the generative
model is trained on our large-scale dataset.
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