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ABSTRACT

Flow-based generative models have rapidly advanced as a method for mapping
simple distributions to complex ones for which the distribution function is un-
known. By leveraging continuous-time stochastic processes, these models offer
a powerful framework for density estimation, i.e. an algorithm that samples new
points based only on existing samples. However, their requirement of solving
ordinary differential equations (ODEs) during sampling process incurs substan-
tial computational costs, particularly for large amount of data and numerous time
points. This paper proposes a novel solution, which is based on a theoretical analy-
sis of Flow Matching (FM), to overcome this bottleneck, namely, we developed an
algorithm to find the point prototype for a given point from the target distribution.
By eliminating the need for ODE solvers, our method significantly accelerates
sampling while preserving model performance. Numerical experiments validate
the proposed approach, demonstrating its efficiency.

1 INTRODUCTION

The general idea of Continuous Normalizing Flow is to map one distribution to another by calcu-
lating a velocity field. By moving points from the source distribution along this velocity field, they
converge to the target distribution. The Flow Matching (FM) approach (Lipman et al., 2023) enables
the formulation of an efficient loss function to train a model representing the given velocity field.

Numerous approaches have been proposed for building models, defining loss functions, and im-
plementing generative steps within FM. These include stochastic interpolants (Albergo & Vanden-
Eijnden, 2023; Albergo et al., 2023), Rectified Flow (Liu et al., 2023), its accelerated variant (Liu
et al., 2024), and Action Matching (Neklyudov et al., 2023). The FM approach has already been
extended to various geometries (Chen & Lipman, 2024; Klein et al., 2023) and applications (Tamir
et al., 2024; Jolicoeur-Martineau et al., 2023).

FM shares similarities with Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al., 2020), which
are at the forefront of generative deep learning tasks. However, a key difference lies in their model-
ing approach. While diffusion models utilize stochastic differential equations (SDEs) to compute the
target distribution, FM models employ a deterministic approach, using ordinary differential equa-
tions (ODEs) to compute velocity fields that map the initial distribution to the target distribution.
For generative tasks, a Gaussian distribution is commonly chosen as the initial distribution due to its
well-understood mathematical properties and ease of sampling.

However, FM models have several training and sampling problems: These models require a long
time to train due to the need to perform coupling for many pairs of sample points and long sampling
time due to the need to solve the ODE during the inference procedure. For the training process, there
is a lot of valuable work focused on better coupling algorithm (Tong et al., 2024a;b; Pooladian et al.,
2023), using optimal transport (OT) mapping. We are eager to solve the problem of long sampling
process to be able to generate huge amount of new data much faster. Approaches already exist to
speed up the sampling process. Some of them again are connected with better coupling for less
ODE solver steps (Wang, 2024), make faster sampling on pretrained models (Nguyen et al., 2024),
adapting knowledge distillation (Salimans & Ho, 2022; Meng et al., 2022; Kim et al., 2024), search
for the best stepsize (Li et al., 2023), better ODE solvers (Lu et al., 2022; Zheng et al., 2023).

In general, our idea is to make coupling pairs of points from the target (unknown) distribution with
density ρ1 which is represented as samples, and specially found points from the distribution with
a given probability density ρ0. The idea of such coupling comes from the application of the exact
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formula for the vector field v(x, t) (i. e. velocity of the point in the intermediate time), which is
presented explicitly, in particular, in (Ryzhakov et al., 2024). The cited paper provides an explicit
form of the vector field that minimizes the Flow Matching loss. By finding the trajectory of a point
that starts from a given sample and moves with this velocity v(x, t) taken with a minus sign, we
can obtain a prototype1 of the target sample. Overall, all exact prototypes are distributed according
to the density ρ0. Since the explicit expression for the velocity contains an integral over the target
distribution, we cannot find the exact prototype, but we find it with a certain accuracy. However, as
numerical experiments show, this accuracy is sufficient to train the model.

Our main contribution is the model training algorithm based on the exact expressions for the vector
field in Flow Matching approach, in which training is performed on pairs of samples from the origi-
nal and target distributions at once. These expressions allow us to make coupling of the source and
target distribution points so that the resulting transformation is almost monotonic, i. e. the segments
connecting possible pairs of samples almost never intersect. The models (neural networks), trained
on these pairs, can generate new image very fast as these images are generated in one step of ac-
cessing the trained model. The proposed one-step approach can use coupling from any conditional
mapping and is not limited to the chosen linear mapping. The disadvantage is a rather long process
of finding these pairs at the training stage. Also, due to the fact that we only estimate the exact
formula through samples and use invertible map with noise, the prototypes we obtain are not exactly
the same as the exact prototypes; furthermore, the ODE solver that is used to find the prototypes has
its own precision. However, these errors are moderated by the size of the buffer for evaluating the
integrals in the exact formula for the velocity, and by tuning the parameters of the ODE solver.

2 PRELIMINARIES AND PROBLEM STATEMENT

We first briefly formulate the common task and known approaches to solve it.

2.1 CONTINUOUS NORMALIZING FLOWS

Consider two distribution with densities ρ0(x) and ρ1(x) of multivariate random variable x ∈ Rd.
Let ψt(x0) be a flow for t ∈ [0, 1] that connect samples from the distributions ρ0 and ρ1. Consider
time dependent vector field v(x, t) such that{

∂ψt(x0)

∂t
= v

(
ψt(x0), t

)
, ψ0(x0) = x0,

and if x0 ∈ Rd is a multivariate random variable having distribution ρ02, the distribution of random
variable x1 = ψ1(x0) must be approximately equal to the target distribution ρ1.

Typically, initial distribution ρ0 is given, and target distribution ρ1 is unknown, and we have only
access to samples from it. But there are also tasks where ρ0 is unknown too, and we only have access
to a (limited set of) samples from it.

For the given point, x0 the flow ψt defines a trajectory or a path x(t) = ψt(x0) with initial and final
points x0 and x1, respectively.

A common approach is to approximate the vector field v using a model (neural network) vθ, then
sample a set {x0} of points from ρ0 and solve a Cauchy problem for each x0 from this set{ d

dt
x(t) = vθ

(
x(t), t

)
, x(0) = x0,

to obtain points x1 = x(1) that are being approximately distributed with ρ1.

One of the approach for building vθ is Conditional Flow Matching (Lipman et al., 2023; Tong et al.,
2024a).

1Hereafter in the text we use the term “exact prototype” for those points of the original distribution that
would be obtained by an absolutely accurate ODE solver given access to an absolutely accurate expression for
the velocity. We use the term “prototype” to the approximated samples.

2Hereafter in the text we use the same notation for both the random distribution and its density function,
unless this leads to ambiguities

2
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2.2 CONDITIONAL FLOW MATCHING (CFM)

We do not elaborate on the details of this approach and only note the main features that we need
further.

The basic idea of the CFM approach is to use the so-called conditional map ϕt,x1
(x), which is a

given function of time at two fixed endpoints: ϕ0,x1
(x0) = x0, ϕ1,x1

(x0) = x1 + ϵ(x0) (the added
small term ϵ depending on x0 is sometimes needed for regularization so that the map is invertible).
Based on this map, a conditional velocity (depending on the endpoint) is constructed as the time
derivative of the map. And then, during training the model, random pairs of points are taken from
the initial and target distributions, respectively, as well as randomly sampled time, and the model
is trained at an intermediate point according to the selected map using the conditional velocity. A
key advantage of the method is its theoretical proof of convergence to the desired target probability
under specific conditions. The disadvantages of class CFM include large variance in the training
loss and non-straightforward trajectories.

There are several ways to “straighten” trajectories, see cites in Introduction (Sec. 1) and Related
Work (Sec. 5) sections. To reduce variance, several methods are also used, one of which is to use an
explicit view in tractable form for a vector field (Ryzhakov et al., 2024). The cited paper proves that
using this formula reduces variance under some conditions.

Our idea is to use this explicit form for v to couple the samples.

3 METHODOLOGY

3.1 MAIN IDEA AND ALGORITHM

Explicit velocity Our main idea is to find a prototype X0(x1) ∈ Rd of the given point x1 ∈ Rd

of the target distribution ρ1 and then train a model for direct mapping from X0(x1) to x1. The
operation of our algorithm is based on exact formulas for the velocity v, which we use in the form
derived in (Ryzhakov et al., 2024). Namely, if we use invertible conditional map ϕt,x1(x0) = (1 −
t)x0 + tx1 + σtx0, the expression for the velocity is the following

vσ(x, t) =

∫ (
x1 − x(1− σ)

)
ρ0

(
x−x1t
1+σt−t

)
ρ1(x1) dx1

(1 + σt− t)
∫
ρ0

(
x−x1t
1+σt−t

)
ρ1(x1) dx1

, (1)

where ρ0 is (unnormed) probability density function of the initial distribution and σ is a small regu-
larization parameter. In our experiments, we use the standard Gaussian distribution3:

ρ0(x) ∼= exp(−∥x∥2 /2).

In the ideal case, when we know the distribution of ρ1 or at least we can accurately take the integrals
in the expression for the velocity, we would find its exact prototype X0(x1) for each point x1 from
the target distribution of ρ1. Then, by training a model vθ (neural network or other model) on pairs
{X0(x1), x1}, we would immediately obtain a transformation from the initial distribution ρ0 to the
target smoothed distribution ρ14.

Importance Sampling The formula (1) for the exact velocity contains integrals, where the inte-
grand is multiplied by an unknown density ρ1. In reality, we only have access to a certain set of
samples from the ρ1 distribution, so we can estimate these integrals with a given accuracy. Such a
case is just suitable for the Importance Sampling method. Note that since we have to evaluate the
integral standing in the denominators of the fraction, this evaluation may be biased (this is so-called
self-normalized importance sampling, SIS). To get around this issue, one can use rejection sampling
instead of SIS, as described in the above paper. Following the mentioned work (Ryzhakov et al.,
2024), we estimate the integrals using importance sampling, since this approach gives good practical

3symbol ∼= means equality up to a constant factor
4as we use regularized map with σ > 0, then we actually get the distribution ρ′1(x) ∼=

∫
ρ0((x −

y)/σ)ρ1(y) dy which at small σ differs negligibly from the original distribution ρ1 from a practical point
of view, cf. Eq. (6) in (Lipman et al., 2023).

3
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results even in the high dimensional case. Namely, in order to find a sample of point x1, we take a
sample set B = {xk1}Nk=1 of size N , xk1 ∼ ρ1, that includes x1, and use the following discretization
of velocity vdis

σ :

vdis
σ [B](x, t) =

N∑
k=1

xk1 − x(1− σ)
1− t+ σt

(
softmax(Y 1, . . . , Y N )

)
k
, where Y k = −1

2

∥∥x− t · xk1∥∥2L2

1− t+ σt
.

Model training Using this velocity, we solve the following Cauchy problem{ d
dt
f(t) = vdis

σ [B]
(
f(t), t

)
, f(1) = x1, (2)

for t from 1 to 0 to find the prototype X0(x1) = f(0) for a given x1.

Such prototype-image pairs {X0(x
l
1), x

l
1}nl=1 are constructed for a given batched size n of samples

of the target distribution ρ1, with n (significantly) smaller than N . Then we train the model vθ using
common quadratic loss

loss =
1

n

n∑
l=1

∥∥vθ(X0(x
l
1 + ϵl)

)
− xl1

∥∥2 , (3)

where i.i.d. variables {ϵl} are normally distributed with variance proportional to σ: ϵl ∼ N (0, σ·Id).
We summarize this steps in Algorithm 1.

Algorithm 1 One-step sampling training algorithm
Require: Sampler from distribution ρ1 (or a set of samples); batch size n; size of buffer N to esti-

mate integrals; regularization parameter σ; model vθ(·); algorithm with parameters for stochas-
tic gradient descent (SGD)

Ensure: quasi-optimal parameters θ for the trained model
1: Initialize θ (may be random)
2: Initialize buffer B← ∅ as empty set
3: while exit condition is not met do
4: Sample set X of n points X = {xi1}ni=1 from target distribution ρ1
5: Add obtained points X to the buffer B. If the size of the buffer exceeds N , remove the oldest

points from it so that it contains N points.
6: Generate normal distributed noise ϵ ∼ N (0, Id)
7: For each point xi1 from X find the solution X0(x

i
1 + σ · ϵ) of the Cauchy problem (2) with

right-hand side vdis[B] based on the points from the buffer B.
8: Update model parameters θ ← SGD(θ, loss) using loss in the form (3)
9: end while

At the inference step, we generate a point x0 from the distribution ρ0 and return the point x1 =
vθ(x0) immediately, without solving any differential equation.

3.2 EXTENSION: ADD LABELS

In case we have a dataset with labels, we can perform conditional generation. We use a conditional
model vθ(x0, i) which receives as input, in addition to a point x0 from the initial distribution, the
label i of a point which is an image of the given one.

When we solve the Cauchy problem (2), we use a different set of points for each of the labels for
the buffer of vdis. When calculating the loss, we also take into account the labels L = {Li}ni=1 of
the sample points X = {xi1}ni=1:

loss =
1

n

n∑
l=1

∥∥vθ(X0(x
l
1 + ϵl), Ll

)
− xl1

∥∥2 . (4)

We summarize this modifications in Algorithm 2.

4
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Algorithm 2 One-step sampling training algorithm with labels
Require: Sampler from distribution ρ1 (or a set of samples); batch size n; size of buffer N to

estimate integrals; regularization parameter σ; model vθ(·, ·); number m of labels; algorithm
with parameters for stochastic gradient descent (SGD)

Ensure: quasi-optimal parameters θ for the trained model
1: Initialize θ (maybe random)
2: Initialize set of buffers {Bi}mi=1 as empty sets: {Bi ← ∅} for i = 1, 2, . . . ,m
3: while exit condition is not met do
4: Sample set of n points X = {xi1}ni=1 from target distribution ρ1 with labels L = {Li}ni=1
5: for i = 1, 2, . . . ,m do
6: Add points X[L == i] from the whole set X with label i to the buffer Bi. If the size of the

buffer Bi exceeds N , remove the oldest points from it so that it contains N points
7: end for
8: Generate normal distributed noise ϵ ∼ N (0, Id)
9: For each point xi1 from X find the solution X0(x

i
1 + σ · ϵ) of the Cauchy problem (2) with

right-hand side vdis[BLi ] based on the points from the buffer BLi corresponding to this this
point label

10: Update model parameters θ ← SGD(θ, loss) using loss in the form (4)
11: end while

3.3 NEED TO USE σ

In our experiments, we took the value of σ small (∼ 10−2–10−3) but not zero. The non-zero
values of σ makes the conditional map invertible. This is extremely important in our setup, as
we solve the inverse ODE. In addition, we add a little noise to the original samples proportional
to σ. Flow Matching approaches usually use a non-invertible map that corresponds to σ = 0.
The intuition behind the use of non-zero σ is that real-life datasets usually lie on a manifold of
lower dimensionality than the dimensionality of the point space itself. Thus, it may also be that the
prototypes lie on some low-dimensional manifold. But at the inference step, we feed arbitrary points
to the model input. In this case, our model would not know how to behave at points where learning is
fundamentally impossible. Thus, to artificially increase the dimensionality of the “prototype space”,
we add noise and use a regularized map.

Let us show the above issue on synthetic 2D examples, Fig. 1. In this example, the target distribution
is a uniform distribution of two-dimensional points on the upper semicircle of a circle of radius 1.5.
We generated n = 200 samples, for each sample we solved an ODE (2) with the right-hand side
containing all the samples as set B, thus N = n. To solve the ODE, we used the solve ivp
implementation of the Runge-Kutta method with an adaptive step that is controlled by the tol
parameters from the scipy package. In all experiments, we added the same normally distributed
noise ϵ, which was multiplied by the σ parameter.

One can see from Fig. 1 that when σ is small and tol is insufficient, the point samples lie on a one-
dimensional manifold. As tol decreases or σ increases, the samples take the position characteristic
of a normal distribution, as expected.

Our hypothesis is that for any value of σ > 0 it is possible to pick such tol value that the proto-
types are distributed (for a sufficiently large number N ) with the target distribution with a moderate
accuracy; in contrast, for zero σ at any tol this cannot be achieved. However, the authors do not
have a rigorous proof of this statement yet.

4 EXPERIMENTS

4.1 TOY 2D EXAMPLES

We provide prove-of-concept experiments on toy 2D data, in particular for the 8 gaussians
dataset. During sampling, our method does not require solving ODE to transport points, it samples
straightly from the model. Results for simple 2D cases are presented in Fig. 2.

5
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Figure 1: Prototypes for synthetic 2D data for different σ values and different tol values of ODE
solver, (a)–(d) σ = 10−5, 10−4, 10−3, 10−2 with tol=10−4; (e)–(h) same, but tol=10−6.

Figure 2: 2D 8 gaussians examples results for 100, 500 and 1000 training steps.

4.2 IMAGE GENERATION

In Figure 3 we present images generated directly by sampling from Gaussian noise. For the prove-
of-concept, we used a labeled MNIST dataset. For the training procedure we used Algorithm 2, for
the model we used DiT (Peebles & Xie, 2022) due to the fact that for one-step sampling scheme we
need more powerful neural network. We take n = 128, N = 6 · n and m = 10 in Algorithm 2, and
Adam optimizer as SGD with lr=10−3. Parameter σ = 10−2. We take odeint adjoint routine
from torchdiffeq for solving Cauchy problem with tol = 10−4. The number of training steps
is l = 15000.

4.3 COLOR TRANSFER

For the color transfer problem, we consider the target distribution ρ1 as a distribution of the given
picture pixels considered as points in R3 space in the RGB model.

For the picture whose color we take as a basis, we train the model vθ according to Algorithm 1. For
the picture P whose color we want to change, we also found pairs image-prototype according to
Algorithm 1, but train the model vχ to predict the prototype by the image. Thus, the loss for this
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Figure 3: Result of MNIST dataset.
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Figure 4: Colorization of the images of the Winter2Summer dataset. Up: initial image; middle:
image with new color; down: colorized image

step is the following

loss =
1

n

n∑
l=1

∥∥vχ(xl1)−X0(x
l
1 + ϵl)

∥∥2 .
7
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Note, number of pixels (number of samples in the target distribution) in the two pictures can be
different.

On inference step, we simply took the composition of the two models vθ(vχ(P )) as the result picture.

We experiment on public Winter2Summer dataset (Zhu et al., 2017) containing 256x256 pixel
images. The results are presented in Fig. 4.

Implementation details We took Multilayer perceptron (MLP) as models vθ and vχ. For vχ we
take MLP with two layers of 64 neurons each. For vθ we take MLP with 1 layers of 64 neurons. We
take n = N = 128 in Algorithm 1, and Adam optimizer as SGD with lr=10−3. Parameter σ = 10−2.
We take odeint adjoint routine from torchdiffeq for solving Cauchy problem with the
default parameters. The number of training steps is l = 500. Note, that the total maximum number
of samples n · l on which models are learned is less than the total number of pixels in each of the
pictures (256× 256).

5 RELATED WORK

In this section, we only cite papers that discuss similar approaches. For details on Flow Matching
theory, its modifications, connection of Flow Matching with Diffusion Models and other details on
the subject we refer the reader to (Lipman et al., 2023; Tong et al., 2024a) and papers, cited in
Introduction.

Use of explicit formula To the best of our knowledge, the explicit formula for the velocity did not
use for coupling points pairs before. In one form or another, the explicit form for the vector field
has been mentioned, for example, in the following papers: (Liu et al., 2023; Neklyudov et al., 2023;
Pooladian et al., 2023; Scarvelis et al., 2023; Xie et al., 2024).

Coupling and trajectory straightening In the paper of Liu et al. (2023), the authors consider a
way to accelerate the generation process, i. e., the inference step, by iteratively training a new model
based on the one obtained in the previous iteration. This approach leads to error accumulation,
although a reduction in transportation cost has been proved for this approach. In addition, this paper
mentions in the appendix the possibility of using an explicit formula (without regularization), only
to accelerate the usual learning adopted in the Flow Matching framework, not to solve the inverse
problem.

In (Kornilov et al., 2024) convex model (special type of neural network) and ideas based on the use
of Shrödinger bridge are used to perform one-step generation of Flow Matching models. It turns
out, that is it hard to learn such a model. In addition, the method presented in the cited paper has
the same drawback as the original work on Conditional Flow Matching by Lipman et al. (2023),
namely, the loss contains the expectation of both samples from ρ0 and ρ1 distributions, which, as
shown in (Ryzhakov et al., 2024), leads to a large variance. Using an explicit formula for the vector
field is one way around this obstacle.

Another approach of trajectory straightening was published in (Tong et al., 2024a). In this paper, a
coupling based on minibatch Optimal Transport (OT-CFM) was proposed. However, this approach
performs worse on large dimensions and, as shown in (Ryzhakov et al., 2024), is inferior in some
examples to the simple use of an explicit formula (see Fig. 15 there). In addition, OT-CFM still
solves ODEs at the inference step (although it is possible to solve ODEs on a coarser mesh due
to more straighten trajectories), so this method reduces variance on the training step, but does not
dramatically affect the generation step. Other OT-based approaches can be found in Pooladian et al.
(2023) and in Related Work there.

6 CONCLUSION AND FUTURE WORK

The paper presents a method based on the solution of the Cauchy problem (2) in inverse time. As
the right-hand side of the ODE, we consider the exact value of the velocity that minimize for Flow-
Matching loss in the form from the paper Ryzhakov et al. (2024). Since we evaluate the integrals
included in the formula for the exact velocity through Monte Carlo-like methods, namely, we use
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importance sampling, the prototypes are not exact. However, the error in obtaining these prototypes
is sufficient for the model (neural network) to be trained to predict the image immediately by the
prototypes, bypassing the solutions of the differential equations.

We use a velocity expression (1) based on a reversible conditional map ϕt,x1(x0) with a regulariza-
tion parameter σ. Using simple synthetic 2D examples, we show why regularization is necessary.

Our method can be easily extended to other conditional reversible maps, which can produced image-
prototype pairing such that a neural network will learn better. The paper Ryzhakov et al. (2024)
contains several examples of different exact formulas which can be incorporated in our Algorithm.

Also, one can use a model that assumes to be immediately gradient of convex transformation, as
done in (Kornilov et al., 2024).

In addition to the formula with mapping from known distribution to unknown one, one can use the
formula for the velocity in the case where both distributions are given only as samples. Explicit
formulas in Sec. E.3.2 of (Ryzhakov et al., 2024) allows one to make such a coupling in this case
too.
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