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Abstract

Text-to-image (T2I) generative models, such as Stable Diffusion and DALL-E,
have shown remarkable proficiency in producing high-quality, realistic, and natural
images from textual descriptions. However, these models sometimes fail to accu-
rately capture all the details specified in the input prompts, particularly concerning
entities, attributes, and spatial relationships. This issue becomes more pronounced
when the prompt contains novel or complex compositions, leading to what are
known as compositional generation failure modes. Recently, a new open-source
diffusion-based T2I model, FLUX, has been introduced, demonstrating strong
performance in high-quality image generation. Additionally, autoregressive T2I
models like LlamaGen have claimed competitive visual quality performance com-
pared to diffusion-based models. In this study, we evaluate the compositional
generation capabilities of these newly introduced models against established mod-
els using the T2I-CompBench benchmark. Our findings reveal that LlamaGen, as a
vanilla autoregressive model, is not yet on par with state-of-the-art diffusion models
for compositional generation tasks under the same criteria, such as model size and
inference time. On the other hand, the open-source diffusion-based model FLUX
exhibits compositional generation capabilities comparable to the state-of-the-art
closed-source model DALL-E3.

1 Introduction

Recent advancements in computational resources and data scaling have led to the development of
substantial text-to-image (T2I) models, from diffusion-based [16] models such as Stable Diffusion
[37, 31] and DALL-E [34, 33, 4] to autoregressive-based ones such as LlamaGen [41], which
are capable of producing high-quality and realistic images from textual prompts. Despite these
advancements, these models occasionally face difficulties in generating images that fully align with
the input prompts, especially when the prompts involve complex and novel combinations of entities,
attributes, and spatial relationships [17, 3, 23]. This challenge, known as visual compositional
generation, remains a significant issue in the field of T2I generation.

Compositional generation failure modes can be categorized into four main types: Entity missing,
incorrect attribute binding, incorrect spatial relationship, and incorrect numeracy. Entity missing
[48, 6, 2, 40, 46] is a key failure mode in T2I models, where the model omits one or more entities
described in the input prompt, particularly in complex scenes involving multiple entities. Moreover,
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incorrect attribute binding [36, 13, 25, 44] occurs when an attribute, such as color, shape, size, or
texture, is not faithfully bound or associated with the corresponding entity. Furthermore, incorrect
spatial relationship [14, 5] is related to the scenario where the T2I model fails to accurately capture
the relative positions, orientations, or interactions between entities, resulting in a misrepresentation
of the spatial arrangement described in the prompt. Finally, incorrect numeracy [47, 18] occurs when
the model can not accurately represent the number of entities described in the input prompt, which
reflects the model’s limited reasoning abilities, as it struggles to maintain numerical consistency in
complex scenes.

Several studies have explored the compositional generation capabilities of both diffusion [28] and
autoregressive models [35, 10]. However, to the best of our knowledge, the field lacks a comprehen-
sive comparison of these two generative approaches in the context of visual compositional generation
from textual prompts. This study extensively evaluates the compositional generation abilities of nine
state-of-the-art T2I models, including seven diffusion-based and two autoregressive-based models,
using the established benchmark, T2I-CompBench [17].

Our results indicate that the vanilla autoregressive-based T2I model, LlamaGen [41], underperforms
in all compositional generation assessments compared to SD-v1.4, the diffusion-based model most
similar to LlamaGen in terms of model size (number of parameters) and inference time. This
finding may suggest that adhering solely to the next-token prediction paradigm, without incorporating
additional inductive biases, is insufficient to match the performance of diffusion-based approaches in
compositional generation. Furthermore, an evaluation of the newly introduced open-source diffusion-
based model, FLUX [21], demonstrates that it performs competitively with the state-of-the-art
closed-source T2I model, DALL-E3 [4].

2 Text-to-image Models

This assessment evaluated nine famous T2I backbones, comprising seven diffusion-based and two
autoregressive-based models (Table 1). These models can be categorized into five distinct families.

Stable Diffusion: Stable Diffusion models are among the most prominent open-source T2I models,
utilizing a latent diffusion framework combined with an attention mechanism to process textual
prompts. Specifically, the process begins with pure noise sampled from a Gaussian distribution as
the initial latent code. The model then iteratively refines the latent code at each denoising step using
a U-Net [38] architecture, which incorporates cross-attention layers to align the image generation
process with the textual embedding obtained from a CLIP-based [32] model. After a predefined
number of denoising steps, the final refined latent code is passed through a pre-trained image decoder
to generate the final image. Through this work, we employed SD-v1.4 , SD-v2 [37], and SD-XL [31]
from the Stable Diffusion family.

DALL-E: DALL-E models are a family of closed-source diffusion-based T2I models developed
and maintained by OpenAI [29]. While DALL-E1 [34] utilizes a discrete variational auto-encoder
[43] model to generate image tokens from textual tokens, DALL-E2 [33] first uses a pre-trained
CLIP-based model to prepare the text embeddings from the input prompt, which is then fed to a
diffusion or autoregressive model to produce an image embedding. Finally, a diffusion decoder
conditioned on the obtained embedding produces the final image. To further improve the prompt
following abilities and image quality, DALL-E3 [4] adopts a recaptioning process of the training
dataset, which is then used as the new training data for the T2I model.

Pixart-α: Pixart-α [7] utilizes the Diffusion Transformer (DiT) [30] as its core architecture,
prioritizing rapid and cost-effective training compared to Stable Diffusion models. Specifically, Pixart-
α employs a three-stage training strategy, along with a recaptioning process for the training data. In
the first stage, known as pixel dependency learning, Pixart-α benefits from parameter initialization
derived from an ImageNet-pretrained model and a class-guided approach to image generation. This
phase focuses on generating semantically coherent pixels during a relatively inexpensive training
process. The second stage involves text-image alignment learning, where Pixart-α constructs a dataset
with precise text-image pairs that exhibit high concept density, utilizing the advanced vision-language
model LLaVA [27] applied to the SA-1B dataset [19]. In the final stage, the model is fine-tuned with
high-quality aesthetic data to enhance its capability for high-resolution image generation.
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FLUX: FLUX family models [21] are newly introduced T2I models developed by Black Forest Lab
[20]. To the best of our knowledge, no formal technical report is available about this model. However,
based on the available implementation details, the FLUX family models employ a hybrid architecture
that integrates multi-modal [11] and parallel [9] diffusion transformer [30] blocks, operating within a
flow-matching [26] framework. Additionally, FLUX utilizes rotary positional embeddings [39] and
parallel attention layers [9]. The FLUX models are available in three versions: Pro, Schnell, and Dev,
with the latter two being utilized in our evaluations.

Autoregressive: Vanilla Autoregressive T2I models such as LlamaGen [41] employ the next-
token prediction paradigm, commonly seen in large language models (LLMs), for image generation.
Particularly, LlamaGen utilizes the Llama [42] architecture for pixel generation and a quantized-
autoencoder [12] framework for image tokenization. LlamaGen is introduced in two variants:
class-conditioned and text-conditioned, with the latter being used for our compositional generation
evaluation. For the text-conditioned variant, the model follows a two-stage training strategy. The
first phase involves training on a 50-million subset of the LAION-COCO dataset [22]at a resolution
of 256×256, followed by a fine-tuning phase on 10 million internally curated high-aesthetic-quality
images at a resolution of 512×512, as the second phase. LlamaGen does not incorporate a diffusion-
based process, positioning it as a vanilla autoregressive T2I model without additional inductive
biases.

Table 1: Detailed Information on State-of-the-art Text-to-image Models

Model Release Date #Parameters Resolution Training Data Text Encoder

SD-v1.4 Aug 2022 860× 106 512× 512 LAION-5B ViT-L/14 CLIP
SD-v2 Nov 2022 860× 106 768× 768 LAION-5B ViT-H/14 CLIP
SD-XL July 2023 3.5× 109 1024× 1024 LAION-5B OpenCLIP-ViT/G

DALL-E3 Nov 2023 - 1024× 1024 - CLIP-based

Pixart-α Sep 2023 600× 106 1024× 1024 SA-1B T5

FLUX-Dev Aug 2024 - 512× 512 - T5 & CLIP-based
FLUX-Schnell Aug 2024 - 1024× 1024 - T5 & CLIP-based

LlamaGen-Stage1 June 2024 775× 106 256× 256 LAION-COCO T5
LlamaGen-Stage2 June 2024 775× 106 512× 512 - T5

3 T2I-CompBench Benchmark

3.1 Evaluation Datasets

The T2I-CompBench dataset [17] evaluates four main aspects of compositional generation capabilities:
attribute binding, object relationships, numeracy, and complex compositions.

Attribute Binding: This section is divided into three categories—color, shape, and texture—each
comprising 300 validation prompts.

Object Relationships: This part is further split into spatial and non-spatial relationships. The
spatial relationships involve two sets of prompts, 2D and 3D, with 300 validation prompts each.
The non-spatial relationships focus on interactions between objects and also contain 300 validation
prompts.

Numeracy: This section includes 300 validation prompts to assess the ability of the T2I model to
understand and reason about numerical concepts.

Complex Compositions: This part presents 300 validation prompts that feature more natural and
challenging combinations of objects, attributes, and relationships.
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3.2 Evaluation Metrics

T2I-CompBench [17] employs a visual question answering (VQA) model, called BLIP-VQA [24],
to evaluate the attribute binding capabilities of T2I models. For assessing spatial relationships and
numeracy, the framework uses an object detector, UniDet [49], to estimate the relational positions
and the number of objects in the generated images. For non-spatial relationships and complex
compositions, T2I-CompBench utilizes several evaluation metrics: CLIP similarity score [15], which
measures cosine similarity between the embeddings of the prompt and the generated image using
a CLIP-based [32] model; multi-modal evaluation via a GPT-based model [1]; chain-of-thought
prompting [45] using ShareGPT-4v [8]; and finally, the 3-in-1 evaluation metric, which integrates
CLIP similarity, BLIP-VQA, and UniDet scores.

4 Results

Table 2 presents the results of attribute binding, spatial relationship, and numeracy assessments
for nine state-of-the-art T2I models. DALL-E 3 and FLUX-based models demonstrate competitive
performance across all aspects of compositional generation, consistently ranking at the top. Following
these models, the Pixart model outperforms SD-XL in most evaluations. In contrast, the vanilla
autoregressive model, LlamaGen, underperforms even when compared to the weakest Stable Diffusion
model, SD-v1.4, which is comparable to LlamaGen in terms of model size and inference time. Similar
trends are observed in Table 3, which reports the results of non-spatial relationships and complex
composition assessments.

Table 2: Quantitative Results of T2I Models on Attribute Binding, Spatial Relationship, and Numeracy

Model Color (↑) Shape (↑) Texture (↑) 2D-Spatial (↑) 3D-Spatial (↑) Numeracy (↑)

SD-v1.4 0.376 0.358 0.416 0.125 0.303 0.446
SD-v2 0.506 0.422 0.492 0.134 0.323 0.458
SD-XL 0.588 0.469 0.530 0.213 0.357 0.499

DALL-E3 0.778 0.620 0.704 0.286 0.374 0.588

Pixart-α 0.670 0.493 0.648 0.206 0.390 0.506

FLUX-Dev 0.771 0.495 0.604 0.266 0.384 0.618
FLUX-Schnell 0.740 0.571 0.685 0.292 0.391 0.606

LlamaGen-Stage1 0.271 0.391 0.492 0.084 0.227 0.357
LlamaGen-Stage2 0.285 0.329 0.373 0.119 0.155 0.265

Table 3: Quantitative Results of T2I Models on Non-spatial Relationship and Complex Compositions

Non-spatial (↑) Complex (↑)

Models CLIP GPT-4v Share-CoT 3-in-1 GPT-4v Share-CoT

SD-v1.4 0.308 0.820 0.749 0.308 0.714 0.773
SD-XL 0.312 0.844 0.767 0.324 0.756 0.782

DALL-E3 0.300 0.927 0.793 0.377 0.828 0.793

FLUX-Dev 0.306 0.874 0.780 0.364 0.794 0.791
FLUX-Schnell 0.313 0.872 0.784 0.368 0.823 0.793

LlamaGen-Stage1 0.305 0.788 0.783 0.283 0.584 0.769
LlamaGen-Stage2 0.272 0.669 0.763 0.255 0.562 0.765

5 Discussion

These findings indicate that the pure next-token prediction paradigm fails to compete effectively
with diffusion-based models of similar size in the absence of inductive biases tailored to the visual
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generation domain. Notably, While the class-conditioned version of LlamaGen exhibits competitive
performance in terms of image quality and naturalness compared to diffusion models, the weaker
performance of the text-conditioned version suggests that autoregressive models may face more
significant challenges in capturing complex conditions. Furthermore, considering the critical role
of tokenization in autoregressive models, selecting an appropriate image tokenizer with suitable
granularity may enhance LlamaGen’s compositional generation capabilities. Ultimately, the inductive
bias of the mask image modeling or next-token prediction paradigm may not be sufficient for
generating images that are fully aligned with the textual prompts.
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