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ABSTRACT

Text classification is a fundamental task in Natural Language Processing (NLP).
Short text classification has recently captured much attention due to its increased
amount from various sources with limited labels and its inherent challenges for its
sparsity in words and semantics. Recent studies have adopted self-supervised con-
trastive learning across different representations to improve performance. How-
ever, most of the current models face several challenges. Firstly, the augmentation
step might not be able to generate positive and negative samples that are seman-
tically similar and dissimilar to the anchor respectively. Secondly, the text data
could be enhanced with external auxiliary information that might introduce noise
to the sparse text data. In addition, they are limited in capturing higher-order
information such as group-wise interactions. In this work, we propose a novel
document simplicial complex construction based on text data for a higher-order
message-passing mechanism. We develop a simplicial complex representation for
text sentences based on the directed word co-occurrence. Novel features are pro-
posed for 0-simplex (word), 1-simplex (word-pair), and 2-simplex (three consec-
utive words) to characterise intrinsic higher-order structural information among
words. We also enhance the short text classification performance by contrasting
the structural representation with the sequential representation generated by the
transformer mechanism for improved outcomes. The proposed framework, Con-
trastive Learning with Simplicial Convolutional Networks (C-SCN), leverages the
expressive power of graph neural networks, models higher-order information be-
yond pair-wise relations and enriches features through contrastive learning. Ex-
perimental results on four benchmark datasets demonstrate the capability of C-
SCN to outperform existing models in analysing sequential and complex short-
text data.

1 INTRODUCTION

Text classification is a fundamental task in Natural Language Processing (NLP). It involves
analysing the content of texts and determining which predefined category they belong to based on
their representation. Unlike longer texts, short texts have recently captured much attention, with
an increase in the number appearing in various sources, such as social media, search snippets, and
news feeds. However, these short texts with a few words pose challenges to the current models in
generating effective representations and are not usually labelled in real-world cases (Linmei et al.
(2019)). Supervised learning on short-text classification has gained significant attention and has
been applied to different tasks for web reviews (Pang & Lee (2004)), news feed (Yao et al. (2019))
and medical information (Liu et al. (2020)). On the other hand, data labelling has been expensive,
labour-intensive and time-consuming. Few-shot learning has been popular with low resources re-
quired by training on a few labelled samples, either with or without pre-training. Furthermore, graph
models have been widely used to capture complex relationships between text data’s structural, se-
mantic, and syntactic meanings. To address the label scarcity issue, contrastive learning has been
adopted to enhance performance. Many researchers (Sun et al. (2022); Wen & Fang (2023); Liu
et al. (2024)) have explored the effectiveness of combining graph models and contrastive learning
within the scope of few-shot learning.
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Although they have achieved successful outcomes, some limitations and challenges still exist.
Firstly, the data augmenting step and the negative sampling step of contrastive learning might distort
the semantic meaning and introduce unnecessary noise. For example, removing graph components
is adopted as a data augmentation strategy, but it might disrupt the text’s original meaning. An in-
stance from the Movie Review (MR) dataset (Pang & Lee (2005)): “there’s not enough to sustain
the comedy” while removing the word “not” reversely changes the meaning of this short sentence.
Furthermore, negative sampling of texts with different syntaxes while similar semantics might be
designed to be pushed away from each other. Secondly, some auxiliary information such as enti-
ties, latent topics, and part-of-speech (POS) tags (such as nouns and verbs) might be added to graph
models for language understanding and enriching the limited available local context. However, this
step might introduce misinformation, such as pulling documents that express opposite semantics but
similar topics closer. Lastly, graph models are mathematically limited in modelling higher-order fea-
tures, such as group-wise interactions among a few nodes and edges expressed in terms of phrases.
For example, the short sentence “It is what it is” uses repetition to emphasise the acceptance of
the status quo. At the same time, graph models with only nodes and edges learn pairwise interac-
tion. They need to extend the number of layers in order for words to incorporate the meaning of
other words further apart. Group-wise phrase “it is” needs to be linked with “what” to model such
repetition.

To address the challenges mentioned above, a novel model combining higher-order features with
contrastive learning is proposed in this paper called Contrastive Learning with Simplicial Convo-
lutional Networks (C-SCN) for short-text classification tasks. Specifically, SCN adopts simplicial
complex to robustly model richer and more complex information for better document understanding.
Document simplicial complexes are firstly constructed based on text data, and respective features are
defined for simplexes of different complexities. We further integrate the features into an inductive
message-passing mechanism, considering long-range structural information for individual document
simplicial complexes. Furthermore, contrastive learning is embraced to compare the structural rep-
resentation from SCN and sequential representation from the transformer model so that the power
of both sides can be combined for better performance in a few-shot learning setting.

Our work’s key contributions are as follows. Firstly, we propose the construction of simplicial
complexes based on text data and define features on 0-simplexes, 1-simplexes and 2-simplexes in
the context of short-text classification in the message-passing mechanism of SCN. Secondly, we
extend SCN with contrastive learning, such as C-SCN, where the power of sequential representation
from the transformer model is integrated to solve the existing limitations and challenges. Lastly, the
experiment with C-SCN in benchmark short text classification tasks demonstrates better results than
competitive baseline models in the few-shot setting.

The remainder of the paper is organised as follows: Section 2 reviews the literature on graph neural
networks, contrastive learning, and neural networks on simplexes. Section 3 outlines the proposed
model structure for message passing on higher-order structures and contextualises the methods in
text classification. Section 4 introduces four short text classification task datasets from various
domains used in the experiments. Section 5 presents the performance metrics compared with other
models and ablation studies. Finally, Section 6 concludes the work and proposes future directions.

2 LITERATURE REVIEW

2.1 GRAPH NEURAL NETWORKS IN SHORT-TEXT CLASSIFICATION

Graph neural networks (GNN) are powerful deep learning models to model representations of struc-
tural data (Scarselli et al. (2009)). Through a message-passing mechanism, features of nodes and
edges are aggregated in the neighbourhood formed by components in the local document. Texts
could be used to construct different types of graphs, such as heterogeneous graphs (Yao et al. (2019)),
knowledge graphs (Ye et al. (2019)), dynamic graphs (Chen et al. (2020)), and hypergraphs (Ding
et al. (2020)). Early graph neural networks, such as Graph Convolutional Networks (GCN) (Kipf
& Welling (2017)), Graph Isomorphism Networks (GIN) (Xu et al. (2019)) and Graph Attention
Networks (GAT) (Veličković et al. (2018)), are integrated with the text graphs for improved results.
Recently, model fusion has been adopted by Lin et al. (2021) to jointly train the transformer model
BERT with graph models with text data. On the other hand, graph models are limited in modelling
higher-order information in the group-wise form.
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2.2 CONTRASTIVE LEARNING

Unlike traditional supervised learning, where a label is required for training, contrastive learning is a
self-supervised technique where augmented views of the same object are used to train a model which
could gather positive samples closer and negative samples further apart (Jaiswal et al. (2021)). With
downstream tasks, contrastive learning has been actively applied in short-text classification scenarios
with few-shot settings. Sun et al. (2022) integrates the heterogeneous graph attention mechanism
with neighbouring contrastive learning to enrich the terms beyond the document and extend the
relations among documents; Wen & Fang (2023) pre-trains text and graph encoders followed by
few-shot and zero-shot fine-tuning process; Liu et al. (2024) innovates in augmented view of graph
features through the singular value decomposition (SVD) of the feature matrix and in assigning
weak labels to document through k-means clustering. On the other hand, these current methods
require a large amount of resources in preprocessing in the form of pre-training or enriching text
with additional information, such as entity recognition and POS tagging processes. The augmented
view in contrastive learning might also introduce unnecessary noise and misleading information.

2.3 TOPOLOGICAL DEEP LEARNING (TDL)

Topological deep learning combines the techniques from deep learning and topological tools that
structure data manifolds (Zia et al. (2024)). Topological representations, including cell complexes
(Hajij et al. (2020); Giusti et al. (2023); Bodnar et al. (2022)), simplicial complexes (Bodnar (2022);
Schaub et al. (2022)), combinatorial complexes (Hajij et al. (2023)), sheaves (Hansen & Ghrist
(2019)) and hypergraphs (Feng et al. (2018); Bai et al. (2021)), model not only pair-wise interac-
tions that are present on a graph, but also higher-order interactions among three elements or more.
Algebraic topology-based methods have achieved noteworthy results in protein analysis (Xia &
Wei (2014); Sverrisson et al. (2021); Wee & Xia (2022)), virus analysis (Chen et al. (2022)), drug
design (Cang & Wei (2017)) and material property classification (Reiser et al. (2022); Townsend
et al. (2020)), where topological representations demonstrate their robustness against deformation
and noise. Extending from algebraic topology-based methods, TDL employs the message-passing
mechanism on higher-order components, where the communication of information has been propa-
gated through any neighbourhood relations (Roddenberry et al. (2021); Bodnar (2022); Hajij et al.
(2023)). However, there is a lack of studies on non-time-series sequential analysis with TDL on the
text data, and we aim to explore its usage in the new field.

3 METHODS

3.1 SIMPLICIAL CONVOLUTIONAL NETWORKS (SCN)

We first provide the necessary details related to constructing document simplicial complexes, fol-
lowed by the message-passing mechanism on the higher-order structures.

Definition. (Abstract Simplicial Complex) An abstract simplicial complex is a family of sets K
that satisfies the condition: for any set σ ∈ K, every non-empty finite subset σ′ ⊆ σ must also be
in K. Each element of K is called a simplex. A set σ is referred to as a k-simplex if its cardinality
|σ| = k + 1, denoted as σk. All (k − 1)-simplexes, σk−1, are faces of σk if they are subsets of σk,
while all (k + 1)-simplexes, σk+1, are cofaces of σk if they contain σk as one of their faces.

Denote Kk the set of k-simplexes for K. K0 will be referred to as the set of 0-simplexes (nodes).
K1 refers to the set of 1-simplexes (edges) and K2 refers to the set of 2-simplexes (“filled” trian-
gles). For the text classification task, we construct the document as a simplicial complex with initial
representations of 0-simplexes, 1-simplexes, and 2-simplexes, as shown in Figure 1. We embrace
the bag-of-word model (Harris (1954)) and treat each word and punctuation as distinct 0-simplexes
initialised from GloVe embeddings (Pennington et al. (2014)). The three types of direction of 1-
simplexes follow the sequential order of the tokens in each text as shown in Figure 1. 2-simplexes
are formed when any three words form a “filled” triangle. We differentiate their nine identities by
the neighbouring 1-simplexes for the 2-simplexes to be formed. An example of the 1-simplex est is
shown in Figure 2 where the types of 2-simplex formed are determined by the 1-simplex between
s and o and the 1-simplex between t and o. It is to be noted that the self-loop is not considered
part of the 2-simplex formation since we consider unique 0-simplexes appearing in texts. One target
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Figure 1: One document simplicial complex constructed for a document example from the Snippets
dataset (Phan et al. (2008)) with different types of flow directions. Words and punctuation are to-
kenised into individual 0-simplexes (nodes). 1-simplexes (edges) are formed if 0-simplexes are next
to each other with directions in chronological order. Lastly, 2-simplexes (triangles) are constructed
if the three words form a “filled” triangle. Three types of 1-simplexes are illustrated: (1) Forward
1-simplexes are the ones following the chronological order which points to the word that first ap-
pears in the text; (2) Backward 1-simplexes are 1-simplexes pointing to the word which is used
before and referenced again; (3) Self-loop 1-simplexes are formed when 1-simplexes connect the
same word.

Figure 2: 2-simplexes types for a 1-simplex with source 0-simplex s and target 0-simplex t. For
the 1-simplex est with a source 0-simplex s, a target 0-simplex t and the defined direction from s
to t, nine types of 2-simplexes could define the information flow through the 2-simplex. For a 0-
simplex o that forms a 2-simplex with the target 1-simplex est, there exist three types of 1-simplexes
between 0-simplex o and 0-simplex s, as well as between 0-simplex o and 0-simplex t: into, out of
or bidirectional, resulting in nine types of 2-simplex with respect to the 1-simplex est.

1-simplex could be part of multiple 2-simplexes. The 1-simplex and 2-simplex embeddings will be
initialised randomly, and all embedding matrices are optimised during training.

The message-passing mechanism leverages the connectivity information in simplicial complexes.
For a simplex σk, we denote its boundary adjacent simplexes B(σk) as the set of lower-
dimensional simplexes σk−1 on the boundary of σk, its co-boundary adjacent simplexes C(σk)
as the set of higher-dimensional simplexes σk+1 with σk on their boundaries, its lower adjacent
simplexes N↓(σk) as those with the same dimension as σk that share a lower-dimensional simplex
σk−1 on their boundary, and its upper adjacent simplexes N↑(σk) as those with the same dimen-
sion as σk that are on the boundary of the same higher-dimensional simplex σk+1 (Bodnar et al.
(2021)).

The hidden representation of simplexes will be initialised with vectors xσi
for all σk ∈ Kk, k ∈

{0, 1, · · · ,K} and we set K = 2. That means at the initial state, the layer representation for
simplex σk is h(0)

σk = xσk
for k ∈ {0, 1, · · · ,K}. The messages are then aggregated according to

the neighbourhood in which the simplexes sit: at the state ℓ+ 1 and for the target k-simplex σk, the
message function M

(ℓ+1)
k collects information from neighbouring simplexes of the same dimension

σ′
k ∈ N (σk) where N (σk) = N↓(σk) ∪ N↑(σk), those of one dimension lower σk−1 ∈ B(σk)

and those of one dimension higher σk+1 ∈ C(σk) as illustrated in Equation (1). In the context
of text classification, we adopt the message function as a multi-layer perception (MLP) for both
0-simplexes σ0 ∈ K0 and 1-simplex σ1 ∈ K1 updates. The message passing is set to collect
information from neighbouring simplexes and co-boundary adjacent simplexes. For the aggregation
of all the components in the document simplicial complex, we adopt row summation as illustrated
in Equation (2).
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For individual σk ∈ Kk and k ∈ {0, 1, · · · ,K},

m(ℓ+1)
σk

= AGG
σ′
k∈N (σk)

σk−1∈B(σk)
σk+1∈C(σk)

(
ϕ
(
M

(ℓ+1)
k (h

(ℓ)
σ′
k
, h(ℓ)

σk−1
, h(ℓ)

σk+1
)
))

(1)

=
∑

σ′
k∈N (σk)

σk+1∈C(σk)∩C(σ′
k)

ϕ
(

MLP(ℓ+1)
k

(
h
(ℓ)
σ′
k
+ h(ℓ)

σk+1

))
(2)

where for k = 0, we do not consider simplex of dimension (n − 1), h(ℓ)
σk refers to the simplex σk’s

feature at the state ℓ. h
(ℓ)
σk+1 is set to a zero vector if C(σk) ∩ C(σ′

k) is empty. MLP(ℓ+1) refers to
trainable multi-layer perception at the state ℓ+ 1.

Similarly to the GNN framework, the update function UPDATE(ℓ+1) will synchronise the represen-
tation of the k-simplex to the new state, as shown in Equation (3), and we adopt the Gated Recurrent
Unit (GRU) for the text classification task.

h(ℓ+1)
σk

= UPDATE(ℓ+1)
k (h(ℓ)

σk
,m(ℓ+1)

σk
) = GRU(ℓ+1)

k (h(ℓ)
σk

,m(ℓ+1)
σk

) (3)

Lastly, the readout function READOUT will obtain the representation for the document simplicial
complex by pooling k-simplexes’ features of the final state L in Equation (4). A global self-attention
mechanism (Lin et al. (2017)) is specifically applied for text data, summarising the 0-simplexes
and 1-simplexes. For the final layer representation hL

K of the document simplicial complex with
0-simplexes σ0 ∈ K0 and 1-simplexes σ1 ∈ K1, its individual simplex attention score ασk

is
derived with two multi-layer perceptions without bias denoted by W1 and W2. The final simplex
representation for the document simplicial complex, hL

K, is hence the summation of the attention
score multiplied by the respective final simplex features hL

σk
for k ∈ {0, 1}.

hL
K = READOUT

(
{h(L)

k |k ∈ {0, 1, · · · ,K}}
)

(4)

=

( ∑
σ0∈K0

ασ0
hL
σ0

)
⊕

( ∑
σ1∈P1

ασ1
hL
σ1

)
(5)

ασk
=

exp
(
tanh(W1h

L
σk
) ·W2

)∑
σ
′
k∈K0

exp
(

tanh(W1hL
σ
′
k

) ·W2

) (6)

where h
(L)
k refers to the final collective representation for all σk ∈ Kk. Finally, a linear layer

with a softmax classifier will transform the results to the same dimension as the label set and make
predictions. A summary of the proposed SCN framework is illustrated in Figure 3. With the input
sentence “a thriller without a lot of thrills.”, a simplicial complex could be constructed with the
following components. For 0-simplexes, we have matches v1: “a”, v2: “thriller”, v3: “without”, v4:
“lot”, v5: “of”, v6: “thrills”, and v7: “.”. For 1-simplexes, e1, e2, e4, e5, e6, e7 are forward edges
connecting two words, and e3 is a backward edge between “without” and “a”. Lastly, a 2-simplex
τ is a type-4 triangle formed by the 1-simplexes connecting among the words “a”, “thriller” and
“without”.

Assuming message functions are fully connected neural networks, the SCN could be evaluated with
three components: feature transformation in neural networks, neighbourhood aggregation and non-
linear activation. Assuming that all the layers are of the same size F and the embedding size is fixed
with F for 0-simplexes, 1-simplexes and 2-simplexes, the features are initialised from all three kinds
of simplexes and the dense matrix multiplication takes O(|K0|F 2+|K1|F 2+|K2|F 2) = O(|K|F 2).
The aggregation and update step will take O(|K1|F 2+|K2|F 2) for 0-simplex and 1-simplex updates.
Non-linear activation is an element-wise function which will take O(|K0|+ |K1|). As a result, over
L layers, the final time complexity is O(|K0|+ |K1|+ |K1|F 2 + |K2|F 2 + |K|F 2) = O(|K|F 2).
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Figure 3: Message-passing mechanism in Simplicial Convolutional Networks (SCN) up to two-
dimension. The above figure illustrates an example of a simplicial complex for a seven-token sen-
tence with a message-passing mechanism that collects neighbouring information from the same di-
mension, one dimension lower and one dimension higher. The input simplicial complex K consists
of 0-simplexes v1, · · · , v7, 1-simplexes e1, · · · , e7 and the 2-simplex τ . Pre-defined and trainable
features of different simplexes are used as input on the left-hand side. SCN leverages neighbouring,
boundary and co-boundary simplexes to carry feature information and update the target 0-simplexes
and 1-simplexes separately in different layer states. Finally, the features of different simplexes are
read out for downstream tasks.

3.2 SCN WITH CONTRASTIVE LEARNING

To alleviate the abovementioned challenges with contrastive learning, we adopt a dual-encoder
framework inspired by Wen & Fang (2023) where we generate text representations from transformer
blocks and graph representations from SCN in parallel; hence, the training process could optimise
the contrastive learning and classification task as shown in Figure 4.

We employ the BERT model (Devlin et al. (2019)) as the text encoder and SCN encoder that digest
the document data xdoc. We denote Zt, Zs ∈ Rγ as the text encoder and SCN encoder output.
MLP(•) is a linear layer that processes the output to the target space’s dimension γ.

Zt = MLPt(BERT(xdoc)), Zs = MLPsc(SCN(xdoc)) (7)

The constrastive loss is derived by the cross-entropy loss (CE) between the normalised (norm) text
encoder output and the normalised SCN encoder.

Lcl = CE(norm(Zt), norm(Zs)) (8)

At the same time, we include the training objective against the ground-truth label y, which is a linear
interpolation of the text encoder and SCN encoder after transformation to the same dimension as the
label space (•̃) inspired by Lin et al. (2021).

Z =
1

2

(
softmax(Z̃s) + softmax(Z̃t)

)
(9)

Llabel = CE(Z, y) (10)

The final loss function is the integration of the contrastive loss with the classification loss.

L = Llabel + η · Lcl (11)
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Figure 4: The Contrastive Learning with SCN (C-SCN) framework. The transformer encoder and
SCN encoder will generate text representation Zt and document simplicial complex representation
Zs respectively. The learned features will be used for contrastive learning by comparing themselves.
Meanwhile, the two representations will contribute to the classification task with equal weights. As
a result, the final loss L includes the contrastive loss Lcl and Llabel.

where η is a control parameter.

4 EXPERIMENTS

4.1 DATASETS

The experiments are conducted on four datasets for short text classification tasks. The datasets
are briefly introduced below, and a summary table is reported in Table 1. We adopt the same data
preprocessing techniques as Wang et al. (2017) with slight modifications to include punctuation,
keep the hashtag messages and add self-connection. Twitter (Bird et al. (2009)) is a binary clas-
sification dataset for sentiments “positive” and “negative” collected by Natural Language Toolkit.
MR (Pang & Lee (2005)) contains movie review documents from Rotten Tomato with binary sen-
timent categories. Snippets (Phan et al. (2008)) contains Google web search text data with eight
categories: “business”, “computer”, “health”, “sports”, “culture and art”, “education and science”,
“engineering”and “politics and society”. StackOverflow (Hamner et al. (2012)) contains question
text from StackOverflow, and we choose the samples as Xu et al. (2017) for 20,000 questions with
20 categories.

Table 1: Summary statistics for text Datasets.
Dataset Twitter MR Snippets StackOverflow
# Doc 10,000 10,662 12,340 20,000
# Train 40 40 160 400

Train ratio 0.40% 0.38% 1.30% 2%
# Tokens 12,229 18,337 29,422 11,161

Avg. Length 9.3 20.4 18.0 9.3
# Class 2 2 8 20

Avg. # 1-simplexes 21.87 37.79 30.23 17.24
Avg. # 2-simplexes 0.24 0.74 3.24 0.21

4.2 BASELINE MODELS

We compare C-SCN with other various types of benchmark language models for short-text classifi-
cation as reported by Liu et al. (2024).

Traditional Language Models: TF-IDF (Rajaraman & Ullman (2011)) refers to the term frequency-
inverse document frequency, and it measures the importance of word tokens to the document. The
features generated are passed in a support vector machine (SVM) (Crammer & Singer (2002)) for the
classification task. LDA (Blei et al. (2003)) refers to Latent Dirichlet Allocation and extracts latent
topics from the text through probabilistic models. The features are trained with SVM for short-
text classification. PTE (Tang et al. (2015)) refers to Predictive Text Embedding, which utilises
heterogeneous text networks for embeddings.
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Machine Learning Models: CNN (Kim (2014)) refers to Convolutional Neural Networks with pre-
trained GloVe word embeddings (Pennington et al. (2014)). LSTM (Liu et al. (2016)), which
refers to Long-Short Term Memory, is trained GloVe embeddings. BERT (Devlin et al. (2019)),
which refers to the Bidirectional encoder representations from transformers and its modified version
RoBERTa (Zhuang et al. (2021)) leverages pre-training through self-supervised learning and could
be fine-tuned to specific downstream tasks.

Graph-based Language Models: TL-GNN (Huang et al. (2019)) refers to text-level GNN, which
adopts small windows for texts to focus on local features. TextGCN (Yao et al. (2019)), Text Graph
Convolutional Network, constructs individual text graphs with document nodes based on word co-
occurrences and word-document relations. TextING (Zhang et al. (2020)) adopts individual text
graphs and inductively trains the model. HyperGAT (Ding et al. (2020)), Hypergraph Attention
Networks enhances the expressive power of graphs on text classification by including high-order
information and reducing computational resources needed for training. STGCN (Ye et al. (2020)),
which refers to the short text graph convolutional network, integrates BERT and the bidirectional
LSTM in graph models to enhance performance on short texts. DADGNN Liu et al. (2021), Deep
Attention Diffusion Graph Neural Networks, applies attention diffusion and decoupling techniques
targeting some limitations of GNN such as oversmoothing and restricted receptive field.

Graph-based Models with external knowledge beyond documents or Contrastive Learning: STCKA
(Chen et al. (2019)) refers to Short Text Classification with Knowledge-powered Attention, which
utilises attention mechanisms and entity conceptualisation to enhance text features. HGAT (Linmei
et al. (2019)) is known as Heterogeneous Graph Attention Networks, and its enhanced version in-
corporates topic and entity beyond the texts for enriched graphs. SHINE (Wang et al. (2021)) is a
hierarchical heterogeneous graph representation learning method for short text classification which
executes entity and POS tagging for various types of node features. NC-HGAT (Sun et al. (2022))
integrates HGAT with neighbouring contrastive learning. GIFT (Liu et al. (2024)) is the graph con-
trastive learning for short text classification that employs SVD and k-means clustering methods in
contrastive learning.

4.3 IMPLEMENTATION DETAILS

Following with few-shot setting for short text classification framework (Sun et al. (2022); Wen &
Fang (2023); Liu et al. (2024)), from each category, 20 samples are selected randomly to form the
train set, another 20 samples are selected randomly to form the validation set, and the rest are in-
cluded in the unseen test set. The 0-simplex embeddings are initialised with GloVe embeddings
Pennington et al. (2014). The embedding matrices for 1-simplexes and 2-simplexes are randomly
initialised and optimised to size 128. The learning rate is 1 × 10−4, and the batch size is 128. A
dropout rate of 50% is implemented to reduce the complexity of the model and prevent overfitting
problems. The model is trained with the PyTorch Geometric1 package for 100 epochs with early
stopping where the validation loss does not improve for ten epochs. The best weights are obtained
from the model with the best validation accuracy. Cross-entropy loss is used with an Adam opti-
miser. The experiments are conducted ten times with NVIDIA RTX A6000 with 48GB of memory.
We compare the results with strong baseline models with ten iterations of different training, valida-
tion and test sets. The average test accuracies and F1 scores are used for comparison.

5 RESULTS AND DISCUSSION

5.1 RESULTS

The experiment results are reported in Table 2. Compared with other competitive models, C-SCN
has achieved the best test accuracies and F1 scores, indicating the model’s ability to capture senti-
ments and sequential information in text documents.

We attribute the better performance to the following analysis. Firstly, we adopt SCN, a higher-order
framework extending the expressive power of GNN. Features assigned to 0-simplexes, 1-simplexes
and 2-simplexes could better represent the sentence structure and are generalised well across differ-
ent contexts. The involvement of 1-simplexes and 2-simplexes in the message-passing mechanism

1https://pytorch-geometric.readthedocs.io/en/latest/index.html

8

https://pytorch-geometric.readthedocs.io/en/latest/index.html


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Results of test accuracy (%) and test F1-score (%) for short text classification where the
best results based on 95% confidence in the pairwise t-tests are in bold, and the second-best results
are underlined.

Dataset Twitter MR Snippets StackOverflow
Metrics F1 Acc F1 Acc F1 Acc F1 Acc
TF-IDF 53.62 52.46 54.29 48.13 64.70 59.17 59.19 59.06

LDA 54.34 53.97 54.40 48.39 62.54 56.4 60.19 59.52
PTE 54.24 53.17 55.02 52.62 63.10 59.11 62.56 61.32
CNN 57.29 56.02 59.06 59.01 77.09 69.28 63.75 61.21

LSTM 60.28 60.22 60.89 60.70 75.89 67.72 61.62 60.49
BERT 54.92 51.16 51.69 50.65 79.31 78.47 66.94 67.26

RoBERTa 56.02 52.29 52.55 51.30 79.55 79.02 69.91 70.35
TL-GNN 59.02 54.56 59.22 59.36 70.25 63.29 62.09 61.91
TextGCN 60.15 59.82 59.12 58.98 77.82 71.95 67.02 66.51
TextING 59.62 59.22 58.89 58.76 71.10 70.65 65.37 64.63

HyperGAT 59.15 55.19 58.65 58.62 70.89 63.42 63.25 62.10
DADGNN 59.51 55.32 58.92 58.86 71.65 70.66 66.26 65.10

STCKA 57.56 57.02 53.25 51.19 68.96 61.27 59.72 59.65
STGCN 64.33 64.29 58.25 58.22 70.01 69.93 69.23 69.10
HGAT 63.21 57.02 62.75 62.36 82.36 74.44 67.35 66.92
SHINE 72.54 72.19 64.58 63.89 82.39 81.62 73.05 72.73

NC-HGAT 63.76 62.94 62.46 62.14 82.42 74.62 67.59 67.02
GIFT 73.16 73.16 65.21 65.16 83.73 82.35 83.07 82.94
SCN 66.13 67.25 61.15 61.93 76.13 75.66 76.85 74.04

C-SCN 75.61 76.09 69.46 69.87 84.97 85.56 84.15 83.87

also expands the receptive fields of individual 0-simplexes where long-range information can be
transmitted through shallow neural network layers, thereby enhancing the impact of 0-simplexes
on the entire document. The self-attentive readout function connects 0-simplexes and 1-simplexes,
creating expressive document-level summaries. This has promoted the SCN to perform the best in
the benchmark datasets among the graph-based models without external information or contrastive
learning. Secondly, the contrastive learning framework allows C-SCN to capture both structural
and textual information in the few-shot setting. Both structural representation and sequential repre-
sentation are treated as augmented views of each other. This has contributed to preventing helpful
information from being removed, avoiding introducing noise or external information and combining
the capabilities of both models.

In addition, we see that the large language models, such as BERT and RoBERTa, which leverage
numerous pre-training, are not performing favourably with a few available labels. In contrast, graph-
based models with external auxiliary knowledge or contrastive learning, including HGAT, SHINE,
NC-HGAT, and GIFT, could achieve competitive results. External auxiliary knowledge, such as
entity recognition and POS tagging, might help enrich the semantic and syntactic meaning of the
original text. Still, it might be introducing extra noise and unnecessary messages to the text data,
as shown in the deterioration of results from STGCN to HGAT. Furthermore, contrastive learning
with perturbation of the graphs might inject misinformation about the text’s meaning, explaining the
difference between NC-HGAT and GIFT. Furthermore, introducing the global network within the
small train set where the connectivity or clustering effect is explored might not be significant. This
could explain why our model could outperform SHINE and GIFT.

5.2 ABLATION STUDIES

Ablation studies are conducted to remove individual components to verify the capability of higher-
order simplexes and contrastive learning in enhancing text understanding. The results are reported
in Table 3. It is observed that removing contrastive learning deteriorates the results for both SCN
and BERT. Regarding higher-order simplexes, the removal of any component might deprecate the
test accuracies and F1 scores across all datasets. Moreover, the inclusion of 1-simplexes followed
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Figure 5: Hyperparameter η sensitivity across different datasets.

by the inclusion of 2-simplexes improves the results respectively, highlighting the importance of
higher-order simplicial complexes in document understanding.

Table 3: Results of test accuracy for ablation studies. “C-SCN - 0-simplex” means the 1-simplexes
and 2-simplexes are both removed in the model, whereas “C-SCN - 1-simplex” refers to the removal
of 2-simplexes from the model.

Dataset Twitter MR Snippets StackOverflow
Metrics F1 Acc F1 Acc F1 Acc F1 Acc
BERT 54.92 51.16 51.69 50.65 79.31 78.47 66.94 67.26
SCN 66.13 67.25 61.15 61.93 76.13 75.66 76.85 74.04

C-SCN - 0-simplex 74.50 74.78 67.48 68.27 84.58 85.13 82.79 82.36
C-SCN - 1-simplex 74.91 75.41 68.54 68.77 84.75 85.32 83.08 82.58

C-SCN 75.61 76.09 69.46 69.87 84.97 85.56 84.15 83.87

The hyperparameter sensitivity of η is investigated across different datasets, and the results are
visualised in Figure 5. The control parameter η indicates the weights of contrastive loss in the model
training process. We could observe that there are various types of impact on test performance. In
general, the test performance varies between the value 0 (no contrastive loss) and 1 (higher weight
of contrastive loss), while η = 1 results in lower performance compared to the case of no contrastive
loss. One explanation for such variation could be the need to balance the focus between achieving
the correct label and synchronising model weights between SCN and the transformer model. In our
experiments, a grid search is conducted for the best performance for the best η values.

6 CONCLUSION

In conclusion, we propose Contrastive Learning with Simplicial Convolutional Networks (C-SCN),
which incorporates higher-order information for sequence analysis and is applied in short text clas-
sification tasks. The model constructs document simplicial complexes and develops a convolutional
network to incorporate the higher-order simplexes’ message passing with a self-attention readout.
Furthermore, we integrate the transformer model to generate augmented views in the contrastive
learning framework. Extensive experiments that simulate the lack of label situation in a few-shot set-
ting indicate that our model leverages advantages from both structural and sequential representation,
learns long-range information and enhances textual understanding with contextualised 1-simplexes
and 2-simplexes during training.

In the future, we would like to explore the interpretability of higher-order simplexes and their roles
in text understanding. The impact of the number of 1-simplexes and 2-simplexes on the performance
of C-SCN is also worth attention, and it could be more inspected within the context of longer doc-
uments. Leveraging SCN’s expressiveness in sequential analysis could have more applications in
other fields, such as recommender systems and process mining.
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A EFFICIENCY STUDIES

In order to study computational efficiency with the inclusion of higher-order objects, we compute
the number of trainable parameters, as shown in Table 4.

Table 4: Number of trainable parameters.
Twitter MR Snippets StackOverflow

SCN – 0-simplex 3,654,154 6,120,154 9,446,428 3,969,676
SCN – 1-simplex 3,671,050 6,137,050 9,463,324 3,986,572

SCN 3,672,202 6,138,202 9,464,476 3,987,724
C-SCN – 0-simplex 113,236,620 115,702,620 119,029,668 113,554,464
C-SCN – 1-simplex 113,253,516 115,719,516 119,046,564 113,571,360

C-SCN 113,255,568 115,720,668 119,047,716 113,572,512

The time to complete training and evaluation after ten iterations in seconds is also included for
analysis, as shown in Table 5.

It is observed that when adding 1-simplexes and 2-simplexes to SCN step-by-step, the average num-
ber of trainable parameters increases by 0.18%, and the time increases by 10.55% on average. For
C-SCN, the number of trainable parameters increases by less than 0.1% on average, and the time for
training increases by 3.32% on average. The results demonstrate the computational efficiency of our
model involving higher-order complexes in representation learning.
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Table 5: Time to complete training and evaluation after ten iterations.
Twitter MR Snippets StackOverflow

SCN – 0-simplex 639 730 1,009 1,448
SCN – 1-simplex 679 743 1,235 1,728

SCN 750 798 1,279 1,956
C-SCN – 0-simplex 1,015 1,033 1,943 3,080
C-SCN – 1-simplex 1,025 1,152 1,970 3,191

C-SCN 1,040 1,197 2,007 3,384

B ADDITIONAL RESULTS FOR ABLATION STUDIES

B.1 COMPARED WITH CONTEXTUAL EMBEDDINGS IN CONTRASTIVE LEARNING

Instead of fixed GloVe embedding for word nodes, we compare the results with contextual embed-
dings (Cont. Emb.) from the BERT model in the following table.

Table 6: Results of test accuracy to compare with the separate contrastive loss.
Dataset Twitter MR Snippets StackOverflow
Metrics F1 Acc F1 Acc F1 Acc F1 Acc
BERT 54.92 51.16 51.69 50.65 79.31 78.47 66.94 67.26

C-SCN - Cont. Emb. 74.60 75.01 50.46 55.34 83.31 83.96 82.53 83.00
C-SCN 75.61 76.09 69.46 69.87 84.97 85.56 84.15 83.87

It is observed that C-SCN with fixed embeddings achieves better results than the one with contextual
embeddings. One explanation could be the limited number of higher-order objects formed with
contextual embeddings. 0-simplexes (nodes), which refer to the same word, will not be seen as the
same 0-simplex at different locations in the document with contextual embeddings. This will lead
to no 2-simplexes formed in the document since one 0-simplex will not be connected again within
the text, limiting the expressiveness of structural representations of the higher-order objects.

B.2 SEPARATE CONTRASTIVE LOSS FROM THE OBJECTIVE

To evaluate the effectiveness of optimising the contrastive loss and objective function together, ex-
periments to separate the two losses (Sep. Loss) are also conducted. The contrastive loss is first
minimised for 100 epochs without labels, and the loss against the final label is optimised with early
stopping. The result is shown in the following table.

Table 7: Results of test accuracy to compare with and without GRU.
Dataset Twitter MR Snippets StackOverflow
Metrics F1 Acc F1 Acc F1 Acc F1 Acc
BERT 54.92 51.16 51.69 50.65 79.31 78.47 66.94 67.26

C-SCN - Sep. Loss 67.54 68.35 53.61 56.79 64.69 64.8 27.01 29.78
C-SCN 75.61 76.09 69.46 69.87 84.97 85.56 84.15 83.87

It is observed that with limited training samples (20 samples from each category), pre-training with
a contrastive loss followed by supervised training does not help the model improve. In detail, the
separate contrastive loss could improve BERT’s performance in binary classification in Twitter and
MR datasets. In contrast, it worsens the performance in multi-label classification, and the most
deterioration is from the StackOverflow dataset, which has 20 categories.
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B.3 THE ROLE OF GRU IN THE MESSAGE FUNCTION

We adopted GRU as the UPDATE function to control the amount of information from the previous
step and aggregated neighbourhood information. This is achieved through the reset gate and the
reset gate structure in GRU. In contrast, we study the role of GRU by comparing the performance if
we remove GRU as the UPDATE function and replace it with the sum aggregation (SUM).

Table 8: Results of test accuracy to compare with contextual embeddings.
Dataset Twitter MR Snippets StackOverflow
Metrics F1 Acc F1 Acc F1 Acc F1 Acc

SCN - SUM 62.3 63.21 54.99 56.23 77.06 77.05 76.02 73.73
SCN 66.13 67.25 61.15 61.93 76.13 75.66 76.85 74.04

C-SCN - SUM 74.01 74.45 55.51 58.26 77.38 77.92 78.73 77.46
C-SCN 75.61 76.09 69.46 69.87 84.97 85.56 84.15 83.87

One challenge we observed without GRU was the overfitting issue on the train set across differ-
ent datasets. The results deteriorated when we removed GRU from SCN and C-SCN respectively,
illustrating the importance of GRU in the message-passing mechanism for higher-order complexes.

B.4 PSEUDO-CODE FOR C-SCN

We include the pseudo-code for C-SCN to enhance the reproducibility.

Algorithm 1: Algorithm Pseudo Code for C-SCN.
Input: Text data with words, punctuations and label as shown in Figure 3.

Simplicial Complex Construction
Tokenised words from the document data xdoc;
Tokenised unique 0-simplex σ0 ∈ K0;
1-simplex indices following the chronological order of tokens σ1 ∈ K1;
1-simplex features tokenised to one of the types: forward, backward, self-loop;
2-simplex features tokenised by the flow directions of components;
/* Add higher-order simplexes if needed. */

Model Construction
Parameters:
Embedding matrices for 0-simplexes, 1-simplexes and 2-simplexes: E0, E1 and E2;
Number of layers: L;
Message-passing mechanism for 0-simplexes and 1-simplexes following Equation 2 and

Equation 3: MP0, MP1;
Attention mechanism for 0-simplexes and 1-simplexes following Equation 4: Attn0, Attn1;
Activation function: ϕ;
Transformer model: Transt;
Linear layers that process the output of the transformer and the SCN to the label space: MLPt,
MLPs.

Initialise features:
h
(0)
σ0 = E0(σ0)∀σ0 ∈ K0; h

(0)
σ1 = E1(σ1)∀σ1 ∈ K1; h

(0)
σ2 = E2(σ2)∀σ2 ∈ K1.

for ℓ = 1 to L− 1 do
h
(ℓ)
σ1 = MP1(h

(ℓ−1)
σ1 ,h

(ℓ−1)
σ2 );

h
(ℓ)
σ0 = MP0(h

(ℓ−1)
σ0 ,h

(ℓ−1)
σ1 ).

h
(L)
K =

∑
σ1∈K1

Attn1(h
(L)
σ1 )⊕

∑
σ0∈K0

Attn0(h
(L)
σ0 );

Zt = MLPt(Transt(xdoc)); Zs = MLPs(h
(L)
K );

Z = 1
2 (softmax(Zs) + softmax(Zt));

return ŷ = Z, Zs, Zt.
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