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ABSTRACT

Inter-atomic potentials play an important role for modelling molecular dynamics.
Unfortunately, traditional methods for computing such potentials are computation-
ally heavy. In recent years, the idea of using neural networks to approximate these
computations has gained in popularity, and a variety of Graph Neural Networks
and Transformer based methods have been proposed for this purpose. Recent
approaches provide highly accurate estimates, but they are typically trained and
tested on the same molecules. It thus remains unclear whether these models mostly
learn to interpolate the training labels, or whether their physically-informed designs
actually allow them to capture the underlying principles. To address this gap,
we propose a benchmark consisting of four tasks that each require some form of
compositional generalisation. Training and testing involves separate molecules, but
the training data is chosen such that generalisation to the test examples should be
feasible for models that learn the physical principles. Our empirical analysis shows
that the considered tasks are highly challenging for state-of-the-art models, with
errors for out-of-distribution examples often being orders of magnitude higher than
for in-distribution examples.

1 INTRODUCTION

Inter-atomic potentials and their associated force fields are central to Molecular Dynamics (MD)
simulation, a widely used technique that provides atomistic insights into physical phenomena,
enabling applications such as drug design and material discovery (Alder & Wainwright, 1959;
Schlick, 2010; Rahman, 1964). Inter-atomic potentials, often parameterised using Density Functional
Theory (DFT) for high accuracy despite its computational cost, approximate the potential energy
surface (PES) and enable long-timescale MD of materials and biological systems (Frenkel & Smit,
2023). In recent years, the use of machine learning models for predicting force fields has become
increasingly widespread, with Graph Neural Networks (GNNs) and Transformer based architectures
being particularly popular (Gilmer et al., 2017; Liao et al., 2023). Such Machine Learning Force
Fields (MLFFs) can be computed efficiently, and the predictions of recent state-of-the-art models
are accurate enough for many applications (Batatia et al., 2022). However, they are not entirely
independent of the computationally expensive methods they seek to replace. MLFFs still rely on
high-accuracy reference calculations for their training data, which typically consists of optimisation
trajectories and initial MD segments. The trained MLFFs are then used to perform more or less stable,
long-timescale MD simulations (Neumann et al., 2024). While the architecture of MLFFs is often
physically-informed, it is unclear to what extent they actually learn the underlying physical principles,
or whether they essentially learn to interpolate between the training examples. This question matters,
because models that learn the underlying principles would be expected to generalise better. Ideally,
we want models that generalise beyond the molecules that they have been trained on, but this is
something that is not evaluated in standard benchmarks for MLFFs.

In this paper, we introduce the Generalisation for Molecular Dynamics (GMD-25) benchmark.
GMD-25 consists of four tasks, which test for different aspects of compositional generalisation
(Hupkes et al., 2020), as illustrated in Figure 1. Each task consists of a training and an out-of-
distribution (OOD) test set consisting of MD trajectories. Crucially, in contrast to standard practice,
the trajectories in the training and test set come from different molecules. The training molecules
are chosen such that MLFFs should, in principle, be able to generalise to the test molecules. For
instance, for the Length Extrapolation task, we train models on MD trajectories of linear alkanes
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Figure 1: An overview over the generalisation tasks covered by our GMD-25 benchmark. In each
task, the training set consists of a number of molecules, differing in the length of the carbon chain, and
in some cases the functional group(s). The out-of-distribution test data includes similar molecules,
but with a longer carbon chain and/or a different combination of functional groups. In each case, the
training data covers all the basic components that the model needs to interpret the test molecules.

with {2, ..., 6} carbon atoms and subsequently test on longer, unseen alkanes with {7, ..., 13} carbon
atoms. The benchmark’s ab initio molecular dynamics (AIMD) trajectories were generated using a
novel toolkit, also introduced here, which is designed to make the benchmark easily extensible.

We evaluate several popular MLFFs on our benchmark, including SchNet (Schütt et al., 2018), PAINN
(Schütt et al., 2021), DimeNet++ (Gasteiger et al., 2020), GemNet (Gasteiger et al., 2022; 2021),
and Equivariant Transformer V2 (EquiFormerV2) (Liao et al., 2023). These models represent a
diverse range of design choices in molecular representation learning, encompassing invariant and
equivariant models, and both GNN and Transformer-based approaches. Our analysis shows that
the considered generalisation tasks are highly challenging for these models, with errors on the test
molecules sometimes being several orders of magnitude higher than errors on in-distribution (ID)
examples (i.e. previously unseen configurations of the training molecules). Importantly, the models
that perform best on ID examples are not always the models that generalise best to OOD examples,
suggesting that the most popular approaches may not always learn the most physically plausible
models. With the proposed benchmark, we hope to encourage a shift towards the development of
models with better generalisability.

2 RELATED WORK

2.1 MACHINE LEARNING FORCE FIELDS

The study of MLFFs dates back to Blank et al. (1995). While early models relied on manually
engineered functions to represent local atomic environments (Behler & Parrinello, 2007; Zhang et al.,
2018; 2019), more recent approaches have used learnable descriptors which are inferred directly from
the data, typically with the use of message-passing neural networks (MPNNs) (Thölke & De Fabritiis,
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2022; Batatia et al., 2022; Schütt et al., 2018). Within this category, a key distinction arises based
on how geometric symmetries are handled. A conceptually straightforward approach is to train
models on invariant features only. For instance, models such as SchNet (Schütt et al., 2018) operate
on pairwise radial distances, which are invariant to rotations and translations, to predict energy
potentials. Force vectors can then be obtained by computing the gradient of the network. A more
powerful approach involves learning SE(3)-equivariant features (Unke et al., 2021), which transform
predictably with the system’s coordinates, making it possible, for instance, to directly predict forces.
One prominent line of work, encompassing Tensor Field Networks (TFNs) and NequIP (Batzner
et al., 2022; Fuchs et al., 2020; Thomas et al., 2018), achieves equivariance through mathematically
rigorous formulations based on spherical harmonics and irreducible representations. Models such as
EGNN (Satorras et al., 2021) and TorchMDNet (Thölke & De Fabritiis, 2022) offer a more efficient
alternative, by directly operating on vectors in 3D space. More recently, the state-of-the-art has
been advanced by Transformer-based architectures such as EquiFormerV2 (Liao et al., 2023), which
combine equivariant principles with attention to achieve new levels of accuracy and scalability,
defining the current frontier for MLFFs.

2.2 COMPOSITIONAL GENERALISATION

There is a long-standing debate about whether neural networks are capable of compositional gener-
alisation (Fodor & Pylyshyn, 1988), i.e. whether they are capable of solving problems that require
combining solutions to sub-problems in novel ways. The idea of algorithmic alignment seems to
play an important role, where neural networks are found to generalise well if their architecture is
sufficiently similar to the structure of the algorithm they are supposed to learn (Xu et al., 2020;
Zhou et al., 2024; Khalid & Schockaert, 2025). This view suggests that using carefully designed
physics-informed architectures might be important for MLFFs to generalise well.

Within the context of molecular machine learning, it has been observed that GNNs trained on
specific molecular datasets often struggle to predict properties for molecules with different structural
characteristics or scaffolds (Ektefaie et al., 2024). This problem is of particular importance in drug
discovery, where identifying novel compounds outside the known chemical space is essential (Li
et al., 2022). In response, benchmarks such as DrugOOD (Ji et al., 2023) have been introduced
to assess the robustness of GNNs in drug–target binding prediction tasks, by employing scaffold-
and protein-family based train-test splits. Similarly, in materials science, MatBench (Omee et al.,
2024) adapted standard datasets, creating extrapolative training-test splits based on compositional and
structural groups. Their analysis found GNNs to struggle with predicting the properties of previously
unseen materials. The BOOM benchmark (Antoniuk et al., 2025) studies generalisation from a
different angle. Unlike the compositional and structural tasks that are central to our study, BOOM
offers a property-centric perspective on extrapolation. Their challenge is framed not in terms of
unseen molecular structures, but rather in terms of unseen property values. The authors construct their
test sets using molecules from the tail ends of the target property’s distribution, explicitly assessing
whether a model can generalise beyond the numerical range of its training data.

2.3 BENCHMARKING MLFFS

Molecular dynamics (MD) datasets have played a central role in benchmarking MLFFs. The MD17
dataset (Chmiela et al., 2017) consists of ab initio MD trajectories for a small set of molecular systems
at equilibrium, with configurations sampled near their minima. While MD17 has driven early model
development, its limited diversity and coverage has prompted the introduction of more comprehensive
datasets. For example, WS22 (Pinheiro Jr et al., 2023) expands configurational diversity using
Wigner sampling and interpolation for small organic molecules. Transition1x (Schreiner et al.,
2022) extends the setting further, comprising approximately 9.6M energy and force labels over
∼10k reaction pathways, and demonstrates that models trained solely on equilibrium data, such
as MD17, QM9 (Ramakrishnan et al., 2014) and ANI-1 (Smith et al., 2017), fail to generalise to
transition-state geometries. To probe photochemical processes, xxMD (Pengmei et al., 2024) provides
excited-state reactive trajectories, where standard MLFFs exhibit significantly higher errors than on
ground-state datasets. At the other end of the spectrum, MD22 (Chmiela et al., 2023) introduces
MD datasets for large, flexible systems (42–370 atoms), including peptides and carbon nanotubes,
enabling evaluation on highly nonlocal molecular dynamics. These existing benchmarks were aimed
at increasing the number of training examples and widening the range of molecules. In contrast, in our
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GMD-25 benchmark, chemical subspaces are selected to systematically assess models’ compositional
generalisation capabilities, allowing for smaller and more focused training sets.

3 THE GMD-25 BENCHMARK

We introduce GMD-25, a systematic and extensible benchmark designed to evaluate the generalisation
capabilities of MLFFs. Unlike previous datasets that either narrowly focus on equilibrium dynamics
(e.g., MD17) or aim for broad chemical coverage without controlled evaluation tasks (e.g., ANI-
1), GMD-25 is constructed to facilitate systematic analysis of compositional generalisation. The
dataset consists of examples from the ten molecular groups based on substituted linear (alkyl) carbon
chains, extended via different functional group(s). Each group contains 5-16 chemically related
molecules, chosen to probe specific generalisation challenges. For each molecule, we provide two
AIMD trajectories. The energy and forces were calculated using the GNF2-xTB semi-empirical
tight-binding approach (Bannwarth et al., 2019), a method which is known for its balance between
computational efficiency and accuracy, yielding robust labels for modeling organic molecules. More
details on the dataset can be found in the appendix.

3.1 EVALUATION TASKS

The evaluation tasks in GMD-25 focus on two central aspects of compositional generalisation, namely
length generalisation and systematicity (Hupkes et al., 2020). Length generalisation refers to the
ability of a model that is trained on sequence data to generalise to longer sequences than the ones
seen during training. Length generalisation plays an important role in Natural Language Processing,
for instance, as models should ideally generalise to sentences of arbitrary length. In the case of
molecules, we evaluate length generalisation with respect to the length of carbon chains in linear
alkanes. Systematicity refers to the ability of a model to combine sub-components of problem
instances in novel ways. We evaluate this ability by varying the combination of functional groups
in molecules, testing molecules on previously unseen combinations, while ensuring that each of the
individual functional groups appears in the training data. For all tasks, the aim is to learn a model
that can predict potential energy and forces.

Task 1: Length extrapolation In this task, models are evaluated on their ability to extrapolate
to larger molecules than those they were trained on. We consider two variants, called base and
augmented. For the base variant, alkanes are used in both the training and the test set. The training
set consists of trajectories for alkanes with carbon chain lengths in {2, ..., 6} (one trajectory per
molecule). Each of these five trajectories contains around 2000 snapshots. The out-of-distribution
test set consists of trajectories of alkanes with carbon chain lengths in {7, ..., 13} (with again 2000
snapshots per trajectory). To analyse the performance of the trained models on in-distribution samples,
we also created an in-distribution test set, containing unseen snapshots of alkanes with carbon chain
lengths in {2, ..., 6}, taken from different trajectories than those used from the training set.

In the augmented variant, the training data contains alcohols with carbon chain lengths in {2, 3} ∪
{9, ..., 15} and carboxylic acids with carbon chain lengths in {4, ..., 8}. The out-of-distribution test
set contains alcohols with carbon chain length in {4, ..., 8} and carboxylic acids with lengths in
{2, 3} ∪ {9, ..., 15}. In other words, the model is tested on combinations of lengths and functional
groups that it has not seen before. However, since the model has seen all carbon chain lengths during
training, we might expect this augmented variant to be easier than the base variant.

The ability to extrapolate to larger molecules is critical for the practical application of MLFFs. For
instance, in drug discovery, models trained on small molecular fragments or peptides must be able
to generalise to larger, more complex lead compounds (Erlanson et al., 2016) or polypeptide chains
(Muller et al., 2018). The Length Extrapolation task therefore serves as a fundamental probe of
whether an MLFF has learned a physically plausible representation of how inter-atomic interactions
scale with distance, or if it has simply overfitted to the size distribution of the training set.

Task 2: Functional group composition This task assesses a model’s ability to generalise to a novel
functional group that is a composite of familiar moieties. We again consider a base and augmented
variant of this task. For the base variant, the training set consists of alcohol and aldehyde molecules,
while the test set consists of carboxylic acid molecules. Note that the functional group of the latter
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can be seen as a composition of the functional group of the former two. In addition, we expand the
training set with complex carbonyls and alcohol molecules to provide additional coverage of the
special bonds from the functional groups that appear in the aforementioned molecules. For this task,
we focus on molecules with carbon chain lengths in {4, ..., 10}, both for the training and for the
out-of-distribution test set. For the complex carbonyls and alcohol molecules (in the training set),
we also included molecules with a carbon chain length of 11. Each trajectory contains around 2000
snapshots. We again used secondary trajectories to construct an in-distribution test set.

For the augmented variant, the training data additionally contains examples of amines and amides
molecules. The functional group of the latter is a composition of the functional groups of aldehyde
and amines, hence the training data for the augmented variant includes a demonstration of how
functional groups can be composed. As before, the training data also contains alcohol, aldehyde,
complex carbonyls, and complex alcohol molecules, while the out-of-distribution test set contains
carboxylic acid molecules. We might expect the augmented variant to be easier than the base variant.

The combinatorial vastness of chemical space makes it impossible to exhaustively cover all molecules
in the training data. A primary goal for MLFFs is therefore to develop models that can generalise to
novel molecules by learning the contributions of their constituent components. The Functional Group
Composition task provides a direct and challenging evaluation of this capability. It is important to
clarify that we do not expect the model to learn the chemical reaction pathway, but rather to infer the
properties of the composite group from the learned effects of its constituent parts. Success on such a
task would represent a significant step towards MLFFs that can truly accelerate molecular discovery.

Task 3: Functional group duplication This task evaluates a model’s ability to generalise from
a single occurrence of a chemical motif to two occurrences of that same motif within an otherwise
identical molecule. The training data contains various monocarboxylic acids trajectories (i.e. with
one occurrence of the functional group) with carbon chain length in {5, ..., 10}, while the out-
of-distribution test set contains the corresponding dicarboxylic acids (i.e. with two occurrence of
the functional group) with identical carbon chain lengths. Each trajectory again consists of 2000
snapshots and secondary trajectories were used to create an in-distribution test set.

The ability to generalise from a single chemical motif to its repetition is crucial for many applications,
from drug discovery to polymer science. For example, the therapeutic effect of a drug can depend
on its interaction with systems containing repeating biological units (Mammen et al., 1998), while
the properties of polymers are defined by the repetition of a single monomer—a generalisation
so challenging that leading methods often rely on techniques like transfer learning to bridge the
knowledge gap from small molecules (St John et al., 2019). However, this reliance on pre-training
is a critical limitation, as a large, relevant dataset is not always available for novel chemical spaces.
Furthermore, it deviates from the primary goal of MLFFs: to create a universally applicable potential,
analogous to general approximation methods like DFT. Predicting the properties of these larger,
periodic systems is a non-trivial generalisation challenge, as interactions between repeated moieties
can introduce complex, non-linear effects. The Functional Group Duplication task serves as a
fundamental test of this capability. An MLFFs that can successfully solve this task would represent
a significant step towards models that can accurately predict the properties of oligomers and other
periodic systems, a currently challenging frontier for the field.

Task 4: Functional group combination This task evaluates a model’s ability to generalise to
asymmetrically functionalised molecules, when being trained exclusively on symmetrically func-
tionalised analogues. In other words, the aim is to determine if the model can learn the independent
identities of different functional groups and recombine them in a novel, asymmetric configuration on
a familiar scaffold. The training set contains two types of molecules: molecules with two carboxylic
acids functional groups and molecules with two amines. Each group contains 8 trajectories, with
carbon chain length in {2, ..., 9}, each comprising around 2000 snapshots. The out-of-distribution
test set contains molecules of the same lengths that contain one carboxylic acids functional group
and one amine. We again used secondary trajectories for in-distribution test set. By keeping the
underlying molecular scaffold consistent across training and testing, this task isolates the challenge
to the symbolic recombination of learned functional patterns, probing the model’s capacity to handle
hetero-functionalisation.
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3.2 TOOLKIT IMPLEMENTATION AND WORKFLOW

Our toolkit was implemented in Python, leveraging a combination of specialised libraries with the
Atomic Simulation Environment (ASE) (Larsen et al., 2017) as the core framework. Key libraries
include RDKit1 for initial structure generation, FlashMD (Bigi et al., 2025) for efficient trajectory
simulations, and XTB-Python for semi-empirical calculations. The toolkit follows four steps to
generate each trajectory:

Initial Structure Generation: The workflow begins with a molecular representation (e.g., a
SMILES string), from which the RDKit package generates an initial 3D geometry.

Initial Trajectory Generation: Using this 3D structure, FlashMD performs a fast molecular dy-
namics simulation. This method provides longer simulations with less computational cost,
and consequently samples a wider range of off-equilibrium configurations for each molecule.
Molecules were simulated in vacuum using a Langevin thermostat (300 K) and a 16 fem-
tosecond timestep for 200k steps. While inserting noise to coordinates and computing forces
accordingly is a recently used approach (Feng et al., 2023), we believe that generating
dynamic trajectories is a more consistent and transferable approach for our benchmark.

High-Fidelity Recalculation: Each snapshot from the initial trajectory is then refined, by recalcu-
lating the energy and forces for every frame using the more accurate GFN2-xTB method.

Orchestration and Output: The entire process is managed by ASE, which outputs the final dataset.
The data, containing refined coordinates, forces, and total energies for each frame, is stored
in a standardized format to ensure seamless integration with existing MLFFs pipelines.

To facilitate reproducibility and ease of use, the dataset is released with curated data splits and
pre-processing scripts, which are provided within a companion framework forked from the first
version of the fairchem2 and designed for training MLFFs.3 In total, the dataset comprises 118
molecules and 296,534 labelled geometries.

4 EVALUATION

4.1 MODELS

We use our benchmark to evaluate a diverse set of state-of-the-art MLFFs, representing distinct
architectural families. First, as an established baseline, we included SchNet (Schütt et al., 2018), a
well-known invariant GNN-based model. To represent more recent advances in equivariant message
passing, we selected PAINN (Schütt et al., 2021). We also evaluated models that explicitly incor-
porate geometric features such as dihedral angles, namely GemNet (Gasteiger et al., 2022; 2021)
and DimeNet++ (Gasteiger et al., 2020). Finally, to represent the current frontier of equivariant
architectures, we included the transformer-based EquiFormerV2 (Liao et al., 2023). Note that our
benchmark provides a controlled setting for evaluating the generalisation abilities of different neural
network architectures. As such, we did not include any foundation models (Batatia et al., 2023) in
our analysis. The latter have been pre-trained on large and diverse sets of molecules, making it harder
to untangle memorisation and generalisation effects.

4.2 EXPERIMENTAL SET-UP

For the experimental protocol, we adopted a two-stage hyperparameter tuning strategy. Initially,
models were trained using the curated default hyperparameters provided in the fairchem repository
to establish a baseline performance. Subsequently, we conducted a Bayesian hyperparameter optimi-
sation to ensure that each model achieved its best possible performance on the in-distribution data
within our computational allowance, and to analyse the sensitivity of the models to hyperparameter
selection. The resulting optimised hyperparameters can be found in the appendix.

To quantify model performance, our evaluation focuses on two primary metrics across all four tasks:
the Mean Absolute Error (MAE) on forces, reported in eV/Å, and the MAE on energy, reported in

1RDKit: Open-source cheminformatics. https://www.rdkit.org/
2https://github.com/facebookresearch/fairchem
3The full toolkit will be made available upon acceptance.
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Figure 2: Results for the base variant of Length Extrapolation (Task 1). Models were trained on MD
trajectories of linear alkanes with 2-6 carbon atoms (in-distribution, light blue region) and evaluated
on longer, unseen chains with 7-13 carbon atoms (out-of-distribution, light red region). The figure
shows: (a) MAE on total energy and (b) MAE on atomic forces. Both error metrics, displayed on a
logarithmic scale, demonstrate a consistent trend across all five models, where performance degrades
sharply at the distribution shift.

eV. The force MAE is calculated over all Cartesian components of atomic forces, while the energy
MAE is computed on the total energy of each molecular configuration:

MAEforce =
1

3N

N∑
i=1

∑
c∈{x,y,z}

|F̂i,c − Fi,c|, MAEenergy =
1

M

M∑
j=1

|Êj − Ej |

where M is the number of molecules in the test set and N is the number of atoms across all
molecules. We write Êj for the predicted energy for molecule j and Ej for the ground truth.
Similarly, (F̂i,x, F̂i,y, F̂i,z) denotes the predicted force vector for atom i and (Fi,x, Fi,y, Fi,z) is the
corresponding ground truth vector. These metrics provide a comprehensive assessment of model
accuracy for the fundamental quantities required in molecular dynamics simulations. Additional
force analysis metrics are presented in the appendix for completeness.

4.3 RESULTS

Length extrapolation The results for the base variant of the Length Extrapolation task are presented
in Figure 2. A clear trend is observed across all models: predictive accuracy deteriorates significantly
at the distribution shift. EquiFormerV2 consistently exhibits the lowest Forces MAE (panel b)
However, its Energy MAE increases dramatically in the OOD region, eventually becoming the
worst-performing model (panel a). Conversely, SchNet and DimeNet++ exhibit more stable energy
predictions in the OOD region, despite their weaker performance on forces. Additional force analysis
metrics are provided in the appendix.

The results for the augmented variant are presented in Figure 3. For Energy MAE (panels a and c),
DimeNet++ and SchNet generalise effectively, maintaining stable and low error across both ID and
OOD regions. In contrast, EquiFormerV2 fails on this metric, with its error increasing by an order of
magnitude in the OOD region. However, for Forces MAE (Figure 3 panels b and d), EquiFormerV2
was the top performer, exhibiting a generally small generalisation gap, while SchNet and GemNet
performed poorly (both ID and OOD).

Functional group composition As shown in Figure 4 (panels a–d), all models fail to generalise
for this task, both in the base and the augmented variants. When looking at forces MAE in the
base variant (panel b), errors on the OOD test set are higher by at least an order of magnitude,
compared to the ID set. A similar pattern is observed for the augmented variant (panel d). While
the ID performance of most models is strong, with DimeNet++ achieving the lowest error, the OOD
performance of all models is poor. This generalisation gap is even more pronounced for energy
predictions (panels a and c), where EquiFormerV2 and DimeNet++ exhibit particularly high OOD
errors. A more detailed analysis for this task, including the MAE on forces magnitude, is provided in
the appendix.

Functional group duplication The results for this task, shown in Figure 4 (panels e and f), reveal
a consistent generalisation failure across all architectures. In the case of Forces MAE (panel f), a
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Figure 3: Results for the augmented variant of Length Extrapolation (Task 1). Models were trained
on a discontinuous set of alcohols with short (2-3 carbons) and long (9-15 carbons) alkyl chains,
as well as a set of medium-length carboxylic acids (4-8 carbons). The OOD test set evaluates the
model’s ability to interpolate the properties of medium-chain alcohols and extrapolate to short-chain
and long-chain carboxylic acids. The figure displays the (a) Energy MAE and (b) Forces MAE
for carboxylic acids, and the corresponding (c) Energy MAE and (d) Forces MAE for alcohols. A
substantial generalisation error is observed in the OOD regions for both molecular families.
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Figure 4: Results for Functional Group Composition (Task 2) in its base (a, b) and augmented (c, d)
variants, Functional Group Duplication (Task 3) (e, f), and Functional Group Combination (Task 4)
(g, h). Performance is measured by Energy MAE (eV) for the top row (a, c, e, g) and Forces MAE
(eV/Å) for the bottom row (b, d, f, h). Each plot compares the ID error (light blue) with the OOD
error (red). Across all tasks and models, a substantial generalisation gap is observed.

significant gap between ID and OOD performance is evident for all models. GemNet overall performs
best, while SchNet even struggles on the ID test set. The generalisation gap is even more pronounced
for the Energy MAE (panel e), where OOD errors are higher by two orders of magnitude, compared
to ID errors. This suggests that the tested architectures do not possess a strong inductive bias for
repetition, failing to reuse the learned pattern of a single functional group in a new, duplicated context.
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Functional group combination The results, shown in Figure 4 (panels g and h), indicate that
while all models still exhibit a clear generalisation gap, this gap is notably smaller than we observed
for Functional Group Composition and Functional Group Duplication. For Forces MAE (panel h),
EquiFormerV2 demonstrates the strongest OOD performance. However, for Energy MAE (panel
g), PAINN performs better, both ID and OOD. This task’s intermediate difficulty is particularly
informative; the generalisation challenge is significant enough to cause all models to fail, yet not so
extreme that their performances become indistinguishable.

5 CONCLUSIONS

This work introduces GMD-25, a systematic benchmark designed to evaluate the compositional
generalisation capabilities of MLFFs. Through four purposely designed tasks, length extrapolation,
functional group composition, functional group duplication, and functional group combination,
we provide a systematic assessment of how well state-of-the-art MLFFs generalise to molecular
configurations outside their training distributions. Our empirical analysis reveals significant limi-
tations in current approaches, with all evaluated models (SchNet, PAINN, DimeNet++, GemNet,
and EquiFormerV2) showing substantial performance degradation when generalising to out-of-
distribution molecular configuration. Errors on out-of-distribution test molecules are often one to two
orders of magnitudes higher than on in-distribution examples, indicating fundamental challenges in
learning transferable representations of inter-atomic interactions. While substantial generalisation
gaps were observed in all four evaluation tasks, this gap was particularly pronounced for functional
group composition and functional group duplication.

The performance of the individual models is highly varied. For instance, EquiFormerV2 performed
the best on Length Extrapolation in terms of forces MAE, but it failed completely on energy MAE in
the OOD region. SchNet and DimeNet++ performed well on Length Extrapolation in terms of energy
MAE. GemNet overall performed best in the OOD region for Functional Group Composition and
Functional Group Duplication. For Functional Group Combination, PAINN performed best in terms
of energy MAE while EquiFormerV2 performed best in terms of forces MAE.

Our findings highlight a critical gap between the impressive accuracy of MLFFs on standard bench-
marks and their ability to extrapolate beyond training distribution. The benchmark serves as a
valuable diagnostic tool for identifying architectural biases and guiding the development of more ro-
bust, physically-informed models. By focusing on controlled evaluation scenarios rather than simply
expanding dataset size or molecular diversity, GMD-25 encourages the development of MLFFs that
capture fundamental physical principles rather than dataset-specific patterns. Such models would
represent a significant step towards truly predictive force fields capable of accelerating molecular
discovery across diverse chemical spaces.

Reproducibility statement To ensure the reproducibility of our results, the complete dataset,
including all trajectories and curated data splits, alongside the experimental framework used for
our analysis, will be made open-source upon paper acceptance. For those wishing to replicate the
data generation process, Section 3.1 details the simulation parameters required to reproduce the
trajectories independently, while Section 3.2 describes our custom-built toolkit. An detailed overview
of our data splitting policy is available in the appendix. For model training, we utilised the framework
mentioned in Section 3.2. The final hyperparameters that were selected for all evaluated models are
listed in the appendix.

Usage of LLMs Large Language Models have been used to assist with polishing some of the text
in this paper.
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Kristof T Schütt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and K-R Müller.
Schnet–a deep learning architecture for molecules and materials. The Journal of Chemical Physics,
148(24), 2018.

Justin S Smith, Olexandr Isayev, and Adrian E Roitberg. Ani-1, a data set of 20 million calculated
off-equilibrium conformations for organic molecules. Scientific data, 4(1):1–8, 2017.

Peter C St John, Caleb Phillips, Travis W Kemper, A Nolan Wilson, Yanfei Guan, Michael F Crowley,
Mark R Nimlos, and Ross E Larsen. Message-passing neural networks for high-throughput polymer
screening. The Journal of chemical physics, 150(23), 2019.

Philipp Thölke and Gianni De Fabritiis. Torchmd-net: equivariant transformers for neural network
based molecular potentials. arXiv preprint arXiv:2202.02541, 2022.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds.
arXiv preprint arXiv:1802.08219, 2018.

Oliver Unke, Mihail Bogojeski, Michael Gastegger, Mario Geiger, Tess Smidt, and Klaus-Robert
Müller. Se (3)-equivariant prediction of molecular wavefunctions and electronic densities. Advances
in Neural Information Processing Systems, 34:14434–14447, 2021.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=rJxbJeHFPS.

Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, and Weinan E. Deep potential molecular
dynamics: a scalable model with the accuracy of quantum mechanics. Physical review letters, 120
(14):143001, 2018.

Yaolong Zhang, Ce Hu, and Bin Jiang. Embedded atom neural network potentials: Efficient and
accurate machine learning with a physically inspired representation. The journal of physical
chemistry letters, 10(17):4962–4967, 2019.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Joshua M. Susskind, Samy
Bengio, and Preetum Nakkiran. What algorithms can transformers learn? A study in length
generalization. In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=AssIuHnmHX.

12

https://openreview.net/forum?id=rJxbJeHFPS
https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=AssIuHnmHX


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C2
H6

C3
H8

C4
H10

C5
H12

C6
H14

C7
H16

C8
H18

C9
H20

C1
0H

22

C1
1H

24

C1
2H

26

C1
3H

28
0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

Fo
rc

es
 C

os
in

e 
Si

m
ila

ri
ty

(a) Forces Cosine Similarity

EquiFormerV2
PAINN
DimeNet++
SchNet
GemNet

C2
H6

C3
H8

C4
H10

C5
H12

C6
H14

C7
H16

C8
H18

C9
H20

C1
0H

22

C1
1H

24

C1
2H

26

C1
3H

28

10 3

10 2

M
AE

 (
eV

/Å
)

(b) Forces Magnitude MAE

Figure 5: Supplementary force analysis for the base variant of Length Extrapolation (Task 1).
Models were trained on linear alkanes with 2-6 carbon atoms (in-distribution, light blue region) and
evaluated on unseen chains with 7-13 carbon atoms (out-of-distribution, light red region). This figure
decomposes the total force error by showing: (a) the Cosine Similarity, which measures directional
accuracy, and (b) the MAE on Force Magnitude, which measures strength accuracy.

A APPENDIX

A.1 ADDITIONAL EVALUATION METRICS

Force MAE conflates errors in both the direction and magnitude of the predicted force vectors. To
disentangle these two sources of error, below we present results for two additional metrics: the
unitless Cosine Similarity and the MAE on Force Magnitude (in eV/Å).

Cosine similarity This metric assesses the similarity between the directions of the predicted and
true force vectors. A value of 1 indicates perfect alignment, 0 indicates orthogonality, and -1 indicates
that the vectors point in opposite directions. The metric is computed by averaging the cosine of the
angle between the predicted and true force vectors over all atoms in a given configuration:

Cosine Similarity =
1

N

N∑
i=1

F̂i · Fi

||F̂i||2||Fi||2

where N is the total number of atoms, F̂i is the predicted force vector for atom i, Fi is the ground
truth force vector, · denotes the dot product, and || · ||2 is the L2 norm (i.e., the vector magnitude).

MAE on force magnitude This metric evaluates the accuracy of the predicted force strengths
(magnitudes) independently of their direction. It quantifies the average absolute error between the
magnitude of the predicted force vectors and the magnitude of the true force vectors:

MAEmag =
1

N

N∑
i=1

∣∣∣||F̂i||2 − ||Fi||2
∣∣∣

with F̂i and Fi as before. A lower value for MAEmag indicates a more accurate prediction of force
strengths.

Results Figures 5–7 summarise the results for the four considered evaluation tasks, in terms of
cosine similarity and force magnitude MAE. The results show that errors in the predicted magnitude
account for most of the overall errors in the predicted forces. For instance, for Length Extrapolation,
models such as EquiFormerV2 and DimeNet++ generalise nearly perfectly in terms of cosine
similarity. For Functional Group Combination, we can see nearly perfect OOD generalisation in
terms of cosine similarity for all models. For the two most challenging tasks, Functional Group
Composition and Functional Group Duplication, we can see that the overall error is a combination of
errors in direction and in magnitude. However, even for these tasks, errors in the magnitude prediction
play the biggest role.
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Figure 6: Supplementary force analysis for the augmented variant of Length Extrapolation (Task
1). Models were trained on a discontinuous set of alcohols with short (2-3 carbons) and long (9-15
carbons) alkyl chains, as well as a set of medium-length carboxylic acids (4-8 carbons).

0.90 0.92 0.94 0.96 0.98 1.00
Forces Cosine Similarity

SchNet

PAINN

GemNet

EquiFormerV2

DimeNet++

(a) Functional Group Composition 
Base Setting

0.90 0.92 0.94 0.96 0.98 1.00
Forces Cosine Similarity

(c) Functional Group Composition, 
Augmented Setting

0.90 0.92 0.94 0.96 0.98 1.00
Forces Cosine Similarity

(e) Functional Group Duplication

0.90 0.92 0.94 0.96 0.98 1.00
Forces Cosine Similarity

(g) Functional Group Combination

10 2 10 1 100

Forces Magnitude MAE (eV/Å)

SchNet

PAINN

GemNet

EquiFormerV2

DimeNet++

(b) Functional Group Composition 
Base Setting

10 2 10 1 100

Forces Magnitude MAE (eV/Å)

(d) Functional Group Composition, 
Augmented Setting

10 3 10 2 10 1

Forces Magnitude MAE (eV/Å)

(f) Functional Group Duplication, 
Forces Errors

10 3 10 2 10 1

Forces Magnitude MAE (eV/Å)

(h) Functional Group Combination
In-distribution
Out-of-distribution

Figure 7: Supplementary force analysis for the Functional Group Composition (Task 2, base and
augmented variants), Functional Group Duplication (Task 3) and Functional Group Combination
(Task 4), supplementary to Figure 4. The top row (a, c, e, g) displays the Forces Cosine Similarity.
The bottom row (b, d, f, h) shows the corresponding Forces Magnitude MAE.

A.2 THE DATASET

The dataset covers 118 molecules, each with two trajectories. The first trajectory has 2013 snapshots
and is primarily used for constructing the training and out-of-distribution test sets. The second
trajectory has 500 snapshots, where the first 100 are used for hyperparameter optimisation and the
remaining 400 for constructing the in-distribution test sets. The specific molecules used for each task
are detailed in Table 1.
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While standard protocols for datasets like MD17 often recommend training on a limited number
of samples, typically around 1000 snapshots from a single trajectory4, our approach intentionally
deviates from this. The trajectories in our GMD-25 benchmark, unlike those in MD17, which are
sampled near equilibrium minima Chmiela et al. (2017), are generated to capture a wide range of
off-equilibrium configurations Bigi et al. (2025). Consequently, we utilize 2013 snapshots for the
primary trajectory of each molecule. This larger sample size is crucial for two primary reasons. First,
it ensures a sufficient representation of the diverse, high-energy states present in our data. Second, by
providing a substantial number of examples from each trajectory, it robustly exposes the models to
the distinct dynamics of multiple molecular systems.

A.3 MODEL HYPERPARAMETERS

The hyperparameters for each of the five models evaluated in this study were determined through
the two-stage tuning process described in Section 4.2, using the Weights & Biases (W&B) library
sweeps for optimisation on Nvidia RTX Ada A6000 GPUs. We used the W&B count parameters
to limit the number of optimisation runs in each setting, allocating 30 runs per hyperparameter for
each model. This resulted in 180 runs for EquiFormerV2, 120 runs for DimeNet++, 150 runs for
GemNet-OC, 90 runs for PaiNN, and 120 runs for SchNet. We tuned the following hyperparameters:

• EquiFormerV2: sphere channels, FFN hidden channels, max radius, edge channels, number
of distance basis, initial learning rate (Table 7)

• DimeNet++: hidden channels, output embedding channels, cutoff radius, initial learning
rate (Table 8)

• GemNet-OC: number of radial basis functions, atom embedding size, edge embedding size,
cutoff radius, initial learning rate (Table 9)

• PaiNN: hidden channels, cutoff radius, initial learning rate (Table 10)
• SchNet: hidden channels, number of filters, cutoff radius, initial learning rate (Table 11)

The final optimised parameters used for generating the results are detailed in the tables referenced
above, ensuring the reproducibility of our findings.

A.4 DETAILED RESULTS

This section provides the detailed numerical results that correspond to the figures presented in the
paper.

• The exact performance metrics for the base variant of the Length Extrapolation task (Task
1), illustrated in Figure 2 and complemented by the force analysis in Figure 5, are presented
in Table 2.

• For the augmented variant of the Length Extrapolation task (Task 1), illustrated in Figure 3
and Figure 6, the numerical results are provided in Table 3 for alcohols and Table 4 for
carboxylic acids.

• The aggregated results for the Functional Group Composition (Task 2), Functional Group
Duplication (Task 3), and Functional Group Combination (Task 4) tasks, which are visualized
in Figure 4 with supplementary force analysis in Figure 7, are provided in Table 5.

4https://pytorch-geometric.readthedocs.io/en/2.6.0/generated/torch_
geometric.datasets.MD17.html
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Table 1: Specifications of the dataset splits for each benchmark task, outlining the training and
out-of-distribution (OOD) test sets. The in-distribution (ID) test set for each task is drawn from
the same molecular distribution as the training set, but consists of data from unseen simulation
trajectories.

Task Training Set OOD Test Set
Task 1: Base C2-C6 alkanes: Ethane–Hexane C7-C13 alkanes: Heptane–Tridecane

Task 1: Augmented • C2-C3 & C9-C15 alcohols
• C4-C8 carboxylic acids

• C4-C8 alcohols
• C2-C3 & C9-C15 carboxylic acids

Task 2: Base • C7-C11 complex carbonyls and
complex alcohol
• C4-C10 alcohols & aldehydes

C4-C10 carboxylic acids

Task 2: Augmented • C7-C11 complex carbonyls and
complex alcohol
• C4-C10 alcohols, aldehydes,
amides, and amines

C4-C10 carboxylic acids

Task 3 C5-C10 carboxylic acids C5-C10 dicarboxylic acids

Task 4 • C2-C9 diamines
• C2-C9 dicarboxylic acids

C2-C9 amino acids

Table 2: Length extrapolation basic variant model comparison on forces
and energy prediction for alkanes. Forces Mean Absolute Error is shown
with F MAE, Forces Cosine Similarity with F Cosine and Forces Magni-
tude Mean Absolute Error with F Mag. Energy is measured in eV and
forces in eV/Å. Blue indicates molecules in-distribution and red indicates
molecules out-of-distribution for this setting.

Molecule Model F MAE F Cosine F Mag E MAE

C2H
6

SchNet 0.00479 0.9999 0.00531 0.00298
PAINN 0.00101 1.0000 0.00129 0.09496
GemNet 0.00046 1.0000 0.00051 0.00341
EquiFormerV2 0.00029 1.0000 0.00039 0.00341
DimeNet++ 0.00057 1.0000 0.00062 0.02874

C3H
8

SchNet 0.01036 0.9997 0.01087 0.00710
PAINN 0.00124 1.0000 0.00150 0.12240
GemNet 0.00058 1.0000 0.00063 0.00772
EquiFormerV2 0.00036 1.0000 0.00045 0.00598
DimeNet++ 0.00076 1.0000 0.00081 0.05221

C4H
10

SchNet 0.01539 0.9993 0.01614 0.01461
PAINN 0.00149 1.0000 0.00178 0.14741
GemNet 0.00076 1.0000 0.00083 0.01242
EquiFormerV2 0.00044 1.0000 0.00051 0.01391
DimeNet++ 0.00100 1.0000 0.00103 0.06589

C5H
12

SchNet 0.01712 0.9992 0.01720 0.01751
PAINN 0.00164 1.0000 0.00195 0.15998
GemNet 0.00071 1.0000 0.00078 0.01377
EquiFormerV2 0.00044 1.0000 0.00051 0.02119
DimeNet++ 0.00104 1.0000 0.00110 0.07940

C6H
14

SchNet 0.02119 0.9989 0.02123 0.02302
PAINN 0.00166 1.0000 0.00195 0.20522
GemNet 0.00085 1.0000 0.00090 0.01799
EquiFormerV2 0.00049 1.0000 0.00056 0.02645
DimeNet++ 0.00121 1.0000 0.00126 0.09729

Continued on next page
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Table 2 – continued from previous page
Molecule Model F MAE F Cosine F Mag E MAE

C7H
16

SchNet 0.02847 0.9981 0.02857 0.02547
PAINN 0.00659 0.9999 0.00666 0.34528
GemNet 0.00566 0.9998 0.00576 2.43737
EquiFormerV2 0.00221 0.9999 0.00317 3.02265
DimeNet++ 0.00182 1.0000 0.00189 0.10026

C8H
18

SchNet 0.03578 0.9966 0.03592 0.02865
PAINN 0.00874 0.9998 0.00866 0.56172
GemNet 0.01167 0.9994 0.01214 6.04641
EquiFormerV2 0.00239 1.0000 0.00322 7.99460
DimeNet++ 0.00257 1.0000 0.00265 0.09330

C9H
20

SchNet 0.04143 0.9957 0.04214 0.02888
PAINN 0.01101 0.9997 0.01102 0.87997
GemNet 0.01602 0.9989 0.01616 10.41280
EquiFormerV2 0.00232 1.0000 0.00275 12.07372
DimeNet++ 0.00367 1.0000 0.00391 0.06891

C10
H22

SchNet 0.04504 0.9951 0.04436 0.03372
PAINN 0.01210 0.9997 0.01267 1.20715
GemNet 0.02139 0.9983 0.02069 15.42145
EquiFormerV2 0.00233 1.0000 0.00271 16.38867
DimeNet++ 0.00432 1.0000 0.00442 0.03362

C11
H24

SchNet 0.04741 0.9940 0.04707 0.03938
PAINN 0.01209 0.9996 0.01256 1.55668
GemNet 0.02191 0.9981 0.02215 20.95873
EquiFormerV2 0.00254 1.0000 0.00294 22.10180
DimeNet++ 0.00490 0.9999 0.00484 0.02619

C12
H26

SchNet 0.04655 0.9939 0.04553 0.03535
PAINN 0.01230 0.9996 0.01228 1.76444
GemNet 0.02384 0.9984 0.02342 25.92406
EquiFormerV2 0.00266 1.0000 0.00310 27.33273
DimeNet++ 0.00462 0.9999 0.00473 0.02654

C13
H28

SchNet 0.04683 0.9945 0.04693 0.04316
PAINN 0.01302 0.9995 0.01309 2.21373
GemNet 0.02220 0.9982 0.02273 31.43054
EquiFormerV2 0.00274 1.0000 0.00320 31.07756
DimeNet++ 0.00552 0.9999 0.00577 0.07176

Table 3: Length extrapolation augmented variant model comparison on
forces and energy prediction for alcohols. Forces Mean Absolute Error is
shown with F MAE, Forces Cosine Similarity with F Cosine and Forces
Magnitude Mean Absolute Error with F Mag. Energy is measured in
eV and forces in eV/Å. Blue indicates molecules in-distribution and red
indicates molecules out-of-distribution for this setting.

Molecule Model F MAE F Cosine F Mag E MAE

C2H
5O

H
SchNet 0.02756 0.9973 0.03234 0.01397
PAINN 0.00257 0.9993 0.00325 0.04252
GemNet 0.01460 0.9987 0.01550 0.37562
EquiFormerV2 0.00177 0.9993 0.00229 0.01159

Continued on next page
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Table 3 – continued from previous page
Molecule Model F MAE F Cosine F Mag E MAE

DimeNet++ 0.00205 0.9993 0.00253 0.01168

C3H
7O

H
SchNet 0.03266 0.9970 0.03500 0.02876
PAINN 0.00220 1.0000 0.00257 0.02950
GemNet 0.01401 0.9995 0.01505 0.50612
EquiFormerV2 0.00128 1.0000 0.00149 0.01380
DimeNet++ 0.00173 1.0000 0.00178 0.01210

C4H
9O

H
SchNet 0.03395 0.9974 0.03706 0.02932
PAINN 0.00550 0.9999 0.00560 0.04370
GemNet 0.01425 0.9995 0.01456 0.61146
EquiFormerV2 0.00210 1.0000 0.00233 0.24266
DimeNet++ 0.00262 1.0000 0.00289 0.01292

C5H
11

OH
SchNet 0.03185 0.9976 0.03335 0.02336
PAINN 0.00565 0.9999 0.00584 0.06966
GemNet 0.01434 0.9993 0.01460 0.74061
EquiFormerV2 0.00212 1.0000 0.00226 0.25995
DimeNet++ 0.00253 1.0000 0.00267 0.01523

C6H
13

OH
SchNet 0.03128 0.9978 0.03198 0.02792
PAINN 0.00557 0.9999 0.00570 0.09861
GemNet 0.01460 0.9995 0.01463 0.85787
EquiFormerV2 0.00197 1.0000 0.00214 0.17750
DimeNet++ 0.00226 1.0000 0.00243 0.01666

C7H
15

OH
SchNet 0.02884 0.9973 0.02934 0.02700
PAINN 0.00506 0.9999 0.00536 0.10700
GemNet 0.01463 0.9994 0.01431 0.94924
EquiFormerV2 0.00183 1.0000 0.00198 0.11155
DimeNet++ 0.00208 1.0000 0.00224 0.01785

C8H
17

OH
SchNet 0.02940 0.9977 0.02991 0.02462
PAINN 0.00519 0.9999 0.00525 0.13553
GemNet 0.01446 0.9994 0.01419 1.05923
EquiFormerV2 0.00168 1.0000 0.00188 0.01881
DimeNet++ 0.00203 1.0000 0.00223 0.01998

C9H
19

OH
SchNet 0.03207 0.9974 0.03317 0.03995
PAINN 0.00217 1.0000 0.00250 0.15042
GemNet 0.01468 0.9995 0.01444 1.17354
EquiFormerV2 0.00127 1.0000 0.00139 0.03081
DimeNet++ 0.00171 1.0000 0.00178 0.02097

C10
H21

OH
SchNet 0.03234 0.9972 0.03270 0.03320
PAINN 0.00227 1.0000 0.00260 0.17241
GemNet 0.01446 0.9992 0.01449 1.27180
EquiFormerV2 0.00133 1.0000 0.00144 0.03276
DimeNet++ 0.00169 1.0000 0.00179 0.02377

C11
H23

OH
SchNet 0.03109 0.9972 0.03178 0.03577
PAINN 0.00216 1.0000 0.00245 0.19655
GemNet 0.01385 0.9994 0.01355 1.40246
EquiFormerV2 0.00126 1.0000 0.00139 0.03627
DimeNet++ 0.00154 1.0000 0.00165 0.02407

C12
H25

OH
SchNet 0.03288 0.9973 0.03385 0.03450
PAINN 0.00220 1.0000 0.00248 0.22903
GemNet 0.01419 0.9995 0.01396 1.52122
EquiFormerV2 0.00132 1.0000 0.00144 0.03210

Continued on next page
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Table 3 – continued from previous page
Molecule Model F MAE F Cosine F Mag E MAE

DimeNet++ 0.00159 1.0000 0.00165 0.02675

C13
H27

OH
SchNet 0.03213 0.9975 0.03223 0.03091
PAINN 0.00222 1.0000 0.00260 0.26046
GemNet 0.01351 0.9995 0.01340 1.63062
EquiFormerV2 0.00121 1.0000 0.00132 0.03375
DimeNet++ 0.00147 1.0000 0.00154 0.02640

C14
H29

OH
SchNet 0.03275 0.9975 0.03235 0.03733
PAINN 0.00221 1.0000 0.00253 0.28213
GemNet 0.01344 0.9995 0.01320 1.77347
EquiFormerV2 0.00117 1.0000 0.00127 0.04036
DimeNet++ 0.00144 1.0000 0.00150 0.02681

C15
H31

OH
SchNet 0.03366 0.9968 0.03374 0.04015
PAINN 0.00227 1.0000 0.00257 0.31360
GemNet 0.01361 0.9995 0.01340 1.88979
EquiFormerV2 0.00124 1.0000 0.00134 0.04948
DimeNet++ 0.00148 1.0000 0.00155 0.03043

Table 4: Length extrapolation augmented variant model comparison on
forces and energy prediction for carboxylic acids. Forces Mean Absolute
Error is shown with F MAE, Forces Cosine Similarity with F Cosine and
Forces Magnitude Mean Absolute Error with F Mag. Energy is measured
in eV and forces in eV/Å. Blue indicates molecules in-distribution and
red indicates molecules out-of-distribution for this setting.

Molecule Model F MAE F Cosine F Magnitude E MAE

C1H
3C

OOH SchNet 0.05903 0.9915 0.07053 0.01691
PAINN 0.01815 0.9994 0.02044 0.13633
GemNet 0.03424 0.9978 0.04593 0.40684
EquiFormerV2 0.01558 0.9993 0.01936 32.90651
DimeNet++ 0.02153 0.9993 0.03073 0.23737

C2H
5C

OOH SchNet 0.04835 0.9965 0.05320 0.04494
PAINN 0.00947 0.9999 0.01052 0.09456
GemNet 0.02836 0.9986 0.03516 0.17078
EquiFormerV2 0.00655 0.9999 0.00747 16.28926
DimeNet++ 0.00632 0.9999 0.00703 0.01044

C3H
7C

OOH SchNet 0.03225 0.9981 0.03541 0.02616
PAINN 0.00275 1.0000 0.00322 0.04312
GemNet 0.02382 0.9985 0.02822 0.06390
EquiFormerV2 0.00177 1.0000 0.00206 0.02389
DimeNet++ 0.00251 1.0000 0.00250 0.01750

C4H
9C

OOH SchNet 0.02988 0.9977 0.03116 0.02547
PAINN 0.00273 1.0000 0.00303 0.03440
GemNet 0.02231 0.9987 0.02598 0.09800
EquiFormerV2 0.00160 1.0000 0.00181 0.01938
DimeNet++ 0.00225 1.0000 0.00224 0.01741

C5H
11

COOH SchNet 0.02976 0.9981 0.03074 0.02392
PAINN 0.00241 1.0000 0.00276 0.04346
GemNet 0.02067 0.9984 0.02345 0.20322
EquiFormerV2 0.00148 1.0000 0.00167 0.01737

Continued on next page
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Table 4 – continued from previous page
Molecule Model F MAE F Cosine F Magnitude E MAE

DimeNet++ 0.00218 1.0000 0.00214 0.02095

C6H
13

COOH SchNet 0.03137 0.9974 0.03349 0.02574
PAINN 0.00240 1.0000 0.00277 0.07452
GemNet 0.01930 0.9984 0.02144 0.31776
EquiFormerV2 0.00146 1.0000 0.00170 0.02290
DimeNet++ 0.00200 1.0000 0.00205 0.02080

C7H
15

COOH SchNet 0.03169 0.9977 0.03362 0.03134
PAINN 0.00237 1.0000 0.00270 0.08525
GemNet 0.01899 0.9991 0.02098 0.42688
EquiFormerV2 0.00145 1.0000 0.00160 0.02483
DimeNet++ 0.00200 1.0000 0.00207 0.02052

C8H
17

COOH SchNet 0.03456 0.9971 0.03543 0.03248
PAINN 0.00644 0.9999 0.00669 0.11141
GemNet 0.01967 0.9991 0.02168 0.51508
EquiFormerV2 0.00248 1.0000 0.00268 0.10912
DimeNet++ 0.00302 1.0000 0.00316 0.02332

C9H
19

COOH SchNet 0.03699 0.9970 0.03939 0.04175
PAINN 0.00665 0.9999 0.00685 0.12507
GemNet 0.01939 0.9990 0.02165 0.63611
EquiFormerV2 0.00242 1.0000 0.00274 0.29776
DimeNet++ 0.00297 1.0000 0.00319 0.02532

C10
H21

COOH SchNet 0.03520 0.9974 0.03613 0.03744
PAINN 0.00603 0.9999 0.00602 0.14429
GemNet 0.01829 0.9989 0.02042 0.75389
EquiFormerV2 0.00255 1.0000 0.00303 0.34652
DimeNet++ 0.00261 1.0000 0.00285 0.02588

C11
H23

COOH SchNet 0.03583 0.9965 0.03707 0.03657
PAINN 0.00585 0.9999 0.00597 0.18103
GemNet 0.01755 0.9992 0.01903 0.84744
EquiFormerV2 0.00205 1.0000 0.00226 0.33517
DimeNet++ 0.00256 1.0000 0.00276 0.02651

C12
H25

COOH SchNet 0.03453 0.9972 0.03526 0.03552
PAINN 0.00551 0.9999 0.00567 0.21028
GemNet 0.01773 0.9990 0.01891 0.96443
EquiFormerV2 0.00197 1.0000 0.00213 0.33812
DimeNet++ 0.00235 1.0000 0.00252 0.03028

C13
H27

COOH SchNet 0.03664 0.9967 0.03714 0.03703
PAINN 0.00608 0.9999 0.00619 0.22115
GemNet 0.01777 0.9990 0.01920 1.07803
EquiFormerV2 0.00224 1.0000 0.00243 0.34491
DimeNet++ 0.00257 1.0000 0.00274 0.02935

C14
H29

COOH SchNet 0.03782 0.9969 0.03856 0.04511
PAINN 0.00612 0.9999 0.00626 0.25308
GemNet 0.01691 0.9992 0.01797 1.25580
EquiFormerV2 0.00208 1.0000 0.00224 0.51929
DimeNet++ 0.00240 1.0000 0.00261 0.03019
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Table 5: Functional group composition, functional group duplication, and functional group combina-
tion model comparison on forces and energy prediction for carboxylic acids. Forces Mean Absolute
Error is shown with F MAE, Forces Cosine Similarity with F Cosine and Forces Magnitude Mean
Absolute Error with F Mag. Energy is measured in eV and forces in eV/Å. ID indicates in-distribution
and OOD indicates out-of-distribution.

Task Model F MAE Cosine F Magnitude E MAE

ID OOD ID OOD ID OOD ID OOD

Fu
nc

tio
na

lG
ro

up
C

om
po

si
tio

n
B

as
e SchNet 0.0311 0.5411 0.9966 0.8306 0.0331 0.7604 0.0259 2.0107

PAINN 0.0049 0.1243 0.9999 0.9450 0.0053 0.1381 0.0181 2.3267
GemNet 0.0049 0.1151 0.9999 0.9522 0.0050 0.1200 0.0284 2.1902
EquiFormerV2 0.0061 0.1909 0.9999 0.9085 0.0076 0.1982 0.3145 85.7026
DimeNet++ 0.0071 0.1639 0.9999 0.9175 0.0082 0.1595 0.5656 20.2845

Fu
nc

tio
na

lG
ro

up
C

om
po

si
tio

n
A

ug
m

en
te

d

SchNet 0.0271 0.4231 0.9982 0.8630 0.0292 0.5664 0.0227 1.914
PAINN 0.0066 0.1278 0.9998 0.9504 0.0068 0.1353 0.0268 2.485
GemNet 0.0064 0.0995 0.9999 0.9633 0.0066 0.1120 0.0292 1.603
EquiFormerV2 0.0053 0.1427 1.0000 0.9292 0.0066 0.1392 0.1419 59.828
DimeNet++ 0.0020 0.1772 1.0000 0.9120 0.0021 0.1797 0.0302 11.690

Fu
nc

tio
na

lG
ro

up
D

up
lic

at
io

n

SchNet 0.02917 0.11431 0.9979 0.9691 0.03068 0.14575 0.02952 29.32286
PAINN 0.00195 0.06001 0.9999 0.9768 0.00217 0.07129 0.01809 30.72007
GemNet 0.00092 0.02244 0.9999 0.9978 0.00102 0.02231 0.01289 12.27012
EquiFormerV2 0.00176 0.05383 0.9999 0.9746 0.00190 0.06034 0.09839 133.7711
DimeNet++ 0.00180 0.24839 0.9999 0.9406 0.00185 0.38629 0.01280 34.86217

Fu
nc

tio
na

lG
ro

up
C

om
bi

na
tio

n SchNet 0.03841 0.05920 0.9971 0.9875 0.03877 0.06358 0.03033 0.05597
PAINN 0.00247 0.01436 0.9999 0.9991 0.00282 0.01507 0.01597 0.03777
GemNet 0.00497 0.01165 0.9999 0.9994 0.00535 0.01206 0.02406 0.08581
EquiFormerV2 0.00184 0.00598 0.9999 0.9998 0.00193 0.00695 0.02406 0.05212
DimeNet++ 0.00265 0.01085 0.9999 0.9990 0.00257 0.01169 0.02513 0.11633

Table 6: Consolidated List of All Molecules in the Dataset by Within
Their Group

Functional Group Molecules IUPAC Name

Alkanes

Ethane
Propane
Butane
Pentane
Hexane
Heptane
Octane
Nonane
Decane
Undecane
Dodecane
Tridecane

Alcohols (Primary)

Ethanol
Propan-1-ol
Butan-1-ol
Pentan-1-ol
Hexan-1-ol
Heptan-1-ol
Octan-1-ol
Nonan-1-ol
Decan-1-ol
Undecan-1-ol

Continued on next page
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1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
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Table 6 – continued from previous page
Functional Group Molecules IUPAC Name

Dodecan-1-ol
Tridecan-1-ol
Tetradecan-1-ol
Pentadecan-1-ol

Aldehydes

Ethanal
Propanal
Butanal
Pentanal
Hexanal
Heptanal
Octanal
Nonanal
Decanal
Undecanal
Dodecanal
Tridecanal
Tetradecanal
Pentadecanal

Carboxylic Acids

Ethanoic acid
Propanoic acid
Butanoic acid
Pentanoic acid
Hexanoic acid
Heptanoic acid
Octanoic acid
Nonanoic acid
Decanoic acid
Undecanoic acid
Dodecanoic acid
Tridecanoic acid
Tetradecanoic acid
Pentadecanoic acid

Amines (Primary)

Ethanamine
Butan-1-amine
Pentan-1-amine
Hexan-1-amine
Heptan-1-amine
Octan-1-amine

Amides (Primary)

Butanamide
Pentanamide
Hexanamide
Heptanamide
Octanamide

Diamines

Ethane-1,2-diamine
Propane-1,3-diamine
Butane-1,4-diamine
Pentane-1,5-diamine
Hexane-1,6-diamine
Heptane-1,7-diamine
Octane-1,8-diamine
Nonane-1,9-diamine
Decane-1,10-diamine
Undecane-1,11-diamine

Continued on next page
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1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
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Table 6 – continued from previous page
Functional Group Molecules IUPAC Name

Dicarboxylic Acids

Ethanedioic acid
Propanedioic acid
Butanedioic acid
Pentanedioic acid
Hexanedioic acid
Heptanedioic acid
Octanedioic acid
Nonanedioic acid
Decanedioic acid
Undecanedioic acid
Dodecanedioic acid
Tridecanedioic acid
Tetradecanedioic acid
Pentadecanedioic acid
Hexadecanedioic acid

Amino Acids

2-Aminoethanoic acid
3-Aminopropanoic acid
4-Aminobutanoic acid
5-Aminopentanoic acid
6-Aminohexanoic acid
7-Aminoheptanoic acid
8-Aminooctanoic acid
9-Aminononanoic acid
10-Aminodecanoic acid

Complex Multifunctional

Heptane-1,7-diol
Octane-1,8-diol
Nonane-1,9-diol
Decane-3,9-diol
Decane-4,7-diol
Decane-1,10-diol
Undecane-1,11-diol
Dodecane-1,6,9-triol
Dodecane-1,6,11-triol
Dodecane-1,4,7,10-tetraol
Dodecane-1,4,10,12-tetraol
Undecane-4,9-dione
Dodecanedial
3,4-Dioxodecanal
3,7-Dioxononanedial
3,8-Dioxodecanedial
9-Oxoundecanedial
3,4,7-Trioxononanedial
3,4,8-Trioxodecanedial
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1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
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Table 7: EquiformerV2 Model Hyperparameters
Parameter Value
Model Architecture
Number of layers 8
Sphere channels 256
Attention hidden channels 64
Number of heads 8
Attention value channels 16
FFN hidden channels 512
Normalization type layer norm sh

Spherical Harmonics
ℓmax list [4]
mmax list [2]
Grid resolution 18
Number of sphere samples 128

Graph Structure
Max neighbors 20
Max radius 12.0 Å
Max number of elements 90
Edge channels 1024
Number of distance basis 512

Regularization
Alpha dropout 0.1
Drop path rate 0.1
Projection dropout 0.0

Training
Initial learning rate 0.0004
Optimizer AdamW
Weight decay 0.001
Scheduler LambdaLR (cosine)
Gradient clipping 100
EMA decay 0.999
Batch size 8
Max epochs 100
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1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
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Table 8: DimeNet++ Model Hyperparameters
Parameter Value
Model Architecture
Hidden channels 512
Output embedding channels 384
Number of blocks 3
Number of radial basis functions 6
Number of spherical harmonics 7
Number of layers before skip 1
Number of layers after skip 2
Number of output layers 3

Graph Structure
Cutoff radius 6.0 Å
Use periodic boundary conditions False
Regress forces True

Training
Initial learning rate 0.0001
Learning rate decay factor 0.1
Warmup steps 174,393
Warmup factor 0.2
Scheduler LambdaLR (cosine)
LR minimum factor 0.01
Batch size 4
Max epochs 100
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1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
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Table 9: GemNet-OC Model Hyperparameters
Parameter Value
Model Architecture
Number of spherical harmonics 7
Number of radial basis functions 128
Number of blocks 6
Atom embedding size 256
Edge embedding size 1024
Triplet input embedding size 64
Triplet output embedding size 128
Quadruplet input embedding size 64
Quadruplet output embedding size 32
Number of layers before skip 2
Number of layers after skip 2
Number of atom layers 3
Number of output layers after atom 3

Embedding Sizes
RBF embedding size 32
CBF embedding size 16
SBF embedding size 64
Atom-interaction input size 64
Atom-interaction output size 64

Graph Structure
Cutoff radius 12.0 Å
Quadruplet interaction cutoff 12.0 Å
Max neighbors 30
Max neighbors (quadruplet) 8
Max neighbors (atom-edge) 20
Max neighbors (atom) 1000

Basis Functions
RBF type Gaussian
Envelope type Polynomial (exp=5)
CBF type Spherical harmonics
SBF type Legendre outer

Interactions
Quadruplet interaction True
Atom-edge interaction True
Edge-atom interaction True
Atom interaction True
Direct forces True
Forces coupled False

Training
Initial learning rate 0.0002
Optimizer AdamW
Weight decay 0.0
Scheduler ReduceLROnPlateau
LR reduction factor 0.8
Patience 3
EMA decay 0.999
Gradient clipping 10
Batch size 8
Max epochs 100
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1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
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Table 10: PaiNN Model Hyperparameters
Parameter Value
Model Architecture
Hidden channels 2048
Number of layers 6
Number of radial basis functions 64

Graph Structure
Cutoff radius 5.0 Å
Max neighbors 50
Use periodic boundary conditions False
Regress forces True
Direct forces True

Training
Initial learning rate 0.0001
Optimizer AdamW
Weight decay 0.0
AMSGrad True
Scheduler ReduceLROnPlateau
LR reduction factor 0.8
Patience 3
EMA decay 0.999
Gradient clipping 10
Batch size 8
Max epochs 100

Table 11: SchNet Model Hyperparameters
Parameter Value
Model Architecture
Hidden channels 1024
Number of filters 256
Number of interactions 5
Number of Gaussians 200

Graph Structure
Cutoff radius 6.0 Å
Use periodic boundary conditions False

Training
Initial learning rate 0.0005
Optimizer Adam
Learning rate decay factor 0.1
Warmup steps 4,687
Warmup factor 0.2
Scheduler LambdaLR (cosine)
LR minimum factor 0.01
Batch size 8
Max epochs 100
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