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Abstract

We consider a multi-task contextual bandit setting, where the learner is given a1

graph encoding relations between the bandit tasks. The tasks’ preference vectors2

are assumed to be piecewise constant over the graph, forming clusters. At every3

round, we estimate the preference vectors by solving an online network lasso4

problem with a suitably chosen, time-dependent regularization parameter. We5

establish a novel oracle inequality relying on a convenient restricted eigenvalue6

assumption. Our theoretical findings highlight the importance of dense intra-cluster7

connections and sparse inter-cluster ones. That results in a sublinear regret bound8

significantly lower than its counterpart in the independent task learning setting.9

Finally, we support our theoretical findings by experimental evaluation against10

graph bandit multi-task learning and online clustering of bandits algorithms.11

1 Introduction12

Online commercial websites aim to properly recommend their products to their customers, and the13

performance of these recommendations depends on the knowledge of users’ preferences. Unlike14

traditional collaborative-filtering-based methods [Su and Khoshgoftaar, 2009], such knowledge is15

initially unavailable. Therefore, the online recommender systems need to recommend various items16

to the users and observe their ratings to explore their preferences. At the same time, the recommender17

system should be able to recommend items that attract users’ attention and receive high ratings by18

exploiting the learned knowledge. The contextual bandits frameworks [Li et al., 2010] have been19

popularly used to formalize and address this exploration-exploitation trade-off.20

However, the classical form of contextual bandits [Li et al., 2010, Chu et al., 2011, Abbasi-Yadkori21

et al., 2011] ignores the availability of social networks amongst users and solves the problem for22

each user separately. Consequently, such algorithms have some drawbacks when applied to problems23

with a large number of users. First, such a large number hinders the computational efficiency of24

such algorithms. Second, the partial feedback of the bandit settings exposes the algorithms to have25

weak estimations and impair their decision-making ability [Yang et al., 2020]. Consequently, to26

improve bandit algorithms’ performance for large-scale applications, structural assumptions that link27

the different users are usually integrated within bandit algorithms [Cesa-Bianchi et al., 2013, Gentile28

et al., 2014, Li et al., 2019, Herbster et al., 2021].29

The papers of Cesa-Bianchi et al. [2013], Yang et al. [2020] attempt to integrate the prior knowledge of30

social networks into their contextual bandit algorithms. Both papers proposed UCB-style algorithms31

and exhibited the importance of using the social network graph to achieve lower regrets using32

Laplacian regularization. Consequently, both methods promote smoothness among the preference33

vectors of users in order to transfer the collected information between them. However, the Laplacian34

regularization does not account for the smoothness heterogeneity introduced by a piecewise constant35

behavior over the graph [Wang et al., 2016]. On the other hand, algorithms of online clustering of36

bandits [Gentile et al., 2014, Li et al., 2019] start from a graph and gradually add or remove edges to37
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form clusters as connected components. However, their clustering can cause overconfidence in the38

constructed clusters, potentially leading to error accumulation.39

In this paper, we assume access to a graph encoding relations between bandit tasks, and that the task40

parameter vectors are piecewise constant over the graph. That means that tasks form clusters. We41

propose an algorithm that integrates the prior knowledge of the piecewise constant structure to update42

tasks rather than finding the clusters explicitly. That way, we mitigate the limitations mentioned43

above: the piecewise constant smoothness is naturally integrated into our regularizer, and we do not44

estimate the clusters so our algorithm does not suffer from overconfidence drawbacks.45

More precisely, we provide the following contributions46

• We analyze an instance of the Network Lasso problem [Hallac et al., 2015], where every vertex’s47

preference vector is estimated using data generated during the interaction between users and the48

bandit. We provide the first oracle inequality in this setting and link it to fundamental quantities49

characterizing the relation between the graph and the true preference vectors of the users. Our50

result relies on our novel restricted eigenvalue (RE) condition, which we assume for our setting.51

This result is of independent interest and can be applied to independently generated data as a52

special case.53

• We prove how the empirical multi-task Gram matrix of the data inherits the RE condition from54

its true counterpart. Both this result and the previous one depend on the sparsity of inter-cluster55

connections and the density of intra-cluster ones.56

• We provide a regret upper bound for our setting. Our bound highlights the advantage of our57

algorithm in high dimensional settings, and for large graphs.58

• We support our theoretical findings by extensive numerical experiments on simulated data that59

prove the advantage of our algorithm compared to other approaches used for online clustering of60

bandits.61

The rest of the paper is organized as follows. Section 2 discusses the relation of our work to the62

literature. We formulate our problem and state some of our assumptions in Section 3, then we present63

our bandit algorithm in Section 4. We analyze the problem theoretically in Section 5, and finally, we64

demonstrate its practical interest via numerical experiments in Section 6.65

2 Related work66

Lasso contextual bandits To address the high dimensional setting for linear bandits, several multi-67

armed bandit papers solve a LASSO [Tibshirani, 1996] problem under different assumptions [Bastani68

and Bayati, 2019, Kim and Paik, 2019, Oh et al., 2021, Ariu et al., 2022]. They all rely on a previously69

established compatibility or RE condition [Bühlmann and van de Geer, 2011], that they adapt to the70

non-i.i.d case. Such assumptions were also used in the multi-task setting by Cella and Pontil [2021]71

with a Group Lasso regularization [Yuan and Lin, 2006], and to impose a low rank structure on the72

task preference vectors in Cella et al. [2023]. In our case, we provide a novel oracle inequality, rather73

than just generalize an existing one to the non-i.i.d setting, with a newly introduced RE assumption.74

Clustering of bandits Sequentially clustering bandit tasks was introduced in Gentile et al. [2014]75

with CLUB algorithm. In CLUB, starting with a fully connected graph, an iterative graph learning pro-76

cess is performed, where edges between users are deleted if their preference vectors are significantly77

different. As a result, any connected component is seen as a cluster and only one recommendation per78

cluster is developed. In another work, Li et al. [2019] generalize the setting of Gentile et al. [2014]79

and address its limitations via including merging operations in addition to splitting. In contrast to80

these approaches, the algorithm in Nguyen and Lauw [2014] groups users via K-means clustering,81

and the algorithm in Cheng et al. [2023] relies on hedonic games for online clustering of bandits.82

Furthermore, Yang and Toni [2018] make use of community detection techniques on graphs to find83

user clusters. Gentile et al. [2017] study the clustering of the contextual bandit problem where their84

proposed algorithm, named CAB, adaptively matches user preferences in the face of constantly85

evolving items. Our work fundamentally differs from the previous ones on two aspects. First, we86

assume access to a graph encoding relations between users, which is more informative than a complete87

graph. Second, we do not keep track of a model for each cluster, but rather we integrate a prior over88
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the graph via a graph total variation regularizer that enforces a piecewise constant behaviour for the89

estimated preference vectors.90

Multi-task learning Several contributions assume some underlying structure that links the bandit91

tasks. In Cella and Pontil [2021], task preference vectors are assumed to be sparse and to share their92

sparsity support, implying that they lie in a low-dimensional subspace with dimensions aligning with93

the canonical basis vectors. This idea is further generalized in Cella et al. [2023], where the tasks94

are assumed to be confined to an arbitrary unknown low-dimensional subspace. That work improves95

upon Hu et al. [2021] by not requiring the knowledge of the small dimenson of the task space. The96

underlying structure linking tasks can also be a graph encoding relations between them [Cesa-Bianchi97

et al., 2013, Yang and Toni, 2018], which is our case. However, while they assume smoothness as a98

prior, we assume piecewise constant behavior.99

3 Problem setting100

We consider a linear bandit setting, with a finite number of tasks representing users in a recommenda-101

tion system for example. For each task the agent has to choose among K arms, each associated to a102

d-dimensional context vector. All interactions over a horizon of T time steps. We further assume103

that we have access to an undirected graph G = (V, E), with vertex set V representing the tasks104

and edge set E encoding the relationships between them. We identify the vertex set V with the set105

of vertex indices [|V|]. Thus, we consider E to be a subset of V2, where every edge (m,n) ∈ E106

has weight wmn > 0, with m < n. The tasks’ preference vectors are denoted by {θm}m∈V ⊂ Rd107

verifying ∥θm∥ ≤ 1 ∀m ∈ V , which we concatenate as row vectors into matrix Θ ∈ R|V|×d. The108

latter represents a graph vector signal, assumed to be piecewise constant over G.109

At a round t ∈ N⋆, a user m(t) ∈ V is selected uniformly at random and served an arm with context110

vector x(t) from a finite action set A(t) ⊂ Rd with size K, depending on their estimated preference111

vector θ̂m(t)(t) ∈ Rd. We assume the expected reward to be linear, with an additive, σ-sub-Gaussian112

noise conditionally on the past. Formally, denoting by F0 the trivial sigma-algebra, and for all t ≥ 1,113

by Ft the sigma-algebra generated by history set {m(1),x(1), y(1), · · · ,m(t),x(t), y(t),m(t+1)},114

the received reward y(t) is given by y(t) =
〈
θm(t)(t),x(t)

〉
+ η(t), where η(t) is Ft−measurable115

and116

E [η(t)|Ft−1] = 0, E [exp(sη(t))|Ft−1] ≤ exp

(
1

2
σ2s2

)
∀t ≥ 1,∀s ∈ R. (1)

At the end of a round t, all preference vectors are updated into a new estimation Θ̂(t) while leveraging117

the structure of graph G, formally by solving the following optimization problem:118

Θ̂(t) = argmin
Θ̃∈R|V|×d

1

2t

t∑
τ=1

(〈
θ̃m(τ),x(τ)

〉
− y(τ)

)2
+ α(t)

∑
(m,n)∈E

wmn

∥∥∥θ̃m − θ̃n

∥∥∥, (2)

where ∥·∥ denotes the Euclidean norm for vectors. The performance of our policy is assessed by the119

expected regret over the T interaction rounds for all tasks:120

R(T ) = E

[
T∑

t=1

〈
θm(t),x

⋆(t)− x(t)
〉]

, (3)

where x⋆(t) ∈ argmaxx̃∈A(t)

〈
θm(t), x̃

〉
.121

The Optimization problem in (2) is an instance of the Network Lasso [Hallac et al., 2015]. Other122

instances of the same type were studied by Jung et al. [2018], Jung and Vesselinova [2019], Jung123

[2020]. The objective is characterized by its second term that, while being just the Laplacian124

regularization without squaring the norms, promotes a piecewise constant behavior rather than125

smoothness. For real-valued signals (d = 1), this regularization has been extensively studied for126

image and graph signal denoising, for the problem of trend filtering on graphs [Wang et al., 2016].127

According to Wang et al. [2016], that regularization better adapts to the heterogeneity of smoothness128

of the signal and induces a cluster structure in the data: similar users will not only have similar129

models but the same model, which offers a compression of the overall model over the graph. Note130
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that our setting is cluster agnostic; our algorithm does not aim to learn the cluster structure explicitly131

but to exploit it implicitly using the total variation semi-norm as regularization. The latter’s strength132

is controlled via a time-dependent regularization coefficient α(t), which we will express later in the133

analysis.134

We formalize our assumption on the context generation as follows.135

Assumption 1 (i.i.d action sets). Context sets {A(t)}Tt=1 are generated i.i.d. from a distribution p136

over RK×d, such that ∥x∥ ≤ 1∀ x ∈ A(t) ∀t ≥ 1.137

In addition to the i.i.d assumption, we assume more regularity.138

Assumption 2 (Relaxed symmetry and balanced covariance). There exists a constant ν ≥ 1 such139

that for all X ∈ RK×d, p(−X) ≤ νp(X). Furthermore, there exists ω > 0, such that for any140

permutation (a1, · · · , aK) of [K], for any i ∈ {2, · · · ,K − 1}, and for any w ∈ Rd, we have141

E
[
xaix

⊤
ai
[w⊤xa1 < · · · < w⊤xaK

]
]
≼ ωE

[
(xa1x

⊤
a1

+ xaK
x⊤
aK

)[w⊤xa1 < · · · < w⊤xaK
]
]
,

where M ≼ N means that N−M is a PSD matrix.142

This assumption was introduced in Oh et al. [2021], and has already been used in a multi-task setting143

by Cella et al. [2023]. Parameter ν controls the skewness, as ν = 1 corresponds to a symmetric144

distribution. ω decreases with increasing positive correlation between arms. It verifies ω = O(1)145

for multi-variate Gaussians and uniform distributions over the unit sphere [Oh et al., 2021]. The146

piecewise constant behaviour of the graph signal Θ is formalized in the next assumption.147

Assumption 3 (Piecewise constant signal). There exists a partition P of V , such that for any cluster148

C ∈ P , signal Θ is constant on C, and the graph obtained by taking the vertices in C and the edges149

linking them is connected.150

Assumption 3 basically states that the true preference vectors are clustered and that the given graph151

induces the cluster structure. It is required for our approach to be beneficial, as we will detail in the152

analysis section. For the sake of clarity, we defer the statement of other technical assumptions to153

Section 5.154

4 Algorithm155

Our policy in Algorithm 1 follows a greedy arm selection rule in a multi-task setting, in the same156

vein as those presented in Oh et al. [2021], Cella et al. [2023]. Indeed, as pointed out in Oh et al.157

[2021], exploration is implicitly incorporated into regularization parameter α(t)’s time dependence.158

It has the following expression159

α(t) :=
α0σ

t

√√√√t+

√
2
∑
m∈V

|Tm(t)|2 log 1

δ(t)
+ 2max

m∈V
|Tm(t)| log 1

δ(t)
, (4)

where the set of time steps a task m has been selected up to time t is denoted by Tm(t).160

5 Analysis161

This section provides the main steps of the analysis. One of the paper’s contribution lies in finding an162

oracle inequality of the network lasso problem given a restricted eigenvalue condition holding for the163

true multi-task Gram matrix. In this regard, the next major challenge and contribution is to show that164

the empirical multi-task Gram matrix, estimated in the algorithm, satisfies the restricted eigenvalue165

condition. We start by proving an oracle inequality for the estimation error of Θ, assuming that the166

condition given by Definition 2 is verified by the empirical data Gram matrix. Then, we prove that the167

latter assumption actually holds with high probability given that true multi-task Gram matrix satisfies168

it. Our final contribution in this work is the establishment of a regret bound for our algorithm.169

5.1 Notation and technical assumptions170

We provide additional notations required for the analysis. We denote by ∂P the set of all edges in171

E connecting vertices from different clusters from partition P (Assumption 3), and we call it the172
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Algorithm 1: Network Lasso Policy
Input : T, α0 > 0,G, function δ

Initialization : Θ̂(0) = 0 ∈ R|V|×d

for t ∈ [1, T ] do
1. Draw a user m(t) ∈ V uniformly at random.
2. Observe context set A(t).

3. Select x(t) ∈ argmaxx̃∈A(t)

〈
θ̂m(t−1), x̃

〉
, breaking ties arbitrarily.

4. Receive payoff y(t)
5. Update α(t) via Equation (4)

6. Update Θ̂(t) via solving the network Lasso problem (2)

end

boundary of P . Thus, ∂Pc, the complementary set of ∂P , is formed by edges connecting vertices of173

the same cluster. The total weight of the boundary, i.e.the sum of its edges’ weights, is referred to as174

w(∂P). Given a signal Z ∈ R|V|×d, we denote by ZP the signal obtained by setting row vectors of Z175

to their mean-per-cluster value w.r.t. P . For any edge subset I ∈ E , we denote the following norms:176

∥·∥F as the Frobenius norm, ∥z∥M =
√
z⊤Mz as the weighted norm of vector z ∈ Rd induced177

by matrix M ∈ Rd×d and ∥Θ∥I :=
∑

(m,n)∈I wmn∥θm − θn∥ as the total variation semi-norm178

of Θ ∈ R|V|×d over I . Thus, the regularization term of Problem (2) is equal to ∥Θ∥E . Also, we179

define the incidence matrix BI ⊂ R|E|×|V|restricted to I ⊆ E to be null except at rows with index180

i ∈ I corresponding to edge (m,n), where it equals wmn(em − en), where em is the mth canonical181

basis vector of R|V|. We define AV(t) := diag
(
X1(t)

⊤X1(t), . . . ,X|V|(t)
⊤X|V|(t)

)
∈ Rd|V|×d|V|,182

and subsequently the empirical multi-task Gram matrix up to time step t is given by 1
tAV(t). The183

following definition introduces quantities related to the clusters defined by partition P , with crucial184

roles that we will elucidate throughout the analysis.185

Definition 1 (Cluster content constants). Let C ∈ P be a cluster.186

• We denote by ∂vC the inner boundary of C, i.e.the vertices of C that are connected to its comple-187

mentary. We define the inner isoperimetric ratio of C as ιG(C) := |∂vC|
|C| .188

• By abuse of notation, we denote as BC the incidence matrix restricted to edges linking vertices189

of C, its associated Laplacian matrix by LC := B⊤
C BC , and its pseudo-inverse by L†

C . The190

topological centrality index of node m ∈ C w.r.t C is equal to (L†
C)

−1
mm. We define the topological191

centrality index of C by cG(C) := minm∈C(L
†
C)

−1
mm.192

The inner isoperimetric ratio of a cluster measures how many “interior” nodes a cluster contains, in193

the sense that they are not connected to its complementary. It is at most equal to the isoperimetric ratio194

for weightless graphs as the size of the inner boundary is at most equal to that of the edge boundary,195

the latter being connected to the algebraic connectivity via the Cheeger inequality [Cheeger, 1970].196

The topological centrality index measures the overall connectedness of a vertex in a network and197

indicates how robust a node is to edge failures [Ranjan and Zhang, 2013]. Also, it can be tied to198

electricity spreading in a network according to Van Mieghem et al. [2017]. We refer the interested199

reader to the two previously mentioned works for a detailed account of the properties of the topological200

centrality index. In the appendix, we show that for binary weights graphs the minimum topological201

centrality index is at least equal to the algebraic connectivity theoretically and experimentally, where202

we showcase that the difference between the two can be significant.203

To proceed, we will need the following definition that introduces several notations to reduce the204

clutter.205
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Definition 2 (Restricted Eigenvalue (RE) condition and norm). Let {Mi}|V|
i=1 ⊂ Rd×d be a set of206

positive semi-definite matrices. We say that the matrix MV := diag(M1, · · · ,M|V|) verifies the207

restricted eigenvalue condition with constants κ ≥ 0 and ϕ > 0 if208

ϕ2∥Z∥2RE ≤
∑
i∈V

∥zi∥2Mi
∀Z ∈ S with rows {zi}i∈V ,

where S is the cone defined by:209

S := {Z ∈ R|V|×d; a1(G,Θ)∥Z∥∂Pc ≤ a2(G,Θ)
∥∥ZP

∥∥
F
+ (1− κ)+∥Z∥∂P},

a1(G,Θ) := 1−
1
α0

+ 2κw(∂P)

min
C∈P

√
cG(C)

, a2(G,Θ) :=
1

α0
+

√
2κw(∂P)max

C∈P

√
ιG(C),

and the RE semi-norm is defined by ∥Z∥RE :=
∥∥ZP

∥∥
F
∨ (1− κ)+

∥∥∥B†
∂PB∂PZ

∥∥∥.210

To interpret the previous definition, we point out that the sum on the right-hand side of Definition 2211

can be written as
∥∥vec(Z⊤)

∥∥
MV

, where vec denotes the operation of stacking a matrix’s columns212

vertically. As a result, the condition is analogous to requiring that MV is invertible with minimum213

eigenvalue ϕ2, but weaker since it holds only for signals Z ∈ S and for the ∥·∥RE norm. This214

requirement has the same form as the compatibility assumption for the Lasso [Bühlmann and van de215

Geer, 2011, Oh et al., 2021] or the restricted strong convexity assumption [Cella et al., 2023].216

We further make the following assumption on the true multi-task Gram matrix:217

Assumption 4 (RE condition for the true multi-task Gram matrix). For k ∈ [K], let Σk := E
[
xkx

⊤
k

]
218

be the Gram matrix of the kth context vector’s marginal distribution, let ΣV be the true multi-task219

Gram matrix of the context vector generating distribution, given by220

ΣV := I|V| ⊗Σ, where Σ =
1

K

K∑
k=1

Σk. (5)

We assume that ΣV verifies RE condition (Definition 2) with some problem dependent constants221

κ ∈
[
0, 1

2w(∂P) min
C∈P

√
cG(C)

)
and ϕ > 0.222

This assumption is common to make for Lasso-like bandit problems [Oh et al., 2021, Ariu et al., 2022,223

Cella et al., 2023]. We will later show that it can be transferred to empirical multi-task Gram matrix.224

5.2 Oracle inequality225

This section is dedicated to provide a bound on the estimation error of the Network Lasso problem226

given in Equation (2) at a particular step t of Algorithm 1.We assume fixed design, meaning that227

the context vectors are given and fixed, and we are not concerned by their randomness (due to the228

context generating distribution), nor by the randomness of their number for each user (due to random229

selection at each time step).230

For a time step t, we deliver the oracle inequality controlling the deviation between the estimated231

preference vectors Θ̂(t) and the true ones Θ. For the sake of simplicity, we provisionally assume232

that the RE condition holds for the empirical multi-task Gram matrix AV(t).233

Theorem 1 (Oracle inequality). Assume that the RE assumption holds for the empirical multi-234

task Gram matrix with constants κ ∈
[
0, 1

2w(∂P) min
C∈P

√
cG(C)

)
and ϕ > 0. Suppose that235

maxm∈V |Tm(t)| ≤ bt for some b > 0. Then, with a probability at least 1− δ(t), we have236 ∥∥∥Θ− Θ̂(t)
∥∥∥
F
≤ 2

σ

ϕ2
√
t
f(G,Θ)

√√√√1 + 2b

√
|V| log 1

δ(t)
+ 2b log

1

δ(t)
,

where237

f(G,Θ) := α0

(
a2(G,Θ) +

√
21≤1(κ)w(∂P)

)a2(G,Θ) +
√
21≤1(κ)w(∂P)

a1(G,Θ)min
C∈P

√
cG(C)

+ 1

 .
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The proof of the previous theorem mainly relies on a decomposition of the estimation error signal238

into two parts: one is the projection of the error onto its mean per cluster value, that is, every node239

within the same cluster is mapped to the mean estimation error of its cluster. The second part of the240

decomposition is simply the residual part i.e. the deviation from the mean per cluster value, which241

is related to the incidence matrices of each cluster. The probabilistic statement comes from a high242

probability bound on the Euclidean norm of an empirical vector process associated with our problem,243

using a generalization of the Hanson-Wright inequality to the subgaussian case [Hsu et al., 2012,244

Theorem 2.1]. Compared to the bound of Jung [2020, Theorem 1], we bound a norm of the estimation245

error rather than just the total variation semi-norm. Additionally, the bound exhibits different behavior246

depending on whether κ > 1. Indeed, due to the expressions of a1(Θ,G) and a2(Θ,G), in the247

case where κ > 1, the bound significantly decreases with the products w(∂P)minC∈P
√

ι(C) and248

w(∂P)maxC∈P cG(C)−
1
2 , which are both small enough for dense intra-cluster edge links and sparse249

inter-cluster ones. However, when κ < 1, the w(∂P) term might dominate if it is moderately large,250

and its effect can only be mitigated via a small subgaussianity constant σ or a large enough RE251

condition constant ϕ.252

5.3 RE condition for the empirical multi-task Gram matrix253

To establish the oracle inequality, we assumed that the RE condition holds for the empirical multi-task254

Gram matrix. The goal of this section is to prove this holds with high probability. To this end, we use255

the same strategy as in Oh et al. [2021], Cella et al. [2023]. We prove that on the one hand, given256

the empirical multi-task Gram matrix inherits the RE condition from its adapted counterpart since it257

concentrates around it. On the other hand, we prove that the adapted Gram matrix verifies the RE258

condition due to Assumption 1, 2 and 4 made on the context generation distribution.259

Theorem 2 (RE condition holding for the empirical multi-task Gram matrix). Under assumptions 2260

and 4, let t ≥ 1, and let κ, ϕ be the constants from Assumption 4. Assume that maxm∈V |Tm(t)| ≤ bt.261

Then, for any γ ∈
(
0,
(
1 + a2(G,Θ)+(1−κ)+

√
2w(∂P)

a1(G,Θ)

)−2
)

, the empirical multi-task Gram matrix262

verifies the RE condition with constants κ and ϕ̂, with263

ϕ̂ = ϕ̃

√√√√1− γ

(
1 +

a2(G,Θ) + (1− κ)+
√
2w(∂P)

a1(G,Θ)

)2

, (6)

with a probability at least equal to 1 − 6d|V| exp

(
− 3γ2ϕ̃4(minC∈P(c̃G(C) ∧ c̃G(C)2)t

6b+ 2
√
2γϕ̃2

)
, where264

ϕ̃ :=
ϕ

√
2νω

and c̃G(C) := cG(C) ∧ |C| ∀C ∈ P .265

The proof follows the same approach as in Oh et al. [2021], Cella et al. [2023]; we prove that the RE266

condition transfers from the true multi-task Gram matrix to its adapted counterpart VV(t), defined as267

follows:268

VV(t) = diag
(
V1(t), · · · ,V|V|(t)

)
, (7)

where269

Vm(t) =
1

t

∑
τ∈Tm(t)

E
[
x(τ)x(τ)⊤|Fτ−1

]
. (8)

This transfer relies on the work of Oh et al. [2021, lemma 10]. The other step of the proof is showing270

that the empirical multi-task Gram matrix and VV(t) become close to each other with high probability271

after sufficiently many time steps, the respective distance between the two is measured with a matrix272

norm induced by the RE semi-norm and the restriction to set S (Definition 2). The bound showcases273

a dependence on minC∈P cG(C) ∧ |C|, which is of the same order as |C| for a fully connected cluster274

with vertices C. It is also clear that with a higher minimum centrality of a cluster, the probability of275

satisfying the RE condition increases.276
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5.4 Regret bound277

To bound the regret, we bound the expected instantaneous regret for each round t ≥ 1. This bound278

relies on the oracle inequality holding and on the RE condition being satisfied for the empirical Gram279

matrix, both with high probability. These two conditions are ensured and Theorem 1 and Theorem 2.280

Theorem 3 (Regret bound). Let the mean horizon per node be T = T
|V| . Let min

C∈P

√
cG(C)281

going asymptotically to infinity and maxC∈P
√
ιG(C) going asymptotically to zero as well as282

maxC∈P
√

ιG(C)w(∂P) and w(∂P)

min
C∈P

√
cG(C)

going asymptotically to zero. Under assumptions1 to 4283

and κ < 1, the expected regret of the Network Lasso Bandit algorithm is upper bounded as follows:284

R(|V|T ) = O

√√√√ T

min
C∈P

cG(C)

(√
|V|+

√
log
(
T |V|

)
+ 4

√∣∣V log
(
T |V|

)∣∣)+
1

A
log(d|V|)

 ,

with A =
3γ2 minC∈P(c̃G(C) ∧ c̃2G(C))

6 log(|V|)√
|V|

+ 2
√
2γ

.285

Our regret is mainly formed of two parts. The first one is the sublinear time-dependent term and286

represents the bulk of horizon dependence. Interestingly, it does not depend on the dimension,287

which is a consequence of using the concentration inequality from Hsu et al. [2012]. Interestingly, it288

decreases as the topological centrality index grows with the graph size, which proves the importance289

of intra-cluster high connectivity.290

The second significant term comes from ensuring the RE condition for the empirical multi-task Gram291

matrix, and can be interpreted as the number of time steps necessary for it to hold, as pointed out by292

Oh et al. [2021]. It has a logarithmic dependence in the graph size and in the dimension, which is293

a characteristic of regret bound of the "lasso type". Also noteworthy is that the regret grows with294

log(d) only in the time-independent term, making our policy useful in high-dimensional settings.295

6 Experiments296

We provide experiments to showcase the effect on the problem’s parameters on our algorithm’s297

performance as well as highlighting its advantageous performance compared to other algorithms. At298

each time step, the algorithm solves the network lasso problem (2) via a primal-dual algorithm used299

in Jung [2020].300

We compare our algorithm to several baselines of the literature. On the one hand, baselines relying301

on a given graph, GOBLin [Cesa-Bianchi et al., 2013] and GraphUCB [Yang et al., 2020] that use302

the Laplacian to smooth the preference vectors. On the other hand, we consider online clustering303

of bandits baselines, namely CLUB [Gentile et al., 2014] and SCLUB [Li et al., 2019]. Since these304

latter approaches start with a fully connected graph, we provide them the known graph for a fair305

comparison. As a sanity check, we also compare the independent task learning case with LinUCB306

(LinUcbITL) where each task is solved independently, and to the case of a LinUCB agent for each307

cluster (LinUcbOracle). The graph used is generated using stochastic block models in order to ensure308

that the generated graph induces a cluster structure, where an edge is constructed with probability p309

within clusters and q between clusters.310

Experimentally, we found that normalizing the adjacency matrix, that is we utilize the following311

normalized edges: wmn =
1√

deg(m) deg(n)
, where deg(m) denotes the degree of node m, yields312

significantly better results. Indeed, such a normalization makes the algorithm focus more on edges313

between low-degree nodes, which improves the propagation of the collected information within the314

graph. In all experiments we have set α0 = 0.1.315

Our results clearly showcase an improvement compared to the other baselines. Apart from the oracle316

that has complete knowledge of all clusters from the beginning, our policy performs significantly317

better than the rest beyond the error margins, covering one standard deviation at ten repetitions. We318

8



0 500 1000 1500 2000 2500 3000

0

200

400

600

800

1000

CLUB

GOBLin

GraphUCB

LinUcbITL

LinUcbOracle

NetLasso

SCLUB

(a) |V| = 100, d = 20, p = 0.4, q = 0.1
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(c) |V| = 50, d = 80, p = 0.8, q = 0.2
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Figure 1: Synthetic data experiment showing the cumulative regret of Network Lasso Policy as a
function of time-steps compared to other baselines, for different choices of |V|, d, p and q.

provide results for up to |V| = 500 nodes showing the effective transfer of knowledge within the319

graph.320

7 Conclusion and future perspectives321

In this work, we proposed a multi-task bandit framework that solves the case where the task preference322

vectors are piecewise constant over a graph. To this end, we used the Network Lasso policy to estimate323

the task parameters, which bypasses explicit clustering procedures. We showed a sublinear regret324

bound and as a byproduct, we proved a novel oracle inequality that relies on the small size of the325

boundary as well as on the high value of the topological centrality index of each node within its326

cluster. Our experimental evaluations highlight the advantage of our method, especially when either327

the number of dimensions or nodes increases.328

Due to the technical similarity of our problem with the Lasso, a natural extension would be to extend329

it to a thresholded approach, in the same vein as [Ariu et al., 2022]. Another possible extension would330

be to use regularization with higher order total variation terms that impose a piecewise polynomial331

signal on a graph, as explained for scalar signals in Wang et al. [2016], Ortelli and van de Geer332

[2019].333

References334

Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic bandits.335

Advances in neural information processing systems, 24, 2011.336

9



K. Ariu, K. Abe, and A. Proutiere. Thresholded Lasso Bandit. In Proceedings of the 39th International337

Conference on Machine Learning, pages 878–928. PMLR, 2022.338

H. Bastani and M. Bayati. Online Decision Making with High-Dimensional Covariates. Operations339

Research, 2019. doi: 10.1287/opre.2019.1902.340

S. Basu, B. Kveton, M. Zaheer, and C. Szepesvari. No Regrets for Learning the Prior in Bandits. In341

Advances in Neural Information Processing Systems, 2021.342

S. Bilaj, S. Dhouib, and S. Maghsudi. Meta learning in bandits within shared affine subspaces. In343

Proceedings of The 27th International Conference on Artificial Intelligence and Statistics. PMLR,344

2024.345

J. Borge-Holthoefer, A. Rivero, I. García, E. Cauhé, A. Ferrer, D. Ferrer, D. Francos, D. Iniguez, M. P.346

Pérez, G. Ruiz, et al. Structural and dynamical patterns on online social networks: the spanish may347

15th movement as a case study. PloS one, 6(8), 2011.348

P. Bühlmann and S. van de Geer. Statistics for high-dimensional data. Springer Series in Statistics.349

Springer, Heidelberg, 2011. ISBN 978-3-642-20191-2.350

L. Cella and M. Pontil. Multi-task and meta-learning with sparse linear bandits. In Uncertainty in351

Artificial Intelligence. PMLR, 2021.352

L. Cella, A. Lazaric, and M. Pontil. Meta-learning with stochastic linear bandits. In Proceedings of353

the 37th International Conference on Machine Learning. PMLR, 2020.354

L. Cella, K. Lounici, G. Pacreau, and M. Pontil. Multi-task representation learning with stochastic355

linear bandits. In International Conference on Artificial Intelligence and Statistics, 2023.356

N. Cesa-Bianchi, C. Gentile, and G. Zappella. A gang of bandits. Advances in neural information357

processing systems, 26, 2013.358

J. Cheeger. A lower bound for the smallest eigenvalue of the laplacian. Problems in analysis, 1970.359

X. Cheng, C. Pan, and S. Maghsudi. Parallel online clustering of bandits via hedonic game. In360

International Conference on Machine Learning, pages 5485–5503. PMLR, 2023.361

W. Chu, L. Li, L. Reyzin, and R. Schapire. Contextual bandits with linear payoff functions. In362

Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics.363

JMLR Workshop and Conference Proceedings, 2011.364

X. Dong, D. Thanou, M. Rabbat, and P. Frossard. Learning graphs from data: A signal representation365

perspective. IEEE Signal Processing Magazine, 2019.366

D. Easley, J. Kleinberg, et al. Networks, crowds, and markets: Reasoning about a highly connected367

world, volume 1. Cambridge university press Cambridge, 2010.368

A. Fontan and C. Altafini. On the properties of laplacian pseudoinverses. In 2021 60th IEEE369

Conference on Decision and Control (CDC). IEEE, 2021.370

C. Gentile, S. Li, and G. Zappella. Online clustering of bandits. In International Conference on371

Machine Learning, pages 757–765. PMLR, 2014.372

C. Gentile, S. Li, P. Kar, A. Karatzoglou, G. Zappella, and E. Etrue. On context-dependent clustering373

of bandits. In International Conference on machine learning, pages 1253–1262. PMLR, 2017.374

D. Hallac, J. Leskovec, and S. Boyd. Network lasso: Clustering and optimization in large graphs. In375

Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data376

mining, pages 387–396, 2015.377

M. Herbster, S. Pasteris, F. Vitale, and M. Pontil. A gang of adversarial bandits. Advances in Neural378

Information Processing Systems, 34, 2021.379

D. Hsu, S. Kakade, and T. Zhang. A tail inequality for quadratic forms of subgaussian random vectors.380

Electronic Communications in Probability, 17, 2012.381

10



J. Hu, X. Chen, C. Jin, L. Li, and L. Wang. Near-optimal representation learning for linear bandits382

and linear rl. In International Conference on Machine Learning. PMLR, 2021.383

A. Jung. Networked Exponential Families for Big Data Over Networks. IEEE Access, 8, 2020. ISSN384

2169-3536.385

A. Jung and N. Vesselinova. Analysis of network lasso for semi-supervised regression. In The 22nd386

International Conference on Artificial Intelligence and Statistics, pages 380–387. PMLR, 2019.387

A. Jung, N. Tran, and A. Mara. When Is Network Lasso Accurate? Frontiers in Applied Mathematics388

and Statistics, 3, 2018. ISSN 2297-4687.389

G.-S. Kim and M. C. Paik. Doubly-robust lasso bandit. Advances in Neural Information Processing390

Systems, 32, 2019.391

B. Kveton, M. Konobeev, M. Zaheer, C.-w. Hsu, M. Mladenov, C. Boutilier, and C. Szepesvari.392

Meta-thompson sampling. In International Conference on Machine Learning. PMLR, 2021.393

L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized news394

article recommendation. In Proceedings of the 19th international conference on World wide web,395

pages 661–670, 2010.396

S. Li, W. Chen, and K.-S. Leung. Improved algorithm on online clustering of bandits. arXiv preprint397

arXiv:1902.09162, 2019.398

M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in social networks.399

Annual review of sociology, 27(1):415–444, 2001.400

M. E. Newman. Modularity and community structure in networks. Proceedings of the national401

academy of sciences, 103(23):8577–8582, 2006.402

T. T. Nguyen and H. W. Lauw. Dynamic clustering of contextual multi-armed bandits. In Pro-403

ceedings of the 23rd ACM international conference on conference on information and knowledge404

management, pages 1959–1962, 2014.405

B. Nourani-Koliji, S. Bilaj, A. R. Balef, and S. Maghsudi. Piecewise-stationary combinatorial406

semi-bandit with causally related rewards. arXiv preprint arXiv:2307.14138, 2023.407

M.-H. Oh, G. Iyengar, and A. Zeevi. Sparsity-Agnostic Lasso Bandit. In Proceedings of the 38th408

International Conference on Machine Learning, pages 8271–8280. PMLR, 2021.409

F. Ortelli and S. van de Geer. Synthesis and analysis in total variation regularization. arXiv preprint410

arXiv:1901.06418, 2019.411

A. Peleg, N. Pearl, and R. Meir. Metalearning linear bandits by prior update. In Proceedings of The412

25th International Conference on Artificial Intelligence and Statistics. PMLR, 2022.413

G. Ranjan and Z.-L. Zhang. Geometry of complex networks and topological centrality. Physica A:414

Statistical Mechanics and its Applications, 2013.415

X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques. Advances in artificial416

intelligence, 2009, 2009.417

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical418

Society Series B: Statistical Methodology, 1996.419

J. Tropp. Freedman’s inequality for matrix martingales. Electronic Communications in Probability,420

16:262 – 270, 2011.421

P. Van Mieghem, K. Devriendt, and H. Cetinay. Pseudoinverse of the laplacian and best spreader422

node in a network. Physical Review E, 2017.423

Y.-X. Wang, J. Sharpnack, A. J. Smola, and R. J. Tibshirani. Trend filtering on graphs. Journal424

of Machine Learning Research, 17(105):1–41, 2016. URL http://jmlr.org/papers/v17/425

15-147.html.426

11

http://jmlr.org/papers/v17/15-147.html
http://jmlr.org/papers/v17/15-147.html
http://jmlr.org/papers/v17/15-147.html


K. Yang and L. Toni. Graph-based recommendation system. In 2018 IEEE Global Conference on427

Signal and Information Processing (GlobalSIP), pages 798–802. IEEE, 2018.428

K. Yang, L. Toni, and X. Dong. Laplacian-regularized graph bandits: Algorithms and theoretical429

analysis. In International Conference on Artificial Intelligence and Statistics, pages 3133–3143.430

PMLR, 2020.431

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of432

the Royal Statistical Society Series B: Statistical Methodology, 2006.433

A Some helper results434

Proposition 1 (Bounds on norms of matrix products). Let M ∈ Rm×n and N ∈ Rn×p. Then435

∥MN∥q,1 ≤ ∥M∥∞,1∥N∥q,1 ∀q ∈ [1,∞]

∥MN∥F ≤ ∥M∥∥N∥F
∥MN∥F ≤

√
∥M⊤M∥∞,∞∥N∥2,1

∥MN∥2,1 ≤ ∥M∥2,1∥N∥

Proof.436

First inequality For any q ∈ [1,∞], we have:437

∥∥e⊤i MN
∥∥
q
=

∥∥∥∥∥∥e⊤i M
n∑

j=1

eje
⊤
j N

∥∥∥∥∥∥
q

≤ max
1≤j≤n

∣∣e⊤i Mej
∣∣ n∑
j=1

∥∥e⊤j N∥∥q = max
1≤j≤n

|(M)ij |∥N∥q,1

438

Second inequality We have439

∥MN∥2F =

p∑
j=1

∥MNej∥2 ≤
p∑

j=1

∥M∥∥Nej∥2 = ∥M∥∥N∥2F

440

Third inequality We have441

∥MN∥2F = Tr(MNN⊤M⊤) ≤
∥∥M⊤M

∥∥
∞,∞

∥∥NN⊤∥∥
1,1

Elements of (i, j) entry of matrix NN⊤ is the inner product
〈
e⊤i N, e⊤j N

〉
. Hence, we have442 ∥∥NN⊤∥∥

1,1
=
∑
i,j

∣∣〈e⊤i N, e⊤j N
〉∣∣ ≤∑

i,j

∥∥e⊤i N∥∥∥∥e⊤j N∥∥ = ∥N∥22,1.

443

Fourth inequality We have444

∥MN∥2,1 =

m∑
i=1

∥eiMN∥ ≤
m∑
i=1

∥eiM∥∥N∥ = ∥M∥2,1∥N∥

445

Proposition 2 (Decomposition of a signal over a graph). For any C ∈ P446
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• Let Z ∈ R|V|×d be a graph signal. Let us denote by ZC the signal obtained from Z by447

setting rows of vertices outside of C to zeros, and let Z|C ∈ R|C|×d be the signal obtained448

from ZC by removing the rows of vertices outside of C. Also, let B|C ∈ R|EC|×|C| be the449

matrix obtained by taking BC , and removing rows of edges that link C to its outside, and the450

resulting null columns. It is clear that451

BCZ = BCZC = B|CZ|C (9)

• Let QC := B†
CBC . Then452

I|V| =
∑
C∈P

JC +QC (10)

Q∂Pc :== B†
∂PcB∂Pc =

∑
C∈P

QC (11)

where JC =
1C1

⊤
C

|C| , QC = B†
CBC ∀C ∈ P and Q∂Pc := B†

∂PcB∂Pc .453

While
∑

C∈P JC projects each entry of a graph signal onto the mean vector value of its454

respective cluster, its residual Q∂Pc can be interpreted as the projection onto the respective455

entries deviation from its cluster mean value.456

Proof. Since the proof of the first point is trivial, we directly treat the second point. Denoting B†
|C the457

pseudo-inverse of B|C it is a well-known linear algebra result that the matrix Q|C := B†
|CB|C is the458

projector onto the null space of B|C . Since C is connected, the null space of B|C is unidimensional,459

and is generated by vector 1|C| ∈ R|C| having only ones as coordinates. Since the projector into that460

nullspace is J|C| :=
1|C|1|C|

|C| , we deduce that461

Z|C = J|C|Z|C +Q|CZ|C

=⇒ ZC = JCZC +QCZC

= JCZ+QCZ

where in the last line, QC := B†
CBC . Consequently, we have462

Z =
∑
C∈P

ZC

=
∑
C∈P

JCZ+QCZ

To prove the second point, we recall that B∂Pc is the incidence matrix obtained by setting rows463

corresponding to edges in ∂P to zero. In other words, B∂Pc is the incidence matrix of the graph464

after removing the boundary edges, and having exactly |P| connected components. Hence, B∂Pc465

has a null space spanned by the set {1C}C∈P , and the orthogonal projector onto this null space is466 ∑
C∈P JC . Combining this fact with the fact that Q∂Pc is the projector onto the orthogonal of the467

null space of B∂Pc , we arrive at the second point.468

Proposition 3 (On the minimum topological centrality index of a graph vertex). Let G be a connected469

graph with incidence matrix B and vertex set size N , and let L := B⊤B. Let c(G) denote the470

minimum value of inverses of diagonal element of L†, called its minimum topological centrality index.471

Also let a(G) be its algebraic connectivity, defined as the minimum non null eigenvalue of L. Then472

• c(G) = ∥L∥−1
∞,∞.473

• c(G) ≥ a(G).474

• If G is weightless, then c(G) ≤ N2

N−1 .475
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Proof. Since L is PSD, L† is PSD and hence
∥∥L†

∥∥
∞,∞ is equal to the maximum diagonal entry of476

L†. Taking the inverse proves the first point. Also, this implies that477

c(G) =
∥∥L†∥∥−1

∞,∞ ≥
∥∥L†∥∥−1

= a(G), (12)

where we used the fact that ∥·∥∞,∞ ≤ ∥·∥ for matrices. This proves the second point of the478

proposition.479

For the last point, assume G is weightless, let Lcomp be the Laplaciane of complete graph built on the480

vertices of G. Then we have Lcomp = N(IN − JN ), where J is the square matrix of dimension N481

having 1/N as entries. From Fontan and Altafini [2021, Lemma 4], we have482

L†
comp = (Lcomp +NJN )−1 − 1

N
JN =

IN
N

− 1

N
JN (13)

which has diagonal elements 1
N − 1

N2 .483

On the other hand, L ≼ Lcomp Hence, by Fontan and Altafini [2021, lemma 4] we have for any484

u ̸= 0485

L† = (L+ aJN )−1 − JN/a ≽ (Lcomp + aJN )−1 − JN/a = L†
comp

This implies that the maximum diagonal entry of L† is at least equal to that of L†
comp, i.e.to 1

N − 1
N2 .486

Taking the inverse of that entry finishes the proof.487

488

B Proofs of the different claims489

B.1 Additional notation490

The regularization term can be written more compactly using the incidence matrix of the graph491

B ∈ R|E|×|V| corresponding to an arbitrary orientation under the following form492

∑
1≤m<n≤|V|

wmn∥θm − θn∥ = ∥BΘ∥2,1 = ∥Θ∥E (14)

where the ∥·∥2,1 norm denotes the sum of the L2 norms o the rows of a matrix.1 We provide notations493

that we use in the proofs of the different statements, in order to reduce the clutter. We define494

E := Θ̂−Θ as the error signal, and its rows by {ϵm}|V|
m=1.495

While
∑C

k=1 JC projects each entry of a graph signal onto the mean vector value of its respective496

cluster, its residual Q∂Pc can be interpreted as the projection onto the respective entries deviation497

from its cluster mean value.498

Let ηm be a vector, vertically concatenated by noise terms of rewards received by node m, then we499

define K ∈ R|V|×d as the matrix of vertically concatenated row vectors η⊤
mXm.500

B.2 Oracle inequality501

In this section, we present all intermediary theoretical results leading to Theorem 1 stating the oracle502

inequality. To reduce the clutter, we omit the dependence on t of several quantities. For instance, we503

write α and Θ̂ instead of α(t) and Θ̂(t).504

Lemma 1 (A first deterministic inequality). Let t be a time step. We have505

1

2tα

∑
m∈V

∥Xmϵm∥2 + ∥E∥∂Pc ≤ 1

tα
⟨K,E⟩+ ∥E∥∂P (15)

1It is possible that the notation ∥·∥2,1 denotes the sum of 2−norms of columns in the literature.
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Notation Meaning
Indpendent of time t

V set of graph vertices
E set of graph edges
BI ∈ R|E|×|V|, I ⊆ E Graph incidence Matrix obtained by setting rows of edges outside I to zeros
BC ∈ R|E|×|V| cf. Definition 1
L ∈ R|V|×|V| B⊤B
θm ∈ Rd true preference vector of user/bandit m
Θ ∈ R|V|×d matrix of true vertically concatenated row preferences vectors
∂P ⊆ E Boundary of P: set of edges connecting nodes from different clusters
cG(C) Minimum topological centrality index of a node of C restricted to the graph having nodes C
w(∂P) Total weight of ∂P , i.e. sum of weights of edges in P
∥·∥ Euclidean norm for vectors, largest singular value for matrices
∥·∥A Semi-norm associated defined by PSD matrix A: ∥x∥2A := x⊤Ax
∥·∥F matrix Frobenius norm
∥·∥p,q q-norm of the vector with coordinates equal to the p−norm of rows
∥·∥I , I ⊆ E Total variation norm of signal over edges of I
A† Moore-Penrose pseudo-inverse of matrix A
vec vectorization operator consisting in concatenating the columns vertically
⊗ Kronecker product
1C ∈ R|V| Vector having elements equal to 1 at coordinates corresponding to vertices in C and 0 elsewhere
JC ∈ R|V|×|V| equal to 1C1

⊤
C

|C|
QC ∈ R|V|×|V| equal to B†

CBC
QI ∈ R|V|×|V|, I ⊆ E equal to B†

IBI

ek elementary vectors of dimension depending on the context
σ Subgaussianity constant / variance proxy

Dependent on time t

Tm(t) set of time steps user m has been encountered before time t

θ̂m ∈ Rd estimated preference vector of user/bandit m
ϵm ∈ Rd estimation error for user/bandit m : θ̂m − θm
E ∈ R|V|×d vertical concatenation of row vectors ϵm
ηm ∈ R|Tm(t)| vector of subgaussian noise of user m
x(t) ∈ Rd context vector received at time t
m(t) ∈ N user at time t
Xm ∈ R|Tm(t)|×d data matrix of user m
X ∈ Rt×d data matrix of context vectors of all users
Am ∈ Rd×d X⊤

mXm (potentially associated to time t)
AV ∈ Rd|V|×d|V| diag(A1, · · · ,Am)
K ∈ R|V|×d matrix of vertically concatenated row vectors η⊤

mXm

Table 1: Notation table.

Proof. By optimality of Θ̂, we have506

1

2t

∑
m∈V

∥∥∥Xmθ̂m − ym

∥∥∥2 + α∥Θ∥E ≤ 1

2t

∑
m∈V

∥Xmθm − ym∥2 + α∥Θ∥E (16)

where the second line holds by definition of the observed rewards.507
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On the one hand, given a user index m ∈ V , and since by definition of the observed rewards we have508

we have for the least squared terms509 ∥∥∥Xmθ̂m − ym

∥∥∥2 =
∥∥∥Xmθ̂m −Xmθm − ηm

∥∥∥2
= ∥Xmϵm − ηm∥2

= ∥Xmϵm∥2 + ∥Xmθm − ym∥2 − η⊤
mXmϵm

where we used the fact that ym = Xmθm + ηm, which holds by definition of the observed rewards.510

Summing over the users, and using the definition of K, we have511

1

2t

∑
m∈V

∥∥∥Xmθ̂m − ym

∥∥∥2 − 1

2t

∑
m∈V

∥Xmθm − ym∥2 =
1

2t

∑
m∈V

∥Xmϵm∥2 − 1

t
⟨K,E⟩ (17)

On the other hand, we have for the estimated preference vectors512

∥Θ∥E =
∑

(m,n)∈E

wmn

∥∥∥θ̂m − θ̂n

∥∥∥
=

∑
(m,n)∈∂P

wmn

∥∥∥θ̂m − θ̂n

∥∥∥+ ∑
(m,n)∈∂Pc

wmn

∥∥∥θ̂m − θ̂n

∥∥∥
=
∥∥∥Θ̂∥∥∥

∂P
+
∥∥∥Θ̂∥∥∥

∂Pc
,

For the true ones, and for any C ∈ P , let EC denote the edges linking the nodes of set of nodes C. It is513

clear that ∂Pc =
⋃

C∈P EC as a disjoint union, hence514

∥Θ∥E =
∑

(m,n)∈E

wmn∥θm − θn∥

=
∑

(m,n)∈∂P

wmn∥θm − θn∥+
∑

(m,n)∈∂Pc

wmn∥θm − θn∥

= ∥Θ∥∂P +
∑
C∈P

∑
(m,n)∈EC

wmn∥θm − θn∥

= ∥Θ∥∂P
where the last equality holds due to the cluster assumption.515

Hence, we have516

∥Θ∥E − ∥Θ∥E = ∥Θ∥∂P −
∥∥∥Θ̂∥∥∥

∂P
−
∥∥∥Θ̂∥∥∥

∂Pc

≤ ∥E∥∂P −
∥∥∥Θ̂∥∥∥

∂Pc
, (18)

where the first inequality holds due to the triangle inequality, and the last one since ∥Θ∥∂Pc = 0.517

Combining Equations (16) to (18), we obtain the result of the statement.518

In the proof for the oracle inequality, we utilize projection operators on the graph signal, that we519

define as followed:520

While
∑C

k=1 JC projects each entry of a graph signal onto the mean vector value of its respective521

cluster, its residual Q∂Pc can be interpreted as the projection onto the respective entries deviation522

from its cluster mean value.523

Lemma 2 (Bounding the error restricted to the boundary). The total variation of E restricted to the524

boundary verifies525

∥E∥∂P ≤ w(∂P)

√
2max

C∈P

√
ιG(C)

∥∥EP
∥∥
F
+ 2

∥E∥∂Pc

min
C∈P

√
cG(C)

 (19)
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Proof. The proof relies on a decomposition of the ∥E∥∂P term from Proposition 2. We have526

∥E∥∂P =

∥∥∥∥∥∑
C∈P

JCE+QCE

∥∥∥∥∥
∂P

=
∥∥∥EP +B†

∂PcB∂PcE
∥∥∥
∂P

≤
∥∥EP

∥∥
∂P +

∥∥∥B†
∂PcB∂PcE

∥∥∥
∂P

(20)

where EP is obtained by setting the error signal on every cluster to its mean.527

For the first term on the right-hand side, let us denote by ϵC the value of any row of EP belonging to528

cluster C, which is equal to the mean of errors E over that cluster. Also, we denote by (EP)∂P the529

signal obtained from EP by setting its rows corresponding to nodes that are not adjacent to any edge530

in the boundary ∂P to zeros. Also, let ∂vC denote the inner boundary of set of nodes C,i.e. nodes of531

C that connect it to its complementary. Then it holds that:532 ∥∥EP
∥∥
∂P =

∥∥B∂PEP
∥∥
2,1

=
∥∥B∂P(EP)∂P

∥∥
2,1

≤ ∥B∂P∥2,1
∥∥(EP)∂P

∥∥ (by Proposition 1)

≤ ∥B∂P∥2,1
∥∥(EP)∂P

∥∥
F

= ∥B∂P∥2,1
√∑

C∈P
|∂vC|∥ϵC∥2

= ∥B∂P∥2,1

√∑
C∈P

|∂vC|
|C|

|C|∥ϵC∥2

≤ ∥B∂P∥2,1 max
C∈P

√
ιG(C)

√∑
C∈P

|C|∥ϵC∥2

=
√
2w(∂P)max

C∈P

√
ιGC
∥∥EP

∥∥
F

(21)

For the second term, we have533 ∥∥∥B†
∂PcB∂PcE

∥∥∥
∂P

=
∥∥∥B∂PB

†
∂PcB∂PcE

∥∥∥
2,1

≤
∥∥∥B∂PB

†
∂Pc

∥∥∥
∞,1

∥E∥∂Pc

≤
∥∥∥B∂PB

†
∂Pc

∥∥∥
F
∥E∥∂Pc

≤
∥∥∥(B†

∂Pc)⊤B⊤
∂P

∥∥∥
F
∥E∥∂Pc

≤
∥∥B⊤

∂P
∥∥
2,1

√∥∥∥B†
∂Pc(B

†
∂Pc)⊤

∥∥∥
∞,∞

∥E∥∂Pc (by Proposition 1)

=

∥∥B⊤
∂P
∥∥
1,1

min
C∈P

√
cG(C)

∥E∥∂Pc .

= 2
w(∂P)

min
C∈P

√
cG(C)

∥E∥∂Pc . (22)

The result is obtained by combining Equations (20) to (22).534

Theorem 4 (Theorem 2.1 of Hsu et al. [2012]). At time step t, let A ∈ Rb×t where b ∈ N∗, and let535

v ∈ Rt be a random vector such that for some σ ≥ 0, we have536
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E [exp(⟨u,v⟩)] ≤ exp

(
∥u∥2σ

2

2

)
∀u ∈ Rt.

Then for any δ ∈ (0, 1), we have with a probability at least 1− δ:537

∥Av∥2 ≤ σ2

(
∥A∥2F + 2

∥∥A⊤A
∥∥
F

√
log

1

δ
+ 2∥A∥2 log 1

δ

)
.

Lemma 3 (Empirical process bound). Let Xm ∈ R|Tm|×d denotes the matrix of collected context538

vectors for task m ∈ V , then, given collected context matrices {Xm}m∈V , for any δ ∈ (0, 1) we539

have with probability of at least 1− δ:540

∥K∥F ≤ αδ(t)

α0
t,

where541

αδ(t) :=
α0σ

t

√√√√t+ 2

√∑
m∈V

|Tm(t)|2 log 1

δ
+ 2max

m∈V
|Tm(t)| log 1

δ
, (23)

Proof. We recall that K ∈ Rt×d is the matrix obtained by stacking the row vectors η⊤
mXm vertically.542

On the one hand, we have543

∥K∥2F =
∑
m∈V

∥∥X⊤
mηm

∥∥2 =
∥∥X⊤

Vη
∥∥2, (24)

where XV := diag(X1, · · · ,X|V|) ∈ Rt×d|V| .544

On the other one, for any u = (u1, · · · , ut) ∈ Rt, denoting P (t) := exp
(∑t

τ=1 uτητ

)
, we have545

E [P (t)] = E [E [exp{utηt}P (t− 1)|Ft−1]] (by the law of total expectation)

= E [P (t− 1)E [exp(utηt)|Ft−1]] (because {ηs}t−1
s=1 are Ft−1 measurable.)

≤ exp

(
1

2
σ2u2

t

)
E [P (t− 1)] (by the conditional subgaussianity assumption)

≤
t∏

s=1

exp

(
1

2
σ2u2

s

)
(by induction)

= exp

(
1

2
σ2∥u∥2

)
. (25)

From Equations (24) and (25), we can apply Theorem 4 to matrix XV and random vector η, which546

implies that with a probability at least 1− δ, we have547

∥XVη∥ ≤ σ

√√√√Tr

(∑
m∈V

Am

)
+ 2

√∑
m∈V

∥Am∥2F log
1

δ
+ 2max

m∈V
∥Am∥ log 1

δ
,

where we used the equalities ∥XV∥F =
∑

m∈V Tr(Am), ∥XV∥2 = max
m∈V

∥Am∥ and
∥∥XVX

⊤
V
∥∥2
F
=548 ∥∥X⊤

VXV
∥∥2
F
=
∑

m∈V ∥Am∥2F . To arrive the the statement of the theorem, we use the fact that the549

context vectors have Euclidean norms of at most 1.550

551

Proposition 4 (Probabilistic inequality). With a probabability at least 1− δ, we have552

1

2tα

∑
m∈V

∥Xmϵm∥2 + a1(G,Θ)∥E∥∂Pc ≤ a2(G,Θ)
∥∥EP

∥∥
F
+ (1− κ)∥E∥∂P , (26)
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where 0 ≤ κ <
min
C∈P

√
cG(C)

2w(∂P) , 1
α0

< min
C∈P

√
cG(C)− 2κw(∂P) and553

a1(G,Θ) = 1−
1
α0

+ 2κw(∂P)

min
C∈P

√
cG(C)

(27)

a2(G,Θ) =
1

α0
+

√
2κw(∂P)max

C∈P

√
ιG(C). (28)

Proof. The proof is a combination of the results of Lemmas 1 to 3. We have554

1

2tαδ

∑
m∈V

∥Xmϵm∥2 + ∥E∥∂Pc

≤ 1

tαδ
⟨K,E⟩+ ∥E∥∂P (by Lemma 1)

≤ 1

α0
∥E∥F + κ∥E∥∂P + (1− κ)∥E∥∂P (by Lemma 3)

≤
∥∥EP

∥∥
F

α0
+

∥E∥∂Pc

α0 min
C∈P

√
cG(C)

+ κw(∂P)

√
2max

C∈P

√
ιG(C)

∥∥EP
∥∥
F
+ 2

∥E∥∂Pc

min
C∈P

√
cG(C)

+ (1− κ)∥E∥∂P ,

where the last line is an application of Lemma 2. Grouping the terms by the type of norm applied to555

E finishes the proof.556

Theorem 1 (Oracle inequality). Assume that the RE assumption holds for the empirical multi-557

task Gram matrix with constants κ ∈
[
0, 1

2w(∂P) min
C∈P

√
cG(C)

)
and ϕ > 0. Suppose that558

maxm∈V |Tm(t)| ≤ bt for some b > 0. Then, with a probability at least 1− δ(t), we have559

∥∥∥Θ− Θ̂(t)
∥∥∥
F
≤ 2

σ

ϕ2
√
t
f(G,Θ)

√√√√1 + 2b

√
|V| log 1

δ(t)
+ 2b log

1

δ(t)
,

where560

f(G,Θ) := α0

(
a2(G,Θ) +

√
21≤1(κ)w(∂P)

)a2(G,Θ) +
√
21≤1(κ)w(∂P)

a1(G,Θ)min
C∈P

√
cG(C)

+ 1

 .

Proof. Using the previously established results, we obtain561

1

2t

∑
m∈V

∥Xmϵm∥2 + α∥E∥∂Pc

≤αδa2(Θ,G)∥EP∥F + αδ(1− κ)+∥E∥∂P (by Proposition 4)

=αδa2(Θ,G)∥EP∥F + αδ(1− κ)+
∥∥∥B∂PB

†
∂PB∂PE

∥∥∥
2,1

(by properties of the pseudo-inverse)

≤αδa2(Θ,G)∥EP∥F + αδ∥B∂P∥2,11≤1(κ)(1− κ)+
∥∥∥B†

∂PB∂PE
∥∥∥ (by Proposition 1)

≤αδ(a2(Θ,G) + 1≤1(κ)
√
2w(∂P))∥E∥RE (by definition of the ∥∥RE norm)

≤α
a2(Θ,G) + 1≤1(κ)

√
2w(∂P)

ϕ
√
t

√∑
m∈V

∥ϵm∥2Am
(using the RE assumption)

≤
βα2

δ(a2(Θ,G) + 1≤1(κ)∥B∂P∥2,1)2

2ϕ2
+

1

2βt

∑
m∈V

∥Xmϵm∥2, (29)
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where the last inequality holds for any β > 0, and is a consequence of the property that uv ≤
u2 + v2

2
562

for any u, v ∈ R.563

As a result, we can bound the norm of Q∂PcE as follows:564

∥Q∂PcE∥F =
∥∥∥B†

∂PcB∂PcE
∥∥∥
F

≤
√∥∥∥L†

∂Pc

∥∥∥
∞,∞

∥E∥∂Pc

≤
2αδ(a2(Θ,G) + 1≤1(κ)∥B∂P∥2,1)2

ϕ2a1(Θ,G)min
C∈P

√
cG(C)

(Equation (29) with β = 1). (30)

We can also bound the norm of EP as follows:565 ∥∥EP
∥∥2
F

≤ 1

tϕ2

∑
m∈V

∥Xmϵm∥2 (by RE assumption on empirical multi-task Gram matrix)

≤
4α2

δ(a2(Θ,G) + 1≤1(κ)∥B∂P∥2,1)2

ϕ4
(by Equation (29) with β = 2). (31)

The result is then obtained by combining Equations (30) and (31) along with using the fact that566

E = EP +Q∂PcE and the expressions of a1(Θ,G) and a2(Θ,G), and bounding αδ(t) as follows:567

αδ(t)
2

α2
0

=
σ2

t2

∑
m∈V

∥Xm∥2F + 2

√∑
m∈V

∥XmX⊤
m∥2F log

1

δ
+ 2max

m∈V
∥Xm∥2 log 1

δ


≤ σ2

t2

t+ 2

√∑
m∈V

|Tm(t)|2 log 1

δ
+ 2max

m∈V
|Tm(t)| log 1

δ


≤ σ2

t2

(
t+ 2t

√
log

1

δ
+ 2t log

1

δ

)

≤ 2
σ2

t

(
1 +

√
log

1

δ

)2

568

B.3 Inheriting the RE condition from the true to the empirical data Gram matrix569

B.3.1 From the adapted to the empirical multi-task Gram matrix570

Lemma 4 (Bounding a quadratic form using projections). Let M1, · · · ,Mp ∈ Rd×d be symmetric571

matrices, and let J := 1
p11

⊤, and Q = I− J. Then, for any Z ∈ Rp×d with rows {zi}pi=1, we have:572 ∣∣∣∣∣
p∑

i=1

z⊤i Mizi

∣∣∣∣∣ ≤ 1

p

∥∥∥∥∥
p∑

i=1

Mi

∥∥∥∥∥∥Z∥2J + 2

√√√√∥∥∥∥∥1p
p∑

i=1

M2
i

∥∥∥∥∥∥Z∥Q∥Z∥J + max
1≤i≤p

∥Mi∥∥Z∥2Q

Proof. We have573 ∣∣∣∣∣
p∑

i=1

z⊤i Mizi

∣∣∣∣∣ =
∣∣∣∣∣

p∑
i=1

z̄⊤Miz̄+ 2

p∑
i=1

(zi − z̄)⊤Miz̄+

p∑
i=1

(zi − z̄)⊤Mi(zi − z̄)

∣∣∣∣∣
≤

∣∣∣∣∣z̄⊤
p∑

i=1

Miz̄

∣∣∣∣∣+ 2

∣∣∣∣∣
p∑

i=1

e⊤i QZMiz̄

∣∣∣∣∣+
∣∣∣∣∣

p∑
i=1

e⊤i QZMiZ
⊤Qei

∣∣∣∣∣ (32)
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where we used the fact that zi − z̄ = Z⊤ei − Z⊤Jei = Z⊤Qei.574

Let us now examine every term on the right-hand side of Equation (32). For the first term, we have575 ∣∣∣∣∣z̄⊤
p∑

i=1

Miz̄

∣∣∣∣∣ ≤
∥∥∥∥∥

p∑
i=1

Mi

∥∥∥∥∥∥z̄∥2 =

∥∥∥∥∥1p
p∑

i=1

Mi

∥∥∥∥∥∥Z∥2J. (33)

For the second term, we have576 ∣∣∣∣∣
p∑

i=1

e⊤i QZMiz̄

∣∣∣∣∣ ≤
∥∥∥∥∥

p∑
i=1

MiZ
⊤Qei

∥∥∥∥∥∥z̄∥
=

∥∥∥∥∥
p∑

i=1

(e⊤i ⊗Mi) vec(Z
⊤Q)

∥∥∥∥∥∥z̄∥
≤

∥∥∥∥∥
p∑

i=1

(e⊤i ⊗Mi)

∥∥∥∥∥∥∥vec(Z⊤Q)
∥∥∥z̄∥

=

∥∥∥∥∥
p∑

i=1

(e⊤i ⊗Mi)

∥∥∥∥∥∥QZ∥F ∥z̄∥

=

√√√√∥∥∥∥∥(
p∑

i=1

(e⊤i ⊗Mi))⊤
p∑

i=1

(e⊤i ⊗Mi)

∥∥∥∥∥∥QZ∥F ∥z̄∥

=

√√√√√
∥∥∥∥∥∥

p∑
i=1

p∑
j=1

(e⊤i ⊗Mi))(ej ⊗Mj)

∥∥∥∥∥∥∥QZ∥F ∥z̄∥

=

√√√√√
∥∥∥∥∥∥

p∑
i=1

p∑
j=1

(e⊤i ej ⊗MiMj)

∥∥∥∥∥∥∥QZ∥F ∥z̄∥

=

√√√√∥∥∥∥∥
p∑

i=1

M2
i

∥∥∥∥∥∥QZ∥F ∥z̄∥. (34)

Finally, for the last term, we have577 ∣∣∣∣∣
p∑

i=1

e⊤i QZMiZ
⊤Qei

∣∣∣∣∣ ≤
p∑

i=1

∥Mi∥
∥∥Z⊤Qei

∥∥2
≤ max

1≤i≤p
∥Mi∥

p∑
i=1

∥∥Z⊤Qei
∥∥2

= max
1≤i≤p

∥Mi∥∥QZ∥2F . (35)

Combining Equations (33) to (35) yields the result.578

We also define an operator norm that is induced by the ∥∥RE introduced in Definition 2.579

Definition 3 ((RE,S)-induced operator norm). Let {Mm}m∈V ⊆ Rd×d be symmetric matrices580

associated to the graph nodes V , and let MV := diag
(
M1, · · · ,M|V|

)
∈ Rd|V|×d|V|. For any581

cluster C ∈ P , let the cluster mean and mean of squares associated to those matrices be given by582

MC :=
1

|C|
∑
m∈C

Mm, M2C :=
1

|C|
∑
m∈C

M2
m.

The RE-induced operator norm of MV is defined as583

∥M∥RE,S := max
C∈P

∥∥MC
∥∥ ∨√min

C∈P
cG(C)−1 max

C∈P

∥∥∥M2C

∥∥∥ ∨min
C∈P

cG(C)−1 max
m∈V

∥Mm∥. (36)
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B.3.2 Linking the adapted to the empirical Gram584

We first start by establishing that given the closeness of two PSD matrices in a certain sense, the RE585

condition can be transferred between them.586

Proposition 5 (Restricted spectral norm). Let Z ∈ R|V|×d verifying587

a1(G,Θ)∥Z∥∂Pc ≤ a2(G,Θ)
∥∥ZP

∥∥
F
+ (1− κ)+∥Z∥∂P

Let {Mm}m∈V ⊆ Rd×d be symmetric matrices associated to the graph nodes V , and let MV :=588

diag(M1, · · · ,M|V|) ∈ Rd|V|×d|V|. Then we have:589

∣∣∣∣∣∑
m∈V

z⊤mMmzm

∣∣∣∣∣ ≤ ∥M∥2RE,S

(
1 +

a2(G,Θ) + (1− κ)+∥B∂P∥2,1
a1(G,Θ)

)2

∥Z∥2RE. (37)

Proof. For any cluster C, we denote by BC the incidence matrix obtained by setting the rows of B590

outside the edges linking nodes in C to null vectors. The latter’s nullspace is the span of the vector 1C591

having coordinates 1 at nodes in C and zeros elsewhere. Hence, the projector onto the orthogonal of592

1C is QC := B†
CBC .593

On the one hand, for any signal Z ∈ R|V|×d we have594

∥Z∥∂Pc =
∑
C∈P

∥BCZ∥2,1

≥
∑
C∈P

∥∥∥B†
CBCZ

∥∥∥
F√∥∥∥L†

C

∥∥∥
∞,∞

≥ min
C∈P

√
cG(C)

∑
C∈P

∥Z∥QC

Hence, by the proposition’s assumptions, Z verifies595

min
C∈P

√
cG(C)a1(G,Θ)

∑
C∈P

∥Z∥QC
≤ (a2(G,Θ)

∥∥ZP
∥∥
F
+ (1− κ)∥Z∥∂P)

≤ a2(G,Θ)
∥∥ZP

∥∥
F
+ (1− κ)+∥B∂P∥2,1

∥∥∥B†
∂PB∂PZ

∥∥∥
≤ (a2(G,Θ) + (1− κ)+∥B∥2,1)∥Z∥RE

From Lemma 4, we have596 ∣∣∣∣∣∑
m∈V

z⊤mMmzm

∣∣∣∣∣
≤
∑
C∈P

∣∣∣∣∣∑
m∈C

z⊤mMmzm

∣∣∣∣∣
≤
∑
C∈P

∥∥MC
∥∥∥Z∥2JC

+ 2
∑
C∈P

√ ∥∥∥M2C

∥∥∥∥Z∥QC
∥Z∥JC

+
∑
C∈P

max
m∈C

∥Mm∥∥Z∥2QC
, (38)

where we used Equation (9).597
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This allows us to bound every term in Equation (38). For the second term on the right-hand side, we598

have599 ∑
C∈P

√∥∥∥M2C

∥∥∥∥Z∥QC
∥Z∥JC

≤max
C∈P

√∥∥∥M2C

∥∥∥∥∥ZP
∥∥
F

√∑
C∈P

∥Z∥2QC

≤
min
C∈P

cG(C)−
1
2

a1(G,Θ)
max
C∈P

√∥∥∥M2C

∥∥∥(a2(G,Θ) + (1− κ)+∥B∥2,1)∥Z∥
2
RE (39)

As for the third term, we have600 ∑
C∈P

max
m∈C

∥Mm∥∥Z∥2QC
≤ max

m∈V
∥Mm∥

(∑
C∈P

∥Z∥QC

)2

≤ max
m∈V

∥Mm∥
min
C∈P

cG(C)−1

a1(G,Θ)2
(a2(G,Θ) + (1− κ)+∥B∥2,1)

2∥Z∥2RE (40)

Consequently, denoting v =
a2(G,Θ) + (1− κ)+∥B∥2,1

a1(G,Θ)
, and combining Equations (38) to (40),601

we obtain602 ∣∣∣∣∣∑
m∈V

z⊤mMmzm

∣∣∣∣∣(
max
C∈P

∥∥MC
∥∥+ 2vmax

C∈P

√∥∥∥M2C

∥∥∥+ v2 max
i∈V

∥Mi∥

)
∥Z∥2RE

≤
(
max
C∈P

∥∥MC
∥∥) ∨√min

C∈P
cG(C)−1 max

C∈P

∥∥∥M2C

∥∥∥ ∨min
C∈P

cG(C)−1 max
i∈V

∥Mi∥
)
(1 + v)2∥Z∥2RE,

which finishes the proof.603

Proposition 6 (Inheritance of a RE condition from a close matrix). Assume that the matrix VV604

verifies the RE condition with constant ϕ > 0, and that
∥∥∥∥AV

t
−VV

∥∥∥∥
op,RE

≤ γϕ2 for some605

γ ∈
(
0,
(
1 + a2(G,Θ)+(1−κ)+

√
2w(∂P)

a1(G,Θ)

)−2
)

. Then
AV

t
verifies the RE condition with constant606

ϕ̂ = ϕ

√√√√1− γ

(
1 +

a2(G,Θ) + (1− κ)+
√
2w(∂P)

a1(G,Θ)

)2

(41)

Proof. From Proposition 4, we know that607

1

t
ϵ⊤VAVϵV =

1

|V|
ϵ⊤VVVϵV + ϵ⊤V∆VϵV

≥ 1

|V|
ϵ⊤VVVϵV −

∣∣ϵ⊤V∆VϵV
∣∣

≥

ϕ2 −max
m∈V

∥∆V∥op,RE

(
1 +

a2(G,Θ) + (1− κ)+∥B∂P∥2,1
a1(G,Θ)

)2
 ∥E∥2RE

≥

ϕ2 − γϕ2

(
1 +

a2(G,Θ) + (1− κ)+∥B∂P∥2,1
a1(G,Θ)

)2
 ∥E∥2RE
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where the third inequality is an applicaiton of Proposition 5.608

Theorem 5 (Matrix Freedman Inequality, Tropp [2011]). Consider a matrix martingale {M(t)}t≥1609

with dimension d1 × d2. Let {N(t)}t≥1 be the associated difference sequence. Assume that for some610

A > 0, we have ∥N(t)∥ ≤ A ∀t ≥ 1 almost surely. Define for any t ≥ 1:611

Wcol(t) :=

t∑
τ=1

E
[
N(τ)N(τ)⊤|Fτ−1

]
Wrow(t) :=

t∑
τ=1

E
[
N(τ)⊤N(τ)|Fτ−1

]
.

Then, for any u, v > 0,612

P [∃t ≥ 1; ∥M(t)∥ ≥ u and ∥Wcol∥(t) ∨ ∥Wrow(t)∥ ≤ v] ≤ (d1 + d2) exp

(
− 3u2

6v + 2Au

)
Corollary 1. Let {N(τ)}tτ=1 by a sequence of matrices of dimension d1 × d2, adapted to filtration613

{Fτ}tτ=1. Let {ti}Ni=1 an increasing sequence with elements in [t] for some N ≤ t. Consider the614

sequence {M(n)}Nτ=1 of random matrices defined by615

M(n) =

n∑
i=1

N(ti)− E [N(ti)|Fti−1] (42)

Then {M(n)}Nn=1 is a martingale adapted to the filtration {Ftn}Nn=1.616

Moreover,if ∥N(τ)∥ ≤ b ∀τ ∈ [t] for some b > 0, then we have617

P [∥M(N)∥ ≥ u] ≤ (d1 + d2) exp

(
− 3u2

6Nb2 + 2
√
2bu

)
. (43)

Proof. We denote E [·|Fs] as Es [·] for any s ∈ N. Also, let C(s) := Es−1 [N(s)], which is618

Fs−1-measurable by construction. We have for any n ∈ [N ],619

Etn−1
[C(tn)] = Etn−1

[Etn−1 [N(tn)]] = Etn−1
[N(tn)] (44)

=⇒ Etn−1
[N(tn)−C(tn)] = 0 (45)

where the first equality is due to the tower rule since Ftn−1 ⊂ Ftn−1. Also, we have for any τ ≥ 1620

∥N(τ)−C(τ)∥2 =
∥∥(N(τ)−C(τ))2

∥∥ (46)

≤ Tr
(
(N(τ)−C(τ))2

)
(47)

= Tr
(
(N(τ)−C(τ))2

)
(48)

= ∥N(τ)∥2F − 2Tr(C(τ)N(τ)) + Tr
(
C(τ)2

)
(49)

≤ ∥N(τ)∥2F +Tr
(
C(τ)2

)
≤ 2b2 (50)

Hence N(τ)−C(τ) is integrable for any τ ≥ 1. This shows that M(n) is a sequence of partial sums621

of matrix martingale differences, hence it is a matrix martingale.622

The second part of the corollary statement is a consequence of Theorem 5. The boundedness of623

the sequence of martingale differences has already been established above. To verify the second624

requirement of the theorem, let us compute bounds on the norms of Wcol and Wrow from Theorem 5.625

Notice that the two matrices are equal since the difference sequence matrices N(ts) are symmetric.626
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Hence, for any n ∈ [N ], we have627

∥Wcol(N)∥ ∨ ∥Wrow(N)∥ ≤ Tr(Wcol(N)) ∨ Tr(Wrow(N)) (51)

= Tr

(
N∑

n=1

Etn−1

[
(N(tn)−C(tn))

2
])

(52)

=

N∑
n=1

Etn−1

[
∥N(tn)∥2F

]
− Etn−1 [2 Tr(C(tn)N(tn))] + Tr

(
C(tn)

2
)

(53)

=

N∑
n=1

Etn−1

[
∥N(tn)∥2F

]
− Tr

(
C(tn)

2
)

(54)

≤
N∑

n=1

Etn−1

[
∥N(tn)∥2F

]
≤ Nb2. (55)

By Theorem 5, we have for any u > 0628

2d exp

(
− 3u2

6Nb2 + 2
√
2bu

)
≥ P

[
∃n ≥ 1; ∥M(n)∥ ≥ u and ∥Wcol(n)∥ ≤ Nb2

]
(56)

≥ P
[
∥M(N)∥ ≥ u and ∥Wcol(N)∥ ≤ Nb2

]
(57)

= P [∥M(N)∥ ≥ u] (58)

where the last line holds because we showed that the inequality ∥Wcol(N)∥ ≤ Nb2 holds almost629

surely.630

Proposition 7 (Concentration of the empirical multi-task Gram matrix around the adapted one). Let631

t ≥ 1, b > 0. Then we have:632

P

[∥∥∥∥AV(t)

t
−VV

∥∥∥∥
op,RE

> γ
∣∣max
m∈V

|Tm(t)| ≤ bt

]
≤ d(2|P|e−A1t+(|V|+|P|)e−A2t+2|V|e−A3t),

where633

A1 :=
3γ2 min

C∈P
|C|t

6b+ 2
√
2γ

A2 :=
3γ2 min

C∈P
cG(C)t

6b+ 2
√
2γ

√√√√min
C∈P

cG(C)
min
C∈P

|C|

A3 :=
3γ2 min

C∈P
cG(C)2t

6b+ 2
√
2γmin

C∈P
cG(C)

Proof. For γ > 0, let us define634

∆m :=
AV

t
−VV and GGram,γ :=

{
1

t
∥∆V∥RE,S ≤ γ

}
,

where ∆V is block diagonal matrix formed by {∆m}m∈V . We also define ∆C and ∆2C in the same635

pattern of Definition 3. We can express the complementary of this event as the disjunction of a finite636
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number of events as follows:637

Gc
Gram,γ (59)

=

{
max
C∈P

∥∥∆C
∥∥ ∨√min

C∈P
cG(C)−1 max

C∈P

∥∥∥∆2C

∥∥∥ ∨min
C∈P

cG(C)−1 max
m∈V

∥∆m∥ > tγ

}
(60)

=
⋃
C∈P

{∥∥∆C
∥∥ > tγ

}
∪
⋃
C∈P

{∥∥∥∆2C

∥∥∥ > t2γ2 min
C∈P

cG(C)
}
∪
⋃
m∈V

{
∥∆m∥ > tγmin

C∈P
cG(C)

}
(61)

The first and third event can be bounded by considering the sequence xx⊤(τ) adapted to the filtration638

{Fτ}, verifying
∥∥xx⊤(τ)

∥∥ ≤.639

Bounding the probability of the first event Let C ∈ P be a cluster. By definition, we have640

|C|∆C(t) =
∑
m∈C

∑
τ∈Tm(t)

xx(τ)− E [xx(τ)|Fτ−1]

=
∑

τ∈
⋃

m∈C Tm(t)

xx(τ)− E [xx(τ)|Fτ−1]

We will apply Corollary 1 for the sequence of time indices in C, i.e.
⋃

m∈V Tm(t). Hence |C|∆C is a641

martingale sequence, and we have642

P
[∥∥∆C(t)

∥∥ > γt
∣∣max
m∈V

|Tm(t)| ≤ bt

]
≤ 2d exp

(
−3γ2|C|2t2

6
∑

m∈C |Tm(t)|+ 2
√
2γ|C|t

)

≤ 2d exp

(
−3γ2|C|2t2

6|C|bt+ 2
√
2γ|C|t

)

= 2d exp

(
−3γ2|C|t
6b+ 2

√
2γ

)

≤ 2d exp

−3γ2 min
C∈P

|C|t

6b+ 2
√
2γ

 (62)

Bounding the probability of the third event Let m ∈ V be a task index. We apply Corollary 1 for643

the sequence of time steps in Tm(t). We have644

∆m(t) =
∑

τ∈Tm(t)

xx(τ)− E [xx(τ)|Fτ−1]

is a martingale sequence, hence645

P
[
∥∆m(t)∥ > γmin

C∈P
cG(C)t

∣∣max
m∈V

|Tm(t)| ≤ bt

]
≤ 2d exp

 −3γ2 min
C∈P

cG(C)2t2

6|Tm(t)|+ 2
√
2γmin

C∈P
cG(C)t


≤ 2d exp

 −3γ2 min
C∈P

cG(C)2t2

6bt+ 2
√
2γmin

C∈P
cG(C)t


= 2d exp

 −3γ2 min
C∈P

cG(C)2t

6b+ 2
√
2γmin

C∈P
cG(C)

 . (63)
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Bounding the probability of the second event Let C ∈ P be a cluster, and let us denote em the646

mth canonical vector of R|C|. We have647

∥∥∥∆2C(t)
∥∥∥ =

1

|C|

∥∥∥∥∥∥∥
∑
m∈C

 ∑
τ∈Tm(t)

xx(τ)− E [xx(τ)|Fτ−1]

2
∥∥∥∥∥∥∥

=
1

|C|

∥∥∥∥∥∥
∑
m∈C

e⊤m ⊗

 ∑
τ∈Tm(t)

xx(τ)− E [xx(τ)|Fτ−1]

∥∥∥∥∥∥
2

=
1

|C|

∥∥∥∥∥∥
∑

τ∈
⋃

m∈C Tm(t)

e⊤m(τ) ⊗ (xx(τ)− E [xx(τ)|Fτ−1])

∥∥∥∥∥∥
2

=
1

|C|

∥∥∥∥∥∥
∑

τ∈
⋃

m∈C Tm(t)

e⊤m(τ) ⊗ xx(τ)− E
[
em(τ) ⊗ xx(τ)|Fτ−1

]∥∥∥∥∥∥
2

,

where the last equality holds since m(τ) is measurable w.r.t. Fτ−1. We will apply the Corollary 1 to648

the set of time steps
⋃

m∈C Tm(t) and the adapted sequence e⊤m(τ) ⊗ xx(τ) of matrices in Rd×d|C|.649

Hence we have650

P

[√∥∥∥∆2C(t)
∥∥∥ > γtmin

C∈P

√
cG(C)

∣∣max
m∈V

|Tm(t)| ≤ bt

]

≤ d(1 + |C|) exp

 −3γ2|C|min
C∈P

cG(C)t2

6
∑

m∈C |Tm(t)|+ 2
√
2γ
√
|C|min

C∈P
cG(C)t


≤ d(1 + |C|) exp

 −3γ2|C|min
C∈P

cG(C)t

6|C|b+ 2
√
2γ
√

|C|min
C∈P

cG(C)



= d(1 + |C|) exp


−3γ2 min

C∈P
cG(C)t

6b+ 2
√
2γ

√
min
C∈P

cG(C)
|C|



≤ d(1 + |C|) exp


−3γ2 min

C∈P
cG(C)t

6b+ 2
√
2γ

√√√√min
C∈P

cG(C)
min
C∈P

|C|

 (64)

Union bound We conclude the result of the statement via a union bound using Equation (61).651

Proposition 8 (Concentration of the empirical multi-task Gram matrix around the adapted one,652

simplified). propEmpCovConcentrationSimplified Let t ≥ 1, b > 0. Assume that maxm∈V |Tm(t)| ≤653

bt. Then we have:654

P

[∥∥∥∥AV

t
−VV

∥∥∥∥
op,RE

> γ

]
≤ 6d|V| exp

(
−3γ2(minC∈P(c̃G(C) ∧ c̃G(C)2)t

6b+ 2
√
2γ

)
,

where c̃G(C) := cG(C) ∧ |C| ∀C ∈ P .655
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Proof. The proof will rely on simple calculus inequalities. Hence, let u = minC∈P cG(C), v =656

minC∈P |C|, f = 3γ2, g = 6b, h = 2
√
2γ, which are all positive. Then, we have657

A1 =
fu

f + g
≥ (u ∧ v)f

f + g
≥ (u ∧ v)

(1 ∧ u ∧ v)f

f + g(1 ∧ u ∧ v)

A2 =
fv

f + g v
u

≥ (v ∧ u)f

f + g v∧u
u

≥ (v ∧ u)f

f + g
≥ (u ∧ v)

(1 ∧ u ∧ v)f

f + (1 ∧ u ∧ v)g

A3 =
fv2

f + gv
≥ (v ∧ u)2

f + (v ∧ u)g
≥ (u ∧ v)

(1 ∧ u ∧ v)f

f + (1 ∧ u ∧ v)g

where we used the fact that functions of the form x 7→ x
β1x+β2

for positive β1, β2 are increasing on658

R+.659

As a final step, we use the inequality
(1 ∧ x)f

f + (1 ∧ x)g
≥

x ∧ 1

f + g
taken for x = u ∧ v, we apply the660

exp(− · t) function and we use the result of Proposition 7, we deduce the result.661

B.3.3 From the true to the adapted Gram matrix662

For all of the proofs in this subsection, we follow an approach similar to that of Oh et al. [2021]. In663

particular, we use their Lemma 10.664

Theorem 6 (Lemma 10 of Oh et al. [2021]). Under Assumption 2 on the context generating distribu-665

tion, let t ≥ 1. We have for any θ ∈ Rd:666 ∑
x∈A(t)

E

[
xx⊤

1

{
x ∈ argmax

x̃∈A(t)

⟨θ, x̃⟩

}]
≽

1

2νω
Σ (65)

Proposition 9 (RE condition from the true to the adapted Gram matrix). Under Assumption 2, for667

any t ≥ 1, the adapted Gram matrix VV(t) verifies the compatibility condition with constants κ and668

ϕ
√
2νω

.669

Proof. For t ≥ 1, we have670

E
[
x(t)x(t)⊤|Ft−1

]
= E

 ∑
x∈A(t)

x(t)x(t)⊤|Ft−1

 (66)

Let m ∈ V . We have671

Vm(t) =
1

t

∑
τ∈Tm(t)

E
[
x(τ)x(τ)⊤|Fτ−1

]
=

1

t

∑
τ∈Tm(t)

E
[
E
[
x(τ)x(τ)⊤|θm(τ − 1),Fτ−1

]
|Fτ−1

]
(law of total expectation)

=
1

t

∑
τ∈Tm(t)

E
[
x(τ)x(τ)⊤|θm(τ − 1)

]
(x(τ) is fully determined by θm(τ − 1))

=
1

t

∑
τ∈Tm(t)

E

 ∑
x∈A(τ)

xx⊤
1

{
x ∈ argmax

x̃∈A(t)

⟨θ, x̃⟩

}
|θm(τ − 1)


≽

1

2νω
Σ (by Theorem 6). (67)

Now, let Z ∈ S, where S is defined with constant κ of Assumption 4. Then672 ∑
m∈V

∥z∥Vm(t) ≥
1

2νω

∑
m∈V

∥zm∥Σ by Equation (67)

≥ ϕ2

2νω
∥Z∥2RE (by Assumption 4),

which finishes the proof.673
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Theorem 2 (RE condition holding for the empirical multi-task Gram matrix). Under assumptions 2674

and 4, let t ≥ 1, and let κ, ϕ be the constants from Assumption 4. Assume that maxm∈V |Tm(t)| ≤ bt.675

Then, for any γ ∈
(
0,
(
1 + a2(G,Θ)+(1−κ)+

√
2w(∂P)

a1(G,Θ)

)−2
)

, the empirical multi-task Gram matrix676

verifies the RE condition with constants κ and ϕ̂, with677

ϕ̂ = ϕ̃

√√√√1− γ

(
1 +

a2(G,Θ) + (1− κ)+
√
2w(∂P)

a1(G,Θ)

)2

, (6)

with a probability at least equal to 1 − 6d|V| exp

(
− 3γ2ϕ̃4(minC∈P(c̃G(C) ∧ c̃G(C)2)t

6b+ 2
√
2γϕ̃2

)
, where678

ϕ̃ :=
ϕ

√
2νω

and c̃G(C) := cG(C) ∧ |C| ∀C ∈ P .679

Proof. For the sake of readability, let ϕ̃ = ϕ√
2νω

the compatibility constant of the adapted Gram680

matrix, according to Proposition 9. Then:681

1− 6d|V| exp

(
−3γ2ϕ̃4(minC∈P(c̃G(C) ∧ c̃G(C)2)t

6b+ 2
√
2γϕ̃2

)
(68)

≤P

[∥∥∥∥AV

t
−VV

∥∥∥∥
op,RE

≤ γϕ̃2

]
(by Proposition 8) (69)

≤P
[
AV

t
satisfies the RE condition with constant κ and ϕ̂

]
(by Proposition 6), (70)

where ϕ̂ = ϕ̃

√
1− γ

(
1 + a2(G,Θ)+(1−κ)+

√
2w(∂P)

a1(G,Θ)

)2
.682

B.4 Regret bound683

Lemma 5 (Concentration of the fraction of observations per task). lemma Assume that |V| ≥ 2. Then684

for δ ∈ (0, 1), we have with a probability at least 1− δ:685

max
m∈V

|Tm(t)|
t

≤ 1

|V|
+ 2

√
1

t|V|
log

|V|
δ

+
4

3t
log

|V|
δ
. (71)

Proof. We have |Tm(t)| :=
∑t

τ=1[m(τ) = m], where ∀t, ∀m ∈ V,P [m(t) = m] = 1
|V| , meaning

that the binary variable [m(t) = m] follows a Bernoulli distribution B( 1
V ). Then, the random variable

Xt := [m(t) = m] − 1
|V| has mean 0, variance 1

|V| (1 − 1
|V| ), and verifies |Xt| ≤ 1 − 1

|V| since
|V| ≥ 2. As a result, via the Bernstein inequality, we have for any m ∈ V , and for any w ≥ 0,

P
[
|Tm(t)|

t
≥ 1

|V|
+ w

]
≤ exp

(
− tw2

2(1− 1
|V| )(

1
|V| +

w
3 )

)
≤ exp

(
− tw2

2( 1
|V| +

w
3 )

)

For the right-hand side to hold with a probability at most δ ∈ (0, 1), it is sufficient to have686

t
w2

2( 1
|V| +

w
3 )

≥ log
1

δ

⇐=
w2

2
≥

2 1
|V| log

1
δ

t
and

w2

2
≥

2w log 1
δ

3t

⇐= w = 2

√
1
|V| log

1
δ

t
+

4 log 1
δ

3t
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Hence, and via a union bound, we get687

P

[
|Tm(t)|

t
≥ 1

|V|
+ 2

√
1

|V|
log

1

δ
+

4

3t
log

1

δ

]
≤ δ

=⇒ P

max
m∈V

|Tm(t)|
t

≥ 1

|V|
+ 2

√
1
|V| log

1
δ

t
+

4 log 1
δ

3t

 ≤ |V|δ

The result is obtained by adjusting the value of δ.688

Theorem 3 (Regret bound). Let the mean horizon per node be T = T
|V| . Let min

C∈P

√
cG(C)689

going asymptotically to infinity and maxC∈P
√
ιG(C) going asymptotically to zero as well as690

maxC∈P
√

ιG(C)w(∂P) and w(∂P)

min
C∈P

√
cG(C)

going asymptotically to zero. Under assumptions1 to 4691

and κ < 1, the expected regret of the Network Lasso Bandit algorithm is upper bounded as follows:692

R(|V|T ) = O

√√√√ T

min
C∈P

cG(C)

(√
|V|+

√
log
(
T |V|

)
+ 4

√∣∣V log
(
T |V|

)∣∣)+
1

A
log(d|V|)

 ,

with A =
3γ2 minC∈P(c̃G(C) ∧ c̃2G(C))

6 log(|V|)√
|V|

+ 2
√
2γ

.693

Proof. For any time step t, we will define a list of good events under which the Oracle inequality and694

the RE condition for the empirical multi-task Gram matrix both hold with high probability. Then, we695

will use those bounds to sum up over time steps until horizon T .696

Good events We formalize these requirements as three families of time-depending "good" events.697

• Gpro(t) is the event that the mean of the empirical process bounded by α(t) up to a constant c,698

which is equivalent to saying that it converges:699

Gpro(t) :=

{
1

t
∥K∥F ≤ α(t)

α0

}
(72)

• Gsel(t) is the event that the number of selections of all tasks is bounded by its expected value up700

to a small constant ρ(t)701

Gsel(t) :=

{
max
m∈V

|Tm(t)|
t

≤ 1

|V|
+

ρ(t)

t

}
(73)

• GRE(t) is the event that the empirical multi-task Gram matrix 1
tAV(t) satisfies the RE condition.702

GRE(t) :=

{
1

t
AV(t) verifies the RE condition with constants κ, ϕ̂

}
(74)

Event Gpro(t) is the most straightforward to cover since our bound on the empirical process given in703

Lemma 3 holds with a probability of at least 1− δ(t), thus:704

P [Gpro(t)
c|Gsel(t)] ≤ δ(t), (75)

where we included the time dependency on δ(t) in contrast to the previous section. This way we705

emphasize to adjust δ(t) after each round, to guarantee a sub linear regret bound. The probability of706

event Gsel(t) can be determined using Bernstein’s inequality:707

From Lemma 5 we can select ρ(t) = 2
√

t
|V| log

|V|
δsel(t)

+ 4
3 log

|V|
δsel(t)

as well as P [Gsel(t)
c] ≤ δsel(t).708
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B.4.1 Instantaneous regret decomposition709

Now, given the event probabilities, we condition the instantaneous regret r(t) on the good events at a710

time t > t0. We have for its expectation:711

E [r(t)] ≤ E [r(t)|Gsel(t)] + 2P [Gsel(t)
c]

≤ E [r(t)|Gpro(t) ∩GRE(t) ∩Gsel(t)]

+ 2 (P [Gpro(t)
c|Gsel(t)] + P [GRE(t)

c|Gsel(t)] + P [Gsel(t)
c]) , (76)

where we used the worst case bound r(t) ≤ 2 if any one of the good events does not hold.712

Bounding the regret Inserting our results of the event probabilities, the oracle inequality and the713

decomposition of the expected instantaneous regret in Equation (76) and bounding the sum over714

rounds, yields the final result. Thus, we start by bounding the sum over the first term i.e. the expected715

regret in case all good events hold:716

T∑
t=1

E [r(t)|Gpro(t) ∩GRE(t) ∩Gsel(t)] ≤
T∑

t=1

∥∥∥Θ− Θ̂(t)
∥∥∥
F

Taking the result of our oracle inequality in Theorem 1, we point out that only α(t) is time dependent717

such that the rest of the terms can be pulled outside the sum:718

T∑
t=1

∥∥∥Θ− Θ̂(t)
∥∥∥
F
≤

T∑
t=1

2
σ

ϕ̂2
√
t
f(G,Θ)

√√√√1 + 2b

√
|V| log 1

δ(t)
+ 2b log

1

δ(t)

=
2σ

ϕ̂2
f(G,Θ)

T∑
t=1

√
1

t
+

2b

t

√
2|V| log(t) + 4b

t
log(t)

≤ 2σ

ϕ̂2
f(G,Θ)

∫ T

0

1√
t
+

√
2b

t

(√
2|V| log(T ) + 2 log(T )

)
dt

≤ 2σ

ϕ̂2
f(G,Θ)

(
2
√
T +

(√
8T

|V|
+ 4 4

√
32 log(|V|T )T

|V|
+

√
16

3
log(|V|T ) log(T )

)
(

4
√
2|V| log(T ) +

√
2 log(T )

))
= O

(
f(G,Θ)

√
T

ϕ̂2

(√
|V|+

√
log
(
T |V|

)
+ 4

√∣∣V log
(
T |V|

)∣∣)) ,

where719

f(G,Θ) :=
(
a2(G,Θ) +

√
21≤1(κ)w(∂P)

)a2(G,Θ) +
√
21≤1(κ)w(∂P)

a1(G,Θ)min
C∈P

√
cG(C)

+ 1

 .

We upper bounded the sum with an integral i.e.
∑T

t=1 f(t) ≤
∫ T

0
f(t)dt for monotonically decreasing720

functions f(t) in the last inequality. Also b is the bound on the concentration of the fraction of721

observation per task provided by Lemma 5. For t0 =
√

|V| we find by inserting the result to Lemma 5722

for all t > t0:723
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1

|V|
+ 2

√
1

t|V|
log

|V|
δ

+
4

3t
log

|V|
δ

≤ 1

|V|
+ 2

√√√√2 log
(
|V|
√
|V|
)

√
|V||V|

+
8 log

(
|V|
√
|V|
)

3
√

|V|

=
1

|V|
+

2√
|V|

[√
3√
|V|

log(|V|) + 2 log(|V|)

]

= O

(
log(|V|)√

|V|

)
= b.

Finally we bound the sum over the instantaneous regret term for the bad events:724

T∑
t=1

2 (P [Gpro(t)
c|Gsel(t)] + P [GRE(t)

c|Gsel(t)] + P [Gsel(t)
c])

By construction, we have max(P [Gpro(t)
c|Gsel(t)] ,P [Gsel(t)

c]) ≤ δ(t) = 1
t2 . Hence,725

T∑
t=1

P [Gpro(t)
c|Gsel(t)] + P [Gsel(t)

c] ≤ 2

T∑
t=1

1

t2
≤ 2

(
1 +

∫ T

1

dt

t2

)
≤ 4 (77)

As for the RE condition event, letting A :=
3γ2 minC∈P(c̃G(C) ∧ c̃2G(C))

6b+ 2
√
2γ

, we have for any t0 ≥ 1726

T∑
t=t0

P [GRE(t)
c|Gsel(t)] ≤ 6d|V|

T∑
t=t0

exp(−At) (by Theorem 2)

≤ 6d|V| e−At0

1− e−A
≤ 6d|V|e−At0

(
1 +

1

A

)
≤ 6d|V|e−At0

(
1 +

1

A

)

where in the last line, we used the inequality exp(A) ≥ A+ 1. Hence, for any u > 0, choosing727

t0 =
⌈√

|V|
⌉
∨
⌈
1

A
log

(
6d|V|(1 + 1

A )

u

)⌉

implies that
∑T

t=t0
P [GRE(t)

c|Gsel(t)] ≤ u. Before we continue with the regret bound, we need to728

find an appropriate bound on f(G,Θ)

ϕ̂2
. Given our result in Theorem 1 and assuming that κ > 1, we729

get:730
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f(G,Θ)

ϕ̂2
=

α0a2(G,Θ)

ϕ̂2

 a2(G,Θ)

a1(G,Θ)min
C∈P

√
cG(C)

+ 1



=

(√
2κw(∂P)maxC∈P

√
ιG(C)α0 + 1

) √
2κw(∂P)maxC∈P

√
ιG(C)α0+1

α0(min
C∈P

√
cG(C)− 2κw(∂P))− 1

+ 1



1− γ

1 +
√
2κw(∂P)maxC∈P

√
ιG(C)α0+1

α

1− 2κw(∂P)

min
C∈P

√
cG(C)

− 1

min
C∈P

√
cG(C)



2

= O

maxC∈P ιG(C) + maxC∈P
√
ιG(C) + 1

min
C∈P

√
cG(C)

+ max
C∈P

ιG(C) + 1


= O

 1

min
C∈P

√
cG(C)

 .

The first big O notation is obtained due to the fact that for for large min
C∈P

√
cG(C) and small731

maxC∈P
√

ιG(C) the denominator term i.e. ϕ̂2 behaves like 1 − γ, which leaves the numerator732

dominating the rest of the term. Now, we simply have to insert all our results into the sum of733

instantaneous regrets:734

R(T ) ≤ t0 + 2u+ 8 +O
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√
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log
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⌉
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⌈
1

A
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u
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1
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log
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(√
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√
log
(
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√∣∣V log
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where we set u = 1
2A in the third inequality.735

736
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C Additional related work737

Homophily and modularity in social networks Given the large number of users on social networks,738

one may be able to learn their preferences more quickly by leveraging the similarities between them.739

This idea relies on the notion of homophily in social networks McPherson et al. [2001], Easley et al.740

[2010]. In modelling social networks, users’ preferences relationships are encoded in a graph, where741

neighboring nodes are users with similar preferences. This graph can be known a priori or it can742

be inferred from previously collected feedback Dong et al. [2019]. Exploiting this information and743

integrating them into bandit algorithms can lead to a significant increase in performance Yang et al.744

[2020]. Indeed, the knowledge of user relations allows the algorithm to tackle the data sparsity issue745

that is inherent to bandit settings.746

Another fundamental point that can be used for integration of information from social networks is747

that, social networks show large modularity measures Newman [2006] Borge-Holthoefer et al. [2011].748

This implies that we have high density of edges within clusters and low density of edges between749

clusters. As a result, users can be clustered based on the graph topology and a preference vector750

can be learned for each cluster, substantially reducing the dimensionality of the problem. In other751

words, discovering the clustering structure of users can reduce the computational burden of large752

social networks. Consequently, there have been attempts in exploiting the clustered structures of753

social networks in bandit algorithms Gentile et al. [2014], Nguyen and Lauw [2014], Yang and Toni754

[2018], Li et al. [2019], Nourani-Koliji et al. [2023], Cheng et al. [2023].755

Bandit meta-learning In contrast to the multi-task setting, meta learning deals with sequentially756

arriving tasks that have to be learnt and generalizing the gained information to improve performance757

for future tasks. Here, as in the multi-task setting, it is assumed that the tasks share some common758

structure that is ought to be learnt and exploited. In the work of Bilaj et al. [2024] it is assumed that759

the tasks were sampled from a common distribution such that they are concentrated around an affine760

subspace, which is learnt through PCA algorithm. The resulting projection matrices could then be761

exploited to improve learning for new tasks in an adapted UCB and Thompson sampling approach.762

Other lines of work are Cella et al. [2020], Kveton et al. [2021], Basu et al. [2021], which learns the763

mean of the distribution under the assumption that the covariance of the prior is known or Peleg et al.764

[2022] which generalizes this assumption and attempts to learn the covariance as well.765

D Additional experimental details766

D.1 About experiments of the main paper767

The experiments have been conducted with an intel i7 CPU with 12 2.6 GHz cores and 32 GB of768

RAM. The two experiments with the highest number of tasks (200) and dimension (80) take about 8769

hours, parallelized over the 12 cores.770

To generate clusters, we generate |P| variables vii∈P from the uniform distribution, then we use771

them to construct a categorical distribution with probabilities proportional to evi . These probabilities772

defines the cluster proportions.773

D.2 Solving the Network Lasso problem774

We implement the Primal-Dual algorithm proposed in Jung [2020] to solve the Network Lasso775

problem but we do not vectorize the matrices (in the sense of stacking their columns into a vector),776

which speeds up computation.777

D.3 Algebraic connectivity vs topological centrality index778

Given two fully connected graphs weightless G1 and G2 with size 100 each, we progressively link779

them by edges, we construct the Laplcian L of the resulting graph G. We measure the minimum780

topological centrality index min1≤i∈200(L
†
C)

−1
ii , and the algebraic connectivity, i.e. the minimum781

non-null eigenvalue of L.782
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Figure 2: Minimum Topological centrality index vs Algebraic Connectivity, for a graph formed by
connecting two fully connected initial graphs G1,G2 with size 100 each.

Clearly, the minimum topological centrality index grows faster than the algebraic connectivity in783

this case, and seems to saturate at some level that is reached in a linear progress by the algebraic784

connectivity.785

D.4 Limitations786

The first limitation of the paper is the restriction to the setting of i.i.d generated action sets. This787

restriction is common to all papers relying on Lasso-type optimization objectives [Bastani and Bayati,788

2019, Oh et al., 2021, Cella and Pontil, 2021, Ariu et al., 2022, Cella et al., 2023]. Also, we do not789

provide a lower bound for the regret, a challenge that we let for future work. Besides, our optimization790

problem is not strongly convex, which can be mitigated by adding a squared L2 norm regularization.791

However, such an addition would probably drastically change the theoretical analysis.792

D.5 Broader Impacts793

As our method can be applied to transfer knowledge between users of a recommender system, it has794

the potential to improve their overall experience by learning their preferences quickly. However, one795

must be careful with the strength of the integrated prior knowledge as it can lead to an adverse effect796

of slowing down the learning process.797
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Justification: The piecewise stationarity on a graph assumption is mentioned in Section 3803

and formalized in Assumption 3. Theorem 1 states the oracle inequality, and Theorem 3804

provides the regret bound after using the result of Theorem 2. Experiments are carried out805

at Section 6.806

Guidelines:807

• The answer NA means that the abstract and introduction do not include the claims made808

in the paper.809
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answer to this question will not be perceived well by the reviewers.812

• The claims made should match theoretical and experimental results, and reflect how813
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• We recognize that the procedures for this may vary significantly between institutions1106

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1107

guidelines for their institution.1108
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