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Figure 1. Visual result. We present a qualitative example obtained from our long-term motion generator. A stream of input texts is used to
condition our model and produce a matching continuous motion.

Abstract

In this paper, we address the challenging problem of001
long-term 3D human motion generation. Specifically, we002
aim to generate a long sequence of smoothly connected003
actions from a stream of multiple sentences (i.e., para-004
graph). Previous long-term motion generating approaches005
were mostly based on recurrent methods, using previously006
generated motion chunks as input for the next step. How-007
ever, this approach has two drawbacks: 1) it relies on se-008
quential datasets, which are expensive; 2) these methods009
yield unrealistic gaps between motions generated at each010
step. To address these issues, we introduce simple yet ef-011
fective T2LM, a continuous long-term generation frame-012
work that can be trained without sequential data. T2LM013
comprises two components: a 1D-convolutional VQVAE,014
trained to compress motion to sequences of latent vectors,015
and a Transformer-based Text Encoder that predicts a la-016
tent sequence given an input text. At inference, a sequence017
of sentences is translated into a continuous stream of la-018
tent vectors. This is then decoded into a motion by the019
VQVAE decoder; the use of 1D convolutions with a local020
temporal receptive field avoids temporal inconsistencies be-021
tween training and generated sequences. This simple con-022
straint on the VQ-VAE allows it to be trained with short023

sequences only and produces smoother transitions. T2LM 024
outperforms prior long-term generation models while over- 025
coming the constraint of requiring sequential data; it is also 026
competitive with SOTA single-action generation models. 027

1. Introduction 028

Human motion generation plays a vital role in numerous ap- 029
plications of computer vision [9, 20, 54] and robotics [11, 030
28, 44, 47]. Recent trends focus on controlling generated 031
human motions with input prompts such as discrete action 032
labels [14, 31, 32, 37, 56], or free-form text [15, 16, 38, 40, 033
49, 60, 61]. However, controllable synthesis of long-term 034
human motion is less studied [5, 46] and remains challeng- 035
ing, mainly due to the scarcity of long-term training data. In 036
this work, we propose a model to produce long-term human 037
motion from a given stream of textual descriptions of arbi- 038
trary length without requiring sequential data for training. 039

Real-life human motion is continuous and can be viewed 040
as a temporal composition of actions, with transition in be- 041
tween. Although the text-conditional generation of short 042
actions has been thoroughly addressed by previous work 043
[37, 38, 51], modeling smooth and realistic transitions re- 044
mains a core challenge for generating long-term motions 045
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Method
Trained without
sequential data

Continuous generation

TEACH [5] ✗ ✗

MultiAct [22] ✗ ✗

ST2M [25] ✗ ✗

DoubleTake [46] ✓ ✗

T2LM (Ours) ✓ ✓

Table 1. Comparison to previous methods. T2LM can be trained
without sequential datasets such as BABEL. Previous models with
discontinuous decoding generate unrealistic gaps between the con-
secutive actions. In contrast, our approach employs a continuous
decoding scheme for smoother transitions between actions.

usable in practical applications [33].046

While a body of work [5, 22, 25, 46] on long-term mo-047
tion generation has been introduced, we identify two lim-048
itations of these methods summarized in Table 1. First,049
existing methods such as MultiAct [22], TEACH [5], or050
ST2M [25] rely on sequential data for training. Compared051
to single-action datasets [14, 15], which contain annotations052
for short actions, a sequential dataset [41] contains frame-053
level annotations for each individual action and transition054
within long-term motion. While this provides valuable data055
to capture how transitions connect consecutive actions, ac-056
quiring such dense frame-level annotation at scale is ex-057
pensive, and determining the segment between actions is058
not trivial. In addition, capturing transitions for all possi-059
ble pairs of actions at scale is impossible. This dependency060
limits the applicability of existing methods to new domains.061

Second, existing methods empirically struggle to create062
smooth and realistic transitions. We hypothesize this is due063
to discontinuities in the generation process when chaining064
actions together. The majority of works [5, 22, 25] recur-065
rently generates the long-term motions at two granulari-066
ties: actions of each step are conditioned on the output of067
the previous step, and those actions are concatenated into068
long-term motion. Concurrently, DoubleTake [46] uses the069
MDM [51] to generate actions independently and blends070
them into a long-term motion with a diffusion model. This071
approach also operates at two granularities, generating indi-072
vidual actions and merging them. It results in abrupt speed073
changes and discontinuities between consecutive actions. In074
this work, we hypothesize that a framework that instead075
stays at a single granularity can alleviate these issues and076
generate smoother transitions.077

As illustrated in Fig. 2, we propose a conceptually sim-078
ple yet effective framework T2LM. Our method a) can gen-079
erate a motion continuously across the input sentences and080
b) does not require long-term action sequences for training,081
thus overcoming the limitations of existing work. At train082
time, we first train VQVAE to map an input motion into083
a sequence in a discrete latent space. The mapped latent084
sequence is used as a target for a Text Encoder, a text-and-085

length conditional latent prediction model. Both are trained 086
with single actions and accompanying texts. At inference 087
time, a stream of input sentences and desired motion lengths 088
is encoded into a stream of latent vectors. Finally, we con- 089
tinuously reconstruct the desired long-term motion with the 090
1D convolutional decoder. 091

Our model has two key properties: First, it produces se- 092
quences of latent vectors, unlike approaches that encode the 093
entire sequence into a single latent vector like Actor [37]. 094
Second, we learn a prior over small chunks of motion, each 095
encoded independently from the others, using a VQVAE en- 096
coder built from 1D convolutional layers with a local recep- 097
tive field. This assumption, which departs from methods 098
taking all past motion into account like PoseGPT [31], is 099
the simplest way to avoid any discrepancies between short 100
training sequences and long sequences at inference time. 101

These two key properties offer several advantages for 102
long-term generations. First, it is possible to process a se- 103
quence of infinite length on the fly, as the cost of forward- 104
ing the model is linear in the size of the local receptive 105
field [42]. This is in contrast with methods that employ a 106
vanilla transformer architecture with a complexity that is 107
quadratic in the sequence length. Thus, our model can pro- 108
cess a continuous stream rather than a sequence of chunks 109
that have to be later post-processed [5]. Secondly, using 110
a sequence of latents with local receptive field allows to 111
convey fine-grained semantics at the right temporal loca- 112
tion. Empirically, we show that these simple changes lead 113
to higher-quality actions compared to existing methods that 114
generate variable-length actions with a single latent vector. 115

Our experiments show that T2LM outperforms the 116
state-of-the-art on long-term generation while matching or 117
outperforming existing approaches for single-action when 118
evaluated with FID scores and R-precision. We present two 119
novel metrics aimed at evaluating the quantitative excel- 120
lence of long-term motion more effectively: a) during tran- 121
sitions and b) along the sequence utilizing a sliding window 122
approach. 123

Our contributions are the following: 124
• We propose a conceptually simple yet effective method 125

T2LM for generating long-term human motions from a 126
continuous stream of arbitrary-length text sequences. 127

• We make two architectural design choices which together 128
enable T2LM to generate smooth transitions and to be 129
trained without any long-term sequential training data. 130

• As a result, T2LM outperforms previous long-term gen- 131
eration methods while overcoming their limitations. We 132
also match the performance of previous state-of-the-art 133
single-action generation models. 134

2. Related works 135

Human motion synthesis. Human motion synthesis is 136
naturally formulated as a generative modeling problem. In 137
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Figure 2. Overview of T2LM. We present the overview of our test-time generation. From the stream of textual descriptions and desired
lengths of each action, we produce a smooth long-term motion corresponding to the text stream.

particular, prior works have relied on Generative Adversar-138
ial Networks (GANs) [1, 27], Variational Auto-encoders139
(VAEs) [14, 37], Normalizing flows [19, 59], diffusion140
models [46, 51, 52, 58], or the VQ-VAE framework [22,141
31, 60, 63]. Motion can be predicted from scratch or given142
observed frames, from the past only [4, 17, 36, 57, 62], or143
also with future targets [10, 18]. Other forms of condition-144
ing can be used, such as speech [7, 13], music [21, 23, 24],145
action labels [14, 31, 37], or text [1, 3, 12, 26, 27, 45]. In146
the presence of text inputs, human motion generation can147
also be cast into a machine-translation problem [1, 26, 39];148
a joint cross-modal latent space can also be used [3, 12, 55].149
In this work, we consider motion generation conditioned on150
text sentences from a generative modeling perspective.151

Action and text conditioned human motion generation.152
Early action conditional motion models relied on Condi-153
tional GANs [8] and conditional VAEs [14, 32, 37]. More154
flexible variants have been proposed using the VQ-VAE155
framework; in particular, PoseGPT [31] allows conditioning156
on past observations relying on a GPT-like model to sam-157
ple motions. Human motion can be generated conditionally158
on text. Earlier works include the Text2Action model [2],159
based on an RNN conditioned on a short text. Motion-160
CLIP [50] aligns text and motion by leveraging the pow-161
erful CLIP [43] model as the text encoder and empirically162
shows that this enables out-of-distribution motion genera-163
tion. TEMOS [38] extends the VAE-based approach AC-164
TOR [37] to obtain a text-conditional model using an addi-165

tional text encoder. T2M [15] proposed a large-scale dataset 166
called HumanML3D, which is better suited to the task of 167
text-conditional long motion generation. TM2T [16] jointly 168
considers text-to-motion and motion-to-text predictions and 169
shows performance gains from jointly training both tasks. 170
Recently, T2M-GPT [60] have achieved competitive per- 171
formance using the VQ-VAE framework, where motion is 172
encoded into discrete indices, which are then predicted us- 173
ing a GPT-like model. Diffusion-based models have also 174
emerged as a powerful class of models to generate motion 175
conditionally on text [51]. Related to our works, Multi- 176
Act [22], ST2M [25] and TEACH [5] utilize a recurrent 177
generation framework with past-conditional VAE to gen- 178
erate multiple actions sequentially. These require sequen- 179
tial training data [41], an inherent limitation of the recurrent 180
paradigm. DoubleTake, a part of PriorMDM [46] that uti- 181
lizes MDM [51] as a generative prior, individually generates 182
the actions and connects them with a diffusion model. 183

3. Method 184

We now present in detail our T2LM approach. First, we ex- 185
plain how we compress human motion into a discrete space 186
and reconstruct motion from it (Sec. 3.1). Second, we in- 187
troduce a GPT-like autoregressive Text Encoder designed 188
to map a given text to a sequence in the discrete latent 189
space learned by the VQ-VAE (Sec. 3.2). Third, we dis- 190
cuss in Sec. 3.3 our procedure to generate long-term motion 191
sequences corresponding to input text streams. We also in- 192
clude a desired length for each action in the stream. At train 193
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Figure 3. VQVAE architecture. We present the architecture of our VQVAE. Both the encoder and the decoder are built with convolutional
layers.
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Figure 4. Text Encoder architecture. We present the architecture of Text Encoder. A first test encoder injects information about the text
and length embeddings into a sequence of tokens, and a second autoregressive model predicts the latent sequence.

time, this is extracted from the data, while at inference, this194
can be either treated as an input or sampled from a prior.195

3.1. Learning a discrete latent representation196

Motivation. Human motion is typically represented as a197
temporal sequence of 3D points – human meshes or skele-198
tons – or a sequence of model parameters that produce such199
3D representations [29, 35]. Plausible human motion usu-200
ally represents a very small portion of these representation201
spaces, as evidenced by the fact that sequences of random202
samples do not produce any realistic motion. This has moti-203
vated methods that compress human motion into a discrete204
latent space and has shown to be beneficial for reconstruc-205
tion and manipulation [31, 60]. In contrast to previous ap-206
proaches [5, 38, 46, 51], where a single latent represents the207
entire action available at each step, we design our approach208
so that each latent represents a fixed length of human mo-209
tion. This enables continuous decoding of the semantics210
from textual descriptions without creating a duration mis-211
match between train and test sequences. We employ a 1D212
convolutional VQVAE to learn such a latent representation.213

Model. As depicted in Fig. 3, our VQVAE consists of an214
Encoder Econv, a Decoder Dconv, and a quantization mod-215
ule Q using a codebook V . The model is inspired by216
[31, 48, 60]. The Encoder and Decoder, composed of 1D217
convolution layers, use two stride-2 convolutions and two 2218
upscaling layers each, setting the upscaling and downscal-219

ing rate l to 4. The input motion X ∈ RT×d is encoded 220
by the encoder in Z = Econv(X) ∈ RTz×dV , which is then 221
quantized in Ẑ ∈ RTz×dV . Note that l denotes the temporal 222
down-scaling factor of the mapping, Tz := ⌊T/l⌋ denotes 223
the length of the downscaled motion in the latent space. 224
Also, d and dV denote the dimensions of the single-frame 225
human pose representation and the quantized latent space, 226
respectively. Finally, Ẑ is reconstructed as X̂ ∈ RT×d by 227
the decoder. 228

Quantization and optimization. Our quantization Q 229
aligns with a discrete codebook V = {v1, ..., vC}, where 230
C represents the number of codes in the codebook and 231
vi ∈ RdV . Specifically, each element zi of the latent vec- 232
tor sequence Z = Econv(X) = {z1, ..., zTz

} is quantized 233
into the closest codebook entry vsi with the corresponding 234
codebook index si ∈ {1, ..., C}. Thus, our VQVAE can be 235
represented by the following equation: 236

Ẑ = Q(Z) :=

[
argmin

vsi

||zi − vsi ||2
]
i

∈ RTz×dV (1) 237

X̂ = Dconv(Ẑ) = Dconv(Q(Econv(X))). (2) 238

Eq. (2) is non-differentiable, and we handle it by the 239
straight-through gradient estimator. During the backward 240
pass, it approximates the quantization step as an identity 241
function, copying gradients from the decoder to the en- 242
coder [6]. This allows the training of the encoder, decoder, 243
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and codebook through optimization by following loss:244

LVQ =Lrecon(X, X̂) + ||sg [Econv(X)]− Ẑ||22
+ β||sg

[
Ẑ − E(X)

]
− Ẑ||22.

(3)245

The term β||sg
[
Ẑ − Econv(X)

]
− Ẑ||22, is referred to as a246

commitment loss, has shown to be necessary to stable train-247
ing [53]. The reconstruction loss Lrecon consists of L1-loss248
on the parameter, reconstructed joint, and velocity.249
Product quantization. To enhance the flexibility of the250
discrete representations learned by the encoder Econv, we251
employ a product quantization. Each element zi within252
Z = Econv(X) is divided into K chunks (z1i , ..., z

K
i ), with253

each chunk discretized separately using K different code-254
books. The size of the learned discrete latent space in-255
creases exponentially with K, resulting in a total of CTK256
combinations, where C is the size of each codebook. Al-257
though the increase in T and K provides a positive gain258
in both reconstruction quality and diversity, it introduces a259
trade-off that makes mapping text to latent space more chal-260
lenging. The utility of using product quantization is empir-261
ically validated in our experiments.262

3.2. Mapping a text onto discrete latent space263

Motivation. We propose a Transformer-based Text En-264
coder that predicts a sequence of indices in discrete latent265
space given an input text and desired motion length T .266
At train time, the target sequences are obtained using the267
trained VQVAE by encoding ground truth target motions.268
One difficulty is that the input text is of variable dimension,269
a-priori independent of the length of the corresponding mo-270
tion. To address this, we embed the conditioning signals and271
use a first Transformer block to inject that information into272
a sequence of Tz positional embeddings, as illustrated in273
Fig. 4. Note that T and Tz denote the desired length in mo-274
tion space and downscaled length in motion latent space, re-275
spectively. This yields a sequence of Tz vectors, which are276
all functions of the input text and length. A second Trans-277
former block, this time causal, then uses this information278
to perform autoregressive next index prediction, ultimately279
obtaining the predicted index sequence.280
Model. As depicted in Fig. 4, our approach involves two281
Transformers, H1 and H2. To form the input for H1, we282
first encode the text through CLIP [43] and a linear layer283
into etext ∈ RdH , and embed the desired length T through284
the embedding layer Ilen into elen ∈ RdH , respectively.285
Note that dH denotes the input dimension of the Trans-286
former layers. We concatenate etext and elen, along the287
time dimension, following with positional embedding vec-288
tors PE1 ∈ RTz×dH representing the temporal dimension in289
motion latent space. This is used as input to H1; we discard290
the first two outputs along the time dimension and obtain291

the text-length embedding 292

{eitext-len}
Tz
i=0 ∈ RTz×dH = H1(etext, elen,PE1)[2 : Tz + 2].

(4) 293
The second Transformer block is used for autoregres- 294

sive next index prediction. Given the previous indices, 295
{si}t−1

i=0 = (s0 := sϕ, s1, ..., st−1), and {eitext-len}
t−1
i=0 , we 296

estimate the distribution p(st|{eitext-len}
t−1
i=0, {si}

t−1
i=0). Each 297

index {si}t−1
i=0 is embedded through the embedding layer 298

Iidx into {eiidx}
t−1
i=0 , concatenated with {eitext-len}

t−1
i=0 . The 299

concatenated input is added with positional embedding 300
PE2 ∈ Rt×2dH and passed to the Transformer layer H2. 301
The output corresponding to et−1

idx is then processed through 302
a linear layer to estimate the likelihood, 303

p(st|{eitext-len}t−1
i=0, {e

i
idx}t−1

i=0). (5) 304

During training, we utilize a causal mask, following 305
PoseGPT [31], to handle this process in a single forward 306
pass. At test time, we repeat the autoregressive sampling 307
Tz times to obtain the final indices {si}Tz

i=1. 308
Optimization goal. This part of the model is trained to 309
estimate the likelihood conditioned on the text and length 310
input by minimizing the negative log-likelihood of the target 311
indices under the output distribution. 312

3.3. Generation of long-term motion with T2LM 313

Fig. 2 gives an overview of how T2LM works at test 314
time. Note that we use different notation in Sec. 3.3 from 315
Secs. 3.1 and 3.2. Given a stream of sequential inputs 316
{(wi, Ti)}Li=1 of arbitrary length L, with wi and Ti corre- 317
sponding to the i-th (i ∈ {1, ..., L}) textual action descrip- 318
tion and desired motion length, respectively. We generate a 319
corresponding realistic and smooth long-term motion, rep- 320

resented as a sequence of poses, Xlong ∈ R(
∑L

i=1 Ti)×d. 321
Each pair of element (wi, Ti) is first individually passed 322
to the Transformer Text Encoder to obtain a sequence 323
{si1, ..., siTi/l

} of discrete indices, where l denotes the tem- 324
poral down-scaling factor of the mapping. Then, the ex- 325

tracted discrete indices {{sij}
Ti/l
j=1}Li=1 are dereferenced us- 326

ing the codebook V and concatenated into a continuous se- 327
quence of latent vectors. This gives us the final input to the 328
decoder: 329

Z = {V (s11), . . . V (s
T1/l
1 ) . . . , V (s1L) . . . V (S

TL/l
L ).} (6) 330

Finally, using a 1D convolutional decoder Dconv, we decode 331
these latent vectors to obtain the desired long-term motion: 332

Xlong = Dconv(Z) ∈ R(
∑L

i=1 Ti)×d. (7) 333

Notably, the input of the convolutional decoder is a con- 334
tinuous stream of arbitrary length rather than independently 335
generated actions that are later blended together. 336
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Trans.
Vectors FIDVQ ↓ R-

Prec.↑ FID↓ Diversity↑TS-FID↓

6 0.231 0.446 0.716 9.924 2.121
4 0.196 0.453 0.634 9.562 1.842
2 0.204 0.451 0.689 9.972 1.554
0 (Ours) 0.161 0.445 0.457 10.047 1.389

Table 2. Ablation study on transition latent vectors. We ablate
the performance with respect to the size of transition latent vectors.

Codebook
Conf. FIDVQ ↓ R-

Prec.↑ FID↓ Diversity↑TS-FID↓

size 64 0.181 0.460 0.568 9.471 1.516
size 128 0.156 0.389 1.751 9.33 1.670

dim 128 0.418 0.417 0.761 9.600 1.822
dim 256 0.246 0.447 0.767 9.707 1.620

num 1 0.538 0.449 0.581 9.728 1.832
num 4 0.062 0.424 0.515 9.289 1.325

256, 512, 2
(Ours) 0.161 0.445 0.457 10.537 1.389

Table 3. Ablation study on codebook. We ablate the performance
with respect to the codebook configuration.

4. Experiment337

4.1. Implementation details338

For VQVAE, we used a codebook of 512 dimensions, C =339
256 vectors in each K = 2 book for product quantiza-340
tion. We implement our framework with PyTorch [34].341
Our Text Encoder is a Transformer with three layers, 2048342
inner dimensions, and 16 multi-head attentions. We use343
AdamW [30] as an optimizer with a learning rate of 2e-4344
and 3e-4, respectively, for training the VQVAE and Text345
Encoder. VQVAE and Text Encoder are trained for 1000346
and 700 epochs, respectively, with the StepLR learning rate347
scheduler of step size 350 and a decrease rate of 0.5. The348
size of the mini-batch is set to 128. We applied a linear in-349
terpolation augmentation during VQVAE training and ran-350
dom corruption [60] augmentation for the Text Encoder.351
Training our model takes about a day on a single Nvidia352
2080Ti GPU.353

4.2. Dataset354

We conducted experiments on two datasets: Hu-355
manML3D [15] and BABEL [41]. Our experiments focused356
mainly on the HumanML3D dataset to show the perfor-357
mance of our proposed T2LM without sequential training358
datasets, emphasizing its effectiveness in long-term genera-359
tion. Regarding the BABEL dataset, we also compared our360
approach with existing long-term generation methods that361
rely on sequential data. Both datasets were evaluated using362
widely used evaluation protocols [15].363
HumanML3D. The HumanML3D dataset comprises364

Category Method
Sliding-scope Transition-scope

FID↓ Div.↑ FID↓ Div.↑

- GT Motion 0.003 9.08 - -

Long-term
(w.o. seq. data)

DoubleTake [46] 1.23 7.824 1.753 7.499
T2LM(Ours) 0.440 8.667 1.389 8.690

Table 4. Comparison to SOTA: Long-term motion on Hu-
manML3D test set. We compare the long-term generation per-
formance with the state-of-the-art method DoubleTake.

Category Method
Sliding-scope Transition-scope

FID↓ Div.↑ FID↓ Div.↑

- GT Motion 0.005 9.53 0.078 8.53

Long-term
(with seq. data)

TEACH [5] 2.633 9.236 2.173 9.429
MultiAct [22] 3.128 8.593 3.694 8.338

Long-term
(w.o. seq. data)

DoubleTake [46] 2.013 6.920 3.874 7.342
T2LM(Ours) 1.799 9.06 3.535 7.941

Table 5. Comparison to SOTA: Long-term motion on BABEL
test set. We compare the long-term generation performance with
previous state-of-the-art methods.

14,616 motions, each associated with 3-4 textual descrip- 365
tions. These motions, sampled at 20 FPS, originated from 366
the AMASS and HumanAct12 motion datasets, with man- 367
ual additions of text descriptions. During training, we used 368
motions with lengths ranging from a minimum of 40 frames 369
to a maximum of 196 frames. 370

BABEL We utilized the text version of the BABEL 371
dataset [5]. This dataset includes 10,881 sequential mo- 372
tions, each annotated with textual labels for action seg- 373
ments. We used motions processed similarly to TEACH [5], 374
with lengths ranging from a minimum of 44 frames to a 375
maximum of 250 frames. 376

4.3. Evaluation metrics 377

Sliding-scope and Transition-scope. Existing evaluation 378
metrics for motion generation rely heavily on extracting fea- 379
tures from the entire motion, making them dependent on 380
motion length and inadequate for quantitatively assessing 381
the quality of generated long-term motions. We propose 382
two new evaluation criteria to address this limitation: FID 383
and diversity within a Sliding-scope and Transition-scope. 384

We use a fixed window of 80 frames for both scopes 385
to extract subsets of long-term motions. We then measure 386
FID and Diversity by comparing these subsets with sets ex- 387
tracted identically from the ground truth motion set. In 388
Sliding-scope (SS-FID and SS-Div), we slide the window 389
with a stride of 40 frames from the beginning to the end 390
of the generated long-term motion to extract samples. In 391
the Transition-scope (TS-FID and TS-Div), we extract sam- 392
ples centered around transitions in the generated long-term 393
motion. The Sliding-scope provides an overall measure of 394
how realistically the generated long-term motion represents 395
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Category Method
R-Precision↑

FID↓ Diversity↑ MM-Dist↓
Top-1 Top-2 Top-3

- GT Motion 0.339 0.514 0.620 0.004 8.51 3.57

Long-term
(with seq. data)

TEACH [5] - - 0.46 1.12 8.28 7.14
MultiAct [22] 0.266 0.353 0.427 1.283 8.306 8.439

Long-term
(w.o. seq. data)

DoubleTake [46] - - 0.43 1.04 8.14 7.39
T2LM(Ours) 0.314 0.483 0.589 0.663 8.989 3.811

Table 6. Comparison to SOTA: Single-action on BABEL test set. We compare the generation performance of a single action to previous
state-of-the-art methods.

Category Method
R-Precision↑

FID↓ Diversity↑ MM-Dist↓
Top-1 Top-2 Top-3

- GT Motion 0.511 0.703 0.797 0.002 9.503 2.974

Long-term
(w.o. seq. data)

DoubleTake [46] - - 0.59 0.60 9.50 5.61
T2LM(Ours) 0.445 0.631 0.731 0.457 10.047 3.311

Table 7. Comparison to SOTA: Single-action on HumanML3D test set. We compare the generation performance of a single action to
previous state-of-the-art methods. Note that our main comparison target are only the long-term generation methods.

the entire sequence. At the same time, the Transition-scope396
evaluates how smoothly and seamlessly the long-term mo-397
tion portrays transitions between actions. We use the pre-398
trained feature extractor from [15] to encode the represen-399
tation of motion and text. We evaluate the quality of gener-400
ated short-term action with R-precision, FID, MultiModal401
distance, and Diversity. Furthermore, we propose SS-FID402
and TS-FID to assess the quality of generated long-term403
motion quantitatively. R-Precision. For each motion, we404
rank the Euclidean distance to 32 text descriptions of 1 pos-405
itive and 31 negatives. We report the Top-1, Top-2, and406
Top-3 accuracy. FID. We report the Frechet Inception Dis-407
tance between the set of ground truth motions and generated408
motions. MM-Distance. We report the average Euclidean409
distances between the features of each text and motion. Di-410
versity. We report the average Euclidean distances of the411
pairs in a set of 300 generated motions.412

4.4. Ablation study413

This section presents an ablation study on an alternative de-414
sign idea using a transition latent vector and alternative con-415
figurations of the codebook in VQVAE. Quantitatively, it is416
conducted using five metrics: FIDV Q, R-Prec., FID, Diver-417
sity, and TS-FID. Note that FIDV Q represents the FID score418
of the reconstructed motion by the VQVAE. Please refer to419
the supplementary material for other ablation studies.420
Transition latent vector. We considered two ways of421
chaining a stream of latents from different texts at inference422
time. The first consists of simply concatenating the fea-423
tures; the second uses an additional token in the VQ-VAE424
codebook to denote transitions. For this second option, we425
add the learnable transition vectors in between latents of426
each text: V (si⌊Ti/l⌋) and V (si+1

1 ) at inference time as de-427

picted in Fig. 2 and Sec. 3.3. To train these transition latent 428
vectors, we randomly substitute part of the quantized latent 429
vectors Ẑ into the transition latent vectors while training the 430
VQVAE. While using a transition latent is a very reasonable 431
idea used in methods such as MultiAct [22] and Double- 432
Take [46], empirically, we found that a technique based on 433
concatenation works best while being more straightforward. 434

Tab. 2 presents the results. The leftmost column indi- 435
cates the size of transition vectors; the length of the addi- 436
tional transition is 2 × l if we use two transition vectors, 437
where l denotes the scaling rate of the VQVAE. Interest- 438
ingly, the most straightforward approach of using concate- 439
nation (i.e., first idea) performs best in our case. Specifi- 440
cally, a decrease in performance was observed as the size 441
of transition latents increased in four metrics. The decrease 442
in FID and Diversity, reflecting single-action quality, sig- 443
nals a reduction in the representation power of the latent 444
space during transition latent training. This is evidenced 445
by the decrease in reconstruction metrics for the VQVAE 446
measured by FIDV Q. We conclude that using additional la- 447
tents to represent transitions is not beneficial when sequen- 448
tial datasets are not employed, as evidenced by the degrada- 449
tion of TS-FID, which indicates transition quality. 450

Codebook configuration. In Tab. 3, we present quantita- 451
tive measures for various codebook configurations used in 452
the VQVAE. Commonly, an increase in the complexity of 453
the codebook results in better performance of VQVAE re- 454
construction. However, this comes at the expense of more 455
complicated predictions for the latent sequence prediction 456
model. Indeed, it does not lead to monotonously improving 457
final generations, which is clearly visible when using four 458
codebooks. Given these results, we chose the setting with 2 459
codebooks, 256 vectors each, and 512 dimensions. 460
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(a) “Wave hand” → “Walks in a circle” →
“Runs forward”

(b) “Walks forward fast” → “Walks back” →
“Putting a golf ball”

(c) “Walks backward, then walk forward to
original position” → “Raise both arms and
squat” → “Walks forward a couple steps, then
turn back, walk back to the original position”

Figure 5. Qualitative result. We provide visualizations of generated long-term motions obtained with our method. The first, second, and
third actions are rendered in blue, purple, and brown, respectively. This is a video figure that is best viewed by Adobe Reader.

4.5. Comparison to state-of-the-art461

In this section, we compare the quality of motions gen-462
erated with our T2LM to previous methods on the Hu-463
manML3D [15] and BABEL [41] datasets. Regarding the464
experiment on BABEL, we trained our model with indi-465
vidual actions and text annotations without using transi-466
tions. Our main comparison target on BABEL and Hu-467
manML3D is DoubleTake [46], the only long-term gen-468
eration method trained without sequential data. Further-469
more, we also compare with TEACH [5] and MultiAct [22]470
on BABEL dataset. 1 Our straightforward approach out-471
performs previous long-term generation methods in both472
single-action and long-term generation despite not requir-473
ing any sequential data for training.474
Long-term generation. Tabs. 4 and 5 shows that our475
T2LM outperforms the main competing method, Double-476
Take [46], in every criteria on both HumanML3D [15]477
and BABEL [41]. Regarding the Sliding-scope evalua-478
tion, our model demonstrates better overall quality of gener-479
ated long-term motion compared to DoubleTake. Addition-480
ally, in the Transition-scope evaluation, our model produces481
more realistic transitions than those generated by Double-482
Take. When evaluating long-term generation on the BA-483
BEL dataset, our model outperforms MultiAct on SS-FID,484
SS-Div. and TS-FID metric. Our method also shows the485
better performance compared to TEACH on the SS-FID486
metric, indicating better overall quality. However, ours487
showed inferior performance in the Transition-scope eval-488
uation. This can be attributed to the usage of transitions489

1ST2M is excluded from the comparison, since they do not use the
135-dimension representation as TEACH, DoubleTake and Ours. Instead,
ST2M used 263-dimension representation. As a result, their quantita-
tive evaluation lies on different dimension from TEACH, DoubleTake and
Ours. (Quantitative scores of GT motions in [25] and [46] are different.)

from BABEL in TEACH during training time, while we 490
train with individual actions only. 491

Single-action generation. Tabs. 6 and 7 show that T2LM 492
outperforms previous long-term generation methods by a 493
large margin on both HumanML3D [15] and BABEL [41]. 494
Specifically, our T2LM scored 14.1% higher Top-3 R- 495
precision compared to DoubleTake [46] on HumanML3D. 496
Moreover, we gained 16.2%, 15.9% and 12.9% Top- 497
3 R-precision over MultiAct [22], DoubleTake [46] and 498
TEACH [5], respectively, on BABEL. Our superior perfor- 499
mance is credited to the localized representative regions of 500
each latent vector, combined with our Text Encoder, effec- 501
tively conveying semantics from the text to the appropriate 502
temporal dimensions. 503

4.6. Qualitative result 504

We present our generated long-term motion videos in Fig. 5. 505
The video figure is best viewed by Adobe Reader. We 506
downsampled the original video rendered in 24FPS into 507
6FPS and then displayed it in 15FPS. Please refer to the 508
supplementary material for better visualization. 509

5. Conclusion 510

In this work, we proposed a conceptually simple yet ef- 511
fective long-term human motion generation framework by 512
composing VQVAE and Transformer-based Text Encoder. 513
Our approach achieved state-of-the-art performance com- 514
pared to previous long-term generation methods on both ac- 515
tions and transitions. We also performed a detailed analysis 516
on various model designs. 517
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