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Abstract

We investigate the robustness of Large Language Models (LLMs) to structural
interventions by deleting and swapping adjacent layers during inference. Surpris-
ingly, models retain 72–95% of their original top-1 prediction accuracy without any
fine-tuning. We find that performance degradation is not uniform across layers: in-
terventions to the early and final layers cause the most degradation, while the model
is remarkably robust to dropping middle layers. This pattern of localized sensitivity
motivates our hypothesis of four stages of inference, observed across diverse model
families and sizes: (1) detokenization, where local context is integrated to lift raw
token embeddings into higher-level representations; (2) feature engineering, where
task- and entity-specific features are iteratively refined; (3) prediction ensembling,
where hidden states are aggregated into plausible next-token predictions; and (4)
residual calibration, where irrelevant features are suppressed to finalize the top-1
output distribution. Synthesizing behavioral and mechanistic evidence, we provide
a hypothesis for interpreting depth-dependent computations in LLMs.

1 Introduction

Recent advancements in Large Language Models (LLMs) have exhibited remarkable reasoning
capabilities, often attributed to increased scale [1]. Understanding these capabilities and mitigating
associated risks [2–4] have motivated extensive research into their underlying mechanisms.

A bottom-up approach to interpretability, known as mechanistic interpretability, has explored the
iterative inference hypothesis [5, 6], which posits that each transformer layer incrementally updates a
token’s hidden state toward minimizing loss by progressively shaping the next-token distribution [7].
This is supported by self-repair [6], where later layers correct or mitigate errors introduced by earlier
layers, and redundancy [8, 9], where multiple layers perform similar or overlapping computations to
refine predictions.

It remains unclear how this iterative view of inference fits with the “circuit” hypothesis, which
argues for clearly delineated, specialized roles for certain model components. This is supported
by induction heads [10], successor heads [11], copy suppression mechanisms [12], and knowledge
neurons [13], among other “universal” neurons [14, 15]. Whereas iterative inference suggests gradual
refinement through overlapping computations, the strong circuit hypothesis implies distinct, modular
computational pathways.
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Figure 1: Statistical signatures of stages of inference averaged across three model families. (Blue)
KL between the normal model and layer ℓ zero-ablated. (Purple) Total attention paid to the previous
five tokens in a sequence. (Green) The number of “prediction” neurons (Red) The number of
“suppression" neurons [20, 15, 14].

Table 1: Our Hypothesis: Stages of Inference
Stage Name Function Observable signatures

1 Detokenization Integrate local context to transform
raw token representations into coher-
ent entities

Catastrophic sensitivity to deletion
and swapping and attention-heavy
computation.

2 Feature
Engineering

Iteratively build feature representa-
tion depending on token context

Little progress made towards next
token prediction, but significant
increase in probing accuracy and
patching importance.

3 Prediction
Ensembling

Convert previously constructed se-
mantic features into plausible next
token predictions using an iterative
ensemble of model components

Prediction neurons appear and out-
put distribution begins to narrow.

4 Residual
Calibration

Eliminate obsolete features and
form the next token distribution
from internal representation

Suppression neurons appear and out-
put distribution shapes for top-1 pre-
diction with a growing MLP-output
norm

Naturally, layer-wise phenomena in LLMs are also documented outside formal interpretability re-
search and provide more evidence to existing interpretability findings. For example, while knowledge
storage within mid-layer MLP neurons has been demonstrated [16], other non-interpretability work
has found that fine-tuning predominantly affected the weights in the middle layers [17]. Quantization
studies identified improved benchmark performance by retaining only low-rank MLP components
from the middle to later layers [18]. Other works have noted a transition in activation sparsity from
sparse to dense around mid-model depth [19, 15]. These behavioral findings, when integrated with
mechanistic insights, suggest a layered computation structure not yet fully characterized.

To explore this structure, we perform layer-wise interventions—deleting individual layers or swapping
adjacent ones (Figure 13)—to characterize their localized effects. Building on these insights, we
analyze depth-wise roles and synthesize our findings with prior interpretability work to propose a
four-phase hypothesis that attempts to bridge the top-down and bottom-up views of computation in
decoder-only LLMs.

Concretely, we hypothesize four depth-dependent stages: (1) detokenization, (2) feature engineer-
ing, (3) prediction ensembling, and (4) residual calibration. In brief, early layers integrate local
context to form coherent entities; middle layers iteratively construct features; later layers convert
these features into next-token predictions via an ensemble of neurons. Figure 1 and Table 1 summa-
rize these stages and their associated empirical signatures. We synthesize these findings with prior
interpretability work [21] to suggest a depth-aligned computational structure in LLMs.
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2 Related Work

Mechanistic Interpretability Mechanistic interpretability often employs circuit analysis to uncover
model components relevant to specific computations. In computer vision, universal mechanisms
such as frequency detectors and curve-circuits have been identified [22–24], with features become
progressively more complex through the layers of CNNs. These principles were later extended to
modern transformers [25, 26], where similar circuit-based analyses revealed phenomena such as
circuit reuse [27], variable-finding mechanisms [28], self-repair [6, 29], function vectors [30, 31],
and long-context retrieval [32].

Iterative Inference and Depth-Dependent Computations The iterative inference hypothesis, first
explored in ResNets [33, 34], posits that each layer incrementally updates token representations.
This idea has gained traction in transformers, particularly through logit lens analyses [35, 5], which
visualize the model’s evolving prediction distributions layer by layer. Some studies further sug-
gest discrete inference phases [36], with certain computations localized to specific depths—such as
truth-processing [37] or multilingual translation [38]. These findings are complemented by layer per-
mutation studies showing that performance improves when self-attention layers precede feedforward
layers [39].

BERTology Prior work on ablations and layer-wise analysis has primarily focused on BERT [40].
These studies reveal substantial redundancy: even with aggressive neuron and layer pruning, models
retain most of their performance [41–45]. More recent investigations corroborate this, showing that a
significant portion of attention heads and feedforward components can be removed with minimal
accuracy loss [9, 8].

3 Experimental Protocol

Table 2: Comparison of Language Model Architectures

Model Series Size Layers

Pythia

410M 24
1.4B 24
2.8B 32
6.9B 32
12B 36

GPT-2

Small (124M) 12
Medium (355M) 24
Large (774M) 36
XL (1.5B) 48

Model Series Size Layers

Microsoft Phi
Phi-1 (1.3B) 24
Phi-1.5 (1.3B) 24
Phi-2 (2.7B) 32

Llama 3.2 1B 16
3B 28

Qwen 2.5
0.5B 24
1.5B 28
3B 36
14B 48

Models To investigate the stages of inference in language models, we examine the Pythia [46],
GPT-2 [47], Qwen 2.5 [48], LLaMA 3.2 [49], and Microsoft Phi [50, 51] model families, which range
from 124M to 14B parameters (see Table 2). All families use decoder-only transformers but differ in
their execution of attention and MLP components. Specifically, Pythia models execute attention and
MLP layers in parallel. In contrast, GPT-2, Phi, and Llama models apply attention followed by an
MLP sequentially. We preprocess weights identically across all models, folding in the layer norm,
centering the unembedding weights, and centering the writing weights as described in Appendix B.
Despite these architectural differences, most phenomena remain consistent across models, though we
discuss drawbacks in Limitations 6.

Data Besides data agnostic experiments, we evaluate all five model families on a corpus of
one million tokens from random sequences of the Pile dataset [52], unless otherwise noted in
the experiment.

Layer Swap Data Collection To study the robustness and role of different model components
at different depths, we employ a swapping intervention where we switch the execution order of a
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(a) Layer Interventions Experiment
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Figure 5: (a) Effect of layer swap (top) and layer drop (bottom) interventions on model behavior. (left)
KL divergence between the intervened and original models. (right) Consistency of top-1 predictions.
(b)(c) Representational similarity across layers measured using CKA, showing block-like structure in
GPT-2 XL (b) and Pythia 2.8B (c). Similar trends are observed across other model families and sizes
(see Appendix C).

pair of adjacent layers in the model. Specifically, for a swap intervention at layer ℓ, we execute the
transformer block (including the attention layer, MLP, and normalization) ℓ + 1 before executing
block ℓ. We record the Kullback-Leibler (KL) divergence between the intervened and original models
output distribution, along with the loss, top-1 prediction accuracy, prediction entropy, and benchmark
task performance. This intervention allows us to examine how the order of computation affects the
model’s behavior and performance at different depths.

Ablation Data Collection To generate baselines for each layer swap experiment, we perform zero
ablations on the corresponding layer while collecting the same metrics. The ablation preserves the
swap ordering: for a swap ordering of 1-2-4-3-5, the ablation maintains 1-2-4-5. We opt for zero
ablation as opposed to mean ablation, as proposed by [5], to maintain consistency with the swap
order.

4 Robustness

4.1 Intervention Results

We apply our aforementioned drop and swap interventions to every layer of four GPT-2 models [53]
and four Pythia models [46]. In Figure 5, we report (1) the KL divergence between the prediction
of the intervened model and the nominal model, (2) the fraction of predictions that are the same
between the intervened model and the baseline model (denoted as relative accuracy). We also report
the performance on common benchmark tasks (HellaSwag[54], ARC-Easy[55] and LAMBADA[56])
for all models in Figure 15-16, which show a similar trend.

In contrast to the first and last layers’ interventions, the middle layers are remarkably robust to
both deletion and minor order changes. When zooming in on the differences between the effect of
swaps and drops for intermediate layers, we find that swapping adjacent layers is less harmful than
ablating layers, matching a result in vision transformers [26]. We take this as an indication that certain
operations within the forward pass are commutative, though further experimentation is required.
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Figure 6: (a) The average (across heads within a layer and query tokens) attention weight placed on
the preceding 1, 2, 4, 8, 16 tokens for each layer. (b) Attention from the source token to the final token
in various inputs. An identified sub-word merging attention head (bottom) found in the early layers of
language models is responsible for attending to multi-token words (i.e, shenanigans, refurbishments,
parfaitement, circumnavigate), compared to the baseline set of random non-multi-token words (top).

Intervening on the first layer is catastrophic for model performance for every model, regardless of
size or model family. Specifically, dropping or swapping the first layer causes the model to have very
high entropy predictions as opposed to causing a mode collapse on a constant token. In some models,
swapping the last layer with the second-to-last layer also has a similar catastrophic high-entropy
effect, while GPT-2 models largely preserve their predictions. This phenomenon motivates our study
into the first few layers of the model, specifically the role paid by attention heads in these layers.

5 Stages of Inference Hypothesis

Motivated by the distinct phenomena at the first few and final few layers, we measured representational
similarity across each layer output using Centered Kernel Analysis (CKA)[57–59]. This revealed a
block-like structure across multiple models as shown in Figure 4. The existence of blocks reflects the
robustness observed in the layer-wise intervention. Furthermore, the depth-dependent phase structure
indicates that a shared computation motif across adjacent layers occurs in stages.

5.1 Stage 1: Detokenization

Given the extreme sensitivity of the model to first-layer ablations, we infer that the first layer is not
a normal layer, but rather an extension of the embedding. Uniquely, the first layer is the layer that
moves from the embedding basis to that of the transformer’s residual stream. It is only a function
of the current token. Consequently, by ablating the first layer, the rest of the network is blind to
the immediate context and is thrown off distribution. Immediately after computing this extended
embedding, evidence from the literature suggests that the model concatenates nearby tokens that are
part of the same underlying word [60, 61] or entity [62] (e.g., a first and last name). This operation
integrates local context to transform raw token representations into coherent entities. In this way,
the input is “detokenized” [36, 63]. Previous work has shown the existence of neurons that activate
for specific n-grams [63, 15]. Of course, to accomplish this, there must be attention heads that copy
nearby previous tokens into the current token’s residual stream.

Sub-word Merging Heads To further examine this detokenization mechanism, we investigated
attention heads responsible for constructing multi-token words, known as sub-word merging heads
[61]. These heads help capture the context of a token for appropriate prediction, thus contributing to
the detokenization process. We constructed a dataset with two classes: each consisting of 16 tokens,
where in one class, the final 4 tokens form a word. Our analysis identified specific heads in the early
layers of models that contribute solely to the construction of these multi-token words. As illustrated
in Figure 6b, layer 2 head 5 of Pythia 2.8B moves information from earlier tokens to the final token
of the word. The attention heads exhibit a consistent pattern, where attention decreases as tokens
approach the final word. Specifically, the final token of the word attends most strongly to the first
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Figure 7: (a) Layer-wise probe accuracy on contextual lexical meaning (WiC task), peaking in
intermediate layers is suggestive of where semantic features are linearly encoded. (b) Using the
logit lens technique [35], we calculate the probability distribution of the next token at the end of
every layer, and then take its entropy. This provides a measure of the model’s confidence in the next
prediction. Despite high probe accuracy, the residual, but high entropy residual stream suggests that
semantic features exist mid-model but are not yet used for prediction. For all models see Appendix 18
and 19.

token, a feature absent in the baseline. This suggests at least one of many mechanisms by which
models integrate local context, occurring at higher density in the first half of the models.

Local Attention If early layers indeed specialize in integrating local context, then we would expect
attention heads in these layers to disproportionately focus on tokens close to the current position.
To investigate this hypothesis, we measure the fraction of attention that each token directs toward
preceding tokens at varying distances. As shown in Figure 6, attention heads in early layers are
strongly biased towards nearby tokens, with attention becoming progressively less localized in deeper
layers.

5.2 Stage 2: Feature Engineering

After integrating local context in the early layers—e.g., stitching together sub-word tokens and
forming short-range dependencies—the model must begin converting those localized representations
into more semantically meaningful features. We hypothesize that this marks the beginning of a
feature engineering stage, in which the model constructs intermediate features that encode abstract
properties useful for downstream prediction.

Prior work provides indirect support for this idea. Model editing studies suggest that factual informa-
tion is stored in mid-layer MLPs [16, 64, 62], while probing experiments have found that intermediate
layers encode features related to sentiment [65], truth [37], and temporal structure [66]. These studies
typically show that probing accuracy rises through the early layers, peaks near the midpoint, and then
declines, suggesting that features are constructed and later transformed or compressed. Related work
also observes a shift from syntactic to semantic representations with depth [36, 38].

WiC Probing To illustrate this pattern, we train linear probes to detect context-dependent word
meaning using the WiC (Word-in-Context) task [67, 68]. For instance, given two sentences containing
the word bank, the task is to classify whether it is used with the same meaning. Examples include
distinguishing “the river bank” from “the robbed bank,” where the same word has different meanings
depending on the context. We apply this probe at each layer of the model, using the hidden state of
the target word in context. As shown in Figure 7 (left), the accuracy of the probe increases through
the early layers, peaks in the middle of the model, and then decreases, supporting the hypothesis that
semantic features are most linearly accessible in the intermediate layers. We extend the observation
across model families and sizes in Figure 18.
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Figure 8: We measure KL divergence between intermediate and final predictions using the logit
lens method [35]. On the second axis, we use an automated procedure for classifying neuron types
detailed in [14], into prediction neurons and suppression neurons. These are universal neurons in all
models known to increase the probabilities of tokens and decrease the probabilities of others. We
hypothesize this inverse relationship as evidence for ensembling in networks[15].

Logit Lens While these results suggest that intermediate representations encode semantic informa-
tion, it remains unclear whether such features contribute to prediction at this stage. To investigate
this, we apply the logit lens [35, 69], which projects the residual stream at each layer into the output
vocabulary space using the model’s unembedding matrix. This provides a layer-wise estimate of the
model’s next-token distribution.

We compute both the entropy of the intermediate predictions and their KL divergence from the model
output. As shown in Figure 7 (right), entropy remains high and KL divergence low throughout the
early and middle layers. In other words, while meaningful features appear to be present in the residual
stream at this stage, the model’s output distribution remains high in entropy, indicating that these
features have not yet been consolidated into confident next-token predictions. Bridging this gap
requires a mechanism that selectively retains information from relevant features while filtering out
irrelevant ones, thereby reducing uncertainty in the output distribution.

5.3 Stage 3: Prediction Ensembling

Around the midpoint of the model, we observe a qualitative shift in behavior. Having constructed
semantic features in the earlier layers, the model must begin converting these into specific next-token
predictions. Evidence for this transition comes from the logit lens, where we observe a steady decline
in entropy (Figure 7 right) and KL divergence (Figure 8) between intermediate and final predictions
beginning around the middle layers. This suggests that the model is gradually committing to a
particular output, aggregating semantic features into a more concrete distribution over tokens.

This region of the model also displays high robustness to layer interventions (Figure 5), suggesting
redundancy or capacity for self-repair. One possible cause of this resilience is the presence of
overlapping computational pathways [6, 70]. Rather than relying on a single deterministic path, the
model seems to combine multiple signals—both across and within layers—to form its prediction.
We explore this mechanism by identifying the neurons that contribute to prediction, testing their
collective behavior through a case study, and analyzing their distributional effects across depth.

Ensembling Within these overlapping pathways, we investigate specialized ensembles known as
prediction neurons—units that systematically promote the likelihood of specific tokens [15, 7, 14].
These neurons work in tandem with suppression neurons (discussed in Section 5.4) to shape the
model’s output.

Prediction and Suppression neurons Following previous work[14], we identify these neurons
by analyzing the MLP output weights wout and their projection into vocabulary space via the
unembedding matrix WU . Prediction neurons exhibit a logit effect distribution WU ·wout with high
kurtosis and positive skew; suppression neurons exhibit high kurtosis and negative skew. Across 18
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models, prediction neurons begin to appear around the midpoint, increasing in density through the
latter layers (Figure 8), before being overtaken by suppression neurons. For a detailed analysis of the
detection and characterization of prediction, suppression, and other “universal" neurons, we refer
readers to the original work [14].

Probing for the Suffix “-ing” We hypothesize that ensembles of prediction and suppression
neurons collectively support next-token prediction. To test this, we construct a balanced classification
task: given a 24-token context to a verb, does the final token end with or without “-ing”? We
train linear probes on the activations of 32 high-variance prediction and suppression neurons, both
individually and in groups. Neurons are selected using the criteria above, and examples from GPT-2
XL are shown in Figure 9. The full neuron list appears in Appendix 21.

We train two types of probes on the penultimate token’s activations: 32 individual neuron probes
and top-k ensemble probes ranked by individual accuracy (Figure 9). Suppression neurons yield
the strongest individual probes, performing on par with the model’s predictions (dotted red line).
Ensemble probes trained on prediction neurons outperform both individual neurons and the model
average, suggesting an important interplay between the two neuron types.

Density Effects The balance between prediction and suppression neurons appears to shape the
model’s output. To test this, we analyze how their density relates to the KL divergence between each
layer’s logit lens distribution and the final output. The sharpest decline in divergence corresponds
closely with the rise in prediction neuron density, which peaks at roughly 85% of model depth.

Model comparisons further reinforce this pattern. Phi-1 has fewer prediction neurons and a shallower
KL slope compared to later Phi models (Figure 8c). GPT and newer Phi models show steeper,
smoother KL divergence drops than Pythia (Figures 8a, 8b). Notably, the most performant Phi models
exhibit nearly 15% prediction and 25% suppression neurons per layer—5–8× the density in GPT-2
and 3–7× that of Pythia.

Interestingly, the density of prediction neurons decreases near the final 10% of layers, even as the
model continues to converge on its output, sometimes accelerating(Figure 8b). This suggests the
involvement of a distinct final-stage mechanism, which we delineate as a separate stage.

5.4 Stage 4: Residual Calibration

As prediction neuron density declines in the final layers, a different mechanism emerges. Across all
models, we observe a sharp rise in suppression neurons near the end of the network. This transition
from prediction to suppression neurons frequently coincides with an inflection point: entropy stops
decreasing and begins increasing in the final layers (Figure 19b). Unlike prediction neurons, which
promote likely tokens, suppression neurons refine the model’s output by removing obsolete features
and down-weighting improbable tokens. The resulting entropy increase in the final layers suggests
that suppression neurons serve to calibrate the model’s output toward the task it was trained for:
producing a well-formed distribution over possible next tokens.

Layer Repeating Experiment To further explore this hypothesis, we design an experiment where
we repeat certain layers of the model. Specifically, we duplicate blocks of layers within the
model—for example, repeating layers 5 through 7 results in a sequence like (...4-5-5-6-6-7-7-8-
9...). For this analysis, we fix the number of repeats to 1 and the block length to 5 (see additional
results across model sizes and block length in Figure 25,23). In Figure 11, we observe that repeating
blocks in the latter half of the model leads to a consistent decrease in entropy relative to the baseline
(horizontal line). When evaluated on downstream benchmarks, the models with repeated layers at
the last 80-90% of depth also exhibit improved performance on benchmarks, suggestive of residual
calibration and the late-stage influence of prediction and suppression neurons. (Appendix 24).

Final Layer The intensity of suppression neurons, as seen in Figure 8, is localized in the final
few layers of the model, where the quantity of suppression neurons outstrips prediction neurons. To
quantify the intensity of this change to the output distribution, we measure the norm of the MLP
output, where a larger norm suggests a greater contribution to the residual (Figure 10). This also
coincides with an increase in entropy (Figure 19b).
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Figure 12: (a) Accuracy of linear probes trained to predict whether the final token ends in “-ing,”
using activations from individual prediction and suppression neurons (scatter points) and ensembles
of neurons (blue line). Ensembles outperform individual probes and occasionally exceed the model’s
top-1 accuracy (red dotted line), consistent with the presence of “prediction ensembling.” (b) Layer-
wise MLP output norms across all 18 models show a rise toward the final layers, suggesting increasing
residual contribution late in the model. (c) Repeating layers from the later half of a model reduces
final-layer logit entropy more than repeating earlier layers or using the original model (dotted line),
suggestive of residual calibration and the late-stage influence of prediction and suppression neurons.

6 Concluding Remarks

Why Are Language Models Robust to Layer-Wise Interventions? We hypothesize that the
robustness of language models to layer deletion and swapping stems in part from the transformer’s
residual architecture. This interpretation aligns with our findings on prediction and suppression
neurons: multiple computational pathways appear to contribute to the same output, allowing the
network to tolerate disruption in any single path. The residual stream promotes this “ensembling”,
enabling gradient descent to construct shallow sub-networks that can operate in parallel. This
architectural flexibility reduces the model’s reliance on any specific layer, explaining its resilience to
local interventions and supporting observed self-repair behavior and overlapping representations.

Limitations and Future Work While our four-stage hypothesis captures broad, depth-dependent
patterns in LLMs, several caveats remain. Stage boundaries are approximate, and multiple stages may
co-occur within a single layer. The findings reflect aggregate trends, whereas individual tokens may
follow distinct processing paths. Additionally, we do not isolate the factors behind model-specific
differences; e.g., GPT’s greater robustness could arise from dropout, architectural variations, or depth.
These limitations point directly to promising directions for future research. Future work should seek
to sharpen these boundaries, link them to optimization dynamics, and test this hypothesis with a
theoretical account to explain the empirical results.

Conclusion This work introduces a four-stage hypothesis for understanding inference in large
language models, grounded in a diverse set of behavioral and mechanistic analyses. By examining how
models respond to structural interventions—layer deletion and swapping—as well as probing attention
patterns, neuron function, and residual stream dynamics, we identify a repeatable depth-wise structure
to model computation. These stages—detokenization, feature engineering, prediction ensembling, and
residual calibration—emerge across architectures and scales, suggesting that transformers perform
inference not as a flat pipeline but as an ordered composition of specialized computational regimes.
While not definitive, the strength and consistency of the empirical signatures presented here provide
compelling evidence in support of the proposed hypothesis. Rather than aiming for an exhaustive
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mechanistic dissection, we offer a unifying perspective that synthesizes and extends prior findings in
and outside the interpretability literature.

More broadly, this layered view of inference has implications for how we interpret, audit, and
intervene on language models. Understanding not just what a model computes, but when and where
it computes it, may inform future approaches to alignment, compression, and modularity in model
design. We hope this hypothesis serves as a foundation for a deeper investigation into the emerging
capabilities of LLMs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: As stated in the abstract, we perform layerwise interventions to investigate
the robustness of layers. These interventions are suggestive of phases of inference that
form a hypothesis. The remainder of the paper is series of experiments that support various
findings of this hypothesis, across three different model families. We emphasize that we are
proposing a hypothesis that are result of performing experiments that suggest this hypothesis.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a limitation section where we discuss how we did not investigate
the true cause of model-to-model difference and the potential loss of important findings that
are a result of excessive aggregation over tokens.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not have theoretical assumptions and proof in the paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: First we describe in detail what encompasses a layerwise swap and deletion, in-
cluding a diagram and the components involved. We include the models that we use and how
the weights were preprocessed for experimentation. We also describe the specific metrics
we aggregate over (KL divergence, entropy, loss, etc) For our supporting experiments, we
describe what component we measured the output of (MLP, Attention), and what calculation
was performed (Norm, ratio, etc). For the logit lens technique and the measurement of
predictive and suppressive neurons, we describe the multiplications of specific matrices to
recreate the results and reference appropriate papers that provide a deeper analysis of the
method.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide a link to a Github which contains all of the code to recreate the
experiments, currently anonymous. We also describe which specific model families and
datasets (the Pile) were used the experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We do not perform any training but we specify all the metrics we collect
from the models, including KL divergence, loss, entropy, and logits. We also describe the
preprocessing of the weights carried out before experimentation, further in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All our plots contain error bands. On some plots the results of aggregation
causes the plot to have fine error bars, often not visible. For specificity: Figure 1 does not
have error bars, however, every peak in this figure appears with error bars in later sections of
the paper. Figure 3 we display metrics over all the models without aggregating in place of
showing an average line. Figures 4, 5, 6, 7, 8, 13 all contain error bands which are 1-sigma.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide an appendix section titled “Additional Empirical Details" described
compute usage.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and confirm that we abide to the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: At the beginning of this paper we discuss the importance of connecting
mechanistic interpretability to the broader understanding of machine learning. We discuss
how this work aims to make ML systems more understandable and allow for the detection
of risks and vulnerabilities that can arise are language models scale. There are no negative
impacts of the work as we write in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: None of our analysis, experiments, or conclusions pose a risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We utilize 3 different model families and a single dataset, the Pile, which are
cited accordingly in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not use human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There are no study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We simply study LLMs, and do not rely on LLM usage for hypothesis or
experiment creation or execution.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Experiment Diagram

Layer Ablation Layer Swap

FFNN

Layer Norm

Mask Self-Attention

Layer Norm

GPT Layer 

Figure 13: To study the stages of inference, we perform two experiments, each a layer-wise interven-
tion, where a layer (left) encompasses all model components. The first intervention is a zero ablation
(i.e, layer removal) of the layer (middle), in which a layer is fully removed and residual connections
skip the layer entirely. The second intervention (last) is an adjacent layer swap, in which we permute
the positions of two layers. The ablation is performed on all layers, while the layer swap is performed
on all adjacent pairs of layers in the model.

Name HuggingFace Model Name
Pythia 410M EleutherAI/pythia-410m-deduped
Pythia 1.4B EleutherAI/pythia-1.4b-deduped
Pythia 2.8B EleutherAI/pythia-2.8b-deduped
Pythia 6.9B EleutherAI/pythia-6.9b-deduped
Pythia 12B EleutherAI/pythia-12b-deduped
GPT-2 Small (124M) gpt2
GPT-2 Medium (355M) gpt2-medium
GPT-2 Large (774M) gpt2-large
GPT-2 XL (1.5B) gpt2-xl
Phi 1 (1.3B) microsoft/Phi-1
Phi 1.5 (1.3B) microsoft/Phi-1.5
Phi 2 (2.7B) microsoft/Phi-2
Qwen 0.5B Qwen/Qwen2.5-0.5B
Qwen 1.5B Qwen/Qwen2.5-1.5B
Qwen 3B Qwen/Qwen2.5-3B
Qwen 14B Qwen/Qwen2.5-14B
Llama-3.2 1B meta-llama/Llama-3.2-1B
Llama-3.2 3B meta-llama/Llama-3.2-3B
The Pile EleutherAI/the_pile_deduplicated
Table 3: List of models and dataset used in the experiments.

B Additional Empirical Details

Github All experimental code for future experiments is available at:
https://github.com/vdlad/Remarkable-Robustness-of-LLMs.

Transformer Lens We make ubiquitous use of Transformer Lens [71] to perform hooks and
transformer manipulations.

HuggingFace For specificity, we utilize the following HuggingFace model names, and dataset. We
do not change the parameters of the models from what they are described on the HuggingFace page.

All experiments described can be performed on a single NVIDIA A6000. We utilized 2 NVIDIA
A6000 and 500 GB of RAM. To aggregate the metrics described in the paper, we run the model on 1
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million tokens ℓ times, where ℓ is the number of layers. This takes on average 8 hours per model, per
layer intervention (swapping and ablating). We save this aggregation for data analysis.

Residual Sharpening to Residual Calibration We initially named the final stage of inference
"residual sharpening" but have renamed it to "residual calibration" for greater accuracy. While
suppression neurons do eliminate obsolete features from the model’s representation, the final layers
sometimes exhibit an increase in entropy—a seemingly contradictory behavior if the goal were
simply to sharpen predictions toward a single top token. Instead, this entropy increase suggests that
suppression neurons calibrate the representation to produce a well-formed distribution over possible
next tokens, aligning with the language modeling objective. This calibration process differs from
sharpening, which would imply converging toward a single prediction. Additionally, models even
within the same family exhibit varying entropy patterns in their final layers. We hypothesize that the
variation in entropy of the final layers may indicate model confidence and contribute to hallucination
behavior, though we leave this investigation to future work.

Layer Norm Preprocessing We utilize several conventional weight preprocessing techniques to
streamline our calculations [71].

Following [14], before each MLP calculation, a layer norm operation is applied to the residual stream.
This normalizes the input before the MLP. The TransformerLens package simplifies this process by
incorporating the layer norm into the weights and biases of the MLP, resulting in matrices Weff and
beff. In many layer norm implementations, trainable parameters γ ∈ Rn and b ∈ Rn are included:

LayerNorm(x) =
x− E(x)√

Var(x)
∗ γ + b. (1)

We "fold" the layer norm parameters into Win by treating the layer norm as a linear layer and then
merging the subsequent layers:

Weff = Win diag(γ) beff = bin +Winb (2)

Additionally, we then center reading weights. Thus, we adjust the weights Weff as follows:

W
′

eff(i, :) = Weff(i, :)− W̄eff(i, :)

Centering Writing Weights Because of the LayerNorm operation in every layer, we can align
weights with the all-one direction in the residual stream as they do not influence the model’s
calculations. Therefore, we mean-center Wout and bout by subtracting the column means of Wout:

W
′

out(:, i) = Wout(:, i)− W̄out(:, i)

Extension of Results in Larger Models (>10B parameters) In Appendix K, we extend the results
of the core experiments in larger models with more than 10B parameters (Qwen2.5-14B, Pythia-12B).

Societal Impact We do not anticipate any immediate societal impact from this research.
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C Centered Kernel Alignment (CKA)
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(a) GPT2
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(b) GPT2-medium
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(d) pythia 410m
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(e) pythia 1.4b
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(f) pythia 2.8b
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(g) Phi 1
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(h) Phi 1.5
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(i) Llama 3.2 1B
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(j) Llama 3.2 3B
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(k) Qwen 2.5 0.5B
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(l) Qwen 2.5 1.5B
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(m) Qwen 2.5 3B

Figure 14: CKA across layers from the last token representation sampled from Pile dataset (max
token length 512, batch size 128). We used unbiased CKA [72, 59].
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D Benchmark Tasks Performance After Layer-Wise Intervention
We evaluate the benchmark performance on HellaSwag, ARC-Easy and LAMBADA [54–56] with
the intervened model. We observe a similar trend to KL divergence reported in the main paper.
Generally, the intervention at the first layer and the last layer shows catastrophic deterioration of the
performance but intervention on intermediate layers shows robust performance.
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Figure 15: Benchmark task performance after layer swap. Baseline performance of each model is
marked with a dotted horizontal line.
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Figure 16: Benchmark task performance after layer swap. Baseline performance of each model is
marked with a dotted horizontal line.
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Figure 17: Prediction and Suppression neurons for Qwen and Pythia.
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F WiC contextual word probe
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Figure 18: WiC probing accuracy over layers across model families and sizes. Across all models
and sizes, we observe the probe accuracy related to contextual semantics of lexical items gradually
increases and peaks around the middle layers and degrades.
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(a) GPT Logit Lens Entropy
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(b) Pythia Logit Lens Entropy
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(c) Phi Logit Lens Entropy
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Figure 19: Using the logit lens technique [35], we calculate the probability distribution of the next
token at the end of every layer, and then take its entropy.
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H MLP Norms

(a) GPT MLP Output (b) Pythia MLP Output (c) Phi MLP Output

0.0 0.2 0.4 0.6 0.8 1.0
relative layer depth

0

10

20

30

40

m
lp

 n
or

m

meta-llama/Llama-3.2-1B
meta-llama/Llama-3.2-3B

(d) Llama MLP Output
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Figure 20: The norm of the output of every MLP across its layers to measure its contribution to the
residual stream. Across all 18 models, the norm grows and peaks in the final layers before output,
suggestive of the final two stages of inference, predictive ensembling, and residual calibration
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I Top Prediction and Suppression Neurons

Figure 21: Top 36 prediction and suppression neurons for -ing which have the greatest mean absolute
difference between respective (WU · wout). Elements with a negative skew are suppression neurons
for the respective labeled class, while elements with a positive skew are prediction neurons. This is
calculated by calculating the product between the model unembedding weights and output weights of
MLP.
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J Layer repeats experiment
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(a) Phi Block 3
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(b) Llama 3.2 Block 3
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(c) Qwen 2.5 Block 3

0.15 0.30 0.45 0.60 0.75 0.90
relative depth (copy start layer)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

lo
gi

ts
 e

nt
ro

py

gpt2-large
gpt2
gpt2-xl
gpt2-medium

(d) GPT Block 3
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Figure 22: Block 3 repeat experiment.
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(c) Phi Repeat Block 5
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(d) Llama Repeat Block 5
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Figure 23: Block 5 repeat experiment on additional models.
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Figure 24: Qwen repeat 5 model’s performance on Hellaswag
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K Experiments on Larger Models (>10B parameters)
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Figure 25: Extension of Experiments on Larger Models (>10B).
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L Experiment Subset on OOD Data

(a) Mean Attention, recent arXiv papers
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Figure 26: Running on 2024–2025 arXiv papers, code, and languages results in consistent patterns
across the hypothesized stages of inference for GPT-XL.
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