
Compositional Program Generation for Systematic Generalization

Tim Klinger*1 , Luke Liu*2 , Maxwell Crouse1 , Soham Dan1 ,
Parikshit Ram1 and Alexander Gray1

1IBM Research AI
2New York University

∗ indicates equal contribution
{tklinger, Maxwell.Crouse, Soham.Dan, parikshit.ram, alexander.gray}@ibm.com, ql2078@nyu.edu

1 Introduction
Compositional generalization remains a difficult problem for
neural models. There has been progress, but the hardest
benchmark problems remain intractable without additional
task-specific semantic information. In this abstract we de-
scribe a neuro-symbolic architecture Compositional Program
Generator (CPG) which generalizes systematically and pro-
ductively for sequence-to-sequence language tasks, given a
context-free grammar of the input language and a dictionary
mapping each input word to its interpretation in the output
language. Our approach learns to generate type-specific sym-
bolic semantic functions composed in an input-dependent
way to produce the output sequence. In experiments with
SCAN, CPG solves all splits and few-shot generalizes on the
systematicity (”add jump”) split. It achieves perfect gener-
alization as well on the COGS benchmark, after training for
two epochs on sentences of length less than 13.

Although no satisfactory formal definition of composi-
tional generalization has yet been given, it is usually taken
to have two requirements: generalization to new (gram-
matical) combinations of parts of an input seen in training
(systematicity); and generalization to longer sequences than
seen in training (productivity). For example, having trans-
lated a command like “jump left twice” to (I TURN LEFT,
I JUMP, I TURN LEFT, I JUMP) as in Figure 1; having seen
the command “walk” in training; and knowing that “jump”
and “walk” are both of the same type, the model should
generalize systematically to translate “walk left twice” as
(I TURN LEFT, I WALK, I TURN LEFT, I WALK) with
no further training. This kind of generalization has proved
challenging for standard neural models such as transformers
[Vaswani et al., 2017].

2 Approach
One strategy for achieving compositional generalization is to
learn a compositional function. These are often described in-
formally as “meaning” functions where “the meaning of the
whole is a function of the meaning of the parts.” Usually at-
tributed to Frege, this idea appears in some form as early as
the sixth century BCE [Pagin and Westersthal, 2010]. In [Pa-
gin and Westersthal, 2010] they give two formal definitions
of compositional functions, one of which, the functional def-
inition, we restate here with minor modifications. It assumes

Figure 1: An example of compositional program generation on
SCAN.

the input language L is defined over finite vocabulary V and
is generated by a set of context-free grammar rules Σ (de-
noted α, β, γ, etc.) which map input types to an output type
(or for primitive types, an input token to an output type).

A function µ from a source language L ⊂ V ∗ to a tar-
get language L′ is compositional if for every rule α ∈ Σ
there is a function r(α) such that if α is defined, then
µ(α(u1, u2, . . . , un)) = r(α)(µ(u1), µ(u2), . . . , µ(un)).
Here V is a finite vocabulary and V ∗ denotes the set of all
strings over that vocabulary. The function µ (“meaning”) is
defined recursively over a structure (“parts”) determined by a
parse of the input.

Compositional functions are a useful hypothesis class for
learning models which compositionally generalize. First,
they are defined recursively over an arbitrarily large input
structure and hence productive by definition. Second, they of-
fer a natural way to decompose the model by processing each
rule α with a semantic module specific to that rule (r(α)).
Third, they allow the structure of the semantic computation
to vary depending on the input. Finally, since r is not directly
dependent on the input, a learner will generate the same se-
mantic function for the same syntactic rule and the model will
generate the same meaning for phrases with the same deriva-
tions in the grammar which is what is desired for systematic
generalization.

We decompose the problem of learning a sequence-to-
sequence model into sub-problems: specifying a context-free

Figure 2: (a) copy program (top); (b) substitution program (bottom)

grammar for the input language L; programmatically generat-
ing a parser (we use Lark 1); learning or providing the dictio-
nary that maps input tokens to their output representation (if
any); and learning to generate a type-specific semantic func-
tion for each type in the grammar. We will focus mainly on
the problem of generating type-specific functions and leave
it to future work to learn the grammar. We are able to learn
a dictionary jointly with the semantic functions for SCAN
since it’s quite simple; learning the dictionary for COGS is
more involved and we don’t try it here. With these assump-
tions we are able to solve SCAN in a productive and system-
atic way with interpretable semantic rules and with length-
curricular training on sentences of commands of length ≤ 3
with few shot generalization on the “add jump” (systematic-
ity) split. Using the same architecture and curricular train-
ing, preliminary experiments show perfect generalization on
COGS, though we do not have final results to report.

Our approach to learning a compositional function is com-
positional program generation by which we mean both that
the process of generating a (symbolic) program from an in-
stance is compositional, generating each composition recur-
sively, bottom-up over the structure of the parse, but also that
the generated program is itself compositional with respect to
that structure in the sense of [Pagin and Westersthal, 2010],
obeying the requirement that the meaning of the whole be a
function of the meaning of it’s parts.

The CPG model learns to generate parameters for two
kinds of programs, copy programs, which produce an output
sequence by copying elements of the input sequence (with fil-
tering and repeats allowed), and substitution programs which
substitute objects from one list into slots in an expression (de-
noted y in our examples) for use in COGS. Figure 2 gives the
semantics for these operations.

Using the Lark parser generator we generate a parser for
the input grammar and run it to produce a linear sequence of
parse steps which produce the parse tree for that input. Each
parse step applies a context-free grammar rule α to a contigu-
ous span of the input and replaces it with the type specified as
the output of α. Grammar rules with arity l for non-primitive
types (see Figure 1) are of the form: t0t1 . . . tl−1 → t for

1https://github.com/lark-parser/lark

Figure 3: compositional generation on COGS

input grammar types ti, 0 ≤ i ≤ l − 1, and output grammar
type t. For primitive types the rules are of the form x → t for
x an input token and t a primitive type. Disjunctive rules are
of the form t0|t1| . . . |tl−1 → t. Figure 1 shows an example
of a parse tree constructed by successively applying the parse
sequence rules to the input.

The parse rule sequence is the input to a recursive model,
the compositional learner, which learns the function rθ shown
in Figure 1. To initialize the process it maps the input tokens
individually to their output language interpretation using the
dictionary as shown in the bottom of Figure 1. If a token does
not have a corresponding output token it is mapped to the
empty list, denoted ϕ. For COGS, where the output is a logi-
cal form, variables are required and we map each input token
to a pair of sequences as shown in Figure 3, the first hold-
ing an expression representing the meaning of the input word
(which may contain slots denoted y, e.g. y.agent(y, y)); and
a separate sequence for objects (universal variables and con-
stants) (e.g. [0, Emma]). Substitution relies on a function
find slots(x) which returns the indices of the y variables
(0-indexed). An example showing composition in COGS is
shown in Figure 3. At each step the argument expression lists
are concatenated to form the output expression and similarly
with the object lists to form the output object list. After con-
catenation the generated substitution program is applied, to
substitute objects from the concatenated object list for y vari-
ables in the output expression. Disjunctive rules are not asso-
ciated with any substitution so the input object and expression
lists are just concatenated into their output lists.

3 Experiments
All distributions for SCAN are implemented as linear layers
(for COGS two-layer) followed by a Gumbel softmax estima-
tor to sample. There are separate layers for each rule encour-
aging specialization. Training is curricular by input length
and temperature is annealed for the Gumbel distributions in
proportion to curriculum stage accuracy.

We’ve conducted experiments with both SCAN and
COGS. For SCAN we modify the “add primitive” (system-
aticity) training data to have just a single example of the held-
out word (one-shot). On SCAN the model generalizes per-
fectly on all splits after training on up to length 3 sentences,
since all types have been seen in training by that point. COGS

results also show perfect generalization for the subset of the
training set containing sentences of length 13 or less after 2
epochs of training.

References
[Fodor and Pylyshyn, 1988] Jerry A Fodor and Zenon W

Pylyshyn. Connectionism and cognitive architecture: A
critical analysis. Cognition, 28(1-2):3–71, 1988.

[Herzig and Berant, 2021] Jonathan Herzig and Jonathan
Berant. Span-based semantic parsing for compositional
generalization. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages 908–
921, Online, August 2021. Association for Computational
Linguistics.

[Hupkes et al., 2020] Dieuwke Hupkes, Verna Dankers,
Mathijs Mul, and Elia Bruni. Compositionality decom-
posed: how do neural networks generalise? Journal of
Artificial Intelligence Research, 67:757–795, 2020.

[Keysers et al.,] Daniel Keysers, Nathanael Schärli, Nathan
Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak,
Tibor Tihon, et al. Measuring compositional generaliza-
tion: A comprehensive method on realistic data. In Inter-
national Conference on Learning Representations.

[Kim and Linzen, 2020a] Najoung Kim and Tal Linzen.
COGS: A compositional generalization challenge based
on semantic interpretation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087–9105, Online, Novem-
ber 2020. Association for Computational Linguistics.

[Kim and Linzen, 2020b] Najoung Kim and Tal Linzen.
Cogs: A compositional generalization challenge based on
semantic interpretation. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 9087–9105, 2020.

[Lake and Baroni, 2018] Brenden Lake and Marco Baroni.
Generalization without systematicity: On the composi-
tional skills of sequence-to-sequence recurrent networks.
In International Conference on Machine Learning, pages
2873–2882. PMLR, 2018.

[Liu et al., 2020] Qian Liu, Shengnan An, Jian-Guang Lou,
Bei Chen, Zeqi Lin, Yan Gao, Bin Zhou, Nanning Zheng,
and Dongmei Zhang. Compositional generalization by
learning analytical expressions. In H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, vol-
ume 33, pages 11416–11427. Curran Associates, Inc.,
2020.

[Liu et al., 2021] Chenyao Liu, Shengnan An, Zeqi Lin,
Qian Liu, Bei Chen, Jian-Guang Lou, Lijie Wen, Nanning
Zheng, and Dongmei Zhang. Learning algebraic recombi-
nation for compositional generalization. In Findings of the
Association for Computational Linguistics: ACL-IJCNLP
2021, pages 1129–1144, 2021.

[Loula et al., 2018] Joao Loula, Marco Baroni, and Bren-
den M Lake. Rearranging the familiar: Testing composi-
tional generalization in recurrent networks. arXiv preprint
arXiv:1807.07545, 2018.

[Pagin and Westersthal, 2010] Peter Pagin and Dag Wester-
sthal. Compositionality i: Definitions and variants. Phi-
losophy Compass, 5(3):250–264, 2010.

[Ruis et al., 2020] Laura Ruis, Jacob Andreas, Marco Ba-
roni, Diane Bouchacourt, and Brenden M Lake. A bench-
mark for systematic generalization in grounded language
understanding. Advances in Neural Information Process-
ing Systems, 33, 2020.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017.

	Introduction
	Approach
	Experiments

