
Results for Knowledge Graph Creation Challenge
2025: SDM-RDFizer
Enrique Iglesias1,2,∗, Maria-Esther Vidal1,2,3

1L3S Research Center, Hannover, Germany
2Leibniz University of Hannover, Hannover, Germany
3TIB Leibniz Information Centre for Science and Technology, Hannover, Germany

Abstract
In recent years, knowledge graphs (KGs) have grown in popularity. Major companies have incorporated
them into their products to enhance the user experience. Consequently, numerous methods have emerged
to address KG construction. The RDF Mapping Language (RML) is an extension of the W3C mapping
language recommendation, R2RML. RML allows for the declarative definition of KG structures based on
unified ontologies and data sources in various formats, including CSV, JSON, and XML files. However,
RML incorporates CSV, JSON, and XML files. Furthermore, RML has additional functionalities, such as
executing functions, using quoted triples, working with collections, and creating logical views. Thus,
RML has become a standalone mapping language separate from R2RML. The KGCW 2025 Challenge
defines a dataset comprising a series of test cases that cover all RML functionalities. These test cases
evaluate the compliance of state-of-the-art knowledge graph (KG) creation engines. This paper reports
on the conformance evaluation of SDM-RDFizer executing this dataset, highlighting its strengths and
areas for improvement to enhance performance.

Keywords
Knowledge Graph Creation, Data Integration System, RDF Mapping Languages

1. Introduction

Knowledge graphs (KGs) have become increasingly commonplace in recent years, driven by the
significant growth in daily data generation. Major companies such as Google, Netflix, Amazon,
andMicrosoft use KGs to create relationships between products, concepts, and themes to enhance
the user experience [1]. As a result, multiple methods and mapping languages have been
developed to support KG creation. One such mapping language is the RDF Mapping Language
(RML) [2]. RML was introduced initially as an extension of R2RML, which focused solely
on relational databases. RML expanded support to additional data source formats, including
CSV, JSON, and XML. Both RML and R2RML adhere to the rules established by the Resource
Description Framework (RDF)1. Over time, RML has incorporated additional functionalities
such as the definition and execution of value transformation functions (RML+FnO [3]), support

Portorož’25: Sixth International Workshop on Knowledge Graph Construction, June 1, 2025, Portorož, SI
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open iglesias@l3s.de (E. Iglesias); maria.vidal@tib.eu (M. Vidal)
Orcid 0000-0002-8734-3123 (E. Iglesias); 0000-0003-1160-8727 (M. Vidal)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://www.w3.org/TR/2004/REC-rdf-primer-20040210/

mailto:iglesias@l3s.de
mailto:maria.vidal@tib.eu
https://orcid.org/0000-0002-8734-3123
https://orcid.org/0000-0003-1160-8727
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://www.w3.org/TR/2004/REC-rdf-primer-20040210/

for RDF-Star (RML-Star [4]), transformation of collections and containers (RML-CC2), and
projection and transformation of data sources (RML-LV3). The integration of these extensions
has allowed RML to evolve into a stand-alone mapping language with its own specification4.
The dataset used in the KGCW 2025 Challenge defines a informative set of test cases that cover
core functionalities of RML, including execution joins, duplicate handling, blank nodes, and
empty values. Additionally, the dataset includes test cases for all current RML extensions (e.g.,
RML-Star, RML-CC, RML-LV). The challenge aims to evaluate the level of compliance of existing
KG creation engines with the latest RML specification. This report builds upon the results
achieved in the KGCW 2024 Challenge by incorporating evaluations of newly introduced test
cases (e.g., RML-LV) and addressing cases that were previously incomplete. It presents the
modifications applied to SDM-RDFizer to ensure full compliance with the updated specification
and provides the outcomes of executing the 2025 challenge dataset.
This paper is organized into three additional sections. Section 2 provides an overview of SDM-
RDFizer, including its techniques, data structures, and physical operators used to optimize KG
creation. Section 3 presents the results of the challenge, including a detailed description of the
test cases and the required updates for execution. Finally, Section 4 offers concluding remarks
and outlines future directions for SDM-RDFizer.

2. SDM-RDFizer

SDM-RDFizer [5, 6] is a KG creation engine capable of transforming structured (i.e., CSV and
relational databases) and semi-structured data (i.e., JSON and XML) into RDF triples, following
defined mapping rules. It supports the latest RML specification.
SDM-RDFizer adopts a two-fold approach to KG creation, consisting of two main modules:
Triples Maps Planning (TMP) and Triples Maps Execution (TME). Each module plays a
distinct role in the KG creation process and employs a set of data structures and operators
to handle various aspects such as join execution and duplicate removal. TMP determines the
execution order of RML Triples Maps (TMs) with the goal of minimizing memory usage. TME
then generates the KG according to the execution plan established by TMP.
To support the transformation of different types of TMs, SDM-RDFizer implements several
specialized operators. The Simple Object Map (SOM) operator executes rml:template and
rml:reference; the Object Reference Map (ORM) operator handles parent triples maps; and
the Object Join Map (OJM) operator executes joins. For duplicate detection, SDM-RDFizer
uses hash tables known as Predicate Tuple Tables (PTTs). Each generated triple is compared
against the corresponding PTT; if it already exists, it is discarded as a duplicate. Otherwise, the
triple is added to both the PTT and the KG. A Dictionary Table (DT) is used to compress the
resources stored in PTTs. For join operations, SDM-RDFizer caches the results in a structure
called the Predicate Join Tuple Table (PJTT) to avoid redundant join computations.
For the KGCW 2024 Challenge [7], SDM-RDFizer was extended to support the latest RML
modules, including RML-FNML, RML-Star, and RML-IO. In the case of RML-IO, SDM-RDFizer

2https://kg-construct.github.io/rml-cc/spec/docs/
3https://kg-construct.github.io/rml-lv/ontology/documentation/index-en.html
4https://kg-construct.github.io/rml-core/spec/docs/

https://kg-construct.github.io/rml-cc/spec/docs/
https://kg-construct.github.io/rml-lv/ontology/documentation/index-en.html
https://kg-construct.github.io/rml-core/spec/docs/

was enhanced to accept new input types such as compressed files (e.g., ZIP, TAR), SPARQL
endpoints, and remote data sources. It also gained the ability to compress the generated KG
into various formats, split triples into multiple files, and export in different RDF serializations
(e.g., JSON-LD, RDF/XML, Turtle).
To support RML-FNML, a new operator was introduced to execute functions during data trans-
formation, incorporating strategies from FunMap [8]. FunMap is a TM translator that replaces
TMs containing functions with equivalent TMs by executing the functions and transforming
the input data accordingly. SDM-RDFizer applies the same principle, enabling real-time data
transformation through function execution.
For RML-Star, a new operator was developed to handle the rml:quotedTriplesMap construct
introduced in this module. Additionally, PJTT was extended to store joins that may occur in
either the rml:subjectMap or the rml:objectMap.
Finally, SDM-RDFizer was further enhanced to support the RML-LV and RML-CC modules,
which are discussed later in this report. SDM-RDFizer is publicly available on GitHub 5.

3. KGCW 2025 Challenge Test Cases

The KGCW 2025 Challenge 6 aims to assess the compliance of existing KG creation engines
with the latest RML specification. The dataset used in this challenge is a refined version of the
KGCW 2024 Challenge dataset 7, with a greater focus on cases that test the core functionality
of the updated RML specification, along with new test cases (e.g., RML-LV). The dataset is
composed of seven sets of test cases:

• RML-Core: This set includes basic test cases originally defined in the RML test suite 8 to
evaluate the compliance of KG creation engines. While the 2024 dataset used CSV, JSON,
XML files, and relational databases (MySQL and PostgreSQL) as data sources, the 2025
dataset focuses solely on JSON files.

• RML-FNML: This set includes test cases that apply functions to transform data using a
set of predefined operations 9.

• RML-Star: This set contains test cases for RDF-Star 10, adapted from the RML-Star test
suite 11 to conform to the updated specification.

• RML-IO: Formerly part of a unified module (which is now divided into RML-IO and
RML-IO-Registry) in the 2024 dataset, this set now includes a wide range of remote data
sources such as endpoints, compressed files, and JSON and XML files 12. It also defines

5https://github.com/SDM-TIB/SDM-RDFizer
6https://zenodo.org/records/14970817
7https://zenodo.org/records/10973433
8https://kg-construct.github.io/rml-core/test-cases/docs/
9https://kg-construct.github.io/rml-fnml/test-cases/docs/
10https://kg-construct.github.io/rml-star/test-cases/docs/
11https://zenodo.org/records/6518802
12https://kg-construct.github.io/rml-io/test-cases/docs/

https://github.com/SDM-TIB/SDM-RDFizer
https://zenodo.org/records/14970817
https://zenodo.org/records/10973433
https://kg-construct.github.io/rml-core/test-cases/docs/
https://kg-construct.github.io/rml-fnml/test-cases/docs/
https://kg-construct.github.io/rml-star/test-cases/docs/
https://zenodo.org/records/6518802
https://kg-construct.github.io/rml-io/test-cases/docs/

Set # of Test Cases # of Passed Cases # of Fail Cases
RML-Core 62 62 0
RML-FNML 19 19 0
RML-Star 18 18 0
RML-IO 32 32 0

RML-IO-Registry 102 102 0
RML-CC 35 35 0
RML-LV 32 32 0
Total 300 300 0

Table 1
Test Cases of the KGCW 2025 Challenge dataset.

output specifications for various formats, including Turtle, RDF/JSON, JSON-LD, and
compressed formats like ZIP and TAR.

• RML-IO-Registry: This new module extends RML-IO by emphasizing specific data
source configurations and datatype mappings.

• RML-CC: This set includes test cases that cover collections and containers 13.

• RML-LV: This set features test cases where data sources are generated through projection
and joins across multiple sources, including mixtures of different data formats 14.

This work presents the results of executing all the modules with SDM-RDFizer. Table 1 shows the
total number of test cases in the dataset and which cases were passed and failed by SDM-RDFizer.
The full results are available on GitHub 15.

3.1. Results of RML-Core

RML-Core consists of test cases designed to validate fundamental RML functionalities, including
the definition of classes, the use of rml:template and rml:reference, the execution of parent
triples maps and joins, and the handling of data types, language tags, and named graphs. In
the 2024 challenge, this module utilized a range of data sources such as CSV, JSON, XML, and
relational databases. For the 2025 challenge, however, the dataset has been streamlined to focus
exclusively on JSON files.
Given this focus, one of the primary challenges lies in correctly navigating nested JSON struc-
tures. To address this, SDM-RDFizer implements a recursive traversal mechanism that locates
the relevant data by descending through the JSON hierarchy according to the specified iterator.
SDM-RDFizer employs a parser query to process the input mappings. To comply with the
latest RML specification, the parser has been updated to adopt the new rml namespace, remove
references to the deprecated R2RML namespace, and revise the rml:logicalSource definition.
This includes support for rml:path and rml:root, and replaces rml:query with rml:iterator.
SDM-RDFizer successfully executed all 62 test cases in the RML-Core module.

13https://kg-construct.github.io/rml-cc/test-cases/docs/
14https://kg-construct.github.io/rml-lv/test-cases/docs/
15https://github.com/SDM-TIB/SDM-RDFizer/tree/master/kgcw_2025_challenge

https://kg-construct.github.io/rml-cc/test-cases/docs/
https://kg-construct.github.io/rml-lv/test-cases/docs/
https://github.com/SDM-TIB/SDM-RDFizer/tree/master/kgcw_2025_challenge

3.2. Results of RML-FNML

RML-FNML includes test cases that apply functions for value transformations, such as replacing,
concatenating, or changing the case of strings, based on the RML+FnO specification. SDM-
RDFizer supports these transformations by leveraging FunMap [8], a tool that rewrites triples
maps (TMs) containing functions into equivalent ones that reflect the function results. SDM-
RDFizer also implements a dedicated operator that executes these functions on the fly, ensuring
that the values incorporated into the KG are those produced by the function maps.
The parser query is extended to recognize function maps. In the case of nested functions, an
additional parser query is used to isolate functional maps. This enables proper handling of
nested structures, as each function map is extracted and executed individually. SDM-RDFizer
dynamically resolves function dependencies when one function receives the output of another.
SDM-RDFizer successfully performs all 19 test cases from this set.

3.3. Results of RML-Star

RML-Star includes test cases based on RDF-Star, an RDF extension that introduces quoted triples,
which allow a triple to be used as the subject or object of another triple. This capability supports
the expression of metadata about statements—such as provenance, certainty, or attribution. To
accommodate this feature, RML-Star introduces the rml:quotedTriplesMap construct for defining
quoted triples within a KG. SDM-RDFizer supports this by implementing a dedicated operator
capable of generating quoted triples, including recursively nested ones.
A particular challenge addressed in this module is the execution of joins in the rml:subjectMap,
in addition to the more common use in the rml:objectMap. SDM-RDFizer handles both scenarios
consistently using its OJM operator for join processing and PJTT for managing intermediate
results. The parser was also extended to recognize and process rml:quotedTriplesMap.
RML-Star introduces a new type of TM, rml:NonAssertedTriplesMap. This type of TM is designed
solely for generating quoted triples and does not contribute asserted triples to the KG. SDM-
RDFizer treats these mappings as auxiliary, invoking them only when needed to produce quoted
triples, and ignoring them otherwise.
SDM-RDFizer successfully executes all 18 test cases in this module.

3.4. Results of RML-IO and RML-IO-Registry

RML-IO and RML-IO-Registry modules comprise test cases that cover a wide range of input
data source formats, including compressed files; JSON and XML documents; and data extracted
from SPARQL endpoints. These modules also test the ability to generate the KG in various
RDF serialization formats, such as Turtle, RDF/XML, and JSON-LD, and to compress outputs
into formats like ZIP and TAR. Some cases introduce the concept of directing specific triples to
designated output files. These modules aim to assess the capacity of KG creation engines to
manage diverse input types and output requirements. Initially, the 2024 dataset included such
test cases under RML-Core, but in the 2025 dataset, they are handled by these two modules.
RML-IO-Registry focuses on specialized source specifications and reference formulations, in-
cluding datatype mappings, different encodings, and handling inputs containing comments.
To extract data from diverse sources, SDM-RDFizer utilizes several Python libraries: csv for

CSV files, json for JSON, xml for XML, mysql-connector for MySQL, psycopg2 for PostgreSQL,
and pyodbc for SQL Server.
SDM-RDFizer uses the requests library to retrieve remote data. For SPARQL endpoints, it
employs the SPARQLWrapper library to execute queries and format results similarly to CSV.
Compressed input files are downloaded locally and decompressed using appropriate libraries
(e.g., zip for ZIP files). Output files are serialized into RDF formats using the rdflib library.
Some test cases explore the use of alternative output destinations for specific triples. These
outputs can be defined within various mapping components, such as rml:subjectMap, rml:predi-
cateMap, or rml:objectMap. Depending on the component, SDM-RDFizer directs the relevant
triples to a specified output file. For example, if an alternate output is declared in the subjectMap,
all triples from that mapping are sent to the alternative file. When defined elsewhere, only
the relevant triples are redirected. Triples without an alternate destination go to the default
output file set at execution. SDM-RDFizer prioritizes the creation of these auxiliary files and
can compress them when needed.
SDM-RDFizer successfully executed all 134 test cases from both modules.

3.5. Results of RML-CC

The RML-CC module contains test cases designed to generate RDF collections and containers. It
introduces the terms rml:gather and rml:gatherAs into RML. The rml:gather term specifies which
data elements should be grouped into a collection, while rml:gatherAs defines the type of RDF
container or collection to be used (e.g., rdf:Alt, rdf:Bag, rdf:List, or rdf:Seq). The gathered data
may consist of literals, IRIs, or results from join operations. In some cases, nested collections are
formed—for example, an rdf:Bag might contain multiple rdf:List instances. The rml:gather term
can be used within both the rml:subjectMap and rml:objectMap. Properly handling blank nodes
is essential in this module, as they are intermediate nodes linking elements within a collection.
SDM-RDFizer extends its parser query to support rml:gather and rml:gatherAs, and introduces
additional logic to retrieve and manage nested collections. A new operator is implemented to
collect data and generate the corresponding triples based on the specified collection type. This
operator supports recursive application, enabling the construction of nested structures. When
the collected data originates from join operations, SDM-RDFizer utilizes the PJTT data structure
to store the intermediate results, which are accessed as needed during collection generation.
SDM-RDFizer successfully executed all 35 test cases from this module.

3.6. Results of RML-LV

RML-LV is a collection of test cases that apply RML logical views to input data. This module
is distinctive in that it focuses on generating new input data by combining and projecting
existing sources and using various types of joins (e.g., inner and left joins). The output of a
logical view is expected to be flat, meaning that the projected data must not retain any nested
structures, even when the original input is a JSON file. RML-LV extends the definition of a TM’s
logicalSource by introducing the terms rml:viewOn and rml:field. The rml:viewOn term specifies
the source of data for the logical view, while rml:field defines which values are extracted and
their corresponding names. Logical views may also be nested. RML-LV supports data format

intermixing; for example, a JSON structure may contain values resembling CSV content.
SDM-RDFizer extends its parser to support logical views and implements a separate mechanism
to extract nested views. A new operator is introduced and executed at the TMP module level,
unlike the other operators executed at the TME module level; it produces raw values instead of
RDF triples. Following the same design philosophy as with other data source formats, SDM-
RDFizer ensures that each logical view is generated only once per execution. This operator
can also be executed recursively to process nested logical views. When executing joins, SDM-
RDFizer uses a modified version of the PJTT data structure, which stores raw values instead of
RDF entities. In the case of data format intermixing, these values are extracted and loaded into
memory as independent files of the corresponding type (e.g., JSON structures within a CSV file).
Finally, all projected data is flattened to eliminate any nested structures.
SDM-RDFizer successfully executed all 32 test cases of this module.

4. Conclusions

The KGCW 2025 Challenge dataset evaluates the compliance of state-of-the-art engines with the
new RML formulation. It comprises 300 test cases across seven modules: RML-Core, RML-IO,
RML-IO-Registry, RML-FNML, RML-Star, RML-CC, and RML-LV. SDM-RDFizer successfully
executed all test cases, covering all proposedmodules. The SDM-RDFizer is fully RML compliant.
To achieve this, SDM-RDFizer introduced a new parsing query and separate queries for the
extraction of nested functions, collections, and views, the extension of existing data structures
for the proper handling of the new operators, an operator for the execution of functions on the
fly, an operator for generating quoted triples, an operator for the generation of RDF collection,
and an operator for the creation of logical views. Moving forward, the authors will apply more
extensive testing on the operators implemented for the compliance of RML-CC and RML-LV
(especially the flattening logical views) to determine that all border cases are appropriately
covered. Additionally, the operator for the execution of RML-Star is currently being redesigned
to improve the handling of intermediate results and remove redundant code. Finally, an improved
mapping parser is planned to remove the reliance on ever more complicated parsing queries.

Acknowledgments

This work was supported by the “Leibniz Best Minds: Programme for Women Professors”,
through funding of the “TrustKG-Transforming Data in Trustable Insights” project (Grant
P99/2020), and by the Lower Saxony Ministry of Science and Culture (MWK) with funds from
the Volkswagen Foundation’s zukunft.niedersachsen program (CAIMed - Lower Saxony Center
for AI and Causal Methods in Medicine; GA No. ZN4257).

References

[1] N. F. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, J. Taylor, Industry-scale knowledge
graphs: lessons and challenges, Commun. ACM 62 (2019) 36–43. URL: https://doi.org/10.
1145/3331166. doi:10.1145/3331166.

https://doi.org/10.1145/3331166
https://doi.org/10.1145/3331166
http://dx.doi.org/10.1145/3331166

[2] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, R. Van de Walle, RML:
A Generic Language for Integrated RDF Mappings of Heterogeneous Data, in: Workshop
on Linked Data on the Web, 2014.

[3] B. De Meester, A. Dimou, R. Verborgh, E. Mannens, An ontology to semantically declare
and describe functions, in: European Semantic Web Conference, Springer, 2016, pp. 46–49.

[4] T. Delva, J. Arenas-Guerrero, A. Iglesias-Molina, Ó. Corcho, D. Chaves-Fraga, A. Dimou, Rml-
star: A declarative mapping language for rdf-star generation, in: O. Seneviratne, C. Pesquita,
J. Sequeda, L. Etcheverry (Eds.), Proceedings of the ISWC 2021 Posters, Demos and Industry
Tracks: From Novel Ideas to Industrial Practice co-located with 20th International Semantic
Web Conference (ISWC 2021), Virtual Conference, October 24-28, 2021, volume 2980 ofCEUR
Workshop Proceedings, CEUR-WS.org, 2021. URL: https://ceur-ws.org/Vol-2980/paper374.
pdf.

[5] E. Iglesias, S. Jozashoori, D. Chaves-Fraga, D. Collarana, M.-E. Vidal, SDM-RDFizer: An
RML Interpreter for the Efficient Creation of RDF Knowledge Graphs, in: CIKM, 2020.
doi:10.1145/3340531.3412881.

[6] E. Iglesias, M.-E. Vidal, D. Collarana, D. Chaves-Fraga, Empowering the sdm-rdfizer tool
for scaling up to complex knowledge graph creation pipelines1, Semantic Web 16 (2025)
SW–243580. URL: https://journals.sagepub.com/doi/abs/10.3233/SW-243580. doi:10.3233/
SW-243580. arXiv:https://journals.sagepub.com/doi/pdf/10.3233/SW-243580.

[7] E. A. Iglesias, M. Vidal, Results for knowledge graph creation challenge 2024: Sdm-rdfizer,
in: D. Chaves-Fraga, A. Dimou, A. Iglesias-Molina, U. Serles, D. V. Assche (Eds.), Proceedings
of the 5th International Workshop on Knowledge Graph Construction co-located with 21th
Extended Semantic Web Conference (ESWC 2024), Hersonissos, Greece, May 27, 2024,
volume 3718 of CEUR Workshop Proceedings, CEUR-WS.org, 2024. URL: https://ceur-ws.org/
Vol-3718/paper12.pdf.

[8] S. Jozashoori, D. Chaves-Fraga, E. Iglesias, M. Vidal, Ó. Corcho, Funmap: Efficient execution
of functional mappings for knowledge graph creation, in: J. Z. Pan, V. A. M. Tamma,
C. d’Amato, K. Janowicz, B. Fu, A. Polleres, O. Seneviratne, L. Kagal (Eds.), The Seman-
tic Web - ISWC 2020 - 19th International Semantic Web Conference, Athens, Greece,
November 2-6, 2020, Proceedings, Part I, volume 12506 of Lecture Notes in Computer
Science, Springer, 2020, pp. 276–293. URL: https://doi.org/10.1007/978-3-030-62419-4_16.
doi:10.1007/978-3-030-62419-4_16.

https://ceur-ws.org/Vol-2980/paper374.pdf
https://ceur-ws.org/Vol-2980/paper374.pdf
http://dx.doi.org/10.1145/3340531.3412881
https://journals.sagepub.com/doi/abs/10.3233/SW-243580
http://dx.doi.org/10.3233/SW-243580
http://dx.doi.org/10.3233/SW-243580
http://arxiv.org/abs/https://journals.sagepub.com/doi/pdf/10.3233/SW-243580
https://ceur-ws.org/Vol-3718/paper12.pdf
https://ceur-ws.org/Vol-3718/paper12.pdf
https://doi.org/10.1007/978-3-030-62419-4_16
http://dx.doi.org/10.1007/978-3-030-62419-4_16

	1 Introduction
	2 SDM-RDFizer
	3 KGCW 2025 Challenge Test Cases
	3.1 Results of RML-Core
	3.2 Results of RML-FNML
	3.3 Results of RML-Star
	3.4 Results of RML-IO and RML-IO-Registry
	3.5 Results of RML-CC
	3.6 Results of RML-LV

	4 Conclusions

