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Abstract

In machine learning, we naturally apply an Observation-Oriented principle, in which obser-
vational variables preexist and set the stage for constructing relationships. While sufficient
for traditional models, the integration of Al with big data exposes the misalignment between
the observational models and our actual comprehension. Contrarily, humans shape cognitive
entities defined by relationships, enabling us to formulate knowledge across temporal and
hyper-dimensional spaces, rather than being confined to observational constructs. From an
innovative Relation-Oriented perspective, this study examines the roots of this misalignment
within our current modeling paradigm, illuminated by intuitive examples from computer vi-
sion and health informatics. We also introduce the relation-defined representation learning
methodology as a practical implementation of Relation-Oriented modeling, supported by
extensive experimental validation.

1 Introduction

Existing modeling methods predominantly premise that relationships are established based on observed
entities, designated as model variables. This Observation-Oriented principle can be traced back to the 1890s
Picard-Lindelof theorem, which utilizes timestamps on a logical timeline to depict the absolute temporal
evolution of observational variables, intending to establish a unique solution within the observational space.

Today, Artificial Intelligence (AI) has displayed capabilities surpassing humans in learning observations that
meet the i.i.d. assumption, such as image generation in computer vision. Despite these, Al may appear
“unintelligent” in comprehending certain relations that humans find intuitive. For instance, Al-created
personas on social media can have realistic faces but barely with the presence of hands, due to Al struggling
with the complex structure, instead treating hands as arbitrary assortments of finger-like items.

Moreover, when inquiries turn to time evolution, the task of causal reasoning makes a significant challenge
for AI, although it is innate for humans. While traditional causal learning methods have made valuable
contributions to numerous knowledge domains over the years|Wood & Spekkens| (2015)); Vukovi¢ & Thalmann
(2022); |(Ombadi et al.| (2020), they are often challenged by a lack of generalizability Scholkopf et al.| (2021)).
Specifically, these methods tend to be context-specific and struggle to generalize across diverse scenarios. In
contrast to Al’s impressive achievements in areas such as Go gaming and natural language processing, its
application to causality remains considerably constrained.

The questions “how to apply deep learning in causality” and “how to simulate hands” may seemly pertain
to specific research domains such as causal inference and computer vision. However, they fundamentally
converge towards the central issue of AI Alignment. Recalling Dr. Geoffrey Hinton’s caution, misalignment
of AI capabilities with human values can lead to unintended detrimental consequences. Accordingly, the crux
of the matter is, indeed “why causal knowledge and some time-irrelative relationships are unseen to AI?7 And
how should we instruct it?” - an aspect that is increasingly critical to address.

Our knowledge initially starts from observations, yet our comprehension can surpass the observable reality,
and construct knowledge to be hierarchy within a hyper-dimension, which is unobservable to Al. Such
hierarchy denotes granularity levels of phenomena in our comprehension. For instance, understanding indi-
vidual traits (a higher individual level) relies on getting their cultural context (a lower population level). As
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highlighted by |Scholkopf et al.| (2021)), for models to be generalizable, the low-level relations they learn must
be reusable in subsequent high-level learnings.

In purely observational learning, the complications due to unobservable hierarchies can be directly illustrated
in scenarios like the “unrealistic hands” problem (see Section. However, when we engage with causality,
entailing a hierarchy of dynamical features within the temporal dimension, the ensuing complexities are
greatly magnified. Intriguingly, the dynamics along a timeline can be viewed as nonlinear relationships (see
Section; yet, in spite of neural networks’ inherent proficiency in handling nonlinearity, the latent potential
of our current Observation-Oriented Al systems on the temporal dimension seems largely underutilized.

Contrary to AI, human understanding is fundamentally relation-centric. Relationships serve as indices that
point to our mental representations , shaping our cognitive understanding of observations and
temporal events. Through relationships, we can form interconnected knowledge systems in memory. It’s not
surprising that the cutting-edge methodology to teach Al causal reasoning focuses on “causal representations”
[Scholkopf et al. (2021)), which is, letting the modeled objects represent the causal relations, instead of the
observations. This concept indeed provides valuable insight into the pursuit of Al alignment.

Following a similar train of thought, we propose the Relation-Oriented principle, and a corresponding
implementation method of relation-defined representation learning, which we consider an indispensable tool
in our pursuit of knowledge-aligned Al Sections[2]and [d] thoroughly examine our encountered challenges posed
by: 1) the unobservable knowledge hierarchy, and 2) relationship across multi-timelines in such hierarchies,
both neglected in our Observation-Oriented convention. In Section[3] we reassess existing causality methods,
which inherently in a Relation-Oriented view but come with substantial limitations. Section [5] formally
factorizes the process of relation-defined hierarchical representation, followed by Section [6] which outlines
the proposed implementation methodology, subsequently validated by experiments detailed in Section [7]
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Figure 1: Differentiation among Observational, Temporal, and Hyper-Dimensional spaces, with the former
two composing Observable space and the latter remaining Unobservable. For an in-depth discussion on the
concept of temporal space and the absolute timeline, please see Section E}

Figure [1] clarifies the terminologies concerning spaces and dimensions, with the hyper-dimension consisting
of all the unobservable hierarchies in our knowledge. Within Observable space, relationships that connect
distributions broadly fall into two categories: linear and nonlinear. The term “features” denotes potential
variables that can represent the distributions of interest.

Typically, Al excels in addressing nonlinearity, while conventional models are adept at linear interpretation.
However, in the temporal dimension, related nonlinear dynamics may span across multiple logical timelines.
Frequently overlooked, this aspect can lead to inherent temporal biases in our models - Which narrow our
successful AT applications within observational space only, and also obstruct causal learning from achieving
generalizable success in observational-temporal space.

Contrarily, relation-defined representation aligns with knowledge definition, through which, AI can auto-
matically identify the intended dynamics within the corresponding knowledge level. Our methodology’s
feasibility rests on autoencoders, enabling a transition from the observational-temporal space to the latent
feature space, which allows us to represent dynamical features in the same manner as observational ones.
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2 The Unobservable Hierarchy in Knowledge

Knowledge hierarchies are inherent across many fields. Take flood prediction: general physical rules formulate
the base-level regulations, applicable universally, while unique hydrological conditions create distinct water-
shed features. This paradigm applies to diverse phenomena like epidemic progression, economic fluctuations,
or strategic decision-making, wherein knowledge extends from broad frameworks to specific idiosyncrasies.

In this section, we explore the knowledge hierarchies over observational and temporal features, via two illus-
trative examples. The first, grounded in computer vision, underlines how the direct challenges encountered
in observational space learning are linked to the unobservable knowledge hierarchy. While the second, from
health informatics, demonstrates how traditional causal learning typically only captures static temporal
features, overlooking the intrinsic dynamical aspects of causality and their inherent hierarchies.

(a) Al-generated faces accompanied with hands (b) How human understand images of hands
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Figure 2: A comparison of Al-generated and human-sketched hand images. Al processes observed features
simultaneously, thus treating hands as arbitrary mixtures of finger-like items. For humans, the process is
hierarchical, where higher-level recognition relies on lower-level conclusions, even with incomplete views.

(c) Prior knowledge is encoded as an indicator function to connect specified features
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Figure 3: Traditional Observation-Oriented decomposation of the relationship in Level I knowledge.

2.1 Hierarchy of Observational Features

Figure a) showcases Al-created realistic faces with unusual hands, while humans can easily distinguish a
plausible hand and infer the owner’s intention, even in colorless pencil sketches, as in (b). We can quickly
decompose observations into hierarchical features, progressing from lower to higher levels: I, knuckles, nails,
and relative lengths identify fingers; II, their positions indicate a hand gesture; III, the gesture’s meaning
is retrieved from memory. Unlike humans, Al systems process all observational features simultaneously,
where the intuitive hierarchy in our understanding is unobservable from their perspective. Similarly, to an
extraterrestrial, the unrealistic hands in Figure a) may seem as normal as in actual hand photos.

However, without seeing the hierarchy, the hierarchical features may be revealed as distinguishable, if no
significant overlaps. For instance, the placement of human eyes informs facial angle, allowing Al to generate
plausible faces without recognizing “eyes” from “faces”. On the contrary, some different hand gestures might
look similar. Without identification of “fingers” (Level I knowledge), Al may not recognize their varying
positions (Level IT knowledge) but misinterpret “hands” as arbitrary finger-like items associations.

This hierarchical organization of our comprehension enables us to effectively reuse knowledge across a range of
scenarios. For instance, the finger identification (Level I knowledge) is transferable across photos, watercolor
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paintings, and any sketching styles. As knowledge is accrued over time, the intra-level connections are
strengthened, making our understanding of hierarchies more distinct and concrete. The relationship at each
level can naturally form graphical models, where the connected features serve as nodes and readily interact
with others in our cognition.

The leading technology for disentangling features, Variational AutoEncoders (VAEs) [Burgess et al.| (2018),
are not designed to capture intra-level relations, but primarily to disentangle same-level features under i.i.d
setting. This nature inherently limits VAEs to handling knowledge hierarchy. For instance, while VAEs can
effectively disentangle the finger-level features, as shown on the left side of Figure[3] if the disentanglement
is trained on data like watercolor paintings, they may struggle to recognize pencil sketches on the right side.

In traditional Observation-Oriented graphical modeling, a prerequisite often involves fully observed variables
to establish relation functions, such as the indicator function f presented in Figure|3] This requires extensive
manual labeling, which may not always be practical. Conversely, our proposed Relation-Oriented modeling
emphasizes knowledge-based relations to construct observational representations inversely. Here, f is not a
predetermined indicator, but an index of specifying features from the complex observations. Considering
the data flow from left to right in Figure [3] a relation-defined f serves as a filter, to efficiently exclude
color-related aspects from the VAE-captured representations, keeping only relevant data for the right side.

2.2 Hierarchy of Dynamical Temporal Features

A reinforcement learning-based Al system |Sutton & Barto (2018) can potentially manage knowledge hi-
erarchies in observational space with continuous human feedback. For example, it could learn to identify
fingers autonomously, driven by human approval of images featuring typical five-fingered hands. However,
spontaneous adjustments on the temporal dimension remain challenging. Before probing its intricacies, let’s
examine hierarchical dynamics along a single timeline through the lens of traditional causal learning.
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Figure 4: A hierarchical dynamics example. Medication M4 treats high cholesterol (i.e., blood lipid) with
do(A) denoting its initial use. The population-level effect typically takes about 30 days to fully manifest
(i.e., reaching the elbow at ¢t = 30), depicted by the black curve in (a). A younger patient P; achieves this
effect in 20 days, while an older patient P; takes 40 days. Estimating the medical effect should consider their
effects defined by the personalized elbows, but usually derived from their after-30-days correlations.

Figure a) depicts the daily effects on patients following the initiation of medication My (i.e., do(A)), with ¢
indicating the elapsed days. This classic causal relationship sees do(A) as the cause, and the time sequence on
the t-axis reflects the ensuing effect. Assuming each patient’s (unobserved) personal characteristics linearly
influence the medication’s release - uniformly accelerating or decelerating its progress - the observed time
sequence for an individual (like the red and blue curves in (a)) is shaped by two levels of dynamical features:
1) the population-level effect sequence with a standard length, and 2) the individual-level progress speed.
M 4’s clinical effectiveness should be evaluated primarily based on level 1), regardless of level 2).

Figure (b) completely represents the dynamical features in a 31-length vector, segmented as two hier-
archical levels. Traditional medical effect estimation, often obtained by averaging patients’ after-30-days
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performances, essentially builds a correlation model B30 = f(do(A)). It only captures the final step of the
standard effect sequence, disregarding the preceding 29 steps, thus only representing a static fragment of the
population-level dynamic. Moreover, it implicitly assumes a normal distribution of patients’ personalized
time spans around the mean value of 30 days with a linearly decreasing medical effect.

Correlation Model B3¢ = f(do(A;)) do(A) = E = {do(A) = E;,do(A) = Ej, ...} Patient ID = {i, j, ... }
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(a) DAG with Hidden Confounder (b) Relation-Oriented Disentanglement (c) Latent Space Representation of (b)

Figure 5: (a) The traditional causal inference. (b) Hierarchical disentanglement of dynamics using relations
as indices. (c) Autoencoder-based generalized and individualized reconstructions of time sequences.

2.3 The Elusive Hidden Confounder

For individuals like P; or P;, the average effect estimated by model f introduces a bias: P; exceeds 100% of
the expected effect after 30 days, while P; only achieves about 75%. To account for these individual-level
biases, traditional causal DAG (Directed Acyclic Graph) introduces a hidden confounder (denoted as E),
to represent patients’ unobserved personal characteristics, as shown in Figure [5[ (a). However, it raises a
question - why concern ourselves with a hidden variable outside our model’s scope? This inclusion suggests
an illogical assertion: “Our model is biased due to ignorance of some aspects we have no intent to investigate.”

The reason for introducing F is that while this common cause remains unknown, its effect - the individual-
level dynamical speeds - is observable. Since such a level is overlooked by the traditional model f, it can only
be attributed to the potentially existent E. Although hidden, E still represents an observational variable
and thus could be incorporated by f once revealed. In essence, the introduction of this elusive hidden
confounder is to transform observed temporal variables into unobserved observational ones. This serves to
enhance human understanding, though does not necessarily benefit the model.

Figure (b) presents the hierarchical disentanglement of the dynamical features indexed by relations. Tradi-
tional causal inference views the individual-level effect as caused by the unobserved composite cause do(A)*E,
which is an interpretable causal relationship, but not directly modelable. Conversely, a Relation-Oriented
approach treats the relation merely as an index without requiring modeling. Thus, we can use any observed
identifier, such as patient ID, to pinpoint the individual-level dynamics. Figure c) illustrates the imple-
mentation architecture of this Relation-Oriented approach, showing two separate reconstruction processes
of the time sequences data, with and without individual-level dynamical features, respectively.

3 Causality on the Timeline

Causality research can be seen as our probe into the temporal dimension, extending beyond the observational
reality. Curiously, one might find it rare to see “incorporation of time” defined as the distinctive factor
between causality and mere correlation in causal inference theories. While, as in our modeling context,
instead of a logical one, what significance does this distinction hold?

To model time series, we frequently involve a timestamp dimension, to logically reflect the absolute time
evolution in reality. For the model, however, this approach renders the line between causality and correlation
indistinct, as it operates within our defined modeling space, taking timestamps as just another attribute,
irrespective of its temporal significance. This is not to diminish the importance of the temporal dimension,
but rather to emphasize that our current causal modeling might not completely align with our intuitive
understanding of this dimension, revealing a certain discrepancy. This section is devoted to discussing our
present causal modeling from this particular perspective.
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3.1 Causality vs. Correlation

Consider a general model function Y = f(X;0), with 6 denoting the model parameter. The process of learn-
ing @ is irrespective of how we interpret the X — Y relationship, instead, relying solely on the observations
of variable X and outcome Y. A causal relationship comprises two layers: 1) the basic connection between
X and Y that is modeling-significant, and 2) the roles of cause and effect that are not modeling-significant.

To be specific, for causality X — Y, we can employ the function ¥ = f(X;8) to predict the effect Y,
and likewise, X = g(Y,4) to infer the cause X when given Y. Both parameters 6 and 1 are equivalently
derived from joint probability P(X,Y"), making directionality more a matter of interpretation than a modeling
constraint. So, why is “modeling direction” a concern? And why do we even need to specify “causal models”?

The primary reason lies in our current causal models’ limitation when addressing causally significant dy-
namics, which are often unbalanced between cause and effect. For example, in Figure [d] the effect dynamics
cannot be fully captured by the correlation model in Figure [5] necessitating a hidden confounder to inform
our prior understanding. However, if such dynamics act as the cause, they could be effectively handled with
RNNs. For more discussions about addressing causally significant dynamics, please refer to Section

Lemma 1. Causality vs. Correlation in the modeling context.
e Causality is connection between features, which can be observational, temporal, and also dynamical.
e Correlation is connection between features, which are not dynamical.

In short, the distinction between causality and correlation lies in the connected critical features in this rela-
tionship, instead of the connection itself. The “causal model” concept first emerged within statistical causal
inference. Considering the challenges posed by nonlinearity at that time, distinguishing causal relationships
and reasonable directions becomes especially crucial for subsequent manual interpretations.

Importantly, a relationship with causal significance in a logical context does not automatically translate to
“causality” within a modeling context. For this reason, the “incorporation of time” alone is not a sufficient
condition to validate causal models. A widespread misconception often associates the temporal lag between
cause and effect as an indicator of causality. The following example will help to clarify this misconception.

Morgan Spurlock conducts a self-experiment in the documentary film “Super Size Me” (2004). Over a month,
Spurlock restricted his diet solely to McDonald’s meals, during which he recorded significant deteriorations
in his health and physical appearance, including rapid weight gain, mood instability, liver damage, etc.,
which dramatically demonstrated the potential negative health impacts of a fast-food diet. Consider two
time sequences: x = {x1,...,230} andy = {y1,...,ys0}. Here, each z; signifies the act of eating McDonald’s
on the t-th day, while each y; corresponds to the fluctuations in his health indices for that particular day. It
is intuitive to recognize that x — y is a causal relationship, although no time lag exists between x and y.
Yet, a time lag is also conceivable in this case. Suppose another person tried this experiment, but since he
had a longer responding digestive system, the same effect denoted by y emerged with a 5-day delay, creating
a 5-day lag between x; and y;. This instance emphasizes that even when both the cause and effect include
dynamics, separation by a time-lapse is not a reliable criterion.

3.2 The Current Causal Modeling Context

Figure [6] broadly classifies causal queries into four categories, based on whether they incorporate dynamical
features, and whether they are already investigated within existing knowledge. We approach the topic from
two aspects: the modeling-significant basic connection, and the interpretation-significant causal direction.

(1) Aspect of the Basic Connection

The traditional causal inference has made notable advancements in exploring the specific conditions under
which dynamical features can be “downgraded” to a level accessible by the employed statistical models.
Notably, do-calculus|Pearll (2012)) probes into identifiable events (i.e., treating dynamics as individual entities)
to establish variables in the temporal dimension. Essentially, this involves manually converting dynamics into
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static temporal elements, but it tends to be greater adaptable in handling causes compared to effects (For
a more comprehensive discussion, please refer to section . While for the effect dynamics overlooked by
models, if existing knowledge can suggest potential causes, the creation of a hidden confounder can enhance
comprehension; if not, these dynamics may be dismissed based on the causal sufficiency assumption, which
could lead to subsequent challenges.

On the other hand, causal discovery methods mainly scan the observational space, incorporating static
elements lying on the single absolute timeline (i.e., the timestamps attribute). As a result, if the underlying
causal mechanism does not encompass crucial dynamics, causal discovery can be effective. However, if such
dynamics exist, they largely go undetected. This potential gap may be negated under the causal faithfulness
assumption that the observed variables fully represent the causal reality.

Modeled Connection Modeled Direction
Include Causally No Causally ob tional Onl
Significant Dynamics Significant Dynamics o UndiscovZfé\éal;o::mic: \c/.overed Observational Information Determined.
by Faithfulnesys Assumption Not Logical Causal Significant.
Causal Relations still e Observational Only. Observational Information Determined.
Discovery Unknown Aligned with Knowledge. Maybe Logical Causal Significant.
c / Relations in Knowledge Determmed.
ausa Knowled (3} Unmodeled Dynamics covered Knowledge Determined
Learning howleage by Hidden Confounders or g '
— - Sufficiency Assumption.
Causal Modeling o Knowledge Determined. Knowledge Determined.

Figure 6: The Current Causal Modeling Context. The rectangle in the left diagram represents all relation-
ships with logical causal significance (these do not necessarily include dynamics, e.g., “raining — wet floor”
involves two static temporal features); while the blue circle denotes the potential scope of modeling.

(2) Aspect of the Causal Direction

Consider observables X and Y in a graphical system, with specified models Y = f(X;6) and X = g(Y; ).
Based on observations, the discovered causal direction between X and Y is determined by the likelihoods of
estimated parameters 0 and ¢). Given the joint distribution P(X,Y"), one would prefer X — Y if £(6) > L(1)).
Now, let Z(6) be a simplified form of Zx y (#), the Fisher information, representing the amount of information
contained by P(X,Y’) about unknown 6. Assume p(:) to be the probability density function; then, in this
context, [, p(x;0)dx remains constant. So, we have

7(6) = Bl( g torp(X.Y:0))* | 6] = [ [ (5 towpta,:0) ot s O)dady

= a/ (% log p(y; z,0))*p(y; z,0)dy + B = aZy|x (0) + B, with «, 3 constants.
Y
Thus, § = argmaxP(Y | X, 0) = argmin Zy | x (f) = argminZ(#), and L(0) x 1/Z(0).
6 0 6

Subsequently, the likelihoods of the estimated parameters 6 and 1[) depend on the amount of information, Z (é)
and I(d;) Thus, the directionality learned among variables essentially indicates how much their specified
distributions are reflected in the data, with the more dominant one deemed the “cause”. This interpretation
presumes that the cause should be more comprehensively captured in the observations than the effect. While
this was a reasonable default setting in previous decades, due to limitations in data collection techniques, it

is not necessarily the case in the present era.

In summary, a causal direction purely inferred from observations could be causally meaningful in logic, if
satisfying: 1) the causal relation of interest does not involve significant dynamics, 2) the observations are
known, a prior, to be more informative about the cause than the effect, and 3) the specified distributions are
fundamentally accurate. Technically speaking, in the traditional modeling context, the term “causal model”
is not a specific model type. Instead, it designates models that require additional logical interpretations
about overlooked dynamics, to bridge comprehension gaps and pave the way for potential improvements.
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4 The Overlooked Temporal Dimensionality

Data is commonly stored in matrices, with time series data incorporating an extra attribute for the times-
tamps, which forms a logical timeline to reflect the absolute time evolution in reality. Traditionally, modeling
has relied on this timeline to determine the chronological order of all potential events. However, our intuitive
understanding of time is far more complex than this singular, simplified absolute timeline.

Consider an analogy where ants dwell on a two-dimensional plane of a floor. If these ants were to construct
models, they might use the nearest tree as a reference to specify the elevation in their two-dimensional models.
By modeling, they observe an increased disruption at the tree’s mid-level, which indicates a higher chance of
encountering children. However, since they fail to comprehend humans as three-dimensional beings, instead
of interpreting this phenomenon in a new dimension “height”, they solely relate it to the tree’s mid-level. If
they migrate to a different tree with a varying height, where mid-level no longer presents a risk, they might
conclude that human behavior is too complex to model effectively. Similarly, when modeling time series, we
usually discount the dimension “time” as the single absolute timeline, which has become our “tree”.

Our understanding allows for the simultaneous existence of multiple logical timelines. If one is designated as
the absolute timeline, the remaining ones can be viewed as relative timelines, each representing distinctive
temporal events, which can be interconnected via specific relationships. In such Relation-Oriented perspec-
tive, like, during a causal inference analysis, the temporal dimension contains numerous possible logical
timelines that we could choose to construct any necessary scenarios. However, once we enter a modeling
context, like, using Al to model the time series along a single timeline, the temporal significance no longer
exists, but only a regular dimension containing timestamps, indistinguishable from other observational val-
ues. Metaphorically, if we consider the observational space for AI modeling as Schrédinger’s box and our
interest is the “cat” within, our task is to accurately construct the box, giving adequate consideration to all
potential logical timelines, to ensure the “cat” remains reasonable upon unveiling.

Lemma 2. Temporal Dimension refers to the aggregation of all potential logical timelines, not a
single one. A Temporal Space in comprehension is the space built by chosen timelines as axes.

Fundamentally, as three-dimensional beings, we are limited from truly understanding temporal dimension-
ality. As the term “space” typically evokes a three-dimensional conception, the notion of “temporal space”
might seem odd for a four-dimensional creature. Like ants can use trees as references without the need to
fully comprehend the third dimension, we rely on logical timelines to interpret the fourth. At this juncture,
our mission is to recognize the potential “forest” beyond the present single “tree”.

In this section, we initially dissect the mechanism of inherent temporal bias within the current Al systems,
due to neglecting potential multi-timelines; then, reassess existing methods of learning dynamics; and last,
summarize advancements and challenges on our journey towards realizing knowledge-aligned causal Al.

4.1 Inherent Temporal Bias

Overlooking multi-timelines in structural causal models (SCMs) can lead to inherent temporal biases. These
biases substantially limit our ability to fully harness AT’s potential in modeling nonlinear dynamics, especially
within large-scale causal relationships, which may include more complex multi-timelines.

To better ascribe this issue, we redefine the causal Directed Acyclic Graph (DAG) [Pearl (2009)) as follows: 1)
incorporating (potentially multiple) logical timelines as axes into the DAG space, and 2) defining edges along
timeline axes to be vectors with meaningful lengths indicating the timespans of causal effects. For example,
the single-timeline scenario in Figure |4| has the redefined DAG depicted in Figure b)7 with (a) showing
the traditional one as a comparison. The edge do(A) — B in Figure [f{a) can only (partially) represent
population-level effect, thus necessities a hidden confounder to explain the individual-level diversities, while

—
in Figure b)7 they can be explicitly represented by varying lengths of do(A) B.

Consider an expanded two-timeline scenario in Figure a), where A shorthandly represents do(A). Apart
from its primary effect on B, A also indirectly influences B through its side effect on another vital sign, C,
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depicted as edges ﬁ and C@ . For simplicity, assume the timespan for ﬁ is 10 days for all patients, with
the individual-level diversity solely confined to timeline T’x. In conventional single-timeline causal modeling,
the SCM function would be Bii39 = f(A¢, Cit10). Let’s assume f(A¢, Ciy19) is implemented using RNNs,
which could accurately depict the individual-level final effects of A on B for any patient.

The confounding relationship over nodes { A, B, C'} forms a triangle across timelines T'x and Ty - such shape
geometrically holds for any hierarchical level relationship. For patients P; and P;, the individualization
process is to “stretch” this triangle along T'x by different ratios, which is a homographic linear transformation
in this space. However, as illustrated in Figure[§| (b) and (c), for either P; or P;, equating the outcome of f
to be Bii3g violates the causal Markov condition necessary for reasonable SCMs.

do(A) P;is 1/3 Faster P;is 1/3 Slower
1

|
|
|
|

(a) the Unobserved III

Characteristics ¢---------=
of Patient E = {E; E}, ...}

(b)

Timeline of Days

t . |t+20 |t+30 |t+40

Figure 7: (a) Traditional Causal DAG introducing hidden E. (b) Redefined DAG: the standard black vector
signifies the population-level effect, while the individual-level ones are represented by its different scaling.
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Figure 8: (a) A two-timeline (redefined) DAG space, where a valid individualization presents a linear transfor-
mation. (b)(c) Violations of the Markov condition for the prevailing SCM with confounding across timelines.

Notably, in this specific case, the violation may not cause significant issues for RNN models. Given the
independence of dynamical features on T'x and Ty, the SCM can be formulated as Biy30 = f1(A¢)+f2(Cit10)-
This suggests that the cross-timeline confounding can be broken down into two single-timeline issues, where
capturing hierarchical dynamics might challenge statistical models but not RNNs. However, assuming special
conditions like independence or non-confounding is impractical. Given that each pair of cause and effect could
potentially inhabit a logical timeline, such temporal biases are inherently prone to exponentially accumulate
and impact our SCM applications, regardless of the model implementation.

Lemma 3. The traditional SCM may have the inherent temporal bias if containing: 1) Confounding
of dynamics across Multiple logical timelines, and 2) Unobservable hierarchy of such confounding,.

It is interesting to notice that most of the successful applications instinctively avoid one of the two factors:
confounding or multi-timelines. For statistical causal models, the interpretability allows them to be manually
adjusted to facilitate de-confounding, e.g., the backdoor adjustment [Pearl| (2009)). For AT models, most of the
sweeping achievements do not potentially involve relative timelines, e.g., the large language model (LLM) in
a semantic space, where the phrases are ordered consistently along a single logical timeline.

Unlike AT’s black-box nature, causal inference inherently takes a Relation-Oriented view. But in its context,
the inherent temporal biases are difficult to identify, as they often intermingle with biases resulting from
the inability to model nonlinearity - They similarly manifest as statistical diversity (or data heterogeneity)
among levels, and both can be addressed via de-confounding. Consider Figure a), a correlation model
that only captures the population-level effect can mismatch with individuals P; and P;, which may not be
distinguishable from the model mismatching in Figure b) (¢), caused by crossing two timelines.



Under review as submission to TMLR

4.2 Learning Dynamics

For observational variable instance 2 € R¢, we frequently encode its temporal evolution as a sequence along
the timeline, such as {z;} = {z1,..., 2, Te41,. .., 27}, without considering ¢ as the (d + 1)-th dimension.
Accordingly, we seldom view z’s changing value over time as a “distribution” along the t-axis.

In prediction ¢4, = f(x:) with integer m > 0, the potential nonlinearity of function f is only acknowledged
within R?, but leaving the relationship between z; and x;;,, to be linear. It implies that the correlation
model x4, = f(x¢) can only capture static temporal elements in sequence {z;}. If, however, no suitable
(f,m) can be found to ensure this model adequately represents {x;}, there may exist unrepresented dy-
namical temporal features, which necessitates a causality model of the form {x,} = f({z:}). Here, cause
and effect are as two distinct sequences on logical timelines, 7 and ¢, respectively, such that, the relationship
between any pair of z; and x, could be nonlinear.

Consider this form of causality model: y, = f({z:}) with 7 = (¢t + T') + m, representing a sequence {z;}
causing a static outcome y,, where timeline 7 is confined as m-timestamp later than timeline ¢. This form
is typically adopted in many dynamical learning methods, such as autoregressive models [Hyvarinen et al.
(2010) and RNNs [Xu et al| (2020). For autoregressive, if f is defined as a linear function, this model is
restricted to only capturing a single-level dynamic of the cause. For instance, in Figure (b), let T'= 30, a
linear autoregressive model may capture the population-level complete sequence, but still cannot represent
individuals’ speeds. Contrarily, RNNs embrace nonlinearity for f, thus potentially can capture both levels
of dynamics (without disentanglement).

However, RNNs primarily target dynamics only for the cause, while remaining constrained to a static effect.
This limitation makes sense, as it is feasible to designate significant time sequences for the cause, but
pinpointing precise start and end timestamps for ensuing effects is challenging. On the other hand, Granger
causality Maziarz| (2015, a method extensively used in economics, acknowledges the existence of potential
multi-timelines in causality. It employs the general form {y,} = f({z:}), where ¢t and 7 typically represent
two distinct timelines, thereby including a sequential effect. However, as primarily a statistical test, it is
best suited for handling single-level dynamics and necessitates additional specifications for effect sequences.

A more universally applicable concept of dynamics is the do-calculus|Pearl| (2012); [Huang & Valtorta) (2012),
which refrains from assuming specific time sequences. Instead, it treats identifiable temporal events as
objects around which it conducts elementary calculus, adopting a more Relation-Oriented viewpoint. In the
subsequent discussion, we will revisit the three rules of do-calculus from a differential-and-integral perspective.

For sequence {x:} = {z1,...,x71}, let do(x:) = {w¢, x+41} indicate the occurrence of an instantaneous event
do(x) at time t. Time lag At between {¢,t+ 1} is sufficiently small to make this event elementary, such that
do(xy)’s interventional effect can be depicted as a function of the resultant distribution at ¢+ 1. Conversely,
the effect provoked by static x; is observational effect. So, dynamics of cause X € R? can be formulated as:

Given X — Y | Z, where X = (X, t) € R*! encompass sequence {z;}, we have the cause

(do(xt) = 1) | do(z:), Observational only (Rule 1)
X :/T do(s) - 70 dt with (¢ = 1) | do(z), Inte.rventionc?l only (Rule 2)
0 (do(x¢) = 0) | do(z:), No interventional (Rule 3)
otherwise Associated observational and interventional
T T-1
The effect of X can be derived as f(X) = / fe(do(zy) - @) dt = Z(yt+1 —Yt) =Yyr — Yo
0 t=0

Fundamentally, the three rules of do-calculus address all conceivable conditional independencies between the
observational and interventional effects within the {X,Y, Z} graphical system, sidestepping the most general
cases (specifiable associated cause do(z;) - 2+ belongs to Rule 2).

Given the substantial flexibility provided by the do(-) format, we can also represent the effect ¥ dynami-
cally, by introducing timeline 7 as an extra dimension, yielding J = (Y, 7). Nonetheless, determining the
identifiable events within ) still requires manual specification that may not be practical, in contrast to our
proposed relation-defined representation learning that can construct ) automatically.

10
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4.3 Toward Knowledge-Aligned Al

Our quest for authentic causally reasoning Al that can align with our knowledge, involves the process of
broadening our modeling techniques from purely observational to include temporal and hyper-dimensional
spaces. Referring to Figure [9] our present challenge lies in leveraging AI's potential within structural causal
models. The key to this task resides in identifying potential multi-timelines. However, manual identification is
not feasible, especially given that both logical timelines and knowledge hierarchies are not directly observable.
It is time for us to transition from an Observation-Oriented to a Relation-Oriented modeling paradigm.

Handle Capture
Model Principle Cause Connection & Direction Effect Unobservable P .
q Dynamics
Hierarchy
Mechanistic or Observational- Observational-
Physical V=10 Temporal (X, t) by Knowledge Temporal (Y, t) Yes Yes
Relation-Oriented . Observational- Learn Representation Observational-
Structural Model Given P(X,Y) &X ~ Y Temporal (X, t) 7 =f(X;6) Temporal (7, t) Yes Yes
Structural Causal GivenP(X,Y)& X =Y Observational X & Connected via 6 Observational & 5 5
Learning Y =f(X;0) Sequential {X;} X = Y by Knowledge Static Y,
Graphical Causal Given P(X,Y) Speciy 9 . Connected via ¥ ) 5
Discovery Find L(Y|X;9) > L(X|Y;9) Observational X X — Y by Observed Info Observational ¥ ' No
Comrlazze(.}ause Given P(X,Y|Z) Observational X Connected via Z Observational Y ? No
hid ?;g;le)lnven Given P(X,Y) Observational X None Observational Y No No

Figure 9: Simple Taxonomy of Models (Adapted in part of Table 1 in |Scholkopf et al. (2021)), from more
knowledge-driven (top in purple) to more data-driven (bottom in green). Notations: ¥ = joint distribution,
6 = conditional distribution, (X, t) = augment ¢ as an additional dimension, “?” = depending on practice.

The initial models under i.i.d. assumption only approximate observational associations, proved unreliable
for causal reasoning [Pearl et al.| (2000)); [Peters et al| (2017). Correspondingly, the common cause principle
highlights the significance of the nontrivial conditional properties, to distinguish structural relationships from
statistical dependencies Dawid| (1979)); [Geiger & Pear] (1993)), providing a basis for effectively uncovering
the underlying structures in graphical models Peters et al.| (2014).

Graphical models, employing conditional dependencies to construct Bayesian networks (BNs), often operate
in observational space and neglect temporal aspects, reducing their causal relevance . Notably,
causally significant models, such as Structural Equation Models (SEMs) and Functional Causal Models
(FCMs) |Glymour et al| (2019); [Elwert| (2013), are able to address counterfactual queries [Scholkopf et al|
- We reinterpret it as capturing temporal distributions and responding to conditional questions.
Typically, these models leverage prior knowledge to construct causal Directed Acyclic Graphs (DAGs).

State-of-the-art deep learning applications on causality, which encode the DAG structural constraint into
continuous optimization functions [Zheng et al.| (2018; [2020); [Lachapelle et al.| (2019), undoubtedly enable
efficient solutions for large-scale problems. However, this approach potentially conceals numerous relative
timelines, which may result in substantial temporal biases. This is particularly apparent in the limited
success of applications that incorporate DAGs into network architectures Luo et al.| (2020)); (2018),
such as Neural Architecture Search (NAS). Scholkopf [Scholkopf et al.| (2021)) succinctly highlights three key
challenges impeding the broader success of causal AI: 1) limited model robustness, 2) insufficient model
reusability, and 3) inability to handle heterogeneity. The first two challenges can be associated with inherent
temporal biases, while the latter originates from the unobservable knowledge hierarchy.

On the flip side, physical models, which explicitly integrate time as a dimension, able to establish abstract
concepts through structural knowledge, may provide insights into our upcoming challenges. The proposed
Relation-Oriented modeling is designed along these lines, aiming to transcend the observational limitations
innate to our prevailing modeling paradigms.

11
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5 Obs-Tmp Representations’ Hierarchical Disentanglement

Let X € R? denote an observational variable, with instance sequences in data presenting its dynamics. Sup-
pose a logical timeline ¢ exists, along which, X’s sequence can be denoted as {z:} = {x1,..., %, Tt41, ..., 27}
We aim to devise a latent feature space R” for two purposes: 1) Establish representation of the observational-
temporal (obs-tmp) variable X = (X, t) € R4*+! in R%, fully capturing observational and dynamical features
of the sequence {z;} in data. 2) Disentangle this representation in R” according to desired hierarchy.

Also, we want this hierarchical disentanglement to be indexed via relationships, reflecting different levels of
knowledge. The advantage of this form is that the representations we establish, defined and encapsulated
by recognized relations, are highly reusable, accommodating further structural modeling. Consequently, this
method enables the generalization of the desired knowledge level across varied contexts.

Consider another observational variable Y € R?, and suppose its dynamical sequence is along logical timeline
7, denoted as {y,}. Given relatlonshlp X — Y, the proposed relation-defined representation learning is
to establish representation of ) = (Y 7) € R! in the latent space, which represents a new data sequence
{9}, versioned from {y,} by selecting its observational-temporal features that can only be caused by X

In structural modeling, for example, the causal system X — Y < Z can be disassembled into X — y
and Z — y allowing flexible reuse of both y and y representations. Furthermore, if consider ) features
a two-level hierarchy, with the first determined by X — ) and the second by (X ,Z) — Y, we can also
establish the representation of ) as hierarchically disentangled, where the second level builds upon the first,
introducing an additional data stream from Z.

Next, we will sequentially factorize three transformation processes between the data and latent space RZ:
First, observational features from R¢ to R%; Second, observation-temporal features from R4+! to RZ; Last,
the relationship X — ), from the joint space R%T! o Rb+1 to RE.

5.1 Factorization of Observational Hierarchy

Assume X = (X1,..., X4) € R? exhibits an n-level hierarchy. We utilize ©; to signify its i-th level observable
feature in the data form, while its corresponding latent space feature is denoted as 6;. Then, we obtain:

X = Z@“ where ©; = fl(el, @1, ey @7;,1) with ©; € Rd and 0; € RL'L - RL (1)

=1

In this context, 6; is considered as a vector in R”, in which only a subset of the L dimensions carries significant
value, represented as the subspace R%¢. The hierarchical disentanglement is depicted by the arrangement of
these subspaces: {RX1,... RL ... RE»}. Accordingly, the representation function f; enables the i-th level
transformation between R? and R%, drawing its potential attributes from all preceding lower-level features.

To illustrate this factorization, consider Figure (b). Let’s say 01, 02, and 05 effectively represent the features
spanning from Level I to III, exclusively occupying meaningful subspaces R“1, R%2 and R%3. The image
can be fully represented as an augmented vector (fy,0s,63) € RL. Correspondingly, ©, ©,, and O3 are
full-sized images containing distinct content. Their cumulative representation can progressively render the
complete image. E.g., O isolates the fingers’ details, while ©; + ©5 broadens to depict the entire hand.

5.2 Factorization of Obs-Tmp Hierarchy
For the time sequence of X, denoted as {X;} = {X; € R? |t = 1,...,T}, it can be viewed as a d-dimensional
vector extending T’ times, while we aim to represent it in a new form X = (X,t) € R4*! in RY, such that:
n
X =) 0;, where ©; = f;(0;; ©1,...,0, 1) with ©; € R and §; € R* C R* (2)
i=1
It is essential to note that each #; € R represents an observational-temporal feature, corresponding to

the observable component ©; € R4, The latter can also be represented in its original time sequence

12
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form {©;}; = {0y, e R? | t; = 1,...,T}. Hence, we have a collection of logical timelines {t1,...,t;,...,tn},
relative to the absolute timeline ¢ in this context. These n relative timelines, while may or may not be distinct,
are each individually determined by their corresponding relationships. This allows each t¢; to automatically
adapt to the specifics of its associated relation, liberating us from recognizing potential timelines. For each
level of observation, denoted by the summation ©;+...+0;, the presented form is consistently an observable
time sequence along ¢, without concerns about inherent temporal biases.

Consider the scenario depicted in Figure |8] with data stored in a matrix comprising four columns: values of
A, B, C, and timestamps t. We can represent B as a 2-level hierarchy: the first level is defined by its direct
effect from A (A — E), while the second level incorporates an additional stream denoting its indirect effect
viaC (A—C — B) The comprehensive representation of the effect, B+ B, is naturally depicted as two
columns - B and ¢ - aligning with its original form. This approach eliminates the need for specifying Bsg to
build estimation, unlike traditional SCMs.

5.3 Factorization of Relation-Defined Hierarchy

Consider the relationship X — Y, where X = (X,t) € R¥*! and Y = (Y, 7) € R**1. Given a collection of
n-level hierarchical representation functions for X, denoted as F () = { fi (91) |i=1,... ,n}, we aim to
define the n relationship functions, collectively referred to as G, to feature Y = G(X) as n-level hierarchy.
Let the i-th level relationship function be g;(X; ;) with ¢; denoting its parameter. Then, we have:

n n n

g(x) = Zgi(X§ vi) = Zgi(@i;%’) = Zgi(0i§ O1,...,0i_1,9;) =Y (3)

i=1 i=1 i=1
Therefore, the i-th level relation-defined representation of ) can be expressed as g;(0;; ¢;) given the preceding
(i—1) levels observable features of X as possible attributes. In other words, the i-th level relationship can be
represented as an augmented feature vector in the latent space (0;, ;) € RE. Now, let’s utilize ¥x and 9y
to differentiate the collective hierarchy representations for X and ), respectively. The collective relationship
G from X to ) can be represented as the latent space relationship dy = (9x, ), where ¢ = {¢1,...,¢n}
and (Ux, ) indicates the pairwise augmentations between collection ¥ x and collection .

Predict the Risk of T2D T2D: Type |l Diabetes Statin: Medicine to Reduce LDL
7-1 LDL: Blood Lipid BP: Blood Pressure
- 1 17
N
£ > 1S A C Ll Ay Bgo C
© [
£ . 2 @ S
= r+2 5 ﬁ +1 F
E £
2 =
" A BI = . B [ 42 H X
T =
- N B’ c’
. - .:———ft‘_'__—'__r”_’tg;—"\ ~ t+2 +3
Timeline < & Statin DL T2D - Statin  LDL  T2D BP - . Statn LDL T2D BP
Ty = Variables

Figure 10: An example DAG in 3D observational-temporal space, where the SCM function B’ = f(A, C, S)
aims to evaluate Statin’s medical effect on reducing the risk of T2D, with two logical timelines 7y and 7.
On Ty, the step At from ¢ to (¢t 4+ 1) allows A and C to fully influence B, while the step A7 on Tz, from
(14 1) to (1 + 2), let medicine S completely release its effect on LDL, which is, changing A to A’.

Consider the practical scenario depicted in Figure From a differential-and-integral perspective, each
differentiable unit of medical effect on LDL, delivered through SA’, immediately begins influencing T2D via
A’B’. Concurrently, the subsequent unit effect is being generated. These two processes occur simultaneously
until the medication S is fully administered. Ultimately, the B’ we seek to evaluate embodies the total
integral influence originating from S. Put another way, the emphasis in this DAG lies not on the absolute
values of At and A7, which would represent actual time spans. Rather, it is on the meaning of the nodes,
which define what At and A7 represent within this specific context.

13
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In traditional causality theories, variables in the SCM function B’ = f(A, C, S) can only signify observational
aspects of these nodes. Consequently, the role of B’ requires a manual specification for its temporal feature,

as to determine the absolute time span for the edge SB’. For instance, by empirical experience, the impact

of S typically lasts around 30 £ 10 days. Thus, the time span of SB’ is set to 30 days for the estimation of
the population-level mean effect at B’'.

— —
While, how long SB’ should be set is not indeed crucial, the critical fact is that assuming a length for SB’

essentially fixes the At : A7 ratio (consider ﬁ = SA’ + A'B’) and consequently sets the shape of triangle
ASB’ for the entire population. As a result, patients within the £10 range risk being attributed an invalid
ASB'-triangle and leading to inherent temporal biases, similar to Figure[§|(b)(c). More significantly, even if
the mean effect at B’ is accurately estimated for this particular population, the derived SCM can hardly be
generalizable to all others, because the presumed At : A7 ratio may not hold true in general.

—
Contrarily, the proposed approach of relation-defined representation, applied in learning the edge SB’, focuses
on the role of B’ as dictated by this edge, incorporating its temporal features. This obviates the need to

define time spans for SA” and A’B’, thereby relieving us from concerning the At : A7 ratio. Within the 3D
observational-temporal space, as depicted in Figure[I0] we can consider any desired model individualizations
for patients or generalizations for other populations as linear transformations of the green-colored subgraph.

6 Relation-Defined Representation Methodology

Essentially, the proposed relation-defined representation is a technique for transforming the observational-
temporal entities in our cognition into features - a format that AI systems can readily understand and build
models on. The inherent temporal biases underscore the observational constraints of traditional methods,
while concurrently recognizing their robust ties to our existing knowledge infrastructures. As illustrated in
Figure [T} we enable Al to develop generalizable models in latent feature space filled with human-unreadable
representations, while harnessing its capabilities to amplify observations for bolstering the effectiveness of
traditional models.

Causal Knowledge | Traditional Causal LeamingA/Generated/Simulated/lmputed... Reconeraced
(e.g., DAGS) and Interpretations '\ Observations

OpbServational;

A DalaSpdace:

Model|Generalization ‘I Relation-Defined
and Individualization l Representations

Latent Feature

7}
Decoding

Encoding

Original

pServational=emporal

Observed
Data Sequences

PDala>pPaCE
Space

Figure 11: Framework for using Relation-Defined Representations to generate apt observations for traditional
models, circumventing inherent temporal biases and enriching the observational modeling space.

Consider the practical example in Figure Traditional methods mitigate bias in the model B’ = f(A, C, S)
by randomizing medication S based on A, to disrupt conditional dependence, leading to the use of selective
subpopulation while discarding a significant portion. In contrast, the proposed Al approach individually
models SB’ and AB’ without manual adjustments, answering counterfactual questions regarding the medic-
inal effect. Furthermore, these Al models can simulate de-confounded observations for traditional models,
enabling comprehensive knowledge-based studies in larger comorbidity contexts.

In this section, we introduce a proposed autoencoder architecture tailored for implementing relation-defined
representation learning; based on it, outline the approach for “stacking” hierarchical levels of representations
within the latent space for constructing graphical models; and lastly, present a causal discovery algorithm
designed to operate within this latent feature space.
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6.1 Designing Higher-Dimensional Feature Representation Autoencoders

Autoencoders, primarily intended for dimensionality reductions Wang et al.| (2016), commonly treat all
variables (i.e., nodes in the Directed Acyclic Graph, DAG) as aligned observations to reduce attribute ma-
trix dimensionality in structural modeling |Luo et al.| (2020). However, our focus is on modeling individual
relations and “stacking” their representations to construct a DAG within the latent space R*. This de-
mands a large dimensionality for R* to accommodate all potential hierarchical features and to sequentially
build L-dimensional node representations in the DAG, hence presenting a substantial technical challenge in
facilitating high-dimensional feature representations.

Corollary 1. Given a graph G and a data matrix X column-augmented with all observational
attributes of variables in G, along with a column for timestamps (i.e., the absolute timeline), the
latent space dimensionality L must be at least as large as rank(X) to adequately represent G.

Corollary 1 stems from the notion that the autoencoder-learned R is spanned by X'’s top principal compo-
nents, often referred to as Principal Component Analysis (PCA) |Baldi & Hornik| (1989)); Plaut| (2018)); [Wang
et al.| (2016). Hypothetically, reducing L below rank(X) could yield a less comprehensive but causally more
significant latent space through better alignment |Jain et al.| (2021)), although further exploration is needed.
In this study, we will set aside discussions on the boundaries of dimensionality. Our experiments feature 10
variables with dimensions 1 to 5 (Table , and we empirically fine-tune and reduce L from 64 to 16.
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Figure 12: The proposed autoencoder architecture for Higher-Dimensional feature representations. The
reconstructed observation 7 € R is denoted and depicted as a vector for clarity.

Figure [12| depicts the proposed autoencoder architecture, which employs symmetrical Encrypt and Decrypt
layers at the input and output, respectively. The Encrypt layer acts as an amplifier, expanding the input
vector @ by extracting its higher-order intrinsic features. Conversely, the Decrypt layer, functioning as
a symmetric reducer, restores 7 to its original form. To ensure reconstruction accuracy, the invertibility
of these operations is naturally required. Figure illustrates a double-wise feature expansion. In this
method, each pair of two digits from 7 is encoded into a new digit, thus capturing their association. This is
accomplished using a Key, a set of constants created by the encoder and mirrored by the decoder for reverse
decryption. The application of a double-wise expansion Key on 2 € R? generates a (d — 1)(d — 1) length
vector. By utilizing multiple Keys and augmenting the vectors they produce, 7 can be significantly extended
beyond its original length d. The four differently patterned squares in Figure [12| represent the results of four
distinct Keys. Each square visualizes a (d — 1)(d — 1) length vector (not suggesting 2-dimensionality), with
the patterned grids indicating each Key’s unique “signature”. As an analogy, higher-order extensions such
as triple-wise ones across every three digits can also be employed, by appropriately adapting the Key to
encapsulate more intricate associations within the data.

Figure[13]illustrates the Encrypt and Decrypt functions executing a double-wise expansion. These processes
transform a digit pair (z;,2;), ¢ # j € 1,...,d, via encryption fg(x;,x;), with 0 = (ws,w;) as the Key
comprising two weights defining elementary functions s(-) and ¢(-). Specifically, fp(z;, z;) = z;@exp(s(x;))+
t(z;) is applied to each digit pair, transforming z; into a new digit y,; using z; as a parameter. The Decrypt
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Figure 13: Encrypt (left) and Decrypt (right). Figure 14: Architecture of Latent Effect.

layer uses the symmetric inverse function f, ', defined as (y; — t(y;)) ® exp(—s(y;)). Importantly, this
calculation sidesteps the need for s~! or ¢t~!, permitting both linear and non-linear transformations. With
the set of all fp functions denoted as F(X ;1) - where X is the input variable and ¥} comprises all parameters
- the Encrypt and Decrypt layers can be represented as Y = F(X;9) and X = F~1(Y;4), respectively.
Drawing from the seminal work of Dinh et al. Dinh et al. (2016) on invertible neural network layers, we
employ bijective functions to design our autoencoder. We specifically use the double-wise extension function
fo(zi, x;), operating on digit pairs, thus preserving reconstruction accuracy. This bijective foundation ensures
our architecture’s robustness and adaptability, tailoring extension levels to application requirements. The
source code for Encrypt and Decrypt is providecﬂ, along with a comprehensive experimental demo.
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Figure 15: Architecutres of the Relation-Defined Hierarchical Representation.

6.2 Structural Model with Hierarchical Representations

Consider a causal system comprising three variables: {X,), Z}. For each, a corresponding representation
{H,V,K} € RF is generated via independent autoencoders with the aforementioned architecture. Figure
portrays the process of connecting H and V to represent the relation X — ), while Figure illustrates
stacking these relations to represent the entire causal system, thereby enabling a hierarchical representation.

Assume z and y as instances of the relation X — ), with corresponding latent representations h and v. We
utilize an RNN model to estimate the latent dependency P(v|h) as displayed in Figure The training
process involves three simultaneous optimizations per iteration:

1. Optimizing encoder P(h|z), RNN model P(v|h), and decoder P(y|v) to reconstruct the effect x — y.
2. Fine-tuning encoder P(v]y) and decoder P(y|v) to accurately represent y.
3. Fine-tuning encoder P(h|z) and decoder P(z|h) to accurately represent x.

Throughout the learning, h and v values are iteratively refined to minimize their latent space distance, and
the RNN functions act as a bridge to traverse this distance, thereby estimating the causal effect © — y.

Thttps://github.com/kflijia/bijective_ crossing functions/blob/main/code_ bicross_ extracter.py
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Figure presents two stacking scenarios for ) in the three-variable causal system comprising {X,), Z},
based on different causal direction settings. For the established latent edge ﬁ , the left-side architecture
completes the X — Y <« Z relationship, while the right-side caters to X — Y — Z. Stacking is achieved
by adding an extra representation layer, thereby forming a hierarchical structure, enabling diverse input-
output combinations (denoted as ). For example, in the left setup, P(v|h) — P(«) signifies the X — Y
relationship, while P(alk) implies Z — Y. Conversely, the right setup has P(v) +— P(f|k) representing
Y — Z with Y as input and P(v|h) — P(f5|k) denoting the X — Y — Z relationship.

Causal effects of edges can be sequentially stacked based on known causal Directed DAGs by leveraging
domain knowledge. Additionally, this method can facilitate causal structure discovery in the latent space,
identifying potential edges among the initial representations of the variables.
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Figure 16: Example of the Latent Space Causal Discovery.
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6.3 Causal Discovery in Latent Space

Algorithm 1 details the heuristic process of discovering causal edges among the initially established variable
representations. It employs the Kullback-Leibler Divergence (KLD) as a metric to assess causal relationship
strength. Specifically, KLD measures the similarity between the RN N’s output, P(v|h), and the prior P(v),
as depicted in Figure A lower KLD signifies a stronger causal relationship, given its closer alignment
with the ground truth. Though Mean Squared Error (MSE) is a conventional evaluation metric, considering
it may be influenced by data variances Reisach et al| (2021)); Kaiser & Sipos (2021), we primarily employ
KLD as the criterion and use MSE as a supplementary metric. For clarity, in the graphical context, for edge
A — B, we refer to variables A and B as the cause node and result node, respectively.

Figure[I6] presents an exemplification of the causal structure discovery process within the latent space. Across
four steps, two edges (e; and e3) are successively selected. The selection of e; establishes node B as the
starting point for ez. In step 3, the causal effect of e5 from A to C' is deselected from the potential edges
and re-evaluated. This is due to the introduction of edge e3 to C, modifying C’s existing causal conditions.
As the procedure unfolds, the ultimately discovered causal structure is represented by the final DAG.

Algorithm 1: Latent Space Causal Discovery

Result: ordered edges set E = {e1,...,en}
E={}; Nr ={no | no € N, Parent(ng) = 9} ;

Whﬂz ]_V?}; N do G = (N,E) | graph G consists of N and £
for mc N do N the set of nodes
for p € Parent(n) do E the set of edges
if n ¢_NR anfi PE NR. then Ng the set of reachable nodes
e=(p,n); B={} E the list of discovered edges
for r € Nr do .
if r € Parent(n) and r # p then K(B,n) KLD metric of effect § — n
| B=BUr B the cause nodes
dend n the result node
en . .
5o = K(BUp,n) — K(B,n); Oc KLD Gain of candidate edge e
A= AUG,; A ={6.} the set {d.} for e
end n,p,r notations of nodes
end e,o notations of edges

end
o = argmine(de | de € A);
E=EUo; Ngr=NgrUng;

end
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7 Experiments

The experiments aim to validate the efficacy of the proposed Relation-Oriented modeling methods in: 1)
creating high-dimensional feature representations using our autoencoder architecture, 2) constructing latent
effects and stacking them for hierarchical representation, and 3) latent space causal structure discovery.

We employ a synthetic hydrology dataset for the experiments, a prevalent resource in hydrology. The task in-
volves predicting streamflow based on observed environmental conditions like temperature and precipitation.
By using relation-defined representation learning on this hydrology data, we aim to construct generalizable
causal models across diverse watersheds. Despite similarities in hydrological schemes, differences in unmea-
surable conditions such as economic developments and land use complicate direct model application. Current
physical knowledge-based models, however, are often constrained by limited parameters, which restricts their
flexibility in capturing complex relationships within data.

To assess the model’s robustness and generalizability, Electronic Health Records (EHR) data would have
been an ideal choice, given their rich confounding relationships across multiple timelines. However, due to
empirical restrictions, we lost access to the EHR data during this study. To confirm the existence of inherent
temporal bias, we direct readers to the previous work |Li et al.| (2020). A comprehensive demonstration of
the experiments in this study can be found in the provided repositoryﬂ

ID Variable Name Explanation
A | Environmental set | Wind Speed, Humidity, Temperature
B Environmental set Il | Temperature, Solar Radiation, Precipitation
—
1t tier causality C | Evapotranspiration Evaporation and transpiration
D | Snowpack The winter frozen water in the ice form
2nd tier li
LCcatE LY E Soil Water Soil moisture in vadose zone
3rd tier causality F Aquifer Groundwater storage
G | Surface Runoff Flowing water over the land surface
H Lateral Vadose zone flow
| Baseflow Groundwater discharge
J Streamflow Sensors recorded outputs

Figure 17: DAG of structured hydrology data, with tiers of routines ordered by decreasing causal strengths.

7.1 Hydrology Dataset

Our experiments leverage the Soil and Water Assessment Tool (SWAT), a comprehensive hydrology data
simulation system rooted in physical modules. We use SWAT’s simulation of the Root River Headwater wa-
tershed in Southeast Minnesota, selecting 60 consecutive virtual years with daily updates. The performance
evaluations predominantly focus on the accuracy of the autoencoder reconstructions.

In hydrology, deep learning methodologies are frequently employed |Goodwell et al.| (2020) to distill effec-
tive representations from time series data, with RNN models emerging as a favored choice for streamflow
prediction [Kratzert| (2018). Figure [17]illustrates the causal DAG used by SWAT, with accompanying node
descriptions. The nodes signify different hydrological routines, with the intensity of causality between them
determined by their contribution to the output streamflow, denoted by various colors. The surface runoff
routine (1st tier causality) plays a significant role in causing swift streamflow peaks, followed by the lateral
flow routine (2nd tier causality). The baseflow dynamics (3rd tier causality) exert a more subtle influence.
In our causal discovery experiments, we aim to uncover these ground truths from the observed data.

7.2 Higher-Dimensional Representation Reconstruction Test

As depicted in Figure [I7} there are 10 nodes needing initial representation establishment. Table [I] displays
the statistics of their attributes (post-normalization), and reconstruction performance using the proposed
high-dimensional feature representation autoencoders. Accuracy is evaluated via root mean square error
(RMSE); lower RMSE equates to higher accuracy, on both scaled (i.e., normalized) and unscaled data.

2https://github.com/kflijia/bijective_ crossing functions.git
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Table 1: Statistics of Attributes and the Reconstruction Performances.

Variable | Dim | Mean Std Min Max | Non-Zero Rate% | RMSE on Scaled | RMSE on Unscaled | BCE of Mask
A 5 1.8513 | 1.5496 | -3.3557 | 7.6809 | 87.54 0.093 0.871 0.095
B 4 0.7687 | 1.1353 | -3.3557 | 5.9710 | 64.52 0.076 0.678 1.132
C 2 1.0342 | 1.0025 | 0.0 6.2145 | 94.42 0.037 0.089 0.428
D 3 0.0458 | 0.2005 | 0.0 5.2434 | 11.40 0.015 0.679 0.445
E 2 3.1449 | 1.0000 | 0.0285 | 5.0916 | 100 0.058 3.343 0.643
F 4 0.3922 | 0.8962 | 0.0 8.6122 | 59.08 0.326 7.178 2.045
G 4 0.7180 | 1.1064 | 0.0 8.2551 | 47.87 0.045 0.81 1.327
H 4 0.7344 | 1.0193 | 0.0 7.6350 | 49.93 0.045 0.009 1.345
I 3 0.1432 | 0.6137 | 0.0 8.3880 | 21.66 0.035 0.009 1.672
J 1 0.0410 | 0.2000 | 0.0 7.8903 | 21.75 0.007 0.098 1.088

Table 2: Brief Summary of the Latent Causal Discovery Results.
Edge | A»C | B»D | C—»D | C—»G | D—»G | G=J | D—»H | H=»J | BE E—G | E-H C—E | E-F F—=I | I-»J | DI
KLD | 7.63 8.51 10.14 | 11.60 | 27.87 | 5.29 25.19 | 15.93 | 37.07 ‘ 39.13 | 39.88 ‘ 46.58 | 53.68 ‘ 45.64 | 17.41 | 75.57
Gain | 7.63 | 851 | 1.135 | 11.60 | 2.454 | 5.29 | 25.19 | 0.209 | 37.07 -5.91 | -3.29 2.677 | 53.68 45.64 | 0.028 | 3.384

The task poses challenges due to the exceedingly low dimensionality of the 10 variables, with a maximum
of just 5 and the target node, J, possessing a single attribute. To counter this, we duplicate their columns
to achieve a uniform 12-dimensionality, supplemented by the dummy variables of the 12 months, yielding a
24-dimensional autoencoder input. Through a double-wise feature extension, we generate a 576-dimensional
amplified input, from which we extract a 16-dimensional representation via the encoder and decoder.

Significant challenges also arise from considerable meaningful-zero values. For example, node D (Snowpack in
winter) includes numerous zeros in other seasons, closely related to node E (Soil Water) values. We address
this by concurrently reconstructing non-zero indicator variables, named masks, within the autoencoder,
evaluated using binary cross entropy (BCE).

Despite these challenges, the shallow RMSE values within [0.01,0.09] suggest success, barring node F' (the
Aquifer). Considering that research into the physical schemes under the aquifer system is still in its infancy,
it is plausible that in this synthetic dataset, node F' is more representative of random noise than other nodes.

7.3 Latent Causal Effects Learning Test

Table [3 shows the results of the latent effect learning, organized by each result node. For convenience, the
pairwise relationship performances are referred to as “pair-effect”, and the hierarchical multi-level perfor-
mances as “stacking-effect”. To facilitate comparison, the baseline performances from the initial variable
representation (Table[l]) are also included. During latent effect estimation, each result node fulfills two roles:
preserving an accurate self-representation (optimization 2), and reconstructing the effect (optimization 1).
These dual roles are respectively depicted in the middle and right-hand side of Table

The KLD metrics in Table[3|indicate the strength of learned causality, with a lower value signifying a stronger
causal relationship. For instance, node J’s minimal KLD values suggest a significant causal effect from nodes
G (Surface Runoff), H (Lateral), and I (Baseflow). In contrast, the high KLD values imply that predicting
variable I using D and F is challenging.

For nodes D, E, and J, the stacking-effect causal strengths hover at a middle range compared to their pair-
effects, suggesting a potential associative uninformative among their cause nodes. In contrast, for nodes G
and H, lower stacking-effect KLDs indicate effective capture of associations by hierarchical representations.
The KLD metric also unveils the most contributive cause node to the causal effect. For instance, the C' — G
strength being closer to CDE — G indicates C as the primary source of this causal effect.

Figure [18]| showcases time series simulations of nodes J, G, and I, in the same synthetic year, to provide a
straightforward overview of the hierarchical representation performances. Here, blue lines represent recon-
structed data, black dots the ground truth, and red lines hierarchical representations. We employ not only
RMSE but also the Nash—Sutcliffe model efficiency coefficient (NSE) for accuracy evaluation, which ranges
from -0co to 1. The reconstructions closely mirror the ground truth, and as anticipated, the stacking-effect
outperforms the pair-effect in Figure Although node J has the best prediction, node I proves challenging.
For node G, which is predicted from causes CDFE, C offers the most potent causality.
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‘Yfear 1912, Node | (Streamflow): Scaled Value (column=Q_pred)

—— [Repre] RMSE=0.00, NSE=0.99
—— [GHI_J] RMSE=0.00, NSE=0.99
[G_J] RMSE=0.03, NSE=-0.1
--== [H_J]RMSE=0.02, NSE=0.14
10 === [I_J] RMSE=0.02, NSE=0.15

» Observation
05 1 L
001 1 A Ak . A F - U | k

15 A

Oct Nov Dec Jan

Jan Feb Mar Apr May Jun Jul Aug Sep
Year 1912, Node G (Surface Runoff): Scaled Value (column=SURQ_3)
301 — [Repre] RMSE=0.04, NSE=0.99
25 — [CDE_G]RMSE=0.15, NSE=0.96
' [C_G] RMSE=0.50, NSE=0.70
201 ---- [D_G] RMSE=0.61, NSE=0.62
15 { ~~ [E_G] RMSE=0.52, NSE=0.72
= Observation
10
05
00 1
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
Year 1912, Node | (Baseflow): Scaled Value (column=GW _2)
20 ! —— [Repre] RMSE=0.01, NSE=0.99
! — [DF_I] RMSE=0.51, NSE=-3.1
15 [D_I] RMSE=0.18, NSE=0.32
i ---= [F_I]RMSE=0.17, NSE=0.28
10 « Observation
05
0.0
T T T T T T T T T T T T T
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
Date

Figure 18: Time series simulation examples for the reconstruction performances’ comparison.

One might observe via the demo that our experiments do not show smooth information flows along successive
long causal chains. Given that RNNs are designed primarily for capturing the dynamics of causes rather than
the effects, relying on them to spontaneously organize the effects’ dynamical representations might prove
unreliable. It underscores a significant opportunity for enhancing effectiveness by improving the architecture.

7.4 Latent Space Causal Discovery Test

Table [0 shows the order of discovered edges, with the KLD values after each edge’s inclusion, and respective
KLD gains. Cells follow the color-coding scheme from Figure representing different tiers of causal
routines. For a detailed look at the causal discovery process, see [d] which presents sorted detection rounds.
For comparison, we conducted a 10-fold cross-validation using the conventional FGES method; results can be
found in Appendix A Table[5} The proposed method markedly outperforms the traditional FGES approach.

8 Conclusions

Our traditional thinking about AI often assumes that incorporating larger, more diverse datasets can lead
to more substantial advances. While that indeed powers Al but also creates more significant misalignments
that deviate from our knowledge and cognition. As highlights, AI alignment issues extend
beyond technical issues, but point to humans’ “blind spots” and “ unstated assumptions”. We might not
differentiate ourselves from Al systems based on our capacity to understand large contexts, but rather on
how we perceive the individual relationship.
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Table 3: Performances of Latent Causal Effect Learning via Reconstructions.

Varl_a.ble Representation Vz.mable Represe.ntatlon Latent Causal Effect Reconstruction
Result (Initial) (in Effect Learning)
Node RMSE BCE | Cause RMSE BCE RMSE BCE | KLD
on Scaled | on Unscaled Mask Node | on Scaled | on Unscaled Mask | % Scaled | on Unscaled Mask (in latent
Values Values Values Values Values Values space)
C 0.037 0.089 0.428 | A 0.0295 0.0616 0.4278 | 0.1747 0.3334 0.4278 | 7.6353
BC 0.0350 1.0179 0.1355 | 0.0509 1.7059 0.1285 | 9.6502
D 0.015 0.679 0.445 | B 0.0341 1.0361 0.1693 | 0.0516 1.7737 0.1925 | 8.5147
C 0.0331 0.9818 0.3404 | 0.0512 1.7265 0.3667 | 10.149
BC 0.4612 26.605 0.6427 | 0.7827 45.149 0.6427 | 39.750
E 0.058 3.343 0.643 | B 0.6428 37.076 0.6427 | 0.8209 47.353 0.6427 | 37.072
C 0.5212 30.065 1.2854 | 0.7939 45.791 1.2854 | 46.587
F 0.326 7.178 2.045 | E 0.4334 8.3807 3.0895 | 0.4509 5.9553 3.0895 | 53.680
CDE | 0.0538 0.9598 0.0878 | 0.1719 3.5736 0.1340 | 8.1360
C 0.1057 1.4219 0.1078 | 0.2996 4.6278 0.1362 | 11.601
G 0-045 0-81 1827 D 0.1773 3.6083 0.1842 | 0.4112 8.0841 0.2228 | 27.879
E 0.1949 4.7124 0.1482 | 0.5564 10.852 0.1877 | 39.133
DE 0.0889 0.0099 2.5980 | 0.3564 0.0096 2.5980 | 21.905
H 0.045 0.009 1.345 | D 0.0878 0.0104 0.0911 | 0.4301 0.0095 0.0911 | 25.198
E 0.1162 0.0105 0.1482 | 0.5168 0.0097 3.8514 | 39.886
DF 0.0600 0.0103 3.4493 | 0.1158 0.0099 3.4493 | 49.033
1 0.035 0.009 1.672 | D 0.1212 0.0108 3.0048 | 0.2073 0.0108 3.0048 | 75.577
F 0.0540 0.0102 3.4493 | 0.0948 0.0098 3.4493 | 45.648
GHI 0.0052 0.0742 0.2593 | 0.0090 0.1269 0.2937 | 5.5300
G 0.0077 0.1085 0.4009 | 0.0099 0.1390 0.4375 | 5.2924
J 0.007 0-098 1.088 H 0.0159 0.2239 0.4584 | 0.0393 0.5520 0.4938 | 15.930
1 0.0308 0.4328 0.3818 | 0.0397 0.5564 0.3954 | 17.410

This study advocates for a “Relation-Oriented” modeling principle, which could disrupt our prevalent
Observation-Oriented modeling convention and align more closely with the relation-centric nature of hu-
man comprehension. To be specific, the knowledge nodes we construct in our cognition, are motivated by,
and indexed through, relationships that confer them specific meanings under our comprehension context,
rather than solely reflecting observations. Through relations, our understanding can surpass observational
limitations, spanning: 1) hyper-dimensions that encompass unobservable knowledge hierarchies, and 2)
temporal spaces where we store dynamic events, governed by multiple logical timelines.

Additionally, this study presents a feasible Relation-Oriented modeling technique, extracting relation-defined
representations from observations, to instantiate the knowledge nodes in our understanding. Al alignment is
never a question with a simple answer, but calls for our interdisciplinary efforts |Christian| (2020)). Through
this work, we aim to pave the way toward truly authentic Al and lay the groundwork for future progress.

References

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning from examples
without local minima. Neural networks, 2(1):53-58, 1989.

Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins, and
Alexander Lerchner. Understanding disentangling in vae. arXiv preprint arXiv:1804.03599, 2018.

Brian Christian. The alignment problem: Machine learning and human values. 2020.

A Philip Dawid. Conditional independence in statistical theory. Journal of the Royal Statistical Society:
Series B (Methodological), 41(1):1-15, 1979.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv:1605.08803,
2016.

Felix Elwert. Graphical causal models. Handbook of causal analysis for social research, pp. 245273, 2013.

21



Under review as submission to TMLR

Dan Geiger and Judea Pearl. Logical and algorithmic properties of conditional independence and graphical
models. The annals of statistics, 21(4):2001-2021, 1993.

Clark Glymour, Kun Zhang, and Peter Spirtes. Review of causal discovery methods based on graphical
models. Frontiers in genetics, 10:524, 2019.

Allison E Goodwell, Peishi Jiang, Benjamin L. Ruddell, and Praveen Kumar. Debates—does information
theory provide a new paradigm for earth science? causality, interaction, and feedback. Water Resources
Research, 56(2):e2019WR024940, 2020.

Yimin Huang and Marco Valtorta. Pearl’s calculus of intervention is complete. arXiv preprint
arXiw:1206.6831, 2012.

Aapo Hyvérinen, Kun Zhang, Shohei Shimizu, and Patrik O Hoyer. Estimation of a structural vector
autoregression model using non-gaussianity. Journal of Machine Learning Research, 11(5), 2010.

Saachi Jain, Adityanarayanan Radhakrishnan, and Caroline Uhler. A mechanism for producing aligned
latent spaces with autoencoders. arXiv preprint arXiv:2106.15456, 2021.

Marcus Kaiser and Maksim Sipos. Unsuitability of notears for causal graph discovery. arXiv:2104.05441,
2021.

Frederik et. al Kratzert. Rainfall-runoff modelling using lstm networks. Hydrology and FEarth System Sci-
ences, 22(11):6005-6022, 2018.

Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu, and Simon Lacoste-Julien. Gradient-based neural
dag learning. arXiv preprint arXiv:1906.02226, 2019.

Jia Li, Xiaowei Jia, Haoyu Yang, Vipin Kumar, Michael Steinbach, and Gyorgy Simon. Teaching deep
learning causal effects improves predictive performance. arXiv preprint arXiv:2011.05466, 2020.

Yunan Luo, Jian Peng, and Jianzhu Ma. When causal inference meets deep learning. Nature Machine
Intelligence, 2(8):426-427, 2020.

Jianzhu et. al Ma. Using deep learning to model the hierarchical structure and function of a cell. Nature
methods, 15(4):290-298, 2018.

Mariusz Maziarz. A review of the granger-causality fallacy. The journal of philosophical economics: Reflec-
tions on economic and social issues, 8(2):86-105, 2015.

Mohammed Ombadi, Phu Nguyen, Soroosh Sorooshian, and Kuo-lin Hsu. Evaluation of methods for causal
discovery in hydrometeorological systems. Water Resources Research, 56(7):e2020WR027251, 2020.

Judea Pearl. Causal inference in statistics: An overview. 2009.
Judea Pearl. The do-calculus revisited. arXiv preprint arXiv:1210.4852, 2012.
Judea Pearl et al. Models, reasoning and inference. Cambridge, UK: Cambridge UniversityPress, 19(2), 2000.

Jonas Peters, Joris M Mooij, Dominik Janzing, and Bernhard Schélkopf. Causal discovery with continuous
additive noise models. 2014.

Jonas Peters, Dominik Janzing, and Bernhard Scholkopf. Elements of causal inference: foundations and
learning algorithms. The MIT Press, 2017.

David Pitt. Mental Representation. In Edward N. Zalta and Uri Nodelman (eds.), The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, Fall 2022 edition, 2022.

22



Under review as submission to TMLR

Elad Plaut. From principal subspaces to principal components with linear autoencoders. arXiv:1804.10253,
2018.

Alexander G Reisach, Christof Seiler, and Sebastian Weichwald. Beware of the simulated dag! varsortability
in additive noise models. arXiv preprint arXiv:2102.13647, 2021.

Richard Scheines. An introduction to causal inference. 1997.

Bernhard Scholkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh
Goyal, and Yoshua Bengio. Toward causal representation learning. IEEFE, 109(5):612-634, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Matej Vukovié¢ and Stefan Thalmann. Causal discovery in manufacturing: A structured literature review.
Journal of Manufacturing and Materials Processing, 6(1):10, 2022.

Yasi Wang, Hongxun Yao, and Sicheng Zhao. Auto-encoder based dimensionality reduction. 184:232-242,
2016.

Christopher J Wood and Robert W Spekkens. The lesson of causal discovery algorithms for quantum
correlations: Causal explanations of bell-inequality violations require fine-tuning. New Journal of Physics,
17(3):033002, 2015.

Haoyan Xu, Yida Huang, Ziheng Duan, Jie Feng, and Pengyu Song. Multivariate time series forecasting
based on causal inference with transfer entropy and graph neural network. arXiv:2005.01185, 2020.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous
optimization for structure learning. Advances in neural information processing systems, 31, 2018.

Xun Zheng, Chen Dan, Bryon Aragam, Pradeep Ravikumar, and Eric Xing. Learning sparse nonparametric
dags. In International Conference on Artificial Intelligence and Statistics, pp. 3414-3425. PMLR, 2020.

A Appendix: Complete Experimental Results of Causal Discovery

23



Under review as submission to TMLR

av8¢€e TTc0'ST
I<a I<D Sl 57
¥820°0 G78E'€ [4440R)!
r<I I<d I<D A
06¥79°S¥ | 89SC°0TT GLLG'GL 7941°56 BT #
I<d I<H I<d I<D
8GGC'OTT | 9089°€G | GLLG'GL | €0CE'E€CT | ¥9S1°G6 | 8L6T'TIT | LZTLLCET | 0ELL°6TL o1 #
I<d qd <d I<d qd <a I<D d <D d <4d d <V
8GGCOTT | T€6C°6- | 9089°€G | GLLE'GL €00E €Tt P9ST'G6 | 8LEC'TIT LTLL'TET 0€LL'6TT T #
I<d H<d d <H I<d d<d I<D d <D d <4 qd <V
8GGC'OTT | T€6C'€- | T6TI6°G- | 9089°€G | GLLE'GL €00E €Tt PIST'G6 | 8LEC'TIT LTLL'TET 0€LL'6TT 1T #
I<H H<<Hd D < d <d I<d d<d I1<D d <D d <4 qd <V
8GGC'OTT | TE€6CE- T6T6°G- | 9089°€S | GLLG°GL | €0TEECT | LOVO'LT P9ST'G6 | 8L6C'TTIT | LTLL'GET CTLES'9- 0€LL'6TT o1 #
I<H H<<d D < d <d I<d d<d dq<da I<D d <D d <4 d <4d d <V
GLLGGL | €0CE'ETT | SVEL'EY | ¥IGT'G6 | 8L6C'TTIT | 9L8G 9% | LTLL'CET GEE6'99 0€LL°6TT 9L8T°09 6 #
I<d d<d qd<da I<D d <D qd <D d<4d qd<4d d <V d <V
¢60T°0 | GLLG'GL | €0CEETT | 8VEL'E9 | ¥IST'G6 | BL6T'TIT 9.8G°9V | LTLL'TET GEE6'99 0€LL°6TT 9.8T1°09 g #
r<H I<d d <d qd<d I<D d <D C 0] d<4d qd<d qd <V <V
GLLG'GL | BBGT ST | €0CE'ECT | 8VELEY | ¥IST'G6 | T9ET6E | BL6T'TTT 9.8G°9V | LTLL'TET GEE6'99 0€LL°6TT 9.8T1°09 L #
I<d H<d qd<d d<d I1<D H <D d <D gD d<4d G | d <V <V
¥262°S GLLG'GL | 8861°GC | €0TE'ECT | 8VELEY | PI9T'G6 | T9E€T6E | BL6TTIT 9.8G°9V | LTLL'TET GE€6'99 0€LL6TT 9.8T1°09 o #
r<9 I<d H<<d qd<d d<<d I1¢D H <D d <D C 0] d<4d qd <4 qd <V H <V
¥e66°G | GLLG'GL | 8861'GC | OPSP'C | €0CE'€Cl | 8VEL'EY | PIGT'G6 | T9€C°6E | 8L6C'TTL L8G9V | LTLLCET GEE6'99 0€LL'6TT 918109 c #
r<»H I<d H<<d D «d qd<d d<<d 1D H <D d <D qd <D d<4d d <4 d <V <V
GLLG'GL | 8861'GC | 86L8'LG | €0GE'ECT | 8VEL'E9 | VIGT'S6 | 19€¢°6€ | GTO9'TT | 8L6G'TIIT 9L8G°9V | LILL'CET GEE6'39 0€LL6TT 9.81°09 b 4
I<d H<d D <d qd <d d<d I1<D H <D D <D d <D d <D d<4d d<d qd <V q <V
GLLGGL | 8861°GC | 86L8°LC | €0CE'ECT | 8PEL'EY | ¥IGT'G6 | T9EC6E | CIO9'TT | BL6C'TIT | 9L8G'9y | SSET'L LTLLTET GEE6'G9 | 0ELLGTT 9.L81°09 LSEL6 e #
I<d H<d | D <d d<d d<d I1<D H <D D <D 4 <D d <D a<>o d <4d d<4d d <V d <V a<v
799T°G6 | T9ET6E | CIO9'TT | 8L6TTIT | 9L8G°9% | O06VI'OT | LTLLGET GEE6'99 LVIS'8 0€LL6TT 9.8T1°09 LOVL6T g #
1D H<D D <D d <D [CR®) a<on d<4d d<4d a«<d d <V <V as«<v
LTLL'GET | GEE6'G9 LV1G8 €9L7'8 0€LL°6TT 9.81°09 LOVL 6T 729€9°L T #
qd <4 d <4 a<4d 0 <4d d <V d <V a«<v O <V

“A[SuIpI090® S98Po POTIWILIY 1) :S[[02 anyg (g 98pe
Po300[0s o1} :S[[00 POy (g 'S08po Poajoojop A[mou o) :S[[90 UoolIr) (T 'MO[oq se sureS (I3 1107} YIIm Pajs] oIr sa8po 91epIpued [[@ pur ‘Ioquinu punol
oY) SUIAJIIUSPT #, [IIM ‘UOI0919P JO PUNOI ® IOJ SPURIS MOI Yory -ooeds Juoje] Ul AISAOOSI(] [BSTR)) ONISLIMOY JO synsoy] ojordwo)) oy ], :f o[qel,

24



Under review as submission to TMLR

¥8E'€ | 8¢0°0 | ¥9°9¥ | 89'€S 6¢°¢- 16°G- 789- | 849¥ | 6020 61°S¢ 6¢°¢S ¥er'e 09°'TT GET'T 168 €9°4 ured)

L8°GL | TVLT | 79°GF | 89°€SG | 88'6E | €T°6E | €699 | 8G9y | €6°GT 61°S¢ 6¢°¢S 1828 09°TT1 v1°0T 168 €9°4 aTy

I«d | T[T« | dA€CH HEH | DCH [ HEH | HED [ [CH [ HA [ LD [ DA [ DD | AED | dd | OV | Uorjesnen

‘(Apoq 1oded o1 Ul )T 0INSI] Y} 0} POLIOJOI) SIol) [)SUSIIS AJI[RSTIRD [INI) PUNOIS oY) Juaseldol SI0[0D JUOIdI(] "SenjeA oeIoA® UOIJePI[eA P[OJ-f Ul
ale suoljenyead [y -A[[eqo[sd ured (T3 1seo[ oy Sumsind sI U0I10939p JO PUNOI Yory (I98UOIIS SI SS9) sonfea (I3 A paInseswl sI [I3UaI)s [esne))
“A[Surpuodsa1100 MO[oq IMOTS aIe do)s TDed UI STISUSIIS esned POINSIU 10T} pue (ST 01 o] WOIJ) IOPIO P1IdIdP Ul PISURIIR oI SOSPd AT T,
‘o8ed SI} UO S NSII SPOYPW §HY) ] [RUOIHIPRI}

oY) 03 uostreduwod I103309q I0J ‘Apoq Ioded oy} UI ¢ O[qRT, UM [BOIJUOPI ‘©oedS JUaje] Ul AISAOISI(] [BSTIR)) OIISLINOY oY) JO SHMSOY JOLIg :9 o[qe],

PAIdA0DSI(]
8¢ 0¢ z'8 0¢ 80 At 9g Aguorp jo
SOWILT,
— — — — — — — HORESIE.)
I<H I<OD | H<D | OD<<d d<d | d<«d d <D Suop
Surssipy jo
€0€0€0°0 | LELTLOO 00 L98¢V1°0 0 1LG€00°0 €0 L98¢V1°0 0 870690°0 | 98¢6€0°0 | 48900 | ¢90°0 | SEI'0 | GEI'0 | 6888€0°0 Aqeqorg
S8pH
€ i v cl 8 8 8 6 a1 cl 8 4 9 91 Ve 91 J0 TqUIMY
uoryesne))
<1 [<H L9 I<4d HeH | DEH | d¢H I1<d H«a | D<<d D <D <D | d«D |d«9d | d«<d | DV onay,
I H ) i CI a o) d v OPON osnepn

(‘TeoTyUApPT ©q 0} INO WINY SYNSOI 1YY g Ps01-I[datu

‘159)-Z-I9T7[SY ‘)$03-01q-0SIp ‘1599-qoId ‘3s99-dos-p ‘gsoy-orenbs-1yo Surpnjout ‘s[puIey 159 -juepuodopu] JUSIOPIP 9 Yim pouriofiod ole sjuowiodxe [[V)
"SI0300A RJRD II0Y} JO SYJSUS] o) 0T ‘SonqLIjje I} JO SIDOQUINU oY) JO UOIjed[dINur o7} SI SOPOU 0M) UMD SOFPo d[qIssod Jo Ioquunu o)

‘sny T, A[PA109dsol ‘Sopou JULIOPIP OM]) WHOIJ SOINGLII)e OM) SUTIDUUO0D SURIUL 93Po Uy 1 M [idop 10)eals 10 ouwes oY) )M SOPOU I9YI0 dY} 9Sned
A[uo wed apou yoes Jer]) 23pamouy Io1id oY) YIM ‘AT9A0ISID [esned (Yoreag soua[ealnby Apealx) 1seq) SHOA PIOI-0T Jo eoueuriojiod a8eIany :G o[qe],

25



	Introduction
	The Unobservable Hierarchy in Knowledge
	Hierarchy of Observational Features
	Hierarchy of Dynamical Temporal Features
	The Elusive Hidden Confounder

	Causality on the Timeline
	Causality vs. Correlation
	The Current Causal Modeling Context

	The Overlooked Temporal Dimensionality
	Inherent Temporal Bias
	Learning Dynamics
	Toward Knowledge-Aligned AI

	Obs-Tmp Representations' Hierarchical Disentanglement
	Factorization of Observational Hierarchy
	Factorization of Obs-Tmp Hierarchy
	Factorization of Relation-Defined Hierarchy

	Relation-Defined Representation Methodology
	Designing Higher-Dimensional Feature Representation Autoencoders
	Structural Model with Hierarchical Representations
	Causal Discovery in Latent Space

	Experiments
	Hydrology Dataset
	Higher-Dimensional Representation Reconstruction Test
	Latent Causal Effects Learning Test
	Latent Space Causal Discovery Test

	Conclusions
	Appendix: Complete Experimental Results of Causal Discovery

