
STORM: Efficient Stochastic Transformer based
World Models for Reinforcement Learning

Weipu Zhang, Gang Wang∗, Jian Sun, Yetian Yuan
National Key Lab of Autonomous Intelligent Unmanned Systems, Beijing Institute of Technology

Beijing Institute of Technology Chongqing Innovation Center
zhangwp.bit@gmail.com, {gangwang,sunjian,ytyuan}@bit.edu.cn

Gao Huang
Department of Automation, BNRist, Tsinghua University

gaohuang@tsinghua.edu.cn

Abstract

Recently, model-based reinforcement learning algorithms have demonstrated re-
markable efficacy in visual input environments. These approaches begin by con-
structing a parameterized simulation world model of the real environment through
self-supervised learning. By leveraging the imagination of the world model, the
agent’s policy is enhanced without the constraints of sampling from the real en-
vironment. The performance of these algorithms heavily relies on the sequence
modeling and generation capabilities of the world model. However, constructing a
perfectly accurate model of a complex unknown environment is nearly impossible.
Discrepancies between the model and reality may cause the agent to pursue virtual
goals, resulting in subpar performance in the real environment. Introducing random
noise into model-based reinforcement learning has been proven beneficial. In this
work, we introduce Stochastic Transformer-based wORld Model (STORM), an
efficient world model architecture that combines the strong sequence modeling and
generation capabilities of Transformers with the stochastic nature of variational
autoencoders. STORM achieves a mean human performance of 126.7% on the
Atari 100k benchmark, setting a new record among state-of-the-art methods that
do not employ lookahead search techniques. Moreover, training an agent with 1.85
hours of real-time interaction experience on a single NVIDIA GeForce RTX 3090
graphics card requires only 4.3 hours, showcasing improved efficiency compared
to previous methodologies.
We release our code at https://github.com/weipu-zhang/STORM.

1 Introduction

Deep reinforcement learning (DRL) has exhibited remarkable success across diverse domains. How-
ever, its widespread application in real-world environments is hindered by the substantial number
of interactions with the environment required for achieving such success. This limitation becomes
particularly challenging when dealing with broader real-world settings in e.g., unmanned and manu-
facturing systems [1, 2] that lack adjustable speed simulation tools. Consequently, improving the
sample efficiency has emerged as a key challenge for DRL algorithms.

Popular DRL methods, including Rainbow [3] and PPO [4], suffer from low sample efficiency due to
two primary reasons. Firstly, the estimation of the value function proves to be a challenging task. This

∗Corresponding author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/weipu-zhang/STORM

involves approximating the value function using a deep neural network (DNN) and updating it with
n-step bootstrapped temporal difference, which naturally requires numerous iterations to converge
[5]. Secondly, in scenarios where rewards are sparse, many samples exhibit similarity in terms of
value functions, providing limited useful information for training and generalization of the DNN
[6, 7]. This further exacerbates the challenge of improving the sample efficiency of DRL algorithms.

To address these challenges, model-based DRL algorithms have emerged as a promising approach
that tackles both issues simultaneously while demonstrating significant performance gains in sample-
efficient settings. These algorithms start by constructing a parameterized simulation world model of
the real environment through self-supervised learning. Self-supervised learning can be implemented
in various ways, such as reconstructing the original input state using a decoder [8–10], predicting
actions between frames [7], or employing contrastive learning to capture the internal consistency of
input states [6, 7]. These approaches provide more supervision information than conventional model-
free RL losses, enhancing the feature extraction capabilities of DNNs. Subsequently, the agent’s
policy is improved by leveraging the experiences generated using the world model, eliminating
sampling constraints and enabling faster updates to the value function compared to model-free
algorithms.

SimPLe TWM IRIS
DreamerV3

STORM (ours)
0%

50%

100%

150%

33%

96% 104% 112% 127%
Mean human normalized score

SimPLe TWM IRIS
DreamerV3

STORM (ours)
0%

20%

40%

60%

13%

51%

29%

49%
58%

Median human normalized score

SimPLe TWM IRIS
DreamerV3

STORM (ours)
0

5

10

0.5

5.6

0.7

9.3
11.9

Training FPS on V100

Figure 1: Comparison of methods on Atari 100k.
SimPLe [11] and DreamerV3 [10] employ RNNs
as their world models, whereas TWM [12], IRIS
[13], and STORM use Transformers. The train-
ing frames per second (FPS) results on a single
NVIDIA V100 GPU are extrapolated from other
graphics cards for SimPLe, TWM, and IRIS, while
DreamerV3 and STORM are directly evaluated.

However, the process of imagining with a world
model involves an autoregressive process that
can accumulate prediction errors over time. In
situations where discrepancies arise between the
imagined trajectory and the real trajectory, the
agent may inadvertently pursue virtual goals,
resulting in subpar performance in the real en-
vironment. To mitigate this issue, introducing
random noise into the world model has been
proven beneficial [9–11, 14]. Variational au-
toencoders, capable of automatically learning
low-dimensional latent representations of high-
dimensional data while incorporating reasonable
random noise into the latent space, offer an ideal
choice for image encoding.

Numerous endeavors have been undertaken to
construct an efficient world model. For in-
stance, SimPLe [11] leverages LSTM [15],
while DreamerV3 [10] employs GRU [16] as
the sequence model. LSTM and GRU, both vari-
ants of recurrent neural networks (RNNs), excel
at sequence modeling tasks. However, the recur-
rent nature of RNNs impedes parallelized com-
puting, resulting in slower training speeds [17].
In contrast, the Transformer architecture [17]
has lately demonstrated superior performance
over RNNs in various sequence modeling and
generation tasks. It overcomes the challenge
of forgetting long-term dependencies and is de-
signed for efficient parallel computing. While
several attempts have been made to incorporate
Transformers into the world model [12, 13, 18],
these works do not fully harness the capabil-
ities of this architecture. Furthermore, these
approaches require even longer training times
and fail to surpass the performance of the GRU-
based DreamerV3.

In this paper, we introduce the Stochastic Transformer-based wORld Model (STORM), a highly
effective and efficient structure for model-based RL. STORM employs a categorical variational
autoencoder (VAE) as the image encoder, enhancing the agent robustness and reducing accumulated
autoregressive prediction errors. Subsequently, we incorporate the Transformer as the sequence

2

model, improving modeling and generation quality while accelerating training. STORM achieves
a remarkable mean human normalized score of 126.7% on the challenging Atari 100k benchmark,
establishing a new record for methods without resorting to lookahead search. Furthermore, training
an agent with 1.85 hours of real-time interaction experience on a single NVIDIA GeForce RTX
3090 graphics card requires only 4.3 hours, demonstrating superior efficiency compared to previous
methodologies. The comparison of our approach with the state-of-the-art methods is depicted in
Figure 1.

2 Related work

Model-based DRL algorithms aim to construct a simulation model of the environment and utilize
simulated experiences to improve the policy. While traditional model-based RL techniques like
Dyna-Q have shown success in tabular cases [5], modeling complex environments such as video
games and visual control tasks presents significant challenges. Recent advances in computing and
DNNs have enabled model-based methods to learn the dynamics of the environments and start to
outperform model-free methods on these tasks.

The foundation of VAE-LSTM-based world models was introduced by Ha and Schmidhuber [14]
for image-based environments, demonstrating the feasibility of learning a good policy solely from
generated data. SimPLe [11] applied this methodology to Atari games, resulting in substantial
sample efficiency improvements compared to Rainbow [3], albeit with relatively lower performance
under limited samples. The Dreamer series [8–10] also adopt this framework and showcase notable
capabilities in Atari games, DeepMind Control, Minecraft, and other domains, using GRU [16] as the
core sequential model. However, as discussed earlier, RNN structures suffer from slow training [17].

Recent approaches such as IRIS [13], TWM [12], and TransDreamer [18] incorporate the Transformer
architecture into their world models. IRIS [13] employs VQ-VAE [19] as the encoder to map images
into 4×4 latent tokens and uses a spatial-temporal Transformer [20] to capture information within and
across images. However, the attention operations on a large number of tokens in the spatial-temporal
structure can result in a significant training slowdown. TWM [12] adopts Transformer-XL [21] as its
core architecture and organizes the sequence model in a structure similar to Decision Transformer [22],
treating the observation, action, and reward as equivalent input tokens for the Transformer. Performing
self-attention across different types of data may have a negative impact on the performance, and the
increased number of tokens considerably slows down training. TransDreamer [18] directly replaces
the GRU structure of Dreamer with Transformer. However, there is a lack of evidence demonstrating
their performance in widely accepted environments or under limited sample conditions.

Other model-based RL methods such as MuZero [23], EfficientZero [7], and SpeedyZero [24] incor-
porate Monte Carlo tree search (MCTS) to enhance policy and achieve promising performance on the
Atari 100k benchmark. Lookahead search techniques like MCTS can be employed to enhance other
model-based RL algorithms, but they come with high computational demands. Additionally, certain
model-free methods [6, 25–27] incorporate a self-supervised loss as an auxiliary term alongside the
standard RL loss, demonstrating their effectiveness in sample-efficient settings. Additionally, recent
studies [28, 29] delve deeper into model-free RL, demonstrating strong performance and high data
efficiency, rivaling that of model-based methods on several benchmarks. However, since the primary
objective of this paper is to enhance the world model, we do not delve further into these methods.

We highlight the distinctions between STORM and recent approaches in the world model as follows:

Table 1: Comparison between STORM and recent approaches. “Tokens” refers to the input tokens
introduced to the sequence model during a single timestep. "Historical information" indicates whether
the VAE reconstruction process incorporates historical data, such as the hidden states of an RNN.

Attributes SimPLe [11] TWM [12] IRIS [13] DreamerV3 [10] STORM (ours)

Sequence model LSTM [15] Transformer-XL [21] Transformer [17] GRU [16] Transformer
Tokens Latent Latent, action, reward Latent(4× 4) Latent Latent

Latent representation Binary-VAE Categorical-VAE VQ-VAE Categorical-VAE Categorical-VAE
Historical information Yes No Yes Yes No

Agent state Reconstructed image Latent Reconstructed image Latent, hidden Latent, hidden
Agent training PPO [4] As DreamerV2 [9] As DreamerV2 [9] DreamerV3 As DreamerV3

3

AgentAgentCa1

o1

ENC

Z1 z1

Ẑ2

ô1

DEC

h1

r̂1

ĉ1

a2

o2

Z2 z2

Ẑ3

ô2

h2

r̂2

ĉ2

ENC DEC

C

Transformer Blocks

a4

z4

Ẑ5

h4

r̂4

ĉ4

Ca3

z3

Ẑ4

h3

r̂3

ĉ3

C

Legend:

Neural networks

Inner output

Environment data

Random sample

Policy ConcatenateC

Figure 2: Structure and imagination process of STORM. The symbols used in the figure are explained
in Sections 3.1 and 3.2. The Transformer blocks depict the sequence model fϕ in Equation (2). The
Agent block, represented by a neural network, corresponds to πθ(at|st) in Equation (6).

• SimPLe [11] and Dreamer [10] rely on RNN-based models, whereas STORM employs a
GPT-like Transformer [30] as the sequence model.

• In contrast to IRIS [13] that employs multiple tokens, STORM utilizes a single stochastic
latent variable to represent an image.

• STORM follows a vanilla Transformer [17] structure, while TWM [12] adopts a Transformer-
XL [21] structure.

• In the sequence model of STORM, an observation and an action are fused into a single
token, whereas TWM [12] treats observation, action, and reward as three separate tokens of
equal importance.

• Unlike Dreamer [10] and TransDreamer [18], which incorporate hidden states, STORM
reconstructs the original image without utilizing this information.

3 Method

3.1 World model learning

Our approach adheres to the established framework of model-based RL algorithms, which focus on
enhancing the agent’s policy by imagination [5, 9–11, 13]. We iterate through the following steps
until reaching the prescribed number of real environment interactions.

S1) Gather real environment data by executing the current policy for several steps and append
them to the replay buffer.

S2) Update the world model using trajectories sampled from the replay buffer.

S3) Improve the policy using imagined experiences generated by the world model, with the
starting points for the imagination process sampled from the replay buffer.

At each time t, a data point comprises an observation ot, an action at, a reward rt, and a continuation
flag ct (a Boolean variable indicating whether the current episode is ongoing). The replay buffer
maintains a first-in-first-out queue structure, enabling the sampling of consecutive trajectories from
the buffer.

Section 3.1 provides a detailed description of the architecture and training losses employed by
STORM. On the other hand, Section 3.2 elaborates on the imagination process and the training
methodology employed by the agent. It provides an thorough explanation of how the agent leverages
the world model to simulate experiences and improve its policy.

4

Model structure The complete structure of our world model is illustrated in Figure 2. In our
experiments, we focus on Atari games [31], which generate image observations ot of the environment.
Modeling the dynamics of the environment directly on raw images is computationally expensive and
prone to errors [7–11, 13, 23]. To address this, we leverage a VAE [32] formulated in Equation (1) to
convert ot into latent stochastic categorical distributions Zt. Consistent with prior work [9, 10, 12],
we set Zt as a stochastic distribution comprising 32 categories, each with 32 classes. The encoder
(qϕ) and decoder (pϕ) structures are implemented as convolutional neural networks (CNNs) [33].
Subsequently, we sample a latent variable zt from Zt to represent the original observation ot. Since
sampling from a distribution lacks gradients for backward propagation, we apply the straight-through
gradients trick [9, 34] to preserve them.

Image encoder: zt ∼ qϕ(zt|ot) = Zt
Image decoder: ôt = pϕ(zt).

(1)

Before entering the sequence model, we combine the latent sample zt and the action at into a single
token et using multi-layer perceptrons (MLPs) and concatenation. This operation, denoted as mϕ,
prepares the inputs for the sequence model. The sequence model fϕ takes the sequence of et as input
and produces hidden states ht. We adopt a GPT-like Transformer structure [30] for the sequence
model, where the self-attention blocks are masked with a subsequent mask allowing et to attend to
the sequence e1, e2, . . . , et. By utilizing MLPs gDϕ , gRϕ , and gCϕ , we rely on ht to predict the current
reward r̂t, the continuation flag ĉt, and the next distribution Ẑt+1. The formulation of this part of the
world model is as follows

Action mixer: et = mϕ(zt, at)

Sequence model: h1:T = fϕ(e1:T)

Dynamics predictor: Ẑt+1 = gDϕ (ẑt+1|ht)
Reward predictor: r̂t = gRϕ (ht)

Continuation predictor: ĉt = gCϕ (ht).

(2)

Loss functions The world model is trained in a self-supervised manner, optimizing it end-to-end.
The total loss function is calculated as in Equation (3) below, with fixed hyperparameters β1 = 0.5
and β2 = 0.1. In the equation, B denotes the batch size, and T denotes the batch length

L(ϕ) = 1

BT

B∑
n=1

T∑
t=1

[
Lrec
t (ϕ) + Lrew

t (ϕ) + Lcon
t (ϕ) + β1Ldyn

t (ϕ) + β2Lrep
t (ϕ)

]
. (3)

The individual components of the loss function are defined as follows: Lrec
t (ϕ) represents the

reconstruction loss of the original image, Lrew
t (ϕ) represents the prediction loss of the reward, and

Lcon
t (ϕ) represents the prediction loss of the continuation flag.

Lrec
t (ϕ) = ||ôt − ot||2 (4a)

Lrew
t (ϕ) = Lsym(r̂t, rt) (4b)

Lcon
t (ϕ) = ct log ĉt + (1− ct) log(1− ĉt). (4c)

Additionally, Lsym in Equation (4b) denotes the symlog two-hot loss, as described in [10]. This loss
function transforms the regression problem into a classification problem, ensuring consistent loss
scaling across different environments.

The losses Ldyn
t (ϕ) and Lrep

t (ϕ) are expressed as Kullback–Leibler (KL) divergences but differ in
their gradient backward and weighting. The dynamics loss Ldyn

t (ϕ) guides the sequence model
in predicting the next distribution, while the representation loss Lrep

t (ϕ) allows the output of the
encoder to be weakly influenced by the sequence model’s prediction. This ensures that the learning
of distributional dynamics is not excessively challenging.

Ldyn
t (ϕ) = max

(
1,KL

[
sg(qϕ(zt+1|ot+1)) || gDϕ (ẑt+1|ht)

])
(5a)

Lrep
t (ϕ) = max

(
1,KL

[
qϕ(zt+1|ot+1) || sg(gDϕ (ẑt+1|ht))

])
(5b)

where sg(·) denotes the operation of stop-gradients.

5

3.2 Agent learning

The agent’s learning is solely based on the imagination process facilitated by the world model, as
illustrated in Figure 2. To initiate the imagination process, a brief contextual trajectory is randomly
selected from the replay buffer, and the initial posterior distribution Zt is computed. During infer-
ence, rather than sampling directly from the posterior distribution Zt, we sample zt from the prior
distribution Ẑt. To accelerate the inference, we employ the KV cache technique [35] within the
Transformer structure.

The agent’s state is formed by concatenating zt and ht, as shown below:

State: st = [zt, ht]

Critic: Vψ(st) ≈ Eπθ,pϕ

[∞∑
k=0

γkrt+k

]
Actor: at ∼ πθ(at|st).

(6)

We adopt the actor learning settings from DreamerV3 [10]. The complete loss of the actor-critic
algorithm is described by Equation (7), where r̂t corresponds to the reward predicted by the world
model, and ĉt represents the predicted continuation flag:

L(θ) = 1

BL

B∑
n=1

L∑
t=1

[
−sg

(
Gλt − Vψ(st)

max(1, S)

)
lnπθ(at|st)− ηH

(
πθ(at|st)

)]
(7a)

L(ψ) = 1

BL

B∑
n=1

L∑
t=1

[(
Vψ(st)− sg

(
Gλt

))2

+
(
Vψ(st)− sg

(
VψEMA(st)

))2
]

(7b)

where H(·) denotes the entropy of the policy distribution, while constants η and L represent the
coefficient for entropy loss and the imagination horizon, respectively. The λ-return Gλt [5, 10] is
recursively defined as follows

Gλt
.
= rt + γct

[
(1− λ)Vψ(st+1) + λGλt+1

]
(8a)

GλL
.
= Vψ(sL). (8b)

The normalization ratio S utilized in the actor loss (7a) is defined in Equation (9), which is computed
as the range between the 95th and 5th percentiles of the λ-return Gλt across the batch [10]

S = percentile(Gλt , 95)− percentile(Gλt , 5). (9)

To regularize the value function, we maintain the exponential moving average (EMA) of ψ. The EMA
is defined in Equation (10), where ψt represents the current critic parameters, σ is the decay rate,
and ψEMA

t+1 denotes the updated critic parameters. This regularization technique aids in stabilizing
training and preventing overfitting

ψEMA
t+1 = σψEMA

t + (1− σ)ψt. (10)

4 Experiments

We evaluated the performance of STORM on the widely-used benchmark for sample-efficient RL,
Atari 100k [31]. For detailed information about the benchmark, evaluation methodology, and the
baselines used for comparison, please refer to Section 4.1. The comprehensive results for the Atari
100k games are presented in Section 4.2.

4.1 Benchmark and baselines

Atari 100k consists of 26 different video games with discrete action dimensions of up to 18. The
100k sample constraint corresponds to 400k actual game frames, taking into account frame skip-
ping (4 frames skipped) and repeated actions within those frames. This constraint corresponds to

6

approximately 1.85 hours of real-time gameplay. The agent’s human normalized score τ = A−R
H−R

is calculated based on the score A achieved by the agent, the score R obtained by a random policy,
and the average score H achieved by a human player in a specific environment. To determine the
human player’s performance H , a player is allowed to become familiar with the game under the same
sample constraint.

To demonstrate the efficiency of our proposed world model structure, we compare it with model-based
DRL algorithms that share a similar training pipeline, as discussed in Section 2. However, similarly to
[10, 12, 13], we do not directly compare our results with lookahead search methods like MuZero [23]
and EfficientZero [7], as our primary goal is to refine the world model itself. Nonetheless, lookahead
search techniques can be combined with our method in the future to further enhance the agent’s
performance.

4.2 Results on Atari 100k

Detailed results for each environment can be found in Table 2, and the corresponding performance
curve is presented in Appendix A due to space limitations. In our experiments, we trained STORM
using 5 different seeds and saved checkpoints every 2, 500 sample steps. We assessed the agent’s
performance by conducting 20 evaluation episodes for each checkpoint and computed the average
score. The result reported in Table 2 is the average of the scores attained using the final checkpoints.

STORM demonstrates superior performance compared to previous methods in environments where the
key objects related to rewards are large or multiple, such as Amidar, MsPacman, Chopper Command,
and Gopher. This advantage can be attributed to the attention mechanism, which explicitly preserves
the history of these moving objects, allowing for an easy inference of their speed and direction
information, unlike RNN-based methods. However, STORM faces challenges when handling a single
small moving object, as observed in Pong and Breakout, due to the nature of autoencoders. Moreover,
performing attention operations under such circumstances can potentially harm performance, as the
randomness introduced by sampling may excessively influence the attention weights.

Table 2: Game scores and overall human-normalized scores on the 26 games in the Atari 100k
benchmark. Following the conventions of [9], scores that are the highest or within 5% of the highest
score are highlighted in bold.

Game Random Human SimPLe [11] TWM [12] IRIS [13] DreamerV3 [10] STORM (ours)

Alien 228 7128 617 675 420 959 984
Amidar 6 1720 74 122 143 139 205
Assault 222 742 527 683 1524 706 801
Asterix 210 8503 1128 1116 854 932 1028
Bank Heist 14 753 34 467 53 649 641
Battle Zone 2360 37188 4031 5068 13074 12250 13540
Boxing 0 12 8 78 70 78 80
Breakout 2 30 16 20 84 31 16
Chopper Command 811 7388 979 1697 1565 420 1888
Crazy Climber 10780 35829 62584 71820 59234 97190 66776
Demon Attack 152 1971 208 350 2034 303 165
Freeway 0 30 17 24 31 0 34
Freeway w/o traj 0 30 17 24 31 0 0
Frostbite 65 4335 237 1476 259 909 1316
Gopher 258 2413 597 1675 2236 3730 8240
Hero 1027 30826 2657 7254 7037 11161 11044
James Bond 29 303 101 362 463 445 509
Kangaroo 52 3035 51 1240 838 4098 4208
Krull 1598 2666 2204 6349 6616 7782 8413
Kung Fu Master 256 22736 14862 24555 21760 21420 26182
Ms Pacman 307 6952 1480 1588 999 1327 2673
Pong -21 15 13 19 15 18 11
Private Eye 25 69571 35 87 100 882 7781
Qbert 164 13455 1289 3331 746 3405 4522
Road Runner 12 7845 5641 9109 9615 15565 17564
Seaquest 68 42055 683 774 661 618 525
Up N Down 533 11693 3350 15982 3546 7667 7985

Human Mean 0% 100% 33% 96% 105% 112% 126.7%
Human Median 0% 100% 13% 51% 29% 49% 58.4%

7

5 Ablation studies

In our experiments, we have observed that the design and configuration choices of the world model
and the agent can have significant impacts on the final results. To further investigate this, we conduct
ablation studies on the design and configuration of the world model in Section 5.1, as well as on the
agent’s design in Section 5.2. Additionally, we propose a novel approach to enhancing the exploration
efficiency through the imagination capability of the world model using a single demonstration
trajectory, which is explained in Section 5.3.

5.1 World model design and configuration

The RNN-based world models utilized in SimPLe [11] and Dreamer [9, 10] can be formulated clearly
using variational inference over time. However, the non-recursive Transformer-based world model
does not align with this practice and requires manual design. Figure 3a shows alternative structures
and their respective outcomes. In the “Decoder at rear” configuration, we employ zt ∼ Ẑt instead of
zt ∼ Zt for reconstructing the original observation and calculating the loss. The results indicate that
the reconstruction loss should be applied directly to the output of the encoder rather than relying on
the sequence model. In the “Predictor at front” setup, we utilize zt as input for gRϕ (·) and gCϕ (·) in
Equation (2), instead of ht. These findings indicate that, while this operation has minimal impact on
the final performance for tasks where the reward can be accurately predicted from a single frame (in
e.g., Pong), it leads to a performance drop on tasks that require several contextual frames to predict
the reward accurately (in e.g., Ms. Pacman).

By default, we configure our Transformer with 2 layers, which is significantly smaller than the
10 layers used in IRIS [13] and TWM [12]. Figure 3b presents the varied outcomes obtained by
increasing the number of Transformer layers. The results reveal that increasing the layer count does
not have a positive impact on the final performance. However, in the case of the game Pong, even
when the sample limit is increased from 100k to 400k, the agent still achieves the maximum reward
in this environment regardless of whether a 4-layer or 6-layer Transformer is employed. This scaling
discrepancy, which differs from the success observed in other fields [36–38], may be attributed to
three reasons. Firstly, due to the minor difference between adjacent frames and the presence of
residual connections in the Transformer structure [17], predicting the next frame may not require a
complex model. Secondly, training a large model naturally requires a substantial amount of data, yet
the Atari 100k games neither provide images from diverse domains nor offer sufficient samples for
training a larger model. Thirdly, the world model is trained end-to-end, and the representation loss
Lrep in Equation (5b) directly influences the image encoder. The encoder may be overly influenced
when tracking the output of a large sequence model.

0 200k 400k
0

1000

2000

3000

4000
Ms Pacman

0 200k 400k
20

10

0

10

20
Pong

STORM Decoder at rear Predictor at front

(a) Rearranging the modules of STORM.

0 200k 400k
0

1000

2000

3000

4000
Ms Pacman

0 200k 400k
20

10

0

10

20
Pong

STORM (2L) 4L 6L

(b) Number of layers in the Transformer.

Figure 3: Ablation studies on the design and configuration of the STORM’s world model.

5.2 Selection of the agent’s state

The choice of the agent’s state st offers several viable options: ôt [13], ht, zt (as in TWM [12]), or
the combination [ht, zt] (as demonstrated by Dreamer, [9, 10]). In the case of STORM, we employ
st = [ht, zt], as in Equation (6). Ablation studies investigating the selection of the agent’s state
are presented in Figure 4. The results indicate that, in environments where a good policy requires
contextual information, such as in Ms. Pacman, the inclusion of ht leads to improved performance.
However, in other environments like Pong and Kung Fu Master, this inclusion does not yield a
significant difference. When solely utilizing ht in environments that evolve with the agent’s policy,

8

like Pong, the agent may exhibit behaviors similar to catastrophic forgetting [39] due to the non-
stationary and inaccurate nature of the world model. Consequently, the introduction of randomness
through certain distributions like Zt proves to be beneficial.

0 200k 400k
0

1000

2000

3000

4000
Ms Pacman

0 200k 400k
20

10

0

10

20
Pong

0 200k 400k
0

10000

20000

30000

Kung Fu Master

STORM Agent w/o zt Agent w/o ht

Figure 4: Ablation studies on the selection of the agent’s state.

5.3 Impact of the demonstration trajectory

The inclusion of a demonstration trajectory is a straightforward implementation step when using
a world model, and it is often feasible in real-world settings. Figure 5 showcases the impact of
incorporating a single demonstration trajectory in the replay buffer. Details about the provided
trajectory can be found in Appendix D. In environments with sparse rewards, adding a trajectory
can improve the robustness, as observed in Pong, or the performance, as seen in Freeway. However,
in environments with dense rewards like Ms Pacman, including a trajectory may hinder the policy
improvement of the agent.

Freeway serves as a prototypical environment characterized by challenging exploration but a simple
policy. To receive a reward, the agent must take the “up” action approximately 70 times in a row, but
it quickly improves its policy once the first reward is obtained. Achieving the first reward is extremely
challenging if the policy is initially set as a uniform distribution of actions. In the case of TWM [12],
the entropy normalization technique is employed across all environments, while IRIS [13] specifically
reduces the temperature of the Boltzmann exploration strategy for Freeway. These tricks are critical
in obtaining the first reward in this environment. It is worth noting that even for most humans, playing
exploration-intensive games without prior knowledge is challenging. Typically, human players require
instructions about the game’s objectives or watch demonstrations from teaching-level or expert players
to gain initial exploration directions. Inspired by this observation, we aim to directly incorporate a
demonstration trajectory to train the world model and establish starting points for imagination. By
leveraging a sufficiently robust world model, the utilization of limited offline information holds the
potential to surpass specially designed curiosity-driven exploration strategies in the future.

0 200k 400k
0

1000

2000

3000

4000
Ms Pacman

0 200k 400k
20

10

0

10

20
Pong

0 200k 400k
0

10

20

30

Freeway

w/o demonstration w/ demonstration

Figure 5: Ablations studies on adding a demonstration trajectory to the replay buffer.

As an integral part of our methodology, we integrate a single trajectory from Freeway into our
extensive results. Furthermore, to ensure fair comparisons in future research, we provide the results
without incorporating Freeway’s trajectory in Table 2 and Figure 6. It is important to highlight that
even without this trajectory, our approach consistently outperforms previous methods, attaining a
mean human normalized score of 122.3%.

9

6 Conclusions and limitations

In this work, we introduce STORM, an efficient world model architecture for model-based RL,
surpassing previous methods in terms of both performance and training efficiency. STORM harnesses
the powerful sequence modeling and generation capabilities of the Transformer structure while fully
exploiting its parallelizable training advantages. The improved efficiency of STORM broadens its
applicability across a wider range of tasks while reducing computational costs.

Nevertheless, it is important to acknowledge certain limitations. Firstly, both the world model of
STORM and the compared baselines are trained in an end-to-end fashion, where the image encoder
and sequence model undergo joint optimization. As a result, the world model must predict its own
internal output, introducing additional non-stationarity into the optimization process and potentially
impeding the scalability of the world model. Secondly, the starting points for imagination are
uniformly sampled from the replay buffer, while the agent is optimized using an on-policy actor-critic
algorithm. Although acting in the world model is performed on-policy, the corresponding on-policy
distribution µ(s) for these starting points is not explicitly considered, despite its significance in the
policy gradient formulation: ∇J(θ) ∝ ∑

s µ(s)
∑
a qπθ

(s, a)∇πθ(a|s) [5].

Acknowledgments and Disclosure of Funding

We would like to thank anonymous reviewers for their constructive comments. The work was
supported partially by the National Key R&D Program of China under Grant 2021YFB1714800,
partially by the National Natural Science Foundation of China under Grants 62173034, U23B2059,
61925303, 62088101, and partially by the Chongqing Natural Science Foundation under Grant
2021ZX4100027.

References
[1] Jie Chen, Jian Sun, and Gang Wang. From unmanned systems to autonomous intelligent

systems. Engineering, 12:16–19, 2022.

[2] Boxi Weng, Jian Sun, Gao Huang, Fang Deng, Gang Wang, and Jie Chen. Competitive
meta-learning. IEEE/CAA Journal of Automatica Sinica, 10(9):1902–1904, 2023.

[3] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improve-
ments in deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[4] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv:1707.06347, 2017.

[5] Richard S Sutton, Andrew G Barto, et al. Introduction to Reinforcement Learning, volume 135.
MIT Press Cambridge, 1998.

[6] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised represen-
tations for reinforcement learning. In International Conference on Machine Learning, pages
5639–5650. PMLR, 2020.

[7] Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering Atari
games with limited data. Advances in Neural Information Processing Systems, 34:25476–25488,
2021.

[8] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. In International Conference on Learning Representa-
tions, 2020. URL https://openreview.net/forum?id=S1lOTC4tDS.

[9] Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering Atari
with discrete world models. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=0oabwyZbOu.

10

https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=0oabwyZbOu

[10] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv:2301.04104, 2023.

[11] Łukasz Kaiser, Mohammad Babaeizadeh, Piotr Miłos, Błażej Osiński, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based reinforcement learning
for atari. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=S1xCPJHtDB.

[12] Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world
models are happy with 100k interactions. In International Conference on Learning Representa-
tions, 2023. URL https://openreview.net/forum?id=TdBaDGCpjly.

[13] Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world
models. In International Conference on Learning Representations, 2023. URL https://
openreview.net/forum?id=vhFu1Acb0xb.

[14] David Ha and Jürgen Schmidhuber. World models. arXiv:1803.10122, 2018.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9
(8):1735–1780, 1997.

[16] Kyunghyun Cho, Bart Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical
machine translation. In EMNLP, 2014.

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

[18] Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Transdreamer: Reinforcement learning
with transformer world models. arXiv:2202.09481, 2022.

[19] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
Neural Information Processing Systems, 30, 2017.

[20] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia
Schmid. Vivit: A video vision transformer. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6836–6846, 2021.

[21] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In Proceedings of
Annual Meeting of the Association for Computational Linguistics, pages 2978–2988, 2019.

[22] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in Neural Information Processing Systems, 34:15084–15097,
2021.

[23] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-
mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering
Atari, Go, chess and Shogi by planning with a learned model. Nature, 588(7839):604–609,
2020.

[24] Yixuan Mei, Jiaxuan Gao, Weirui Ye, Shaohuai Liu, Yang Gao, and Yi Wu. SpeedyZero: Master-
ing Atari with limited data and time. In International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=Mg5CLXZgvLJ.

[25] Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip
Bachman. Data-efficient reinforcement learning with self-predictive representations. In Inter-
national Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=uCQfPZwRaUu.

11

https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=TdBaDGCpjly
https://openreview.net/forum?id=vhFu1Acb0xb
https://openreview.net/forum?id=vhFu1Acb0xb
https://openreview.net/forum?id=Mg5CLXZgvLJ
https://openreview.net/forum?id=uCQfPZwRaUu
https://openreview.net/forum?id=uCQfPZwRaUu

[26] Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regu-
larizing deep reinforcement learning from pixels. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=GY6-6sTvGaf.

[27] Hado P Van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models in
reinforcement learning? Advances in Neural Information Processing Systems, 32, 2019.

[28] Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.
In International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=OpC-9aBBVJe.

[29] Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare, Rishabh
Agarwal, and Pablo Samuel Castro. Bigger, better, faster: Human-level Atari with human-level
efficiency. In International Conference on Machine Learning, pages 30365–30380. PMLR,
2023.

[30] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

[31] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[32] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv:1312.6114,
2013.

[33] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1(4):541–551, 1989.

[34] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv:1308.3432, 2013.

[35] Carol Chen. Transformer inference arithmetic. kipp.ly, 2022. URL https://kipp.ly/blog/
transformer-inference-arithmetic/.

[36] OpenAI. ChatGPT. https://openai.com/chat-gpt/, 2021. Accessed: April 19, 2023.

[37] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=YicbFdNTTy.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[39] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of Learning and Motivation, volume 24, pages
109–165. Elsevier, 1989.

[40] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International Conference on Machine Learning, pages
448–456. PMLR, 2015.

[41] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolutional
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2528–2535. IEEE, 2010.

[42] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv:1607.06450, 2016.

12

https://openreview.net/forum?id=GY6-6sTvGaf
https://openreview.net/forum?id=OpC-9aBBVJe
https://openreview.net/forum?id=OpC-9aBBVJe
https://kipp.ly/blog/transformer-inference-arithmetic/
https://kipp.ly/blog/transformer-inference-arithmetic/
https://openai.com/chat-gpt/
https://openreview.net/forum?id=YicbFdNTTy

[43] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

[44] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980, 2014.

[45] Florin Gogianu, Tudor Berariu, Lucian Bus, oniu, and Elena Burceanu. Atari agents, 2022. URL
https://github.com/floringogianu/atari-agents.

13

https://github.com/floringogianu/atari-agents

A Atari 100k curves

0 200k 400k
0

500

1000

1500

Alien

0 200k 400k
0

100

200

Amidar

0 200k 400k

500

1000

Assault

0 200k 400k

500

1000

Asterix

0 200k 400k
0

500

1000
Bank Heist

0 200k 400k

5000

10000

15000

Battle Zone

0 200k 400k

0

50

Boxing

0 200k 400k
0

20
40
60

Breakout

0 200k 400k

1000

2000

Chopper Command

0 200k 400k
0

50000

100000

Crazy Climber

0 200k 400k
0

250

500

750
Demon Attack

0 200k 400k
0

10

20

30

Freeway

0 200k 400k
0.05

0.00

0.05
Freeway w/o traj

0 200k 400k
0

1000

2000

Frostbite

0 200k 400k

0
5000

10000
15000

Gopher

0 200k 400k
0

5000

10000

Hero

0 200k 400k
0

250

500

750

James Bond

0 200k 400k

0

5000

Kangaroo

0 200k 400k
0

5000

10000
Krull

0 200k 400k
0

10000
20000
30000

Kung Fu Master

0 200k 400k
0

2000

4000
Ms Pacman

0 200k 400k
20

0

20
Pong

0 200k 400k
0

5000

10000

15000
Private Eye

0 200k 400k
0

2000

4000

Qbert

0 200k 400k
0

10000

20000

Road Runner

0 200k 400k

250

500

750
Seaquest

0 200k 400k
0

10000

20000

Up N Down

0 200k 400k
0.0

0.2

0.4

0.6
Gamer Median

0 200k 400k
0.0

0.5

1.0

Gamer Mean

STORM (Ours) Dreamer V3

Figure 6: Performance comparison on the Atari 100k benchmark. Our method is represented in blue,
while DreamerV3 [10] is in orange. The solid line represents the average result over 5 seeds, and the
filled area indicates the range between the maximum and minimum results across these 5 seeds.

14

B Details of model structure

Table 3: Structure of the image encoder. The size of the submodules is omitted and can be derived
from the shape of the tensors. ReLU refers to the rectified linear units used for activation, while
Linear represents a fully-connected layer. Flatten and Reshape operations are employed to alter the
indexing method of the tensor while preserving the data and their original order. Conv denotes a
CNN layer [33], characterized by kernel = 4, stride = 2, and padding = 1. BN denotes the batch
normalization layer[40].

Submodule Output tensor shape

Input image (ot) 3× 64× 64
Conv1 + BN1 + ReLU 32× 32× 32
Conv2 + BN2 + ReLU 64× 16× 16
Conv3 + BN3 + ReLU 128× 8× 8
Conv4 + BN4 + ReLU 256× 4× 4

Flatten 4096
Linear 1024

Reshape (produce Zt) 32× 32

Table 4: Structure of the image decoder. DeConv denotes a transpose CNN layer [41], characterized
by kernel = 4, stride = 2, and padding = 1.

Submodule Output tensor shape

Random sample (zt) 32× 32
Flatten 1024

Linear + BN0 + ReLU 4096
Reshape 256× 4× 4

DeConv1 + BN1 + ReLU 128× 8× 8
DeConv2 + BN2 + ReLU 64× 16× 16
DeConv3 + BN3 + ReLU 32× 32× 32

DeConv4 (produce ôt) 3× 64× 64

Table 5: Action mixer et = mϕ(zt, at). Concatenate denotes combining the last dimension of two
tensors and merging them into one new tensor. The variable A represents the action dimension, which
ranges from 3 to 18 across different games. D denotes the feature dimension of the Transformer. LN
is an abbreviation for layer normalization [42].

Submodule Output tensor shape

Random sample (zt), Action (at) 32× 32, A
Reshape and concatenate 1024 +A
Linear1 + LN1 + ReLU D

Linear2 + LN2 (output et) D

15

Table 6: Positional encoding module. w1:T is a learnable parameter matrix with shape T ×D, and T
refers to the sequence length.

Submodule Output tensor shape

Input (e1:T)
T ×DAdd (e1:T + w1:T)

LN

Table 7: Transformer block. Dropout mechanism [43] can prevent overfitting.

Submodule Module alias Output tensor shape

Input features (label as x1) T ×D

Multi-head self attention

MHSA T ×D
Linear1 + Dropout(p)

Residual (add x1)
LN1 (label as x2)

Linear2 + ReLU

FFN

T × 2D
Linear3 + Dropout(p) T ×D

Residual (add x2) T ×D
LN2 T ×D

Table 8: Transformer based sequence model h1:T = fϕ(e1:T). Positional encoding is explained in
Table 6 and Transformer block is explained in Table 7.

Submodule Output tensor shape

Input (e1:T)

T ×D
Positional encoding

Transformer blocks ×K
Output (h1:T)

Table 9: Pure MLP structures. A 1-layer MLP corresponds to a fully-connected layer. 255 is the size
of the bucket of symlog two-hot loss [10].

Module name Symbol MLP layers Input/ MLP hidden/ Output dimension

Dynamics head gDϕ 1 D/ -/ 1024
Reward predictor gRϕ 3 D/ D/ 255

Continuation predictor gCϕ 3 D/ D/ 1
Policy network πθ(at|st) 3 D/ D/ A
Critic network Vψ(st) 3 D/ D/ 255

16

C Hyperparameters

Table 10: Hyerparameters. Note that the environment will provide a “done” signal when losing a
life, but will continue running until the actual reset occurs. This life information configuration aligns
with the setup used in IRIS [13]. Regarding data sampling, each time we sample B1 trajectories of
length T for world model training, and sample B2 trajectories of length C for starting the imagination
process.

Hyperparameter Symbol Value

Transformer layers K 2
Transformer feature dimension D 512

Transformer heads - 8
Dropout probability p 0.1

World model training batch size B1 16
World model training batch length T 64

Imagination batch size B2 1024
Imagination context length C 8

Imagination horizon L 16
Update world model every env step - 1

Update agent every env step - 1
Environment context length - 16

Gamma γ 0.985
Lambda λ 0.95

Entropy coefficiency η 3× 10−4

Critic EMA decay σ 0.98

Optimizer - Adam [44]
World model learning rate - 1.0× 10−4

World model gradient clipping - 1000
Actor-critic learning rate - 3.0× 10−5

Actor-critic gradient clipping - 100

Gray scale input - False
Frame stacking - False
Frame skipping - 4 (max over last 2 frames)

Use of life information - True

17

D Demonstration trajectory information

Table 11: To account for frame skipping, the frame count is multiplied by 4. These trajectories were
gathered using pre-trained DQN agents [45].

Game Episode return Frames

Ms Pacman 5860 1612× 4
Pong 18 2079× 4

Freeway 27 2048× 4

18

E Computational cost details and comparison

Table 12: Computational comparison. In the V100 column, an item marked with a star indicates
extrapolation based on other graphics cards, while items without a star are tested using actual devices.
The extrapolation method employed aligns with the setup used in DreamerV3 [10], where it assumes
the P100 is twice as slow and the A100 is twice as fast.

Method Original computing resource V100 hours

SimPLe [11] NVIDIA P100, 20 days 240∗

TWM [12] NVIDIA A100, 10 hours
20∗NVIDIA GeForce RTX 3090, 12.5 hours

IRIS [13] NVIDIA A100, 7 days for two runs 168∗

DreamerV3 [10] NVIDIA V100, 12 hours 12

STORM NVIDIA GeForce RTX 3090, 4.3 hours 9.3

19

F Atari video predictions

Re
al

Context Input

M
od

el

t = 0 t = 7

Imagination

t = 15 t = 23 t = 31 t = 39 t = 47 t = 55

Environment: Boxing

t = 63

Re
al

Context Input

M
od

el

t = 0 t = 7

Imagination

t = 15 t = 23 t = 31 t = 39 t = 47 t = 55

Environment: ChopperCommand

t = 63

Re
al

Context Input

M
od

el

t = 0 t = 7

Imagination

t = 15 t = 23 t = 31 t = 39 t = 47 t = 55

Environment: MsPacman

t = 63

Re
al

Context Input

M
od

el

t = 0 t = 7

Imagination

t = 15 t = 23 t = 31 t = 39 t = 47 t = 55

Environment: Pong

t = 63

Re
al

Context Input

M
od

el

t = 0 t = 7

Imagination

t = 15 t = 23 t = 31 t = 39 t = 47 t = 55

Environment: RoadRunner

t = 63

Figure 7: Multi-step predictions on several environments in Atari games. The world model utilizes 8
observations and actions as contextual input, enabling the imagination of future events spanning 56
frames in an auto-regressive manner.

20

	Introduction
	Related work
	Method
	World model learning
	Agent learning

	Experiments
	Benchmark and baselines
	Results on Atari 100k

	Ablation studies
	World model design and configuration
	Selection of the agent's state
	Impact of the demonstration trajectory

	Conclusions and limitations
	Atari 100k curves
	Details of model structure
	Hyperparameters
	Demonstration trajectory information
	Computational cost details and comparison
	Atari video predictions

