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ABSTRACT

We study the performance of the Thompson Sampling algorithm for logistic ban-
dit problems, where the agent receives binary rewards with probabilities deter-
mined by a logistic function, exp(β⟨a, θ⟩)/(1 + exp(β⟨a, θ⟩)), with slope pa-
rameter β. We focus on the setting where both the action a and parameter θ lie
within the d-dimensional unit ball. Adopting the information-theoretic frame-
work introduced by (Russo & Van Roy, 2015), we analyze the information ratio,
a statistic that quantifies the trade-off between the information gained about the
optimal action and the immediate regret incurred. We improve upon previous
results by establishing that the information ratio is bounded by 9

2dα
−2, where

α is a minimax measure of the alignment between the action space and the pa-
rameter space, independent of β. Notably, we derive a regret bound of order
O(d/α

√
T log(βT/d)), which scales only logarithmically with the logistic func-

tion parameter β. To the best of our knowledge, this is the first regret bound for lo-
gistic bandits that achieves logarithmic dependence on β while being independent
of the number of actions. In particular, when the action space encompasses the
parameter space, the expected regret of Thompson Sampling is of order Õ(d

√
T ).

1 INTRODUCTION

This paper studies the logistic bandit problem, where for T time steps, an agent selects an action and
receives binary rewards with probabilities determined by the logistic function exp(β⟨a, θ⟩)/(1 +
exp(β⟨a, θ⟩)) with slope parameter β > 0. In this setting, both the action a ∈ A and the parameter
vector θ ∈ O lie within the d-dimensional unit ball. Logistic bandits are used to model various sce-
narios, such as click-through rate prediction, spam email detection, and personalized advertisement
systems, where, in the latter case, content is suggested to users who provide binary feedback, such
as ”like” or ”dislike” (Chapelle & Li, 2011; McMahan & Streeter, 2012; Russo & Van Roy, 2017).

The performance, or regret, of algorithms for logistic bandits has been extensively studied, with sig-
nificant contributions including analyses of Upper-Confidence-Bound (UCB) algorithms by (Filippi
et al., 2010), (Li et al., 2017), and (Faury et al., 2020) as well as the study of Thompson Sampling
(TS) by (Russo & Van Roy, 2014a) and (Abeille & Lazaric, 2017). However, nearly all existing re-
gret bounds exhibit an exponential dependence on the parameter β (see our comparison in Table 1).
This dependence is unsatisfactory because, in practice, as β increases, it can be faster to identify the
optimal action as the distinction between near-optimal and sub-optimal actions is more pronounced.

In this work, we focus on the Thompson Sampling algorithm (Thompson, 1933), which, despite its
simplicity, has proven to be highly effective across a wide range of problems (Russo et al., 2018;
Chapelle & Li, 2011). To analyze the regret of Thompson Sampling, (Russo & Van Roy, 2015)
introduced the concept of the information ratio, defined as the ratio between the squared expected
difference between the optimal and actual rewards, and the information gained about the optimal
action. (Dong & Van Roy, 2018) conjectured that the Thompson Sampling information ratio for
logistic bandits could be bounded solely by the problem’s dimension d, and several studies have
since aimed to characterize this ratio.

Recently, (Neu et al., 2022) derived a regret bound of the order O(
√
dT |A| log(βT )) on the lo-

gistic bandit problem, but their result relies on a worst-case information ratio bound scaling with
the cardinality of the action space |A| and their regret bound becomes vacuous for problems with
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Algorithm Regret Upper Bound Note
Thompson Sampling

(Russo & Van Roy, 2014a) O
(
eβ · d · T 1/2 · log(T )3/2

)
Bayesian bound

Thompson Sampling
(Abeille & Lazaric, 2017) O

(
eβ · d3/2 · log(d)1/2 · T 1/2 log(T )3/2

)
Frequentist bound

Thompson Sampling
(Dong & Van Roy, 2018) O

(
eβ · d · T 1/2 log(T/d)1/2

)
Bayesian bound

Logistic-UCB-2
(Faury et al., 2020) O

(
d · T 1/2 · log(T ) + eβ · d2 · log(T )2

)
Frequentist bound

Thompson Sampling
(this paper) O

(
d/α · T 1/2 · log(Tβ/d)1/2

) Bayesian bound,
α is independent of β
(defined in Section 2)

Table 1: Comparison of various regret guarantees for the logistic bandit problem.

continuous or infinite action space even though Thompson Sampling is known to perform well un-
der these settings (Russo & Van Roy, 2014a). Studying the Thompson Sampling regret for logistic
bandits, (Dong et al., 2019) introduced two statistics to characterize the sets A and O, the minimax
alignment constant1 α = minθ∈O maxa∈A⟨a, θ⟩ and the fragility dimension η, which is the cardi-
nality of the largest subset of parameters such that their corresponding optimal action is misaligned
with any other parameter from the subset. Using those statistics, they showed that for β < 2, the
information ratio for Thompson Sampling is bounded by 100max(d, η)α−2. They also suggested,
through numerical computations, that this bound holds for larger values of β. However, their work
has two key limitations. First, they do not provide a rigorous proof for generalizing their bound
to larger values of β. Second, and more critically, their regret analysis is incorrect as it relies on
the rate-distortion bound from (Dong & Van Roy, 2018), which is incompatible with a bound on
the Thompson Sampling information ratio. Indeed, the regret analysis in Dong & Van Roy (2018)
specifically requires a bound on the one-step compressed Thompson Sampling information ratio,
which is a fundamentally different quantity from the Thompson Sampling information ratio studied
in the work of (Dong et al., 2019). We elaborate on these gaps in more detail in Appendix E.

In this work, we address these issues and obtain a regret bound that scales only logarithmically with
the slope of the logistic function, while remaining independent of the cardinality of the action space.
Our key contributions are as follows:

• We propose an information-theoretic regret bound of order O(
√
TΓ(H(Θε) + βεT )) that

holds for infinite and continuous action and parameter spaces. The bound and relies on
the entropy of the quantized parameter, H(Θε), and the average expected information ratio
of Thompson Sampling, Γ. This result is achieved by adapting the approaches from (Neu
et al., 2021) and (Gouverneur et al., 2023) to the logistic bandit setting.

• We present a refined analysis showing that, for all β > 0, the information ratio of Thomp-
son Sampling for logistic bandits is bounded by 9

2dα
−2, improving upon the previous re-

sults. Notably, our bound does not depend on the fragility dimension η.

• We establish a regret bound of order O(d/α
√
T log(βT/d)) for Thompson Sampling. To

our knowledge, this is the first bound on logistic bandits that scales only logarithmically
with β > 0 and is independent of the number of actions. Additionally, we show that if the
action space encompasses the parameter space or if the action space is a design parameter,
the expected TS regret is bounded in O(d

√
T log(βT/d)) with no dependence on α.

The rest of the paper is organized as follows. Section 2 introduces the logistic bandit problem
setup, defines the Bayesian expected regret, and the specific notations used. Section 3 introduces the
Thompson Sampling algorithm and the information ratio analysis. Section 4 states and discusses our
main results, providing the improved regret bounds. Section 5 presents the key ideas of our analysis
for studying the information ratio, and finally, Section 6 discusses our results and future extensions.

1This statistic is referred to as the worst-case optimal log-odds in the work of (Dong et al., 2019).
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2 PROBLEM SETUP

We consider a logistic bandit problem, where at each time step t ∈ {1, . . . , T}, an agent selects an
action At and receives a binary reward Rt ∈ {0, 1} with probability following a logistic function:

P(Rt = 1|At = a,Θ = θ) =
exp(β⟨a, θ⟩)

1 + exp(β⟨a, θ⟩)
,

where β > 0 is a known scale parameter, and ⟨a, θ⟩ denotes the inner product of the action vector
a ∈ A and the unknown parameter θ ∈ O. Throughout the paper, we denote the logistic function as
ϕβ(⟨a, θ⟩). The probability of obtaining a reward is maximized when the inner product between the
action and environment parameters is maximized. In our setting, both the action a and the parameter
vector θ lie within the d-dimensional Euclidean unit ball, Bd(0, 1). Note that this is equivalent to the
problem considered by (Faury et al., 2020) using β as the maximal norm for the parameters θ ∈ O.

For a given action space A and parameter space O, we define their minimax alignment constant
α := minθ∈O maxa∈A⟨a, θ⟩. For the rest of the paper, we assume that the action and parameters
spaces are such that α ≥ 0. This assumption is relatively mild, as it suffices for the action space A to
contain two opposed actions a, a′ (i.e. a= −a′) to ensure α ≥ 0 for any parameter set O ⊆ Bd(0, 1).

Following the Bayesian framework, we assume the parameter vector θ ∈ O is sampled from
a known prior distribution PΘ. This prior, together with the reward distribution PR|A,Θ, fully
describes the logistic bandit problem. As the reward distribution depends only on the selected
action and the parameter, it can be expressed as Rt = R(At,Θ) for some possibly random function
R : A × O → R. The agent’s history at time t is denoted by Ht = {A1, R1, . . . , At−1, Rt−1},
representing all past actions and rewards observed up to time t.

The goal of the agent is to sequentially select actions that maximize the total accumulated reward,
or equivalently, that minimize the total expected regret defined as:

E[Regret(T )] := E

[
T∑
t=1

R(A⋆,Θ)−R(At,Θ)

]
,

where A⋆ is the optimal action for the corresponding parameter Θ. We construct the optimal map-
ping π⋆(θ) := argmaxa∈AE[R(a, θ)] and we can write A⋆ = π⋆(Θ). To ensure such a mapping
exists, we make the technical assumption that the set of actions A is compact. Following (Dong
et al., 2019), we assume without loss of generality that the mapping π⋆ is one-to-one2.

Since the σ-algebras of the history are often used in conditioning, we introduce the notations Et[·] :=
E[·|Ht] and Pt[·] := P[·|Ht] to denote the conditional expectation and probability given the history
Ht, respectively. Additionally, we define It(A⋆;Rt|At) := Et[DKL(PRt|Ht,A⋆,At

∥PRt|Ht,At
)] as

the disintegrated conditional mutual information between the optimal action A⋆ and the reward Rt
conditioned on the action At, given the history Ht.

3 THOMPSON SAMPLING AND INFORMATION RATIO

An elegant algorithm for solving bandit problems is the Thompson Sampling algorithm. It works by
randomly selecting actions according to their posterior probability of being optimal. More specifi-
cally, at each time step t ∈ {1, . . . , T}, the agent samples a parameter estimate Θ̂t from the posterior
distribution conditioned on the history Ht and selects the action that is optimal for the sampled pa-
rameter estimate, At = π⋆(Θ̂t). The pseudocode for Thompson Sampling is given in Algorithm 1.

Studying the regret of Thompson Sampling in bandit problems, (Russo & Van Roy, 2015) introduced
a key quantity to the analysis, the information ratio defined as the following random variable:

Γt :=
Et[R(A⋆,Θ)−R(At,Θ)]2

It(A⋆;R(At,Θ), At)
.

2Recall that Thompson Sampling disregards actions that are not optimal for any parameter. If a particular
parameter is optimal for multiple actions, we can arbitrarily fix the mapping of that parameter to one of the
optimal actions. Conversely, if a particular action is optimal for multiple parameters, we can introduce duplicate
action labels to ensure a one-to-one correspondence between each parameter and its optimal action label. A
rigorous explanation of this construction is provided in Appendix F.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Thompson Sampling algorithm

1: Input: parameter prior PΘ.
2: for t = 1 to T do
3: Sample a parameter estimate Θ̂t ∼ PΘ|Ht .
4: Take the corresponding optimal action At = π⋆(Θ̂t).
5: Collect the reward Rt = R(At,Θ).
6: Update the history Ht+1 = Ht ∪ {At, Rt}.
7: end for

This ratio measures the trade-off between minimizing the current squared regret and gathering infor-
mation about the optimal action; a small ratio indicates that a substantial gain of information about
the optimal action compensates for any significant regret.

Russo and Van Roy use this concept to provide a general regret bound that depends on the time
horizon T , the entropy of the prior distribution of A⋆, and an algorithm- and problem-dependent
upper bound Γ on the average expected information ratio (Russo & Van Roy, 2015, Proposition 1).

A limitation of this approach is that the prior entropy of the optimal action, H(A⋆), can grow arbi-
trarily large with the number of actions or get infinite if the action space is continuous. We address
this issue with Theorem 1, where we propose a regret bound that depends instead on the entropy
of Θε, a quantized version of the parameter Θ while still being compatible with bounds on the
Thompson Sampling information ratio.

4 MAIN RESULTS

This section presents our main results on the regret of Thompson Sampling for logistic bandits.
In Theorem 1, we leverage the previously introduced concepts to derive an information-theoretic
regret bound for logistic bandits that holds for continuous and infinite parameter spaces. Following
this, we state in Proposition 1 our principal contribution, where we prove a bound of 9

2dα
−2 on the

Thompson Sampling information ratio. By combining this result with our regret bound, we derive
in Theorem 2, a bound on the expected regret of Thompson Sampling for logistic bandits, which
scales as O(d/α

√
T log(βT/d)).

Our first theorem provides a regret bound that holds for large and continuous action spaces. No-
tably, the theorem uses bounds on the average expected information ratio of the “standard” Thomp-
son Sampling, rather than the one-step compressed Thompson Sampling, as in (Dong & Van Roy,
2018, Theorem 1). This distinction is crucial, as the intricate construction of one-step compressed
Thompson Sampling makes it challenging to derive bounds on its information ratio. The Thompson
Sampling regret is related to the entropy of the quantized parameter Θε, which is defined as the
closest approximation for Θ (as measured by the metric ρ) on an ε-net for (O, ρ).

Definition 1 Let the set Oε be an ε-net for (O, ρ) with associated projection mapping q : O → Oε

such that for all θ ∈ O we have ρ(θ, q(θ)) ≤ ε. We define the quantized parameter as Θε := q(Θ).

The proof of Theorem 1 adapts the techniques of of (Gouverneur et al., 2023, Theorem 2) and (Neu
et al., 2021, Theorem 2) to the logistic bandits setting. It relies on a Lipschitz approximation of the
conditional mutual information I(Θ;Rt|At, Ht) as I(Θε;Rt|At, Ht) + βε exploiting the fact that,
for all a ∈ A, the log-likelihood of R(a, θ) is β-Lipschitz with respect to θ ∈ O.

Theorem 1 For all β > 0, under the logistic bandit setting with logistic function ϕβ(x), let the
quantized parameter Θε be defined as in Definition 1 for some ε > 0. If there exists Γ > 0 such
that the average expected TS information ratio is bounded, 1

T

∑T
t=1 E[Γt] ≤ Γ, then the TS regret

is bounded as

E[Regret(T )] ≤
√

ΓT (H(Θε) + εβT ).

4
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Proof 1 We start by rewriting the Thompson Sampling expected regret using the information ratio:

E[Regret(T )] =
T∑
t=1

E[R(A⋆,Θ)−R(At,Θ)] =

T∑
t=1

E
[√

ΓtIt(A⋆;R(At,Θ), At)
]
.

We continue using Jensen’s inequality, followed by Cauchy-Schwarz inequality:

E[Regret(T )] ≤
T∑
t=1

√
E[Γt]I(A⋆;R(At,Θ), At|Ht) ≤

√√√√ΓT

T∑
t=1

I(A⋆;R(At,Θ), At|Ht),

where in the last inequality, we used that
∑T
t=1 Et[Γt] ≤ ΓT . Applying the chain rule (Yury Polyan-

skiy, 2022, Theorem 3.7.b) we can decompose the mutual information as

I(A⋆;R(At,Θ), At|Ht) = I(A⋆;At|Ht) + It(A⋆;R(At,Θ)|Ht, At)

= I(π⋆(Θ);R(At,Θ)|Ht, At)

= I(Θ;R(At,Θ)|Ht, At),

where we used the fact that the mutual information It(A⋆;At|Ht) = 0 as the optimal action A⋆
and the Thompson Sampling action At are independent conditioned on the history Ht and the last
equality follows from (Yury Polyanskiy, 2022, Theorem 3.2.d) as π⋆ is a one-to-one mapping.

Let fRt|Ht,At,Θ denote the probability density ofRt conditioned onHt, At,Θ and fRt|Ht,At
denote

the probability density on Ht, At. Then, the mutual information terms can be written as

I(Θ;Rt|Ht, At) = E
[
log

fRt|Ht,At,Θ(Rt)

fRt|Ht,At
(Rt)

]
.

We let the set Oε be an ε-net for (O, ρ) with associated projection mapping q : O → Oε. Similarly
to the proof of (Neu et al., 2021, Theorem 2), we note that the mutual information can be written as

E
[ ∫

O
fΘ|Rt,Ht,At

(θ)

(
log

fRt|At,Θ=θ(Rt)

fRt|At,Θ=q(θ)(Rt)
+ log

fRt|Ht,At,Θ=q(θ)(Rt)

fRt|Ht,At
(Rt)

)
dθ

]
, (1)

since fRt|Ht,At,Θ = fRt|At,Θ almost surely by the conditional Markov chain Rt −At −Ht | Θ.

Since the derivative of log(ϕβ(x)) is β/(1 + exp(βx)), it is bounded by β, which makes it β-
Lipschitz. Furthermore, for all a ∈ A and θ ∈ O, the inner product ⟨a, θ⟩ ≤ 1, implying that
log(fRt|At,Θ=θ(1)) is also β-Lipschitz with respect to θ. Similarly, the derivative of log(1−ϕβ(x)),
given by | ddx log(1−ϕβ(x))| = |β exp(βx)/(1+exp(βx))|, is bounded by β, making it β-Lipschitz
as well. Consequently, log(fRt|At,Θ=θ(0)) is β-Lipschitz with respect to θ. Thus, we conclude that:
| log fRt|At,Θ=θ(Rt)− log fRt|At,Θ=q(θ)(Rt)| ≤ βρ(θ, q(θ)) ≤ βε.

After defining the random variable Θε := q(Θ), the second term in (1) is equal to I(Θε;Rt|Ht, At).
Summing the T mutual information I(Θε;Rt|Ht, At) and applying the chain rule, we obtain

E[Regret(T )] ≤
√

ΓT (I(Θε;HT ) + εβT ).

Finally, we upper bound I(Θε;HT ) by the entropy H(Θε) to obtain the claimed result.

In the following, we present our main proposition, a bound on the information ratio of Thompson
Sampling that depends only on the problem dimension d and the minimax alignment constant α.

Proposition 1 For all β > 0, and for all A,O ⊆ Bd(0, 1) with α their minimax alignment constant,
under the logistic bandit setting with logistic function ϕβ(x), the information ratio of Thompson
Sampling is bounded as Γt ≤ 9

2dα
−2.

At a high level, our proof consists of three parts: a lower bound on the conditional mutual
information, It(A⋆;R(At,Θ), At), an upper bound on the squared expected regret at time t,
Et[R(A⋆,Θ)−R(At,Θ)]2, and an upper bound on a ratio of expected variances by the study of the
limit case β → ∞. The key techniques for the proof of Proposition 1 are presented in Section 5.
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By combining Proposition 1 with Theorem 1, we arrive at our main result: a bound on the expected
Thompson Sampling regret that scales as O(d/α

√
T log(βT/d)). To the best of our knowledge,

this is the first regret bound for logistic bandits that scales only logarithmically with the logistic
function’s parameter β while remaining independent of the number of actions.

Theorem 2 For all β > 0, and for all A,O ⊆ Bd(0, 1) with α their minimax alignment constant,
under the logistic bandit setting with logistic function ϕβ(x), the TS regret is bounded as

E[Regret(T )] ≤ 3d/α

√√√√T log

(√
3 +

6βT

d

)
.

Proof 2 After combining Theorem 1 with Proposition 1, we upper bound the entropy H(Θε) by the
cardinality of the ε-net to get a regret bound of 3/α

√
dT/2 (log(|Θε|) + εβT ). To define Θε, we

can set Oε as the ε-net of smallest cardinality. As the parameter space O is within the Euclidean
unit ball, we can use Lemma 7 to control the covering number as log(|Θε|) ≤ d log(1 + 2/ε) and
upper bound the Thompson Sampling regret as

E[Regret(T )] ≤ 3/α

√
dT/2

(
d log

(
1 +

2

ε

)
+ εβT

)
.

Finally, setting ε = d/(βT ) and rearranging terms inside the logarithm yields the desired result.

Importantly, the above theorem does not depend on the fragility dimension η, in contrast to the
results of Dong et al. (2019). This distinction is significant because, except in the case where α = 1,
the fragility dimension can grow exponentially with the dimension d. We can verify that our result,
due to its logarithmic dependence on β, is compatible with Dong et al. (2019, Proposition 11), which
shows that there exist logistic bandit problems for which no algorithm can achieve a Bayesian regret
uniformly bounded by f(α)p(d)T 1−ϵ, for some function f , polynomial p, and ϵ > 0.

The next two corollaries present cases where the dependence on the minimax alignment constant α
can be removed. The case in Corollary 2 is particularly relevant for applications where the action set
can be treated as a design parameter, and where constructing large action spaces is not prohibitive.
We illustrate the improvement of Corollary 1 over previous works through numerical experiments
on a synthetic logistic bandit problem. The results are presented in Appendix D.

Corollary 1 For all β > 0, under the logistic bandit setting with logistic function ϕβ(x), let
A ⊆ Bd(0, 1) and O ⊆ Sd(0, 1) be such that O ⊆ A. Then the TS regret is bounded as

E[Regret(T )] ≤ 3d

√√√√T log

(√
3 +

6βT

d

)
.

Proof 3 If O ⊆ Sd(0, 1) and the action space O ⊆ A, then for each θ ∈ O, there exists an action
a ∈ A such that a=θ and ⟨a, θ⟩=1, implying α = 1. Using this and Theorem 2 concludes the proof.

Corollary 2 For all β > 0, under the logistic bandit setting with logistic function ϕβ(x), there
exists an action space A with |A| ≤ 2d · 3d−1 such that for any O ⊆ Sd(0, 1), the TS regret is
bounded as

E[Regret(T )] ≤ 6d

√√√√T log

(√
3 +

6βT

d

)
.

Proof 4 Starting from Theorem 2, we have to construct A such that its minimimax alignment con-
stant α is greater or equal to 1

2 for any O ⊆ Sd(0, 1). This is satisfied if A is a 1
2 -net for Sd(0, 1).

Setting A as the 1
2 -net of minimal cardinality, from Lemma 8, we have that |A| ≤ 2d · 3d−1.

6
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5 ANALYSIS

This section presents the key ideas of the proofs of our main proposition, Proposition 1. For the sake
of clarity, we present here our results for the particular setting of Corollary 1, which ensures α = 1.
We prove how to extend those results to general spaces in Appendix C. Our proof can be divided into
three key components: establishing a lower bound on the mutual information (Section 5.1), deriving
an upper bound on the squared expected regret (Section 5.2), and obtaining an upper bound on a
ratio of expected variances by analyzing the limit case as β → ∞ (Section 5.3). To alleviate the
notations, we will omit the subscript t for the rest of the section.

A crucial quantity in our analysis is the expected variance of the reward probability conditioned
on the sampled action, expressed as E[V[ϕβ(⟨Â,Θ⟩)|Â]]. It appears in the lower bound on mutual
information and a related quantity is used to upper bound the squared expected regret. Intuitively,
when the variance of reward probability is high, the agent is exploring new actions, gathering
information about Θ but suffering regret. Conversely, if the variance of reward probability is low, it
indicates that the agent has already identified near-optimal actions and is exploiting this knowledge.

Under the logistic bandit setting with logistic function ϕβ , the reward R(At,Θ) is given by
a Bernoulli random variable with associated probability ϕβ(⟨At,Θ⟩). We will denote it by
Bern(ϕβ(⟨At,Θ⟩)) to make the setting more explicit. With this notation, we rewrite now the in-
formation ratio as:

Γ =
E[Bern(ϕβ(⟨A⋆,Θ⟩))− Bern(ϕβ(⟨Â,Θ⟩))]2

I(A⋆;Bern(ϕβ(⟨Â,Θ⟩)), Â)
.

5.1 LOWER BOUNDING THE MUTUAL INFORMATION

We start by stating a general lemma that relates the mutual information between a random variable
U and a Bernoulli random variable with probability U to the variance of the random variable U .

Lemma 1 Let U be a random variable taking values in [0, 1] and Bern(U) be a Bernoulli random
variable with probability U . Then it holds that,

I(U ;Bern(U)) ≥ 2V(U).

Sketch of proof Our proof of Lemma 1 uses the decomposition of mutual information as a difference
of entropy and the Taylor expansion of the binary entropy function. It is presented in Appendix A.

Equipped with Lemma 1, we can prove that the mutual information I(A⋆;Bern(ϕβ(⟨Â,Θ⟩)), Â) can
be lower bounded by the expected variance of reward probability E[V[ϕβ(⟨Â,Θ⟩)|Â]].

Lemma 2 Let the logistic function be ϕβ(x), then, it holds that

I(A⋆;Bern(ϕβ(⟨Â,Θ⟩)), Â) ≥ 2E
[
V
[
ϕβ(⟨Â,Θ⟩) | Θ̂

]]
.

Proof 5 We start the proof by applying the chain rule. It comes that

I(π⋆(Θ);π⋆(Θ̂),Bern(ϕβ(⟨Â,Θ⟩))) (i)
= I(Θ; Θ̂,Bern(ϕβ(⟨Â,Θ⟩)))
(j)
= I(Θ; Θ̂) + I(Θ;Bern(ϕβ(⟨Â,Θ⟩)) | Θ̂)

(k)
= I(Θ;Bern(ϕβ(⟨Â,Θ⟩)) | Θ̂)

(l)
= E[I(ϕβ(⟨Â,Θ⟩);Bern(ϕβ(⟨Â,Θ⟩))) | Θ̂ = θ],

where (i) follows as π⋆ is a one-to-one mapping; (j) follows from the chain-rule; (k) follows as Θ

and Θ̂ are independent conditioned on the history; and (l) is obtained using the fact that ϕβ(⟨a, θ⟩)
is a one-to-one mapping conditioned on Θ̂ = θ. Finally, applying Lemma 1 yields the desired result.
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5.2 UPPER BOUNDING THE SQUARED EXPECTED REGRET

This part of the proof takes inspiration from the proof techniques of (Dong & Van Roy, 2018, Propo-
sition 15) and similar to them, the two following lemmata will be of importance for our analysis.

Lemma 3 ((Dong & Van Roy, 2018, Lemma 16)) Let U, V be random vectors in Rd, and let Ũ , Ṽ
be independent random variables with distributions equal respectively to the marginals of U, V , then

E
[(
U⊤V

)]2 ≤ d · E
[(
Ũ⊤Ṽ

)2]
.

Lemma 4 ((Dong & Van Roy, 2018, Lemma 18)) Let f : R+ → R+ be such that f(0) ≥ 0 and
f(ζ)/ζ is non-decreasing over ζ ≥ 0. Then, for any non-negative random variable U , there is

E[f(U)]2

E[U ]2
≤ V[f(U)]

V[U ]
.

When O ⊆ Sd(0, 1) and the action space O ⊆ A, then for each θ ∈ O, there exists an action
a ∈ A such that a = θ and ⟨a, θ⟩ = 1. This implies that ϕβ(⟨A⋆,Θ⟩) − ϕβ(⟨Â,Θ⟩) = ϕβ(1) −
ϕβ(⟨Â,Θ⟩). To simplify notation, we define ψβ(x) := ϕβ(1) − ϕβ(1 − x), which relates the
difference between the optimal action A⋆ and the sampled action Â to their corresponding reward
differences. Specifically, we haveψβ(1−⟨Â,Θ⟩) = ψβ(⟨A⋆−Â,Θ⟩) = ϕβ(⟨A⋆,Θ⟩)−ϕβ(⟨Â,Θ⟩).
The function ψβ(x) meets the first two conditions from Lemma 4. Applied to the differ-
ence of inner products ⟨A⋆,Θ⟩ − ⟨Â,Θ⟩, it maps the interval [0, 2] to [0, 1], and satisfies
ψβ(0) = ϕβ(1)− ϕβ(1− 0) = 0. However, it does not meet the third condition, as ψβ(x)/x ini-
tially increases, reaches a maximum between 1 and 2, and then decreases (see Remark 1 ). To
address this issue, we introduce a modified function, referred to as the logistic surrogate, which
serves as the tightest upper bound on ψβ(x) that satisfies the final requirement from Lemma 4.

Definition 2 (Logistic surrogate) We construct the logistic surrogate function φβ(x) as the tightest
upper bound on ψβ(x) such that φβ(x)/x is non-decreasing over x ≥ 0.

Namely, let δβ = argmaxx∈[0,2]
ψβ(x)
x , we define the function φβ as

φβ(x) =

{
ψβ(x) x ∈ [0, δβ ]

ψβ(δβ) + (x− δβ) · ψβ(δβ)/δβ x ∈ ]δβ , 2]
.

We are now equipped to state and prove an upper bound on the squared expected regret.

Lemma 5 Let the logistic surrogate be defined as in Definition 2. Then, it holds that

E[Bern(ϕβ(⟨A⋆,Θ⟩))− Bern(ϕβ(⟨Â,Θ⟩))]2 ≤ d · E
[
V
[
φβ

(
1− ⟨Â,Θ⟩

)
| Θ̂
]]
.

Proof 6 By integrating over the randomness of the Bernoulli outcome, the squared expected regret
can be expressed as E[(ϕβ(⟨A⋆,Θ⟩) − ϕβ(⟨Â,Θ⟩))]2 = E[ψβ(1 − ⟨Â,Θ⟩)]2. Since by definition
φβ(x) ≥ ψβ(x), we have E[ψβ(1− ⟨Â,Θ⟩)]2 ≤ E[E[φβ(1− ⟨Â,Θ⟩)|Θ̂]]2.

We now apply Lemma 4 on E[φβ(1− ⟨Â,Θ⟩)|Θ̂]. It comes that

E[E[φβ(1− ⟨Â,Θ⟩)|Θ̂]]2 ≤ E

[√√√√√V
[
φβ

(
1− ⟨Â,Θ⟩

)
| Θ̂
]

V
[
1− ⟨Â,Θ⟩ | Θ̂

]
︸ ︷︷ ︸

:=U(Θ̂)

E
[
1− ⟨Â,Θ⟩ | Θ̂

] ]2

= E
[
U(Θ̂)⟨Â, Θ̂⟩ − ⟨Â,Θ⟩

]2
= E

[
⟨U(Θ̂)Â,Θ− Θ̂⟩

]2
.
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We use Lemma 3 with U=U(Θ̂)Â and V=Θ−Θ̂ and rearrange terms to obtain the claimed result:

E
[
⟨U(Θ̂)Â,Θ− Θ̂⟩

]2
≤ d · E

[(
⟨U(Θ̂)Â,Θ− Θ̃⟩

)2]
= d · E

[
U(Θ̂)2E

[
⟨Â,Θ− Θ̃⟩2

∣∣Θ̂]]
= d · E

V
[
φβ

(
1− ⟨Â,Θ⟩

)
| Θ̂
]

V
[
1− ⟨Â,Θ⟩ | Θ̂

] V
[
⟨Â,Θ⟩ | Θ̂

]
= d · E

[
V
[
φβ

(
1− ⟨Â,Θ⟩

)
| Θ̂
]]
.

Combining Lemma 2 and Lemma 5, we get that the information ration Γ is bounded by

Γ ≤ d/2 ·
E
[
V
[
φβ

(
1− ⟨Â,Θ⟩

)
| Θ̂
]]

E
[
V
[
ψβ

(
1− ⟨Â,Θ⟩

)
| Θ̂
]] ,

where we use the fact that V
[
ϕβ(⟨Â,Θ⟩) | Θ̂

]
= V

[
ψβ(1− ⟨Â,Θ⟩) | Θ̂

]
by the definition of ψβ .

The next part of the proof takes care of controlling the ratio of expected variances over φβ and ψβ .

5.3 BOUNDING THE RATIO OF EXPECTED VARIANCES OVER THE FUNCTIONS φβ AND ψβ

By definition, the function ψβ and its surrogate φβ are equal for x ∈ [0, δβ ] and then diverge linearly
at a rate of ψβ(δβ)/δβ . We observe, in Remark 1, that δβ is a decreasing function of β and that the
slope ψβ(δβ)/δβ strictly increases with β.This observation suggests that studying the case β → ∞
could provide a general upper bound. Indeed, taking the limit case β → ∞, the domain where the
two functions differ is maximized, and the rate at which they differ is the largest.

We show in Lemma 9, presented in Appendix B, that under some simple preliminary transforma-
tions, increasing the value of β leads to a larger ratio of expected variances, and therefore, the case
β tending to ∞ can serve to derive general upper bounds. Quite satisfyingly, this limit case provides
a lot of simplifications. We will prove in Lemma 9, that the ratio of expected variance between ψβ
and φβ can be upper bounded by the ratio of expected variance between ψ and φ defined as

ψ(x) =

{
0 x ∈ [0, 1]

1 x ∈]1, 2] , (2)

and

φ(x) =

{
0 x ∈ [0, 1]

1 + 2(x− 1) x ∈]1, 2] . (3)

Lemma 6 Let ψ and φ be defined respectively in (2) and (3). Then, it holds that

E
[
V
[
φ
(
1−⟨Â,Θ⟩

)
| Θ̂
]]

E
[
V
[
ψ
(
1−⟨Â,Θ⟩

)
| Θ̂
]] ≤ 9.

Sketch of proof Analyzing the function ψ, we note that E[V[ψ(1−⟨Â,Θ⟩) | Θ̂]] is equal to the
expected variance of a Bernoulli random variable with probability given by Q(Â) = E[I(⟨Â,Θ⟩)]
with I(⟨Â,Θ⟩) = 1{⟨Â,Θ⟩<0}. The expected variance can therefore be written as E[I(⟨Â,Θ⟩)2] −
E[E[I(⟨Â,Θ⟩)]2] where in the second term, the outer expectation is on Â, and the inner expec-
tation is on Θ. After some rearranging of the terms, we can write E[V[φ(1−⟨Â,Θ⟩) | Θ̂]] as
E[I(⟨Â,Θ⟩)(1− 2⟨Â,Θ⟩)2]−E[E[I(⟨Â,Θ⟩)(1− 2⟨Â,Θ⟩)]2] where again for the second term, the
outer expectation is on Â, and the inner expectation is on Θ. Taking the supremum over the possible
values of (1− 2⟨a, θ⟩) ∈ [−1, 3] concludes the proof.
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6 CONCLUSION AND FUTURE WORK

In this work, we analyzed the performance of the Thompson Sampling algorithm for logistic ban-
dit problems, focusing on settings where both the action and parameter spaces lie within the d-
dimensional unit ball. Using an information-theoretic framework, we provided a refined analysis of
the information ratio, a key statistic that captures the trade-off between exploration and exploitation
in logistic bandits. Our main result established that the information ratio is bounded by 9

2dα
−2,

where α is a minimax alignment constant between the action and parameter spaces. Importantly,
this bound is independent of the logistic function’s slope parameter, β.

Building on this, we derived a regret bound of O(d/α
√
T log(βT/d)), which scales only loga-

rithmically with β, representing a significant improvement over prior results. To the best of our
knowledge, this is the first regret bound for logistic bandits that achieves logarithmic dependence
on β while remaining independent of the action set’s cardinality. Importantly, our results do not
depend on the fragility dimension η, unlike those of Dong et al. (2019). This distinction is signifi-
cant because, except in cases where α = 1, the fragility dimension can grow exponentially with the
dimension d. Finally, we presented specific settings where the dependence on α can be controlled.
For instance, when the action space fully encompasses the parameter space, the regret of Thompson
Sampling scales as Õ(d

√
T ).

A promising direction for future work is to extend our analysis to the broader class of generalized
linear bandits. The key properties of the logistic function that we leverage could potentially extend
to other link functions, such as those from exponential family models or Poisson regression.

Another exciting avenue is exploring whether our approach can be applied to the optimistic informa-
tion directed sampling algorithm introduced by (Neu et al., 2024), with the goal of deriving frequen-
tist regret bounds for logistic bandits that scale logarithmically with the parameter β. Extending our
analysis to the frequentist setting would represent a significant advancement in the field.
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APPENDIX

The appendix is organized as follows:

• Appendix A introduces some useful lemmata for our proofs.
• Appendix B provides the formal proof to control the ratio of expected variances between

the functions φβ and ψβ .
• Appendix C presents the techniques to extend our analysis of the Thompson Sampling

information ratio to general action and parameter spaces.
• Appendix D illustrates the improvement of our bounds compared to previous regret guar-

antees through numerical experiments.
• Appendix E elaborates on the gaps in the previous literature mentioned in Section 1.
• Appendix F rigorously explains the construction of the mapping π⋆.

A USEFUL LEMMATA

Lemma 1 Let U be a random variable taking values in [0, 1] and Bern(U) be a Bernoulli random
variable with probability U . Then it holds that,

I(U ;Bern(U)) ≥ 2V(U).

Proof 7 The proof uses the decomposition of mutual information as a difference of entropy and the
Taylor expansion of the binary entropy function. Using proposition (Yury Polyanskiy, 2022)[Theo-
rem 3.4.d], we can decompose the mutual information between U and Bern(U) as

I(U ;Bern(U)) = h(Bern(U))− h(Bern(U)|U).

Following (Duchi, 2016)[Example 2.2] notation, we define h2(p) := −p log(p)− (1− p) log(1− p)
for p ∈ [0, 1]. We note that we can rewrite the mutual information as

I(U ;Bern(U)) = h2(E[U ])− E[h2(U)]. (4)
From a Taylor expansion of h2(x) we have that

h2(x) = h2(p) + (x− p)h′2(p) +
1

2
(x− p)2h′′2(ξ),

for some ξ ∈ (0, 1) as h′′2 is continuous on the interval [0, 1]. We compute the second derivative of
h2 and get h′′2(ξ) = − 1

ξ(1−ξ) for ξ ∈ (0, 1). This function is concave and maximal at ξ = 1/2,
where it takes the value h′′2(1/2) = −4. We then have that for all x ∈ [0, 1] and all p ∈ [0, 1],

h2(x) ≤ h2(p) + (x− p)h′2(p)− 2(x− p)2.

Using this fact for x = U and p = E[U ], we have that

h2(U) ≤ h2(E[U ]) + (U − E[U ])h′2(E[U ])− 2(U − E[U ])2.

Applying the last inequality to the second term in (4), it comes that
I(U ;Bern(U)) ≥ E

[
h2(E[U ])−h2(E[U ])−(U−E[U ])h′2(E[U ])+2(U−E[U ])2

]
.

Finally, simplifying terms and taking the expectation gives the desired result.

The two following lemmata are be particularly useful to control the covering number in Euclidean
balls and spheres.

Lemma 7 ((van Handel, 2016, Lemma 5.13)) Let Bd(0, 1) denote the d-dimensional closed Eu-
clidean unit ball. We have |N (Bd(0, 1), || · ||2, ε)| = 1 for ε ≥ 1 and for 0 < ε < 1, we have(

1

ε

)d
≤ |N (Bd(0, 1), || · ||2, ε)| ≤

(
1 +

2

ε

)d
.

Lemma 8 ((Yury Polyanskiy, 2022, Corollary 27.4)) Let Sd(0, 1) denote the d-dimensional Eu-
clidean unit sphere. We have |N (Sd(0, 1), || · ||2, ε) = 1 for ε ≥ 1 and for 0 < ε < 1, we have(

1

2ε

)d−1

≤ |N (Sd(0, 1), || · ||2, ε)| ≤ 2d

(
1 +

1

ε

)d−1

.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B BOUNDING THE RATIO OF EXPECTED VARIANCES OVER THE FUNCTIONS
φβ AND ψβ

Lemma 6 Let ψ and φ be defined respectively in (2) and (3). Then, it holds that

E
[
V
[
φ
(
1−⟨Â,Θ⟩

)
| Θ̂
]]

E
[
V
[
ψ
(
1−⟨Â,Θ⟩

)
| Θ̂
]] ≤ 9.

Proof 8 We start by analyzing E
[
V
[
ψ
(
1−⟨Â,Θ⟩

)
| Θ̂
]]

. We note that ψ
(
1−⟨Â,Θ⟩

)
is equal

to 1 if ⟨Â,Θ⟩ < 0 and is equal to 0 otherwise. To distinguish those two cases, we introduce the

notation I(⟨Â,Θ⟩) := 1{⟨Â,Θ⟩<0}. We observe that E
[
V
[
ψ
(
1−⟨Â,Θ⟩

)
| Θ̂
]]

is equal to the

expected variance of a Bernoulli random variable with probability given by Q(Â) := E[I(⟨Â,Θ⟩)]
and can therefore be written as

E
[
V
[
ψ
(
1−⟨Â,Θ⟩

)
| Θ̂
]]

= E[Q(Â)(1−Q(Â))].

The last part of the proof concerns E
[
V
[
φ
(
1−⟨Â,Θ⟩

)
| Θ̂
]]

. Similarly, we can distinguish be-

tween two cases: either ⟨Â,Θ⟩> 0 and φ(1−⟨Â,Θ⟩) = 0, or ⟨Â,Θ⟩< 0 and φ(1−⟨Â,Θ⟩) =

1− 2⟨Â,Θ⟩. Introducing the notation G(Â) := E[I(⟨Â,Θ⟩)⟨Â,Θ⟩], we can write

E
[
V
[
φ
(
1−⟨Â,Θ⟩

)
| Θ̂
]]

= E
[
E
[(
φ
(
1−⟨Â,Θ⟩

)
− E

[
φ
(
1−⟨Â,Θ⟩

)
| Θ̂
])2

| Θ̂
]]

= E
[
I(⟨Â,Θ⟩)

(
1− 2⟨Â,Θ⟩ −

(
Q(Â) + 2G(Â)

))2]
+ E

[(
1− I(⟨Â,Θ⟩)

)(
0−

(
Q(Â) + 2G(Â)

))2]
.

Distributing the square and simplifying terms, we obtain

E
[
I(⟨Â,Θ⟩)

(
1− 2⟨Â,Θ⟩

)2]
− 2E

[
I(⟨Â,Θ⟩)

(
1− 2⟨Â,Θ⟩

)(
Q(Â) + 2G(Â)

)]
+ E

[
I(⟨Â,Θ⟩)

(
Q(Â) + 2G(Â)

)2]
+ E

[(
1− I(⟨Â,Θ⟩)

)(
Q(Â) + 2G(Â)

)2]
= E

[
I(⟨Â,Θ⟩)

(
1− 2⟨Â,Θ⟩

)2]
−E

[(
Q(Â) + 2G(Â)

)2]
.

To get to the last part of the proof, we rewrite explicitly Q(Â) + 2G(Â) as

E
[
I(⟨Â,Θ⟩)

(
1− 2⟨Â,Θ⟩

)]
and optimize over the values of (1− 2⟨Â,Θ⟩). It then comes

E
[
I(⟨Â,Θ⟩)

(
1− 2⟨Â,Θ⟩

)2]
− E

[
E
[
I(⟨Â,Θ⟩)

(
1− 2⟨Â,Θ⟩

)]2]
≤ sup
ζ∈[−1,3]

E
[
I(⟨Â,Θ⟩)ζ2

]
− E

[
E
[
I(⟨Â,Θ⟩)ζ

]2]
= 9 · E[Q(Â)(1−Q(Â))],

which concludes the proof.

Lemma 9 Let ψβ(x) = ϕβ(1) − ϕ(1 − x) and the logistic surrogate φβ as in Definition 2 and let
ψ and φ be defined respectively in (2) and (3). Then, for all β > 0, it holds that

E
[
V
[
φβ

(
1− ⟨Â,Θ⟩

)
|Θ
]]

E
[
V
[
ψβ

(
1− ⟨Â,Θ⟩

)
| Θ̂
]] ≤

E
[
V
[
φ
(
1− ⟨Â,Θ⟩

)
| Θ̂
]]

E
[
V
[
ψ
(
1− ⟨Â,Θ⟩

)
| Θ̂
]] .
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Proof 9 Beginning with the ratio of expected variances between φβ and ψβ , we will apply a series
of transformations to the functions φβ and ψβ , ultimately yielding the functions φ and ψ. These
transformations are chosen to ensure they can only increase the ratio of expected variances.

By definition, the function ψβ and its surrogate φβ are identical for x ∈ [0, δβ) and then di-
verge linearly at a rate of ψβ(δβ)/δβ on the interval x ∈ [δβ , 2]. We illustrate this on Figure 3.
Focusing on the domain where the two functions coincide, we observe that the transformation
f(x) = max(x, ψβ(1)) reduces the expected variance for both ψβ and φβ . However, since ψβ(x) is
less than or equal to φβ(x) for all x ∈ [0, 2], and both functions exceed ψβ(1) on the interval [1, 2],
the transformation f proportionally reduces the expected variance of ψβ more than that of φβ . As
a result, the transformation increases the ratio of expected variances between the two functions. As
ψβ and φβ are strictly increasing functions, the resulting functions, illustrated on Figure 4, can be
written as

f(ψβ(x)) =

{
ψβ(1) x ∈ [0, 1]

ψβ(x) x ∈ ]1, 2]
,

and

f(φβ(x)) =

{
ψβ(1) x ∈ [0, 1]

φβ(x) x ∈ ]1, 2]
.

The second transformation we apply concerns only the function f(ψβ(x)). We will crop all the
values larger than ψ(δβ) by applying the transformation g(x) = min(x, ψ(δβ)). As f(ψβ(x)) is an
increasing function, the function g(f(ψβ(x))), illustrated on Figure 5, can be written as

g(f(ψβ(x))) =


ψβ(1) x ∈ [0, 1]

ψβ(x) x ∈ ]1, δβ ]

ψβ(δβ) x ∈ ]δβ , 2]

.

The transformation g reduces the variance of the function f(ψβ(x)) as it both decreases the values
of f(ψβ(x)) and the derivative of f(ψβ(x)) for all x ∈]δβ , 2].
The third transformation we apply is increasing the value of β. As β increases, the derivative of
f(φβ(x)) increases everywhere,

d

dx
f(φβ(x)) =


0 x ∈ [0, 1]
β exp(−β(1−x))

(1+exp(−β(1−x)))2 x ∈ ]1, δβ ]

ψβ(δβ)/δβ x ∈ ]δβ , 2]

.

and the expected variance of f(φβ) increases. Regarding g(f(ψβ(x))), we can show that that for
all x ∈ [0, 2], the ratio f(φβ(x))/g(f(ψβ(x))) increases with β. Indeed, this ratio is equal to 1 for
all x ∈ [0, δβ ] and increases for all x ∈ ]δβ , 2] as

f(φβ(x))

g(f(ψβ(x)))
=
φβ(δβ) + φβ(δβ)/δβ · (x− δβ)

φβ(δβ)
= 1 +

(x− δβ)

δβ
,

and as δβ is a decreasing function of β (see Remark 1), the ratio (x−δβ)/δβ is a increasing function
of β for all x ∈ ]δβ , 2]. This fact ensures that the expected variance of g(f(ψβ(x))) cannot increase
proportionally more than the expected variance of f(φβ(x)). We can therefore study the ratio of
expected variances between f(φ∞) and g(f(ψ∞)).

The last operation we apply is merely a convenient shifting and scaling, where we define h(x) =
(x − g(f(ψβ(1))))/(g(f(ψ∞(2))) − g(f(ψβ(1)))). Applied on both g(f(ψ∞)) and f(φ∞) these
operations do not affect the ratio of expected variances. The resulting functions are illustrated
on Figure 6.

To express the resulting functions, we have to analyze the function ψβ(x) for β tending to infinity
for values x ∈]1, 2].
We recall that ψβ(x) = ϕβ(1)− ϕβ(1− x) and can equivalently be written as

ψβ(x) =
1

1 + exp(−β)
− 1

1 + exp(−β(1− x))
.
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We have to distinguish between three cases for (x − 1): negative, zero, or positive. For val-
ues of x ∈]1, 2], we have that(1 − x) < 0 and that limβ→∞ ψβ(x) = 1, if x = 1, we have
that limβ→∞ ψβ(x) = 1/2 and for values of x ∈ [0, 1[, we have that(1 − x) > 0 and that
limβ→∞ ψβ(x) = 0. We can then write

ψ∞(x) =


0 x ∈ [0, 1[

1/2 x = 1

1 x ∈ ]1, 2]

.

We can now construct the corresponding φ∞(x). We note that ψ∞(x)
x is maximized when taking the

limit to x = 1+ from the right: limx→1+
ψ∞(x)
x = 1. It comes that φ∞(x) can be written as

φ∞(x) =


0 x ∈ [0, 1[

1/2 x = 1

1 + (x− 1) x ∈ ]1, 2]

.

We denote the resulting functions h(g(f(ψ∞(x)))) and h(f(φ∞(x))) respectively as ψ and φ. We
note that they can be written quite simply as

ψ(x) =

{
0 x ∈ [0, 1]

1 x ∈ ]1, 2]
,

and

φ(x) =

{
0 x ∈ [0, 1]

1 + 2(x− 1) x ∈ ]1, 2]
.

Remark 1 We illustrate the function ψβ(x)/x on Figure 1 and the behavior of δβ and ψβ(δβ)/δβ
for increasing values of β on Figure 2. The derivative of the function ψβ(x)/x is given by

d

dx

(
ψβ(x)

x

)
=

1

x

(
d

dx
ψβ(x)−

ψβ(x)

x

)
.

We note that it is equal to zero for values of x ∈]0, 2] such that d
dxψβ(x) =

ψβ(x)
x . By definition of

δβ , we have d
dxψβ(δβ) =

ψβ(δβ)
δβ

.

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

x

β = 5
β = 10
β = 25

Figure 1: Illustration of the function ψβ(x)/x
for different values of x. The maximum of the
function is attained for x = δβ .

0 20 40 60 80 100

0.5

1

1.5

β

δβ
ψβ(δβ)/δβ

Figure 2: Illustration of δβ and ψ(δβ)/δβ as
functions of β. One can observe that δβ de-
creases with β while ψ(δβ)/δβ increases.
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C EXTENSION TO GENERAL SPACES

The extend the proof technique of Section 5.2 and Section 5.3, we first need to introduce the
alignment function α(θ) := ⟨π⋆(θ), θ⟩. We can define the extended logistic function ψβ(x, θ) :=
ϕβ (α(θ))− ϕβ (α(θ)− x) and note that

ψβ(α(Θ̂)− ⟨Â,Θ⟩, Θ̂) = ϕβ(α(Θ̂))− ϕβ(⟨Â,Θ⟩) = ϕβ(⟨Â, Θ̂⟩)− ϕβ(⟨Â,Θ⟩).
Integrating the randomness of the Bernoulli process, we can write the expected regret usingψβ(x, θ):

E[ψβ(α(Θ̂)− ⟨Â,Θ⟩, Θ̂)] = E[ϕβ(⟨Â, Θ̂⟩)− ϕβ(⟨Â,Θ⟩)] = E[ϕβ(⟨A⋆,Θ⟩)− ϕβ(⟨Â,Θ⟩)],

where we used the fact that the pair (A⋆,Θ) and (Â, Θ̂) are identically distributed.

Similarly to the proof in Section 5.2, we construct a function φβ(x, θ) as the tightest upper bound
on ψβ(x, θ) that satisfies the requirements of Lemma 4.

Definition 3 (Extended logistic surrogate) We construct the extended logistic surrogate function
φβ(x, θ) as the tightest upper bound on ψβ(x, θ) such that φβ(x, θ)/x is non-decreasing over x ≥ 0
for all θ ∈ O.

Namely, let δβ(θ) = argmaxx∈[0,1+α(θ)]
ψβ(x,θ)

x , we define the function φβ(x, θ) as

φβ(x, θ) =

{
ψβ(x, θ) x ∈ [0, δβ(θ)]

ψβ(δβ(θ), θ) + (x− δβ(θ)) · ψβ(δβ(θ), θ)/δβ(θ) x ∈ ]δβ(θ), 1 + α(θ)]
.

We are now equipped to extend Lemma 5 to general action and parameter spaces.

Lemma 10 Let the extended logistic surrogate be defined as in Definition 3. Then, it holds that

E[Bern(ϕβ(⟨Â,Θ⟩))− Bern(ϕβ(⟨Â,Θ⟩))]2 ≤ d · E
[
V
[
φβ(α(Θ̂)− ⟨Â,Θ⟩, Θ̂)| Θ̂

]]
.

Proof 10 The proof follows closely the technique used to prove Lemma 5. We note that conditioned
on Θ̂ = θ, the extended logistic surrogate is a mapping from [0, 1 + δβ(θ)] to [0, 1], that φ(0, θ) =
ϕβ(α(θ))− ϕβ(α(θ)) = 0 and fulfills the assumptions of Lemma 4.

Noting that V
[
ϕβ(⟨Â,Θ⟩) | Θ̂

]
= V

[
ψβ(α(Θ̂)− ⟨Â,Θ⟩, Θ̂) | Θ̂

]
and using Lemma 2, we have

that the information ration Γ can be bounded by

Γ ≤ d/2 ·
E
[
V
[
φβ

(
α(Θ̂)− ⟨Â,Θ⟩, Θ̂

)
| Θ̂
]]

E
[
V
[
ψβ

(
α(Θ̂)− ⟨Â,Θ⟩, Θ̂

)
| Θ̂
]] .

Similarly to the analysis for the O ⊆ A, we can derive an upper bound by studying the case β → ∞
after applying the same preliminary transformations, f , g, and h as used in Lemma 9 on the func-
tions φβ(x, θ) and ψβ(x, θ). To express the resulting functions h(g(f(ψ∞(x)))) and h(f(φ∞(x))),
we need to study the extended logistic function ψβ(x, θ) and the corresponding extended logistic
surrogate φβ(x, θ) for β tending to infinity.

Starting with ψβ(x, θ), we recall that ψβ(x, θ) = ϕβ(α(θ))− ϕβ(α(θ)− x) can be written as

ψβ(x, θ) =
1

1 + exp(−βα(θ))
− 1

1 + exp(−β(α(θ)− x))
.

Again, we can distinguish between three cases for (α(θ)−x)): negative, zero, or positive. For values
of x ∈]α(θ), 1 + α(θ)], we have that(α(θ) − x) < 0 and that limβ→∞ ψβ(x, θ) = 1, if x = α(θ),
we have that limβ→∞ ψβ(x, θ) = 1/2 and for values of x ∈ [0, α(θ)[, we have that(α(θ)− x) > 0
and that limβ→∞ ψβ(x, θ) = 0. We can then write

ψ∞(x, θ) =


0 x ∈ [0, α(θ)[

1/2 x = α(θ)

1 x ∈ ]α(θ), 1 + α(θ)]

.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We continue and construct the corresponding φ∞(x), θ. By definition, we have that α(θ) ≤ 1

and we note that ψ∞(x,θ)
x is maximized when taking the limit to x = α(θ)+ from the right:

limx→α(θ)+
ψ∞(x)
x = 1

α(θ) . It comes that φ∞(x) can be written as

φ∞(x) =


0 x ∈ [0, α(θ)[

1/2 x = α(θ)

1 + x−α(θ)
α(θ) x ∈ ]α(θ), 1 + α(θ)]

.

We can now construct the functions ψ(x, θ) := h(g(f(ψ∞(x, θ)))) and φ(x, θ) := h(f(φ∞(x, θ)))
for f , g, and h defined as in Lemma 9.We note that the resulting functions can be written as

ψ(x, θ) =

{
0 x ∈ [0, α(θ)]

1 x ∈ ]α(θ), 1 + α(θ)]
, (5)

and

φ(x, θ) =

{
0 x ∈ [0, α(θ)]

1 + 2(x−α(θ))
α(θ) x ∈ ]α(θ), 1 + α(θ)]

, (6)

a similar form as the functions ψ and φ be defined respectively in (2) and (3).

Lemma 11 Let ψ(x, θ) and φ(x, θ) be defined respectively in (5) and (6). Then, it holds that

E
[
V
[
φ
(
α(Θ̂)− ⟨Â,Θ⟩, Θ̂

)
| Θ̂
]]

E
[
V
[
ψ
(
α(Θ̂)− ⟨Â,Θ⟩, Θ̂

)
| Θ̂
]] ≤ 9

α
.

Proof 11 The proof follows the one for Lemma 6. Starting with E
[
V
[
ψ
(
α(Θ̂)−⟨Â,Θ⟩, Θ̂

)
|Θ̂
]]

,

we note that ψ
(
α(Θ̂)− ⟨Â,Θ⟩, Θ̂

)
is equal to 1 if ⟨Â,Θ⟩ < 0 and is equal to 0 otherwise. It can

then be written as E[Q(Â)(1−Q(Â))] using the notations from the proof of Lemma 6. Similarly for

E
[
V
[
φ
(
α(Θ̂)− ⟨Â,Θ⟩, Θ̂

)
| Θ̂
]]

, we distinguish two cases: either ⟨Â,Θ⟩ ≥ 0 and the function

is equal to 0 or ⟨Â,Θ⟩ < 0 and the function is equal to 1− 2 ⟨Â,Θ⟩
⟨Â,Θ̂⟩ . Using a similar decomposition

as in we can write the proof of Lemma 6, we can write E
[
V
[
φ
(
α(Θ̂)− ⟨Â,Θ⟩, Θ̂

)
| Θ̂
]]

as

E

I(⟨Â,Θ⟩)

(
1− 2

⟨Â,Θ⟩
⟨Â, Θ̂⟩

)2
− E

E[I(⟨Â,Θ⟩)

(
1− 2

⟨Â,Θ⟩
⟨Â, Θ̂⟩

)]2 ,
where in the second term, the outer expectation is on Â, Θ̂, and the inner expectation is on Θ. Then
taking the supremum over the possible values of 1− 2 ⟨Â,Θ⟩

⟨Â,Θ̂⟩ which ranges from [1− 2/α, 1 + 2/α]

we get:

E
[
V
[
φ
(
α(Θ̂)− ⟨Â,Θ⟩, Θ̂

)
| Θ̂
]]

≤ sup
ζ∈[1−2/α,1+2/α]

E
[
I(⟨Â,Θ⟩)ζ2

]
− E

[
E
[
I(⟨Â,Θ⟩)ζ

]2]
= (1 + 2/α)2 · E[Q(Â)(1−Q(Â))].

Finally, as α ∈ [0, 1], we can upper bound (1 + 2/α)2 by 9α−2 and we conclude the proof.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 0.5 1 1.5 2

0

0.5

1

1.5

x

β = 5
β = 10
β = 25

Figure 3: Illustration of the function ψβ (in
solid line) and the function φβ (in dotted line)
for different values of β.
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Figure 4: Illustration of the function f(ψβ) (in
solid line) and the function f(φβ) (in dotted
line) for different values of β.
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Figure 5: Illustration of the function g(f(ψβ))
(in solid line) and the function f(φβ) (in dot-
ted line) for different values of β.
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Figure 6: Illustration of the function ψ (in
blue) and the function φ (in orange).
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D NUMERICAL SIMULATIONS

To illustrate the improvement of our regret analysis compared to previous work, we performed nu-
merical experiments on a synthetic problem. We considered a logistic bandit problem in dimension
d = 10, with time horizon T = 200, and with parameter β ranging between [0.25, 10]. For both
action space and parameter space, we used the entire d-dimensional unit sphere, A = O = Sd(0, 1)
and assumed a uniform prior distribution for the parameter Θ. We computed the expected regret
of the Thompson Sampling algorithm using a Markov Chain Monte Carlo (MCMC) method (see
Remark 2) and compared it to three Bayesian regret bounds that hold for continuous spaces: (Russo
& Van Roy, 2014b, Proposition 4), (Dong & Van Roy, 2018, Theorem 3), and our Corollary 1.

The results are presented in Figure 7. The left subfigure shows the evolution of the expected regret
and the regret bounds for the different time steps t ∈ {1, . . . , 200} and for two different values of
β = {2, 4}. For both values of β, our bound is tighter throughout the entire time horizon and is
less sensitive to increasing β compared to (Russo & Van Roy, 2014b, Proposition 4) and (Dong &
Van Roy, 2018, Theorem 3). This behavior is further illustrated in the right subfigure, were the dif-
ferent regret bounds at t = 200 are compared for values of β ranging between [0.25, 10]. Our bound
remains competitive across all values of β and is tighter than (Dong & Van Roy, 2018, Theorem 3)
for values of β ≥ 2. Importantly, we observe that both (Russo & Van Roy, 2014b, Proposition 4) and
(Dong & Van Roy, 2018, Theorem 3) increase exponentially with β while our bound increases only
logarithmically. We note that the actual expected regret decreases for larger β. This was anticipated
since, for large values of β, the distinction between near-optimal and suboptimal actions becomes
more pronounced, facilitating the identification of near-optimal actions.

0 50 100 150 200

101

102

103

104

105

T

R
eg

re
t(

lo
g-

sc
al

e)

Russo & Van Roy, 2014 This paper
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Figure 7: Comparison of Bayesian regret bounds for the logistic bandit setting (d = 10, T = 200,
β ∈ [0.25, 10], A = O = Sd(0, 1) and a uniform prior on Θ). The left subfigure illustrates the
evolution of the bounds and the expected regret with respect to the time for two different values of
β ∈ {2, 4}. The right subfigures compares the behavior of the bounds and the expected regret at time
T = 200 for values of β ranging in [0.25, 10]. For computing the Thompson Sampling expected
regret, we used the MCMC method with 200 particles and averaged over 500 draws.

Remark 2 For the logistic bandit setting, we can derive analytically an update rule for the posterior
Pt(Θ) given a new reward Rt and the corresponding action At, using Bayes’ rule:

Pt(Θ|Rt, At)
Pt(Θ)

=
Pt(Rt|Θ, At)
Pt(Rt|At)

∝ Pt(Rt|Θ, At) =
{
ϕβ(⟨Θ, At⟩) if Rt = 1

1− ϕβ(⟨Θ, At⟩) if Rt = 0
,

where the first equality follows from Pt(Θ) = Pt(At) for Thompson Sampling. For finite parameter
spaces, it suffices to update the probability associated with each θ ∈ O proportional to Pt(Rt|Θ, At)
and normalize afterwards. For continuous spaces, numerical methods such as Markov Chain Monte
Carlo (MCMC) or Gibbs Sampling can be used to approximate the distribution of the posterior.
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E REGARDING THE GAPS IN PREVIOUS LITERATURE

In Section 1, we mention that the main results of Dong et al. (2019) are incomplete because of two
shortcomings. The first one concerns a gap in their analysis of the Thompson Sampling information
ratio for values of β > 2. The second one regards a mistake in their regret analysis, which combines
incompatible results. We elaborate on both arguments below.

Regarding the first shortcoming We identified an issue in the proof of (Dong et al., 2019, The-
orem 5) at the end of the proof on page 20, where the inequality χ > ξ > 0.1λ is stated without
justification. This inequality plays a crucial role in deriving their bound on the Thompson Sampling
information ratio, but the only evidence provided is (Dong et al., 2019, Figure 3), which illustrates
the functions χ(λ, β) and ξ(λ, β) for the specific case of β = 2. While this figure suggests that the
inequality holds for β = 2, it cannot be used to conclude that the inequality holds in general for
β ≥ 2. Additionally, we note that the computation of χ(λ, β) and ξ(λ, β) for given values of λ and
β is highly intricate, and despite our best efforts, we were unable to reproduce (Dong et al., 2019,
Figure 3).

Regarding the second shortcoming As discussed earlier, the regret analysis in (Dong et al., 2019,
Theorems 1 and 5) combines incompatible results. Specifically, the paper uses a uniform bound on
the information ratio of the “standard” Thompson Sampling (provided in (Dong et al., 2019, Ap-
pendix B, Eq. (18))) together with (Dong & Van Roy, 2018, Theorem 1), which requires a uniform
bound on the information ratio of the one-step compressed Thompson Sampling. This inconsistency
invalidates the regret bounds derived in (Dong et al., 2019, Theorems 1 and 5). We emphasize that
the problem is “hidden” in (Dong et al., 2019, Proposition 9), which incorrectly restates (Dong &
Van Roy, 2018, Theorem 4). It is important to note that there is no straightforward way to extend
the results from (Dong & Van Roy, 2018, Theorem 4) to (Dong et al., 2019, Proposition 9), that
is, to remove the need to bound the one-step compressed Thompson Sampling, as this compressed
Thompson Sampling is the cornerstone of (Dong & Van Roy, 2018, Theorem 4).

While it is possible to use (Dong & Van Roy, 2018, Proposition 1) directly with a uniform bound
on the “standard” Thompson Sampling information ratio, this approach is limited because (Dong
& Van Roy, 2018, Proposition 1) provides a loose bound. Specifically, this bound depends on the
cardinality of the parameter space Θ through the entropy H(θ⋆) (or on the cardinality of the action
space through H(A⋆) in the original version (Russo & Van Roy, 2015, Proposition 1)). This issue is
highlighted in Dong & Van Roy (2018) on page 3 at the end of Section 3, and serves as a motivation
for the introduction of the one-step-compressed Thompson Sampling regret analysis in the paper.
Combining (Dong & Van Roy, 2018, Proposition 1) with our bound on the Thompson Sampling
information ratio, Proposition 1, results in a regret bound of the order O(

√
dT log(|O|)), which

becomes vacuous for infinite or continuous parameter spaces.

We emphasize that the one-step compressed Thompson Sampling information ratio is a fundamen-
tally different quantity and is significantly more challenging to analyze due to the intricate con-
struction of the one-step compressed Thompson Sampling (c.f. (Dong & Van Roy, 2018, Proof of
Proposition 2)). Notably, the techniques used to analyze the information ratio in Dong et al. (2019),
even for the case where β ≤ 2, do not apply to the one-step compressed Thompson Sampling infor-
mation ratio. For instance, (Dong et al., 2019, Proof of Proposition 5) requires a one-to-one mapping
between parameters and optimal action (see (Dong et al., 2019, Proof of Proposition 15, eq. (22), in-
equalities (c) and (e))). However, by definition, the equivalent requirement for one-step compressed
Thompson Sampling (a one-to-one mapping between the statistic ψ and the optimal action) cannot
hold, as by construction the ψ is constructed to be less informative than the parameter θ.
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F CONSTRUCTING π⋆ AS A ONE-TO-ONE MAPPING

If the mapping π⋆(θ) is not one-to-one, it could either mean that a particular parameter is optimal
for several actions or that a particular action is optimal for several parameters.

In the first case, for example, if a1, a2 ∈ A are optimal for the same parameter θ1 ∈ O, this implies
that E[R(a1, θ1)] = E[R(a2, θ1)] ≥ E[R(a, θ1)] for all a ∈ A with a ̸= a1 and a ̸= a2. In this
scenario, we can arbitrarily set π⋆(θ1) = a1 without affecting the regret of Thompson Sampling, as
E[R(a1, θ1)] = E[R(a2, θ1)].

In the second case, if an action a1 ∈ A is optimal for multiple parameters, say θ1, θ2 ∈ O, we can
artificially construct an action label set A′ such that two labels, a′1, a

′
2 ∈ A′, are associated with

a1. For all other actions in A \ {a1}, there is a corresponding label in A′. We denote the mapping
between action labels and their corresponding actions using the function ρ : A′ → A. We can
construct a function π⋆ : O → A′ such that π⋆ is a one-to-one mapping between the parameters
O and the action labels A′. We define the optimal action label as A⋆′ = π⋆(Θ) and the Thompson
Sampling action label as At′ = π⋆(Θt). This artificial construction, illustrated in Figure 8, is
intended solely for the purposes of our regret analysis and has no impact on the regret of Thompson
Sampling. The instant regret of Thompson Sampling at time t ∈ {1, . . . , T} remains R(A⋆,Θ) −
R(At,Θ), where A⋆ = ρ(A⋆′) is still the optimal action for Θ, and At = ρ(A′

t) is the action
selected by Thompson Sampling for Θt. In this context, the Thompson Sampling information ratio
would be adapted and defined as:

Γt :=
Et[R(A⋆,Θ)−R(At,Θ)]2

It(A⋆′;R(At,Θ), A′
t)

,

representing the ratio between the current squared regret and the information gathered about the op-
timal action label. One can verify that the analysis of the information ratio in Section 5, Appendix B,
and Appendix C, proceeds the same with this adapted definition and leads to the same upper bound.

a′1

a′2

a

A′ A ⊆ Rd

θ1

θ2

O ⊆ Rd

ρ

π⋆

Figure 8: Illustration of the artificial construction of the action label set A′.
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