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Abstract001

Seminal work by Huebner et al. (2021) showed002
that language models (LMs) trained on English003
Child-Directed Language (CDL) can outper-004
form LMs trained on an equal amount of adult-005
directed text like Wikipedia. However, it re-006
mains unclear whether these results general-007
ize across languages, architectures, and evalua-008
tion settings. We test this by comparing mod-009
els trained on CDL vs. Wikipedia across two010
LM objectives (masked and causal), three lan-011
guages (English, French, German), and three012
syntactic minimal pair benchmarks. Our re-013
sults on these benchmarks show inconsistent014
benefits of CDL, which in most cases is outper-015
formed by Wikipedia models. We then identify016
various shortcomings in previous benchmarks,017
and introduce a novel testing methodology, FIT-018
CLAMS, which uses a frequency-controlled019
design to enable balanced comparisons across020
training corpora. Through minimal pair eval-021
uations and regression analysis we show that022
training on CDL does not yield stronger gener-023
alizations for acquiring syntax and highlight the024
importance of controlling for frequency effects025
when evaluating syntactic ability.1026

1 Introduction027

The prevailing view in language acquisition re-028

search has long held that child-directed language029

(CDL) is inherently more effective than adult-030

directed language (ADL) for supporting first lan-031

guage development (Ferguson, 1964; Schick et al.,032

2022). This has led to the assumption that the033

way caregivers speak to children is tailored to their034

developmental needs and functional for language035

learning.036

Motivated by this long-standing assumption, re-037

cent computational modeling research has used038

neural network-based language models (LMs) to039

test how CDL vs. ADL affect learning in such mod-040

els (Feng et al., 2024; Mueller and Linzen, 2023;041

1Code and data will be released at anonymized.

Yedetore et al., 2023). Notably, Huebner et al. 042

(2021) showed that BabyBERTa, a masked LM 043

trained on 5M tokens of child-directed speech tran- 044

scripts2, achieves the level of syntactic ability simi- 045

lar to that of a much larger RoBERTa model trained 046

on 30B tokens of ADL (Zhuang et al., 2021). 047

Despite these encouraging findings, several is- 048

sues complicate direct comparisons between CDL 049

and ADL in LM training, including the variability 050

in training setups (Cheng et al., 2023; Feng et al., 051

2024; Qin et al., 2024) and evaluation benchmarks 052

across studies (Warstadt et al., 2020; Huebner et al., 053

2021; Mueller et al., 2020), as well as the frequent 054

focus on the overall accuracy scores averaged over 055

many syntactic paradigms. Moreover, recent work 056

by Kempe et al. (2024) reveals that the evidence for 057

the facilitatory role of CDL in child language ac- 058

quisition is scarce and specific to narrow domains, 059

such as prosody and register discrimination, rais- 060

ing concerns about its generalizability. In this light, 061

we believe it is crucial to carefully re-evaluate the 062

benefits of CDL for LM training. 063

To better understand the specific effects of CDL 064

as training input, we systematically compare LMs 065

trained on CHILDES vs. Wikipedia across two ar- 066

chitectures (RoBERTa and GPT-2) and three lan- 067

guages (English, French, and German) on four dif- 068

ferent benchmarks of minimal pairs. Crucially, we 069

control for lexical frequency effects by introduc- 070

ing FIT-CLAMS, a Frequency-Informed Testing 071

(FIT) methodology, which we apply to the CLAMS 072

benchmark (Mueller et al., 2020). The resulting 073

benchmark consists of minimal pairs balanced for 074

subject and verb frequency in the training data, to 075

disentangle true syntactic generalization from mere 076

reliance on high-frequency lexical items present 077

in the training data. We also perform a regression 078

analysis to assess the impact of the distributional 079

2Throughout this paper, we use the term CDL specifically
to refer to transcripts of child-directed speech.
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properties of CDL and ADL on the models’ confi-080

dence in predicting grammaticality.081

Our findings challenge the presumed advantage082

of CDL for syntax learning in LMs, showing that083

CDL does not consistently yield better performance084

than ADL. These results underscore the need for085

a more nuanced understanding of when and how086

CDL may be beneficial, whether as a source of087

insights to improve training regimes in large-scale088

LMs (e.g., data augmentation with variation sets089

(Haga et al., 2024) or context variation (Xiao et al.,090

2023)), or as a foundation to explore alternative091

learning paradigms that more closely mirror the092

interactive, contextual, and multimodal nature of093

human language acquisition (Beuls and Van Eecke,094

2024; Stöpler et al., 2025).095

2 Related Work096

An ongoing debate in computational linguistics097

literature concerns whether CDL offers a measur-098

able advantage over ADL in supporting the acqui-099

sition of formal linguistic knowledge in language100

models, with studies reporting conflicting results;101

some highlight CDL’s benefits for grammatical102

learning and inductive bias, others find little or103

no advantage. Among the studies that support the104

benefits of CDL, a prominent example is Hueb-105

ner et al. (2021). Their study shows that LMs106

trained on CHILDES (MacWhinney and Erlbaum,107

2000), a database containing transcripts of child–108

adult conversations, show higher average accuracy109

on Zorro, a minimal pair benchmark designed by110

Huebner et al. (2021), compared to models trained111

on Wikipedia, when strictly controlling for dataset112

size and model configuration. An even better ac-113

curacy is achieved by LMs trained on written lan-114

guage adapted for children, such as AO-Newsela115

(Xu et al., 2015). Salhan et al. (2024) report sim-116

ilar results in a cross-linguistic setting involving117

French, German, Chinese, and Japanese. Across118

all four languages, their baseline RoBERTa-small119

model trained on CHILDES outperforms models120

trained on a size-matched Wikipedia corpus when121

evaluated on minimal-pair benchmarks available122

for each language. Mueller and Linzen (2023)123

further support the benefits of CDL by showing124

that pretraining LMs on simpler input promotes125

hierarchical generalization in question formation126

and passivization tasks, even with significantly less127

data than required by models trained on more com-128

plex sources like Wikipedia. Finally, You et al.129

(2021) leverage a non-contextualized word embed- 130

ding model (Word2Vec by Mikolov, Chen, Corrado, 131

and Dean, 2013) to show that CDL is optimized 132

for enabling semantic inference through lexical co- 133

occurrence even in the absence of syntactic cues, 134

suggesting that early meaning extraction in humans 135

may be supported by surface-level regularities. 136

In contrast to studies highlighting the advan- 137

tages of CDL, Feng et al. (2024) report that mod- 138

els trained only on CDL consistently perform 139

worse than those trained on ADL datasets with 140

higher structural variability and complexity (e.g., 141

Wikipedia, OpenSubtitles, BabyLM Challenge 142

dataset) in both syntactic tasks (like the ones in 143

Zorro) and semantic tasks measuring word sim- 144

ilarity. A similar result is reported by Bunzeck 145

et al. (2025), who focus on German language mod- 146

els: while lexical learning tends to improve with 147

the simpler, fragmentary language constructions 148

typical of CDL, syntactic learning benefits from 149

more structurally complex input. Yedetore et al. 150

(2023) further challenge the benefits of CDL by 151

demonstrating that both LSTMs and Transformers 152

trained on CDL input fail to acquire hierarchical 153

rules in yes/no question formation, instead rely- 154

ing on shallow linear generalizations. Finally, be- 155

yond text-based models, Gelderloos et al. (2020) 156

train their models on unsegmented speech data us- 157

ing a semantic grounding task and find that whilst 158

child-directed speech may facilitate early learning, 159

models trained on adult-directed speech ultimately 160

generalize more effectively. 161

In light of conflicting findings on the effective- 162

ness of CDL, our study offers a systematic reassess- 163

ment of its impact on syntax learning across two 164

model architectures, three languages and multiple 165

benchmarks, including a frequency-controlled one. 166

3 Method 167

We train RoBERTa- and GPT-2-style language 168

models from scratch on size-matched corpora of 169

CHILDES and Wikipedia text in English, French 170

and German. To assess their syntactic performance, 171

we evaluate them on a set of existing minimal-pair 172

benchmarks, enabling cross-linguistic and cross- 173

architectural comparisons. Additionally, we pro- 174

pose FIT-CLAMS, a novel evaluation methodology 175

inspired by Mueller et al. (2020), which controls 176

for lexical frequency effects and facilitates more 177

reliable comparisons across datasets. 178
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Tokens Avg Sent. Type/Token Ratio (TTR)
Length 1-grams 2-grams 3-grams

EN CHILDES
4.3 M

6.13 0.005 0.073 0.275
Wiki 24.13 0.026 0.286 0.680

FR CHILDES
2.3 M

6.48 0.009 0.089 0.310
Wiki 37.19 0.019 0.159 0.386

DE CHILDES
3.8 M

5.61 0.012 0.129 0.424
Wiki 21.34 0.055 0.379 0.752

Table 1: Descriptive statistics of our training datasets.

3.1 Training Datasets179

We choose English for comparability to previous180

results, and French and German because they are in-181

cluded in the existing CLAMS benchmark (Mueller182

et al., 2020), enabling consistent cross-linguistic183

evaluation.3 While typologically related, these lan-184

guages provide sufficient variation, particularly in185

subject–verb agreement, to test the robustness of186

our findings.187

We train models on two data types: CHILDES188

transcripts and Wikipedia. For English, we use189

the same data split as Huebner et al. (2021), com-190

prising approximately 5M words of American En-191

glish CDL, which in their work is referred to as192

AO-CHILDES (Age-Ordered CHILDES; Hueb-193

ner and Willits, 2021). The French and German194

portions are extracted from CHILDES using the195

childesr library in R through the childes-db inter-196

face (Sanchez et al., 2019). We keep only adult-197

to-child utterances, excluding those produced by198

children. To enable fair comparisons, we sample199

Wikipedia corpora of matching sizes (measured200

in terms of whitespace-separated tokens). We ex-201

clusively use curated, small-scale corpora from the202

CHILDES database to ensure a controlled and com-203

parable experimental setup across languages, en-204

abling a targeted examination of CDL—as inter-205

active, infant-oriented register—versus the formal,206

written style of Wikipedia, despite the availability207

of larger datasets such as the BabyLM Challenge208

(Warstadt et al., 2023) and the German BabyLM209

corpus (Bunzeck et al., 2025).210

Summary statistics for our CHILDES and211

Wikipedia datasets are provided in Table 1. A con-212

sistent pattern across languages is that Wikipedia213

has substantially higher average sentence lengths214

compared to CHILDES. Additionally, notable dis-215

parities in type–token ratios reflect the highly repet-216

3CLAMS also includes Hebrew and Russian, but these
languages were not selected due to the limited amount of
available CHILDES data.

Figure 1: CHILDES age distribution across languages.

itive nature of CDL, at both lexical and phrase level. 217

Further comparisons of the two corpora are pre- 218

sented in Appendix A. As for CHILDES-specific 219

properties, Figure 1 shows that the data is heavily 220

skewed toward the first 2–3 years of life, in all three 221

languages. 222

3.2 Models 223

We evaluate two model architectures: RoBERTa, 224

a masked language model (MLM) chosen for con- 225

sistency with prior CDL vs. ADL studies (Hueb- 226

ner et al., 2021; Salhan et al., 2024) and GPT- 227

2, a causal language model (CLM), whose auto- 228

regressive objective more closely approximates the 229

incremental nature of human language processing 230

(Goldstein et al., 2022). To ensure a fair compar- 231

ison, both models share the same architecture: 8 232

transformer layers, 8 attention heads, an embed- 233

ding size of 512, and an intermediate feedforward 234

size of 2048. 235

3.2.1 Training Setup 236

We train all models from scratch for 100,000 steps 237

using the AdamW optimizer (Loshchilov and Hut- 238

ter, 2017) with linear scheduling and a warm-up 239

phase of 40,000 steps (during our hyperparame- 240

ter search, we experimented with various warm-up 241

durations and found that shorter warm-up phases 242

lead to early overfitting, particularly in the case 243

of GPT-2). A learning rate of 0.0001, chosen for 244

producing more stable learning curves, is applied 245

consistently across all experiments. We use 95/5% 246

train/validation split. 247

4 Evaluation on Existing Benchmarks 248

Following Huebner et al. (2021) and Salhan et al. 249

(2024), we train separate Byte-Pair Encoding (BPE) 250

tokenizers (Sennrich et al., 2016) for each lan- 251

guage and dataset, resulting in distinct vocabular- 252
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Minimal Pair #(noun;C) #(noun;W) #(verb;C) #(verb;W)

CLAMS
the pilot [smiles/*smile] 75 271 196 21
the author next to the guard [laughs/*laugh] 4 724 161 17
the surgeon that admires the guard [is/*are] young 3 63 86,217 65,369

FIT-CLAMS-C
the [resident/*residents] awaits 6 343 2 15
the [farmer/*farmers] next to the guards arrives 247 185 18 117
the [daddy/*daddies] that hates the friends thinks 6,184 5 16,056 254

FIT-CLAMS-W
the [picker/*pickers] exaggerates 17 2 2 6
the [painter/*painters] in front of the waiter enjoys 8 177 64 99
the [president/*presidents] that admires the speakers works 46 1,599 2,221 3,923

Table 2: Minimal pair examples for CLAMS and FIT-CLAMS, and the noun and verb frequency across CHILDES
(C) and Wikipedia (W) in each dataset.

ies.4 A vocabulary size of 8,192 tokens is used253

throughout, following prior developmental stud-254

ies (Biemiller, 2003) and consistent with earlier255

work in this area (Salhan et al., 2024). Specifically,256

research has estimated that the average English-257

speaking 6-year-old has acquired approximately258

5,000–6,000 words (Biemiller, 2003). Although259

our CHILDES datasets for German and French260

are not strictly limited to children up to age six,261

the majority of the data comes from younger chil-262

dren, with relatively fewer samples from older age263

groups.264

4.1 Evaluation Procedure265

For evaluation, we report metrics averaged over266

three random seeds per model configuration. For267

MLMs, where no overfitting is observed, we use268

the final checkpoint at step 100,000. For CLMs,269

where overfitting is observed, we select the check-270

point that yields the lowest validation perplexity271

for each language and training dataset. Full vali-272

dation perplexities trajectories are provided in Ap-273

pendix B, along with the list of selected check-274

points for each model and dataset (Table 7).275

We assess the syntactic performance of a model276

by testing whether it assigns a higher probabil-277

ity to the grammatical version in a minimal sen-278

tence pair, a well-established paradigm in LM eval-279

uation (Linzen et al., 2016; Marvin and Linzen,280

2018; Wilcox et al., 2018). Sentence probabilities281

are computed using the minicons library (Misra,282

2022). For CLMs, we use the summed sequence283

log-probability with BOW correction.5 For MLMs,284

4Bunzeck and Zarrieß (2025) propose character-level mod-
els as a viable alternative for syntax learning, which could be
tested in future CDL vs. ADL settings.

5Beginning-of-word (BOW) correction adjusts LM scor-
ing by shifting the probability mass of ‘ending’ a word from
the BOW of the next token to the current one (Pimentel and

we use the likelihood score with a within-word left- 285

to-right masking strategy, which mitigates overesti- 286

mation of token probabilities in multi-token words 287

(Kauf and Ivanova, 2023). 288

4.2 Benchmark Description 289

Several minimal-pair benchmarks have been pro- 290

posed in the literature to evaluate grammatical 291

learning in models trained on CDL and ADL, 292

most notably BLiMP (Warstadt et al., 2020), Zorro 293

(Huebner et al., 2021), and CLAMS (Mueller et al., 294

2020). 295

BLiMP has become the standard benchmark for 296

English, consisting of 67 paradigms representing 297

12 different linguistic phenomena. It is generated 298

through a semi-automated process where lexical 299

items are systematically varied within manually 300

crafted sentence templates. While carefully con- 301

trolled, this approach still produces semantically 302

odd or implausible sentences (Vázquez Martínez 303

et al., 2023). Moreover, this benchmark does not 304

account for the vocabulary typical of CDL. 305

To address this lexical mismatch, Huebner et al. 306

(2021) introduce Zorro, a benchmark comprising 307

23 grammatical paradigms that represent 13 phe- 308

nomena. Lexical items in Zorro’s minimal pairs 309

are selected by manually identifying entire words 310

(never words split into multiple subwords) from the 311

BabyBERTa tokenizer’s vocabulary6 and by coun- 312

terbalancing word frequency distributions across 313

the five training corpora. While this design en- 314

hances lexical compatibility across CDL and ADL 315

training domains, evaluating only on whole words 316

overlooks the fact that models with robust syntactic 317

Meister, 2024; Oh and Schuler, 2024).
6The BabyBERTa tokenizer is jointly trained on AO-

CHILDES, AO-Newsela, and an equally sized portion of
Wikipedia-1.
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CLAMS
Model Training Data BLiMP Zorro English French German

CLM CHILDES 0.61 ± 0.02 0.76 ± 0.04 0.60 ± 0.01 0.64 ± 0.01 0.69 ± 0.03
Wiki 0.60 ± 0.02 0.68 ± 0.02 0.71 ± 0.02 0.82 ± 0.01 0.81 ± 0.01

MLM CHILDES 0.59 ± 0.03 0.66 ± 0.05 0.57 ± 0.02 0.59 ± 0.01 0.70 ± 0.01
Wiki 0.59 ± 0.02 0.65 ± 0.02 0.64 ± 0.01 0.69 ± 0.02 0.74 ± 0.01

Table 3: Model accuracies on BLiMP, Zorro, and CLAMS, averaged across paradigms and model seeds.

understanding should be able to handle structure318

even when key items are split into subword units,319

raising concerns about the fairness and broader ap-320

plicability of this benchmark.321

Finally, CLAMS extends minimal pair coverage322

to five languages to enable a comparable cross-323

lingual evaluation of syntactic learning, but only324

focuses on the phenomenon of subject–verb agree-325

ment (across 7 paradigms). Despite its more lim-326

ited syntactic scope compared to BLiMP and Zorro,327

we select CLAMS for our extended analyses, as328

subject–verb agreement represents a foundational329

aspect of grammatical ability which is typically ac-330

quired early in child language development (Bock331

and Miller, 1991; Phillips et al., 2011). CLAMS332

is based on translations of minimal pairs originally333

created for English by Marvin and Linzen (2018).334

As stated by these authors, their models showed335

varied accuracy across specific verbs in the minimal336

pairs, with frequent ones like is reaching 100% ac-337

curacy and rarer ones like swims only around 60%,338

likely reflecting frequency effects. To account for339

such effects as well as ensure cross-linguistic con-340

sistency, we introduce in Section 5 a new method-341

ology for constructing minimal pairs inspired by342

CLAMS, explicitly controlling for both verb and343

noun frequency across all language conditions.344

4.3 Results345

The results obtained with our two model architec-346

tures, presented in Table 3, are partially consistent347

with prior findings reported for English (Huebner348

et al., 2021). In our experiments, both the causal349

and masked language models trained on CHILDES350

and Wikipedia perform comparably, with no signifi-351

cant differences in accuracy when tested on BLiMP.352

On Zorro, the CLM trained on CHILDES outper-353

forms its Wikipedia-trained counterpart, replicating354

the findings of Feng et al. (2024). For the MLM355

architecture, the CHILDES-trained model shows356

only a modest accuracy advantage, smaller than357

that reported by Huebner et al. (2021).358

A more fine-grained analysis of the paradigms is 359

provided in Appendix C, where Table 8–9 indicate 360

that the advantage of CDL is partly driven by gram- 361

matical phenomena involving questions. We find 362

that this effect is even more pronounced in CLMs 363

than in MLMs. The trend reflects the prevalence 364

of interrogatives in the CDL data (40% in English, 365

see Appendix A), which may bias models toward 366

better handling of question-related constructions, 367

as already noted by Huebner et al. (2021). To vali- 368

date our evaluation pipeline and contextualize our 369

results, we also applied our evaluation methodol- 370

ogy to the models trained and released by Huebner 371

et al. (2021); details of this analysis are provided 372

in Appendix C. 373

Focusing on subject–verb agreement, CLAMS 374

results for the three languages are overall consis- 375

tent across the two model types, but contradict the 376

findings reported in previous work (Salhan et al., 377

2024). For English, French and German, neither 378

CLM nor MLM demonstrates an advantage when 379

trained on CHILDES compared to Wikipedia, as 380

shown in Table 3. 381

In summary, results are mixed: models trained 382

on CDL sometimes perform better and sometimes 383

worse than those trained on ADL, depending on the 384

evaluation benchmark. We hypothesize that lexical 385

frequencies may be an important confounder in this 386

type of evaluation, and in the next section we set 387

out to design new minimal pairs that balance the 388

distribution of nouns and verbs representative of 389

each training corpus. As CLMs generally demon- 390

strate higher performance than MLMs, we only 391

focus on CLMs in our subsequent analyses. 392

5 FIT-CLAMS 393

When comparing two models (trained on differ- 394

ent data sets) on a syntactic evaluation task, we 395

must ensure that any differences in their perfor- 396

mance do not stem from the evaluation data being 397

more ‘aligned’ with the training distribution of one 398

model over the other. To that end, we propose a 399
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new Frequency-Informed Testing (FIT) evaluation400

methodology based on CLAMS, through which we401

generate two sets of minimal pairs guided by the402

distribution of the two training corpora, ensuring403

a spread of high- and low-frequency items across404

each corpus.405

5.1 Data Creation406

Our data creation follows the following four steps:407

1. Vocabulary selection: We compute the inter-408

section of the vocabularies (before applying409

subword tokenization) from Wikipedia and410

CHILDES, then select lexical items ensuring411

that all word forms have been encountered by412

both models during training.413

2. Candidate selection: Using SpaCy (Honni-414

bal, 2017), we select candidate subjects and415

verbs by ensuring they have the right part-of-416

speech and grammatical features. Specifically,417

we select only animate nouns and limit verbs418

to present-tense third-person forms in indica-419

tive mood. We only keep nouns and verbs420

that occur in the corpora in both singular and421

plural form.422

3. Controlling frequency: To control for lex-423

ical frequency effects, nouns and verbs are424

grouped into 10 frequency bins based on their425

occurrence in the training data. Frequency bin-426

ning is done using uniformly spaced bins at a427

logarithmic scale, to account for the Zipfian428

distribution of word frequencies. The distribu-429

tion of nouns and verbs across bins is shown430

in Appendix D. From each frequency bin, one431

noun and one verb are manually selected from432

both the CHILDES and Wikipedia distribu-433

tions, ensuring semantic compatibility.434

4. Minimal pair creation: The final minimal435

pairs are generated adhering to the syntactic436

templates used by Mueller et al. (2020). We437

adopt a minimal-pair design in which the crit-438

ical region—the verb—is held constant across439

grammatical and ungrammatical conditions,440

as is also done in BLiMP-NL (Suijkerbuijk441

et al., 2025). Evaluating model probabilities442

only at this critical region (while changing443

the context) avoids confounding effects from444

differences in subword tokenization.445

Following this pipeline, we generate two sets446

of minimal pairs, one from CHILDES distribution447

Model FIT-CLAMS EN FR DE

CHILDES FIT-CLAMS-C 0.63 0.78 0.73
FIT-CLAMS-W 0.63 0.67 0.69

Wiki FIT-CLAMS-C 0.76 0.84 0.82
FIT-CLAMS-W 0.77 0.89 0.83

Table 4: Average FIT-CLAMS accuracy on the CLM
models. Best scores per dataset are shown in boldface.

(FIT-CLAMS-C) and one from Wikipedia distribu- 448

tion (FIT-CLAMS-W), forming together the FIT- 449

CLAMS benchmark. In total, we generated 16,400 450

minimal pairs for English, 4,914 for French, and 451

10,800 for German across the various paradigms 452

(see Table 14 for detailed counts per paradigm). 453

Examples of our minimal pairs, together with the 454

corresponding noun and verb frequencies in both 455

CHILDES and Wikipedia data, are provided in Ta- 456

ble 2. 457

5.2 Results 458

Since our minimal pairs are constructed such that 459

the verb remains constant across the pair, we com- 460

pute the model’s probability for the verb alone, 461

rather than over the entire sentence, as was done 462

for the three previous benchmarks. This approach 463

more directly probes the model’s syntactic ability 464

by correctly solving subject–verb agreement, as- 465

signing higher probability to the verb form that 466

matches the sentence-initial subject. Each CLM 467

(whether trained on CHILDES or Wikipedia) is 468

evaluated on both sets. Depending on the lexical 469

source, each evaluation set may be considered ei- 470

ther in-distribution or out-of-distribution relative to 471

the model’s training data. 472

Table 4 presents average accuracy scores across 473

the seven syntactic paradigms. Overall, we observe 474

that average accuracy on FIT-CLAMS increases for 475

both models (trained on CHILDES and Wikipedia) 476

compared to their performance on CLAMS (see 477

Table 3). This increase can be explained by the fact 478

that in the original CLAMS dataset, some minimal 479

pairs contain tokens that are not observed at train- 480

ing time, which is not the case for FIT-CLAMS. 481

These results also reveal that, as expected, mod- 482

els generally perform better on minimal pairs con- 483

structed with in-distribution lexical items than with 484

out-of-distribution ones. 485

Importantly, the most pronounced contrast we 486

see is still the one between the models trained on 487

CHILDES (first two rows) vs. Wikipedia (last two 488
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Figure 2: Accuracy of our models on the individual
paradigms in the new set of minimal pairs, FIT-CLAMS.

rows): the latter consistently outperform the former489

across all languages on the subject–verb agreement490

task. Thus, even when strictly controlling for lex-491

ical frequency, models trained on Wikipedia con-492

tinue to show a systematic advantage, underscoring493

the benefits of training on larger and more diverse494

textual resources for developing robust syntactic495

ability.496

6 Regression Analysis497

To further investigate how training data shapes498

model behavior, we conduct a linear regression499

analysis examining whether and how the presence500

of specific lexical items in the training data influ-501

ences model performance. A model that builds up502

a robust representation of number agreement will503

be better able to generalize to infrequent construc-504

tions, without relying on memorization (Lakretz505

et al., 2019; Patil et al., 2024). We focus on the Sim-506

ple Agreement paradigm, as it is the most straight-507

forward paradigm to connect the frequency of oc-508

currence of individual words in the training data509

to subsequent model performance. Specifically,510

we assess how unigram frequency of critical lex-511

ical items—the subject and the verb—affects the512

model’s preference for grammatical over ungram-513

matical sentences. This controlled setup allows us514

to isolate frequency effects and compare the de-515

gree to which models trained on CDL and ADL516

generalize beyond lexical co-occurrence patterns.517

We fit ordinary least squares (OLS) regressions518

to the training data (CHILDES or Wikipedia in519

three different languages) and the probabilities gen-520
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Figure 3: Relation between LM accuracy on FIT-
CLAMS and proportion of variance (R2) explained by
the OLS regression fitted on lexical frequency factors.
The lower the R2 is, the less the LM’s behavior is driven
by lexical frequency. Each LM configuration is repre-
sented by four data points: three individual LMs (ran-
dom seeds) and the average of the three.

erated by LMs. Specifically, the dependent vari- 521

able used in the regression analysis is the ∆P - 522

score, defined as the difference between the proba- 523

bility assigned by the model to the verb in a gram- 524

matical and ungrammatical context: 525

∆P (v|c) = logP (v|c+)− logP (v|c−) 526

for verb v in a grammatical (c+) and ungrammat- 527

ical context (c−): e.g., The boy walks vs. ∗The 528

boys walks. As independent variables, we use the 529

log-frequencies of (1) the verb, (2) the grammatical 530

subject noun, and (3) the ungrammatical subject 531

noun, fitting a single multivariate model on all vari- 532

ables. Lexical frequency values are extracted from 533

the corpus used to train the respective model (either 534

CHILDES or Wikipedia). All predictor variables 535

are standardized using z-score normalization. 536

To investigate the impact of lexical frequency, 537

we examine the relationship between the fit (i.e., 538

R2) of the OLS regression and the LMs’ accuracy 539

on the FIT-CLAMS data. Our hypothesis is that 540

the predictions of an LM will be less driven by fre- 541

quency if it generalizes well beyond the sentences it 542

saw during training, and as such the OLS will lead 543

to a lower R2 score. The results in Figure 3 reveal 544

a strong negative correlation between R2 and accu- 545

racy (r = −0.44, p = 0.03): the best-performing 546

LM (trained on French Wikipedia) yields the low- 547

est R2, whereas the worst-performing LM (trained 548

on English CHILDES) yields the highest. 549

For both French and English, models trained on 550

Wikipedia obtain a higher accuracy and lower R2 551
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than those trained on CHILDES; for German this552

pattern is less clear. We hypothesize this is partly553

driven by the Type/Token Ratio (TTR), which is the554

lowest for English and French CHILDES (see Ta-555

ble 1). Generalization in LMs is driven by compres-556

sion: by being forced to build up representations557

for a wide range of inputs in a bounded representa-558

tion space, models have to form abstractions that559

have been shown to align with linguistic concepts560

(Tishby and Zaslavsky, 2015; Tenney et al., 2019;561

Wei et al., 2021). Training models on low-TTR562

data, therefore, leads to a weaker generalization563

than on high-TTR data, since a model trained on564

low-TTR data can rely more on memorization. We565

leave a more detailed exploration of such factors566

open for future work.567

7 Discussion and Conclusions568

This study examined whether language models569

trained on CDL can match or surpass the syntac-570

tic ability of models trained on size-matched ADL571

data. We trained RoBERTa- and GPT-2-based mod-572

els in English, French, and German and evaluated573

them on multiple minimal pair benchmarks as well574

as on the newly introduced, frequency-controlled575

FIT-CLAMS. The results show that models trained576

on CHILDES perform consistently worse than577

models trained on Wikipedia, across languages,578

architectures, and evaluation settings.579

Our regression analysis further revealed a mod-580

est negative correlation between model accuracy581

and variables based on lexical frequency, indicat-582

ing that stronger models rely less on surface-level583

patterns of lexical co-occurrence. This trend holds584

for English and French models, but not clearly for585

German, pointing to possible language-specific ef-586

fects.587

When interpreting these findings through the588

lens of language acquisition, it is important to con-589

sider the limitations of the training paradigm we590

used. Our models are trained in artificial conditions591

that diverge substantially from the way humans592

acquire language. Unlike children, these models593

are exposed to static datasets without any form of594

interaction, feedback, or communicative pressure.595

Additionally, the learning process is not incremen-596

tal or developmentally grounded, the vocabulary597

is extracted from the entire corpus at once when598

the tokenizer is trained, and the models operate599

without cognitive constraints or working memory600

limitations. These discrepancies highlight an im-601

portant gap between current computational learning 602

frameworks and the dynamics of natural language 603

acquisition. 604

Rather than completely dismissing CDL, we con- 605

tend that it should be recontextualized and rigor- 606

ously tested within frameworks that better resemble 607

human language learning processes. CDL might 608

hold particular promise when integrated into mod- 609

els that simulate interactive, situated communica- 610

tion (Beuls and Van Eecke, 2024; Stöpler et al., 611

2025), shifting the focus toward the communicative 612

and contextual factors essential to language acqui- 613

sition, which are absent in static text-based training 614

regimes. Moreover, LM experiments can still con- 615

tribute significantly to the study of human language 616

acquisition (Warstadt and Bowman, 2022; Pannitto 617

and Herbelot, 2022; Portelance and Jasbi, 2024), 618

where the benefits of CDL remain poorly under- 619

stood (Kempe et al., 2024), by helping to uncover 620

specific properties of CDL that make it particularly 621

suitable for specific kinds of learning outcomes. 622

For instance, scaling up experiments like those of 623

You et al. (2021) could provide valuable insights 624

into various aspects of language acquisition, such 625

as morphological, syntactic, and semantic develop- 626

ment. 627

Finally, rather than serving solely as pretraining 628

data, CDL, together with insights from the lan- 629

guage acquisition literature (Kempe et al., 2024), 630

can inspire the design of inductive biases and data 631

augmentation strategies, such as context variation 632

(Xiao et al., 2023) or variation sets (Haga et al., 633

2024), with the practical aim of improving general- 634

ization or enabling more data-efficient learning in 635

models trained on the standard adult-directed text 636

corpora that are used in NLP applications. 637

In conclusion, although conventional training on 638

CDL does not currently improve syntactic learn- 639

ing in LMs, we maintain that it remains a valuable 640

resource deserving further investigation. Future 641

work should prioritize CDL’s integration within 642

cognitively and interactively grounded frameworks, 643

while also exploring how its distinctive characteris- 644

tics can inform the development of more effective 645

model architectures and training methodologies. 646

Limitations 647

This work does not explicitly account for certain 648

grammatical inconsistencies characteristic of child- 649

directed language, such as the frequent use of infini- 650

tive verb forms in contexts where a third- or first- 651
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person singular subject is intended, resulting in sub-652

ject–verb agreement violations. Such errors, which653

have been systematically mapped for English in an654

extensive taxonomy by Nikolaus et al. (2024), may655

introduce noise into the expression of subject–verb656

agreement. We hypothesize that these properties657

of CDL could affect the grammatical learning of658

this syntactic phenomenon. Future experiments659

could explore whether removing or correcting these660

occurrences in the training data improves model661

performance on subject–verb agreement tasks. An-662

other limitation concerns the restricted syntactic663

scope of our regression analysis, which is lim-664

ited to simple cases of subject–verb agreement.665

More structurally complex agreement configura-666

tions, such as those involving long-distance depen-667

dencies, coordination structures, or prepositional668

phrases, are not included in the current regressions.669

In future work, we plan to broaden the analysis to670

these more challenging constructions to examine671

whether surface-level factors like lexical frequency672

continue to influence model performance, and how673

these effects may differ between CHILDES- and674

Wikipedia-trained models.675

The lexical diversity of our regression setup also676

imposes constraints on the generalizability of our677

findings. Each grammatical item (verb or noun)678

is represented by at most 10 lexical instances per679

language, with as few as 7 for French verbs. Ex-680

panding this set to include a broader and more rep-681

resentative frequency distribution would allow for682

more robust and precise estimates of how lexical683

frequency relates to syntactic generalization.684

Finally, the construction of our FIT-CLAMS685

benchmark involved manual selection of animate686

nouns and semantically compatible verbs shared687

across CDL and Wikipedia corpora. While this688

ensured controlled and interpretable comparisons,689

it limits scalability. In future work, automating this690

process, could facilitate broader and more flexible691

evaluations.692
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from their repository; for German, the cor-978

pus gwlms/dewiki-20230701-nltk-corpus979

was employed; and for French, we rely on980

asi/wikitext_fr. We report the differences981

between the two data types in the three target982

languages in terms of word frequency in Figure 4983

and sentence length in Figure 5. Additionally, as984

mentioned in the main text, since the age range985

covered by the CHILDES corpus varies across986

languages, in Figure 6 we display the total number987

of utterances directed at children of different988

ages for each CHILDES split. To generate the989

bins shown in Figure 4, we use the same strategy990

adopted for the new evaluation methodology991

described in Section 5, where the binning is done992

using uniformly spaced bins at a logarithmic993

scale, to account for the Zipfian nature of word994

frequencies.995

Moreover, Table 5 provides a quantitative sum-996

mary of the proportion of sentences classified as997

interrogatives in the two datasets. It clearly shows998

that interrogative sentences are substantially more999

frequent in CDL compared to Wikipedia.1000

Language CHILDES Wikipedia
English 39.84% 0.07%
French 31.28% 0.28%
German 28.93% 0.09%

Table 5: Comparison of interrogative clauses in
CHILDES and Wikipedia datasets across languages.

B Models Details1001

Table 6 summarizes the configuration of the MLM1002

and CLM models used in our experiments. We1003

align the hyperparameters as closely as possible1004

between the two architectures.1005

Figure 7 presents the validation perplexity curves1006

for MLM and CLM models trained on CHILDES1007

and Wikipedia corpora across English, French and1008

German. A clear pattern of earlier overfitting1009

emerges for CLMs trained on CHILDES, with val-1010

idation perplexity increasing after fewer training1011

steps compared to their Wikipedia-trained counter-1012

parts.1013

Table 7 reports the CLM checkpoints selected1014

for each language and dataset based on validation1015

perplexity before overfitting, which we used for1016

evaluation on both the existing benchmarks and1017

our FIT-CLAMS dataset.1018

Hyperparameter MLM CLM

Architecture RoBERTa GPT-2
Layers 8 8
Attention heads 8 8
Intermediate size 2048 2048
Max seq. length 512 512
Objective Masked LM Causal LM
Total parameters 12.7M 14.8M
Learning Rate 0.0001 0.0001
lr_scheduler_type linear linear
Training Batch Size 16 16
Evaluation Batch Size 16 16
Gradient Accumulation Step 2 2

Table 6: Comparison of CLM and MLM model configu-
rations.

Language CHILDES Wikipedia
EN ckpt-48000 ckpt-64000
FR ckpt-36000 ckpt-44000
DE ckpt-48000 ckpt-64000

Table 7: Best-performing CLM checkpoints per lan-
guage and dataset that we used for evaluation on exist-
ing benchmarks and on FIT-CLAMS.

C Accuracy Results of CLMs and MLMs 1019

on existing benchmarks 1020

Models are evaluated on each benchmark across 1021

19 training checkpoints: 10 selected from the first 1022

10% of training steps and 9 from the remaining 1023

90%. This selection strategy allows for a more 1024

detailed examination of the early-stage learning 1025

trajectories. Figure 8 refers to Zorro accuracy 1026

learning curves across steps for our CHILDES- and 1027

Wikipedia-models trained on English. Instead, Fig- 1028

ure 9- 10- 11 show the accuracy learning curves on 1029

CLAMS of our CLMs trained on the three language 1030

of interest. 1031

Tables 8- 9 report the accuracies of the two mod- 1032

els types (CLM and MLM) trained on the two dif- 1033

ferent datasets (CHILDES vs Wikipedia for each 1034

paradigm targeted in Zorro. Paradigms involving 1035

questions are highlighted in bold and with color. 1036

For CLMs, 7 out of 10 paradigms where CHILDES 1037

outperforms Wikipedia include questions, whereas 1038

the advantage for question-related paradigms is less 1039

pronounced in the case of the MLMs (only 6 out of 1040

13). 1041

Figure 12 illustrates the performance of our 1042

two model architectures—CLM and MLM—when 1043

evaluated on the CLAMS benchmark, providing 1044

12



Figure 4: Word Frequency Distribution (CHILDES vs Wikipedia) ascross languages.

a visual summary of their accuracy across lan-1045

guages and conditions. The highest accuracy is1046

observed in the simple agreement paradigm— the1047

least complex, involving only an article, a noun1048

and a verb. Although one might expect models1049

trained on CHILDES, with its simpler syntactic1050

structures, to perform better here, those trained on1051

Wikipedia achieve higher accuracy across all lan-1052

guages. As agreement complexity increases, over-1053

all performance declines, yet the Wikipedia-trained1054

models continue to hold an advantage, except in1055

the agreement within relative clauses.1056

C.1 Testing Previous Models from the1057

Literature1058

To validate our evaluation pipeline, we applied it to1059

models released by Huebner et al. (2021), allowing1060

for a direct comparison with existing findings in1061

the literature. Specifically, we evaluated two ver-1062

sions of their model trained on AO-CHILDES: one1063

that uses no unmasking probability, and the other1064

that uses the standard unmasking probability value1065

typically employed in MLM training. In both cases,1066

the average accuracies across all paradigms on the1067

Zorro benchmark diverge from the results reported1068

in their original paper. The first model (unmasking1069

probability = 0) achieves an average accuracy of1070

66%, while the second (standard unmasking proba-1071

bility) scores 68%.1072

D FIT-CLAMS Minimal Pairs 1073

Generation 1074

Curation pipeline details: 1075

• The shared vocabularies extracted for 1076

lexical selection include 15,502 tokens 1077

in English, 9,354 in French, and 20,366 1078

in German. Frequency distributions are 1079

calculated using SpaCy’s en_core_web_sm, 1080

fr_core_web_sm, and de_core_web_sm 1081

pipelines. For noun frequency analysis, singu- 1082

lar and plural forms are counted separately. In 1083

German, case information is explicitly used 1084

to retain only nouns marked as nominative. 1085

For verbs, English selection includes forms 1086

tagged as VB, VBP, and VBZ, recognizing 1087

that these categories respectively capture 1088

infinitives, non-third-person present forms, 1089

and third-person singular present forms. In 1090

contrast, French and German verb selection 1091

involves additional morphological constraints: 1092

verbs must be third person and present tense, 1093

and forms in the subjunctive or conditional 1094

moods are excluded. 1095

• As mentioned in the main body, the binning of 1096

candidate nouns and verbs into ten frequency 1097

categories was performed using a logarithmic 1098

scale. The bin edges were defined using log- 1099

spaced intervals between the minimum and 1100

13



Figure 5: Sentence Length Distribution (CHILDES vs Wikipedia) across languages and data types

maximum frequencies observed across the1101

dataset. To visualize the distribution of nouns1102

and verbs across the bins, reference can be1103

made to the histograms in Figure 13.1104

• For English and German, a total of 10 nouns1105

and 10 verbs per dataset are retained. For1106

French, due to constraints in the shared vo-1107

cabulary, the final selection includes 9 nouns1108

and 7 verbs. Additionally, two extra nouns per1109

dataset are selected to serve as objects in the1110

relative clause paradigms. The complete lists1111

of selected lexical items for each language,1112

along with their corresponding frequencies,1113

are reported in Table 10. It is also impor-1114

tant to note that the relative clause paradigms1115

include the verb within the relative clause it-1116

self. These verbs are adapted from CLAMS,1117

with exclusions made for items not present in1118

the shared vocabulary between CHILDES and1119

Wikipedia. The final set of relative clause1120

verbs used in our study is provided in Ta-1121

ble 13. Furthermore, the prepositions used1122

in the prepositional phrase paradigms are also1123

drawn from the multilingual CLAMS version1124

( Table 12). For paradigms involving long-1125

distance dependencies within verb phrase co-1126

ordination, the CLAMS minimal pairs include1127

attractor nouns following both verbs in the1128

coordinated structure. In our adaptation, we 1129

manually construct semantically appropriate 1130

fillers for each verb, without explicitly control- 1131

ling for the frequency of the inserted lexical 1132

items. 1133

All generated sentences in English and French 1134

have been manually reviewed by the authors, who 1135

have linguistic expertise in these two languages, 1136

while the German sentences were validated by a 1137

native speaker to ensure grammaticality and natu- 1138

ralness. 1139
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Figure 6: Sentence Count per Age Group in the three CHILDES datasets

ENGLISH

FRENCH

GERMAN

Figure 7: Validation perplexity curves for CLM and MLM models trained on CHILDES and Wikipedia corpora
across English, German, and French.
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Figure 8: CLM models’ accuracy curves on Zorro.
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Figure 9: English CLM models’ accuracy curves on CLAMS.

Figure 10: French CLM models’ accuracy curves on CLAMS.
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Figure 11: German CLM models’ accuracy curves on CLAMS.

Paradigm CHILDES Wiki

agr_det_noun_across_1_adj 0.813 0.836
agr_det_noun_between_neighbors 0.846 0.888
agreement_subj_verb_in_q_with_aux 0.743 0.556

agr_subj_verb_across_prep_phr 0.546 0.836
agr_subj_verb_across_relclause 0.606 0.667
agr_subj_verb_in_simple_q 0.799 0.594

anaphor_agreement_pronoun_gender 0.823 0.681

arg_structure_dropped_arg 0.861 0.353

arg_structure_swapped_args 0.973 0.991
arg_structure_transitive 0.626 0.658
binding_principle_a 0.771 0.608

case_subj_pronoun 0.983 1.000
ellipsis_n_bar 0.475 0.477
filler_gap_wh_q_object 0.834 0.750

filler_gap_wh_q_subject 0.916 0.931
irregular_verb 0.735 0.944
island_effects_adjunct_island 0.665 0.569

island_effects_coord_constraint 0.765 0.579

local_attractor_in_q_aux 0.912 0.249

npi_licensing_matrix_question 0.648 0.021

npi_licensing_only_npi_lic 0.719 0.721
quantifiers_existential_there 0.957 0.975
quantifiers_superlative 0.496 0.829

Table 8: CLM scores on Zorro subparadigms. Question-
related paradigms are emphasized with boldface and
deeper highlighting.

Paradigm CHILDES Wiki

agr_det_noun_across_1_adj 0.664 0.827

agr_det_noun_between_neighbors 0.726 0.900

agreement_subj_verb_in_q_with_aux 0.603 0.579

agr_subj_verb_across_prep_phr 0.548 0.717
agr_subj_verb_across_relclause 0.559 0.643

agr_subj_verb_in_simple_q 0.654 0.556

anaphor_agreement_pronoun_gender 0.864 0.667

arg_structure_dropped_arg 0.550 0.362

arg_structure_swapped_args 0.705 0.578

arg_structure_transitive 0.527 0.542
binding_principle_a 0.805 0.771

case_subj_pronoun 0.862 0.817

ellipsis_n_bar 0.671 0.392

filler_gap_wh_q_object 0.852 0.784

filler_gap_wh_q_subject 0.828 0.980
irregular_verb 0.634 0.921

island_effects_adjunct_island 0.612 0.553

island_effects_coord_constraint 0.572 0.833
local_attractor_in_q_aux 0.727 0.250

npi_licensing_matrix_question 0.260 0.026

npi_licensing_only_npi_lic 0.707 0.802
quantifiers_existential_there 0.970 0.937

quantifiers_superlative 0.376 0.628

Table 9: MLM scores on Zorro subparadigms. Question-
related paradigms are emphasized with boldface and
deeper highlighting.
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Figure 12: Accuracy scores per paradigm for CLM and MLM across languages on CLAMS.
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Table 10: Selected Nouns (used as Subjects) and Verbs in the three languages from CHILDES and Wikipedia
Distributions.

EN Nouns Bin Freq Df

roommate, roommates 0 2 CHI
resident, residents 1 6 CHI
librarian, librarians 2 15 CHI
officer, officers 3 40 CHI
toddler, toddlers 4 97 CHI
farmer, farmers 5 271 CHI
policeman, policemen 6 421 CHI
doctor, doctors 7 754 CHI
man, men 8 2373 CHI
daddy, daddies 9 7720 CHI

EN Nouns Bin Freq Df

picker, pickers 0 2 Wiki
harvester, harvesters 0 3 Wiki
fireman, firemen 2 11 Wiki
superhero, superheroes 3 31 Wiki
explorer, explorers 4 80 Wiki
painter, painters 5 179 Wiki
parent, parents 6 394 Wiki
writer, writers 7 683 Wiki
president, presidents 8 1635 Wiki
group, groups 9 3419 Wiki

EN Verbs Bin Freq Long VP Df

awaits, await 0 2 the guests CHI
complains, complain 1 9 about the noise CHI
arrives, arrive 2 18 at the station CHI
disappears, disappear 3 44 from the scene CHI
bows, bow 4 267 to the king CHI
hides, hide 5 442 from the chicken CHI
leaves, leave 6 1968 the room CHI
sits, sit 7 4651 in the car CHI
thinks, think 8 16240 about the trip CHI
goes, go 9 30425 to the new store CHI

EN Verbs Bin Freq Long VP Df

grinds, grind 0 4 the coffee beans Wiki
exaggerates, exaggerate 1 6 with laughs Wiki
screams, scream 2 14 very loudly Wiki
swims,swim 3 33 in the pool Wiki
enjoys, enjoy 4 99 the company of friends Wiki
draws, draw 5 230 a nice picture Wiki
rests, rest 6 568 on the couch Wiki
runs, run 7 1093 at the park Wiki
plays,play 7 1375 with the toys Wiki
works, work 8 3929 on a new project Wiki

FR Nouns Bin Freq Df

visiteur, visiteurs 0 3 CHI
joueur, joueurs 1 8 CHI
patient, patientes 2 12 CHI
capitaine, capitaines 3 40 CHI
homme, hommes 4 85 CHI
pompier, pompiers 5 191 CHI
dame, dames 6 351 CHI
enfant, enfants 7 753 CHI
lapin, lapins 8 1050 CHI

FR Nouns Bin Freq Df

gamin, gamins 0 3 Wiki
vilaine, vilaines 3 18 Wiki
cuisinier, cuisiniers 3 19 Wiki
avocat, avocats 4 56 Wiki
pilote, pilotes 6 170 Wiki
lecteur, lecteurs 6 174 Wiki
prince, princes 7 469 Wiki
personnage, personnages 8 1045 Wiki
groupe, groupes 9 1906 Wiki

FR Verbs Bin Freq Long VP Df

poursuit, poursuivent 0 5 une nouvelle missio CHI
grandit, grandissent 1 19 très rapidement CHI
apprend, apprennent 3 72 une nouvelle histoire CHI
descend, descendent 4 197 les escaliers de la maison CHI
attend, attendent 4 296 le repas chaud CHI
arrive, arrivent 6 1078 au lieu de rendez-vous CHI
met, mettent 7 2207 la nappe sur la table CHI

FR Verbs Bin Freq Long VP Df

casse, cassent 1 18 le verre Wiki
rentre, rentrent 3 62 dans la chambre Wiki
continue, continuent 5 223 sur la route Wiki
suit, suivent 6 348 le long chemin Wiki
rend, rendent 6 406 le stylo à sa maman Wiki
va, vont 7 682 au marché Wiki
permet, permettent 8 1149 l’accès aux escaliers Wiki

DE Nouns Bin Freq Df

feind, feinde 0 4 CHI
architekt, architekten 0 4 CHI
präsident, präsidenten 1 6 CHI
kollege, kollegen 2 20 CHI
ingenieur, ingenieure 3 26 CHI
sohn, söhne 4 106 CHI
arzt, ärzte 5 223 CHI
doktor, doktoren 6 341 CHI
mensch, menschen 7 1369 CHI
frau, frauen 8 2072 CHI

DE Nouns Bin Freq Df

fahrgast, fahrgäste 1 9 Wiki
kleinkind, kleinkinder 2 16 Wiki
zwilling, zwillinge 2 25 Wiki
polizist, polizisten 3 42 Wiki
kunde, kunden 5 114 Wiki
schwester, schwestern 5 191 Wiki
bruder, brüder 6 428 Wiki
vater, väter 7 668 Wiki
mann, männer 7 713 Wiki
person, personen 8 1250 Wiki

DE Verbs Bin Freq Long VP Df

zweifelt, zweifeln 0 4 am wetter CHI
konstruiert, konstruieren 1 5 ein modell CHI
fürchtet, fürchten 3 35 den starken sturm CHI
schält, schälen 3 46 den reifen grünen apfel CHI
taucht, tauchen 4 84 in das wasser des meeres CHI
kennt, kennen 5 282 die antwort auf die frage CHI
schreibt, schreiben 7 918 einen brief an verwandte CHI
erzählt, erzählen 7 1182 eine geschichte über die ferie CHI
spielt, spielen 8 3411 mit dem ball auf dem hof CHI
kommt, kommen 9 9843 mit dem bus zum tennisplatz CHI

DE Verbs Bin Freq Long VP Df

schaukelt, schaukeln 0 2 auf dem spielplatz Wiki
flüchtet, flüchten 2 13 vor dem feuer Wiki
riecht, riechen 2 13 den duft von frischem kaffee Wiki
wandert, wandern 4 39 durch den wald Wiki
feiert, feiern 4 56 den geburtstag des großvaters Wiki
verschwindet, verschwinden 5 76 im nebel Wiki
denkt, denken 6 234 an blumen im garten Wiki
spricht, sprechen 7 609 über das abendessen Wiki
arbeitet, arbeiten 8 712 an einem projekt Wiki
liegt, liegen 9 2549 auf dem boden Wiki

Table 11: Chosen Nouns (used as Objects) in FIT-CLAMS for English, French and German.

English Nouns Bin Freq Df

guard, guards 3 40 CHILDES
friend, friends 7 1525 CHILDES
waiter, waiters 2 11 Wiki
speaker, speakers 6 381 Wiki

French Nouns Bin Freq Df

femme, femmes 4 80 CHILDES
adulte, adultes 3 39 CHILDES
constructeur, constructeurs 5 112 Wiki
docteur, docteurs 5 114 Wiki

German Nouns Bin Freq Df

mitglied, mitglieder 1 8 CHILDES
bauer, bauern 6 357 CHILDES
matrose, matrosen 1 12 Wiki
familie, familien 7 1100 Wiki
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Language Prepositions

English next to, behind, in front of, near, to the side of, across from
French devant, derrière, en face, à côté, près
German vor, hinter, neben, in der Nähe von, gegenüber

Table 12: Prepositions used FIT-CLAMS for English, French, and German.

Language Verbs Used in Relative Clauses

English like likes; hates hate; love loves; admires admire
French aime aiment
German mag mögen; vermeidet vermeiden

Table 13: Verbs used in FIT-CLAMS relative clauses for English, French, and German.

Paradigm EN FR DE

Agreement in long VP coordinates 900 378 900
Agreement in object relative clauses (across) 3200 504 1600
Agreement in object relative clauses (within) 3200 504 1600
Agreement in prep phrases 4800 2520 4000
Simple agreement 200 126 200
Agreement in subject relative clauses 3200 504 1600
Agreement in VP coordinates 900 378 900

Table 14: Minimal pair counts of FIT-CLAMS (same for FIT-CLAMS-C and FIT-CLAMS-W) for each paradigm
across three languages.

(a) ENG - CHILDES (b) ENG - Wiki (c) ENG - CHILDES (d) ENG - Wiki

(e) FR - CHILDES (f) FR - Wiki (g) FR - CHILDES (h) FR - Wiki

(i) DE - CHILDES (j) DE - Wiki (k) DE - CHILDES (l) DE - Wiki

Figure 13: Noun and Verb Distribution across bins, in the two datasets and in the three languages.
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