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ABSTRACT

Post-training quantization (PTQ) converts a pre-trained full-precision (FP) model
into a quantized model in a training-free manner. Determining suitable quantization
parameters, such as scaling factors and zero points, is the primary strategy for miti-
gating the impact of quantization noise (calibration) and restoring the performance
of the quantized models. However, the existing activation calibration methods have
never considered information degradation between pre- (FP) and post-quantized
activations. In this study, we introduce a well-defined distributional metric from
information theory, mutual information, into PTQ calibration. We aim to calibrate
the quantized activations by maximizing the mutual information between the pre-
and post-quantized activations. To realize this goal, we establish a contrastive
learning (CL) framework for the calibration, where the quantization parameters
are optimized through a self-supervised proxy task. Specifically, by leveraging
CL during the PTQ calibration, we can benefit from pulling the positive pairs of
quantized and FP activations collected from the same input samples, while pushing
negative pairs from different samples. Thanks to the ingeniously designed critic
function, we avoid the unwanted but often-encountered collision solution in CL,
especially in calibration scenarios where the amount of calibration data is limited.
Additionally, we provide a theoretical guarantee that minimizing our designed
loss is equivalent to maximizing the desired mutual information. Consequently,
the quantized activations retain more information, which ultimately enhances the
performance of the quantized network. Experimental results show that our method
can effectively serve as an add-on module to existing SoTA PTQ methods.

1 INTRODUCTION

To meet the growing demand for equipping deep neural networks in resource-constrained edge
devices, researchers have developed network quantization techniques [1], in which high-precision
parameters and activations are converted into low-precision ones. Quantization methods fall into
two main categories: post-training quantization (PTQ) [2, 3, 4, 5, 6] and quantization-aware training
(QAT) [7, 8]. QAT involves retraining the model on the labeled training dataset, a process that can be
both time-consuming and computationally demanding. In contrast, PTQ only necessitates a small
number of unlabeled calibration samples to quantize the pre-trained models, eliminating the need for
retraining. This makes PTQ a practical choice for rapid deployment scenarios.

Existing PTQ methods have shown promising results in maintaining good prediction accuracy
even when using 4-bit or 2-bit quantization. The majority of these top-performing methods owe
their success to meticulous quantization parameter selection. Metrics such as Mean Squared Error
(MSE) [9, 5, 10] and cosine distance [11] between the pre- and post-quantization activations in indi-
vidual layers or modules are commonly used to find the most suitable scaling factors for quantization.
These methods are typically referred to as quantized activation calibration techniques. However,
existing calibration methods have not taken into account the loss of information during the transition
from pre- to post-quantized activation.

In the context of PTQ, we desire the FP and quantized activations (considered as two ran-
dom variables) to share as much information as possible, as quantized activations are directly
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derived from their FP counterparts. Mutual information [12] can measure the amount of in-
formation that knowing one of these variables provides about the other. Therefore, in this
study, our focus is on the mutual information between FP and quantized activations. Our
goal is to optimize PTQ calibration process (particularly, learn the suitable quantization pa-
rameters), by maximizing the mutual information between these two types of activations.
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Figure 1: General Idea: calibrating
quantized activation distribution is a
contrastive learning manner. By em-
bedding the activations into a contrastive
space, the quantization parameters can
be optimized through the pair correla-
tion within the contrastive learning task.
Note that, although this demonstration
involves two images, the actual number
of images is large.

By doing so, we aim to preserve as much of the informa-
tion from the FP activations as possible in the quantized
activations, thereby minimizing the loss in model per-
formance due to quantization. Our proposed method is
termed “Enhancing PTQ Calibration through Contrastive
Learning”, abbreviated as CL-Calib. Specifically, we
utilize contrastive learning (CT) in the PTQ calibration
process. We align positive pairs of quantized and FP activa-
tions produced from identical input samples, while simul-
taneously distancing negative pairs from different samples
(see Fig. 1). The collision solution is a common occurrence
in CL, often resulting from an insufficiency of samples
for each class, and exacerbated by the extreme limitations
of calibration data within the PTQ setting. To circumvent
this collision, we meticulously design a critic function
that leverages the pre-trained full-precision (FP) model.
Alongside this straightforward explanation, we also pro-
vide a theoretical justification for CL-Calib from the
perspective of mutual information. In summary, the quan-
tized activations calibrated by CL-Calib can retain more
information, ultimately leading to better performance of
the quantized network.

Overall, the contributions of this paper are three-fold: (i)
Under the PTQ calibration framework, we design a self-
supervised learning proxy task to optimize the quantiza-
tion parameters (e.g., , scaling factors) by introducing
contrastive learning; (ii) We provide a mutual information
maximization perspective to understand the quantization
problem, and proof that our method can maximize the mu-
tual information between the quantized and full-precision
activations; (iii) Experimental results demonstrate that our
PTQ calibration method, CL-Calib, can function as a
plug-and-play module for existing state-of-the-art PTQ
methods.

2 PRELIMINARY AND BACKGROUND

In this section, we revisit the idea of network quantization and the overarching framework of post-
training quantization (PTQ), especially the PTQ activation calibration.

Basic Notations. We first define a K-layer Multi-Layer Perceptron (MLP). For simplification, we
discard the bias term of this MLP. The network f(X) can be denoted as:

f(W1, · · · ,WK ;X) = (WK · σ ·WK−1 · · · · · σ ·W1)(X), (1)

where X is the input sample and Wk : Rdk−1 7−→ Rdk(k = 1, ...,K) stands for the weight matrix
connecting the (k − 1)-th and the k-th activation layer, with dk−1 and dk representing the sizes of
the input and output of the k-th network layer, respectively. We denote fk(Wk; ·) as the k-th layer’s
mapping function. The σ(·) function performs element-wise activation operations on the input feature
maps. Utilizing the aforementioned predefined notions, we define a sliced MLP f [:k](x) and f [k:](x),
which consists of the first k layers and the last (K − k) layers of f(x), as follows:

Ak = f [:k](W1, · · · ,Wk;X) = (Wk · σ · · ·σ ·W1)(X),

f [k:](Wk, · · · ,WK ;Ak) = (WK · σ · · ·σ ·Wk)(Ak),
(2)
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where Ak is the k-th layer’s output activation. And the MLP f can be seen as a special case in the
sliced function sequences {f [:k]} and {f [k:]} (k ∈ {1, · · · ,K}), i.e., , f = f [:K] = f [0:]. For ease
of reference, we use subscripts F and Q for f and A to represent the full-precision and quantized
versions, respectively.

Post-training quantization (PTQ) takes a well-trained full-precision network fF as input and selects
quantization parameters to quantize the weight tensor and activation tensor in each layer for obtaining
quantized network fQ. To convert a tensor into a quantized tensor, only two quantization parameters
are required, i.e., the scaling factor S and the zero point Z. Consequently, most PTQ methods
primarily focus on selecting appropriate quantization parameters [2, 3, 4, 5, 6]. One of the most
prevalent approaches for selecting parameters is to minimize the error induced by quantization. The
quantization process can be formulated as an optimization problem:

argmin
S,Z

Lquant, where Lquant = Metric(XQ,XF ), (3)

where Metric is the metric function measuring the distance between XQ and the full-precision tensor
XF . MSE, cosine distance, L1 distance, and KL divergence are commonly used metric functions.
Formally, after obtaining appropriate S and Z, a full-precision tensor can be converted, as follows:

XQ = S(clamp(⌊XF

S
⌉ − Z, pmin, pmax) + Z), (4)

where [pmin, pmax] is the quantization range determined by bit-width, for 8 bit integer, the range is
[−128, 127]. Note that, in this work We only consider uniform unsigned symmetric quantization, as
it is the most widely used quantization setup, and XQ is not in an integer form, but is dequantized
float value (XQ ≈ XF is easily for alignment in Eq. 3, while XQ

S is in integer form).

Activation Calibration. Although the network’s weights can be quantized without data by minimiz-
ing the quantization error (Eqs. 3 and 4), a similar approach cannot be simply used for activation
quantization, as the activation tensors are inaccessible without input. To collect the activation tensors,
a set of unlabeled input samples (calibration dataset) is used as the network input. The size of the
calibration dataset (e.g., , 128 randomly selected images in ImageNet [13]) is significantly smaller
than the training dataset. After obtaining the k-th layer’s full-precision activation Ak

F , the quantized
activation Ak

Q can be similarly calibrated based on Eqs. 4 and 3.

In general, PTQ quantizes a network in three steps: (i) Select which operations in the network should
be quantized and leave the other operations in full-precision. For example, some special functions
such as softmax and GeLU often takes full-precision [14]. (ii) Collect the calibration samples. The
distribution of the calibration samples should be as close as possible to the distribution of the real
data to avoid over-fitting of quantization parameters on calibration samples. (iii) Use the proper
method to select quantization parameters for weight and activation tensors. Recently, state-of-the-art
PTQ works [6, 5, 10] reveal that the bottleneck for further improving the PTQ performance is the
activation quantization rather than weight quantization. They focus on activation calibration.
Specifically, determining the quantization hyper-parameters (i.e., scaling factor Sk

a and zero point
Zk
a ) for quantizing the k-th layer’s activation is addressed as an optimization problem:

arg min
Sk
a ,Z

k
a

Lcalib, where Lcalib = Metric(Ak
Q,A

k
F ), (5)

in which Lcalib is the calibration objective for activation quantiztaion. In this paper, we also focus on
enhancing the activation calibration (step (iii)). Specifically, we introduce contrastive learning as a
proxy task during the calibration phase. By leveraging the proxy task, the quantization parameters are
optimized based on self-supervised signals (Sec. 3.1), making the quantized activations more similar
to their full-precision counterparts in terms of mutual information (Sec. 3.2).

3 METHOD

In this section, we elucidate the methodology for PTQ calibration via contrastive learning, which
we refer to as CL-Calib. On the one hand, we straightforwardly demonstrate the construction
of a self-supervised learning proxy task within the context of the PTQ calibration framework, as
well as the associated optimization formulation. On the other hand, based on the method, we give
a theoretical explanation for the efficacy of CL-Calib through the lens of mutual information
maximization.
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3.1 METHODOLOGY: CL-CALIB

Instance Recognition (IR) for PTQ Calibration. As pioneers, [15, 16] propose instance recognition
as a self-supervised learning task, categorizing images based on their unique labels. Specifically,
for a image X in the dataset D following pdata, a learnable encoder gθ mapping the image X to a
feature vector V = g(X). The resulting vector V should serve as an accurate representation of X.
To accomplish this task, contrastive learning (CL) approaches use a training method that distinguishes
a positive from multiple negatives, based on the similarity principle between samples as shown in
Fig. 2. The InfoNCE [17, 16] loss function, a popular choice for CL, can be expressed as:

Lcontrstive = E
(X,X+)∼ppos,{X−,i}M

i=1

i.i.d∼pdata

[
− log

exp(V ·V+/τ)

exp(V ·V+/τ) +
∑M

i=1 exp(V ·V−,i/τ)
}

]
,

(6)
where X+ represents a positive sample for X, and X−,i represents the i-th negative sample for X.
The symbol “·” refers to the inner (dot) product, and τ > 0 is a temperature hyper-parameter. It
is worth noting that the embeddings used in the loss function are normalized by L2 normalization.
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Figure 2: In contrastive instance learn-
ing, the features produced by different
transformations of the same sample are
contrasted to each other.

From a representation learning perspective, we can in-
terpret the aforementioned loss function in an intuitive
manner. The term for positive pairs is optimized to accen-
tuate intra-class correlations, while the term for negative
pairs serves to promote inter-class decorrelation. Because
pairs are constructed instance-wisely, the number of nega-
tive samples can, theoretically, be as large as the size of the
entire training set. Several CL methods [18, 16, 19, 20]
have demonstrated the benefits of enhancing the similar-
ity between representations in multiple views as shown
in Fig. 2. These methods inspire that by enhancing the
correlation between quantized and full-precision (FP) ac-
tivations, we can improve the representational capacity of
quantized networks, thereby improving the performance
of the quantized model.

For the calibration of the k-th layer’s quantized activation Ak
Q, only two quantization parameters

are required: scaling factor Sk
a and zero point Zk

a are required. After obtaining suitable quantization
parameters, Ak

Q can be quantized as follows:

Ak
Q = Sk

a(clamp(⌊A
k
F

Sk
a

⌉ − Zk
a , pmin, pmax) + Zk

a ). (7)

The essence of contrastive learning (CL) is to compare different views of the data (typically under
various data augmentations) for calculating similarity scores. This CL approach is effective in defining
the view and negative samples in a manner that can be numerically accessed [16, 19, 20, 21, 18].
Therefore, to learn Sk

a and Zk
a via CL, we must first define the views, and corresponding positive

and negative pairs for comparison. Generally, we collect positive pairs by the quantized and FP
activations from the same input sample, while negative pairs are collected from different samples.
By optimizing the CL task, we are able to learn the quantization parameters that make the quantized
activations contain more information, and hence, more similar to the FP ones in terms of information.
This can result in a more effective PTQ calibration.

Definitions: Views and Negative Samples for CL-Calib. Notably, during the PTQ calibration
phase, we naturally have two views of the data: the quantized activations AQ and the FP activations
AF . We leverage these two views, together with additional contrastive pairs, to improve the correlation
between the quantized and full-precision activations (see Eq. 7 and Fig. 3). Specifically, For a
calibration batch with M + 1 samples, the samples can be denoted as: {Xi}(i ∈ {1, · · · ,M + 1}).
We feed a batch of samples to the quantized network f

[:k]
Q and obtain (M + 1)2 pairs of activations

(Ak
Q,i,A

k
F,j), which augments the data for the auxiliary task. We define a pair containing two

activations from the same sample as positive pair, i.e., , if i = j, (Ak
Q,i,A

k
F,+,j) and vice versa

(Ak
Q,i,A

k
F,−,j). The core idea of contrastive learning is to discriminate whether a given pair of

activation (Ak
Q,i,A

k
F,j) is positive or negative with a learnable neural network d(·, ·), i.e., , estimating
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Figure 3: Calibrating the activation of k-th layer. The goal is to optimize the quantization

parameters (i.e., , scaling factor Sk
a and zero point Zk

a ) for quantizing the activation of k-th layer.
Feeding a set of calibration images into a quantized network, we can obtain the full-precision and
quantized activations (i.e., , Ak

F and Ak
Q). Then, we embed the activations into a prediction space

via g = f
[k:]
F (with frozen FP parameters). By optimizing the pair correlation within the contrastive

learning task in Eq. 8, we can refine the scaling factor for calibrating the activation of the k-th layer.

the distribution P (D | Ak
Q,i,A

k
F,j) with d, in which D is the latent variable determining whether

i = j or i ̸= j. The d has a form as d(Ak
Q,i,A

k
F,j) ≜

exp(g(Ak
Q,i)·g(A

k
F,j)/τ)

exp(g(Ak
Q,i)·g(Ak

F,j)/τ)+1
. Upon setting up all

the prerequisites for CL during the calibration phase, we can define the CL-Calib loss as follows:

LCL-Calib = E(Ak
Q,Ak

F,+)

[
− log d(Ak

Q,A
k
F,+)

]
+E{Ak

F,−,i}M
i=1

[
− log(1− d(Ak

Q,A
k
F,−,i))

]
, (8)

in which Ak
Q is the k-th layer’s quantized output, i.e., , Ak

Q = f
[:k]
Q (W1

Q, · · · ,Wk
Q;X). Theoreti-

cally, minimizing LCL-Calib is able to produce a binary discriminator d⋆, which can classify a given
pair (Ak

Q,i,A
k
F,j) into positive or negative.

Combining the designed CL-Calib loss, the overall calibration objective Lcalib can be defined as:

PD-Quant [Liu et al., 2023] CL-Calib [Ours]QDrop [Wei et al., 2022]

Figure 4: t-SNE visualization for activations cal-
ibrated by different calibration methods.

Lcalib = Lquant + λLCL-Calib, (9)

where Lquant is the activation reconstruction
loss (e.g., , state-of-the-arts QDrop [10] and PD-
Quant [6] in practice), λ is used to control the
degree of NCE loss. Straightforwardly, the quan-
tized and FP activations from identical samples
can be pulled close, and activations from different
samples can be pushed away, which corresponds
to the core idea of contrastive learning. Hence, the representation ability of the quantized activations
calibrated by our method is enhanced, as demonstrated in Fig. 4.

Network Architecture of mapping function g. Because there is only one instance per class in
contrastive instance discrimination, training stability is significantly compromised, resulting in
considerable optimization fluctuations. This instability often leads CL algorithms towards collision
solutions [18, 16, 19, 20]. In the context of PTQ calibration, the limited availability of calibration
data further exacerbates the optimization challenge. We carefully design the mapping network g

by leveraging the frozen FP network f
[k:]
F as shown in Fig. 3. Specifically, instead of training a

fully-learnable network from scratch as most CL methods do, we utilize the existing pre-trained
model f [k:]

F as the mapping network. The benefits of using f
[k:]
F are threefold: (i) f [k:]

F represents
a well-trained mapping from Ak

F,j to the prediction, corresponding to the task itself. Therefore,
the need to design a contrastive space is eliminated. Empirically, we have also attempted to use a
fully-learnable network as g. However, its optimization fails, mainly due to the limited training data
available for traditional CL. (ii) The primary goal is to optimize the scaling factor and zero point for
the quantization of the k-th layer’s activation (involving only two parameters). As such, learning g
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proves to be a thankless task. (iii) Foregoing the learning of g is in line with the application scenarios
of PTQ, that is, rapid network deployment.

3.2 THEORETICAL GUARANTEE: MUTUAL INFORMATION MAXIMIZATION

In this section, we provide a theoretical explanation as to why CL-Calib is capable of maximizing
the mutual information during the quantization process, i.e., , maximizing the mutual information
between full-precision and quantized activations for calibration.

Mutual Information and Contrastive Learning. For two discrete variables X and Y, their mutual
information (MI) can be defined as [12]:

I(X,Y) =
∑
x,y

PXY(x, y) log
PXY(x, y)

PX(x)PY(y)
, (10)

where PXY(x, y) is the joint distribution, PX(x) =
∑

y PXY(x, y) and PY(y) =
∑

x PXY(x, y)
are the marginals of X and Y, respectively. Mutual information quantifies the amount of information
gained about one random variable through observing another random variable. It is a dimensionless
quantity, typically measured in bits, and can be regarded as the reduction in uncertainty about one
random variable given knowledge of the other. High mutual information signifies a substantial
reduction in uncertainty, and vice versa [12].

Back to the content of calibrating the k-th layer’s quantizing activation via CL, activations Ak
F and

Ak
Q can be considered as two variables. The corresponding variables should share more information,

i.e., , the mutual information of the activations I(Ak
F ,A

k
Q) should be maximized to enforce them

mutually dependent. The core idea of CL is to discriminate whether a given pair of activation
(Ak

Q,i,A
k
F,j) is positive or negative, i.e., , inferring the distribution P (D | Ak

Q,i,A
k
F,j), in which D

is the variable decides whether i = j or i ̸= j. However, accessing P (D | Ak
Q,i,A

k
F,j) directly is

not feasible [17], so we introduce its variational approximation instead

q(D | Ak
Q,i,A

k
F,j), (11)

which can be estimated by our models d(·, ·). Intuitively, q(D | Ak
Q,i,A

k
F,j) can be treated as a

binary classifier, which can classify a given pair (Ak
Q,i,A

k
F,j) into positive or negative. From Bayes’

theorem, we can formalize the posterior probability of two activations coming from a positive pair as
follows:

q(D = 1 | Ak
Q,i,A

k
F,j) =

q(Ak
Q,i,A

k
F,j | D = 1) 1

M+1

q(Ak
Q,i,A

k
F,j | D = 1) 1

M+1 + q(Ak
Q,i,A

k
F,j | D = 0) M

M+1

. (12)

The probability of activations from negative pair is q(D = 0 | Ak
Q,i,A

k
F,j) = 1 − q(D = 1 |

Ak
Q,i,A

k
F,j). To simplify the NCE derivative, several works [17, 15, 22, 23] build assumptions about

the dependence of the variables, we also use the assumption that the activations from positive pairs
are dependent and the ones from negative pairs are independent, i.e. q(Ak

Q,i,A
k
F,j | D = 1) =

P (Ak
Q,i,A

k
F,j) and q(Ak

Q,i,A
k
F,j | D = 0) = P (Ak

Q,i)P (Ak
F,j). Hence, the above equation can be

simplified as:

q(D = 1 | Ak
Q,i,A

k
F,j) =

P (Ak
Q,i,A

k
F,j)

P (Ak
Q,i,A

k
F,j) + P (Ak

Q,i)P (Ak
F,j)M

. (13)

By applying the logarithm to Eq. 13 and rearranging the terms, we obtain the following equation:

log q(D = 1 | Ak
Q,i,A

k
F,j) ≤ log

P (Ak
Q,i,A

k
F,j)

P (Ak
Q,i)P (Ak

F,j)
− log(M). (14)

By taking expectation on both sides with respect to P (Ak
Q,i,A

k
F,j), and combining the definition of

mutual information in Eq. 10, we can derive the form of mutual information as:
targeted MI︷ ︸︸ ︷

I(Ak
Q,A

k
F ) ≥

lower bound︷ ︸︸ ︷
EP (Ak

Q,i,A
k
F,j |D=1)

[
log q(D = 1 | Ak

Q,i,A
k
F,j)

]
+ log(M), (15)
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where I(Ak
Q,A

k
F ) is the mutual information between the quantized and full-precision distributions

of our targeted object. Instead of directly maximizing the mutual information, maximizing the lower
bound in the Eq. 15 is a practical solution. We can further loosen the lower bound, and get the
optimization objective corresponding to CL-Calib loss in Eq. 8 as follows:

I(Ak
Q,A

k
F )− log(M)

≥ EP (Ak
Q,i,A

k
F,j |D=1)

[
log q(D = 1 | Ak

Q,i,A
k
F,j)

]
+MEP (Ak

Q,i,A
k
F,j |D=0)

[
log q(D = 0 | Ak

Q,i,A
k
F,j)

]
= EAk

Q
{

negative CL-Calib loss in Eq. 8︷ ︸︸ ︷
E(Ak

Q,Ak
F,+)

[
log d(Ak

Q,A
k
F,+)

]
+ E{Ak

F,−,i}M
i=1

[
− log(1− d(Ak

Q,A
k
F,−,i))

]
}.

(16)
By minimizing the overall calibration objective Lcalib in Eq. 9, we can obtain the function d⋆. This
function serves as a variational approximation of the distribution P (D = 1 | Ak

Q,A
k
F ). In this

way, we can optimize the lower bound of targeted mutual information I(Ak
Q,A

k
F ). This validates

our assertion that employing CL-Calib to learn activation quantization parameters effectively
maximizes the mutual information between pre- and post-quantized activations.

4 EXPERIMENTS

In this section, we perform experiments on image classification with ImageNet dataset [13] to validate
the effectiveness of CL-Calib. Furthermore, we designate a series of ablative and analytical
studies to verify the effectiveness and investigate various properties of CL-Calib including the
regularization, and reliability. All experiments are implemented using PyTorch [24] on 8 Nvidia RTX
A6000 and codes are in the supplementary.

Table 1: Comparison of CL-Calib with various post-training quantization algorithms on ImageNet.

Methods Bits (W/A) ResNet-18 ResNet-50 MobileNetV2 RegNetX-600MF RegNetX-3.2GF MNasx2
Full Prec. 32/32 71.01 76.63 72.62 73.52 78.46 76.52
ACIQ-Mix [25] 67.00 73.80 - - - -
LAPQ [26] 60.30 70.00 49.70 57.71 55.89 65.32
Bit-Split [27] 67.00 73.80 - - - -
AdaRound [3] 4/4 67.96 73.88 61.52 68.20 73.85 68.86
QDrop [10] 69.17 75.15 68.07 70.91 76.40 72.81
PD-Quant [6] 69.30 75.09 68.33 71.04 76.57 73.30
CL-Calib 69.41 (+0.11) 75.38 (+0.23) 68.56 (+0.23) 71.38 (+0.34) 76.40 (-0.17) 73.60 (+0.30)

LAPQ [26] 0.18 0.14 0.13 0.17 0.12 0.18
Adaround [3] 0.11 0.12 0.15 - - -
QDrop [10] 2/4 64.57 70.09 53.37 63.18 71.96 63.23
PD-Quant [6] 65.07 70.92 55.27 64.00 72.43 63.33
CL-Calib 65.14 (+0.07) 70.92 (±0.00) 55.63 (+0.36) 64.50 (+0.50) 72.82 (+0.39) 63.46 (+0.13)

QDrop [10] 57.56 63.26 17.30 49.73 62.00 34.12
PD-Quant [6] 4/2 58.65 64.18 20.40 51.29 62.76 38.89
CL-Calib 59.03 (+0.38) 65.12 (+0.96) 22.77 (+2.37) 52.35 (+1.06) 63.53 (+0.77) 40.80 (+1.91)

BRECQ [5] 42.54 29.01 0.24 3.58 3.62 0.61
AdaQuant [28] 0.11 0.12 0.15 - - -
QDrop [10] 2/2 51.42 55.45 10.28 39.01 54.38 23.59
PD-Quant [6] 53.08 56.98 14.17 40.92 55.13 28.03
CL-Calib 54.45 (+1.37) 58.30 (+1.32) 17.70 (+3.53) 42.19 (+1.27) 56.39 (+1.26) 30.34 (+2.31)

4.1 EXPERIMENT SETTINGS

To evaluate our proposed method, we quantize various Convolutional Neural Network (CNN) architec-
tures, including ResNet [29], MobileNetV2 [30], RegNet [31], and MnasNet [32]. The full-precision
(FP) pre-trained models used in our experiments are sourced from [5]. We evaluate CL-Calib on the
ImageNet dataset, using a batch size of 128. For calibration, we randomly sample 128 images from
the ImageNet training dataset. Unless specified otherwise, we set the first and last layer quantization
to 8-bit for all PTQ experiments. Furthermore, we maintain the same quantization settings and
hyper-parameters as used in the QDrop [10] and PD-quant [6] (previous state-of-the-art methods)
implementations. The learning rate for the activation quantization scaling factor is set to 4e-5, and
for weight quantization rounding, the learning rate is set to 3e-3. The choice of hyper-parameters τ
and λ in Eq. 8 and Eq. 9 will be discussed in Sec. 4.3, respectively. The fine-tuning of quantization
parameters is performed over 20,000 iterations.
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(a) Effect of λ in Eq. 9 with
W2A2 MNasx2.
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(b) Effect of λ in Eq. 9 with
W2A2 MobileNetV2.
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(d) Comparison to [6].

Figure 5: Ablation Studies & Performance Summary.
4.2 COMPARISON TO STATE-OF-THE-ARTS

In a thorough comparison of our method CL-Calib with numerous PTQ algorithms across differ-
ent bit settings, we observe that CL-Calib consistently surpasses state-of-the-art PTQ methods,
notably in extremely low-bit scenarios. Notably, merely optimizing the activation scaling factors
does not provide satisfactory results at low bits; therefore, unless otherwise stated, all our subsequent
experiments optimize both the rounding values and activation scaling factors, following the precedent
set by previous SoTAs such as QDrop and PD-Quant [10, 6]. The outcomes are summarized in
Tab. 1, demonstrating significant improvements achieved by CL-Calib compared to the previ-
ously SoTA PTQ baselines. For instance, when quantizing the network to W4A4, experiments
indicate that CL-Calib slightly surpasses PD-Quant. However, as the bit-width decreases, the
advantages of CL-Calib become increasingly apparent. At the most challenging W2A2 bit setting,
CL-Calib exceeds the baseline across all network architectures, in particular, CL-Calib boosts
the accuracy of post-quantized MobileNetV2 by 3.43% and MNasx2 by 2.31%.

There are more extensive experiments in the Appendix with different architectures, including the
Vision Transformer [33] (Tab. 3 in Appendix), and on various tasks, such as object detection (Tab.
5 in Appendix). We can witness the generalization ability of CL-Calib from those experiments.

Table 2: Serving as an add-on module on ImageNet with 2W2A setting.

Methods ResNet-18 ResNet-50 MobileNetV2 RegNetX-600MF RegNetX-3.2GF MNasx2
Full Prec. 71.01 76.63 72.62 73.52 78.46 76.52
PD-Quant 53.08 56.98 14.17 40.92 55.13 28.03
CL-Calib 54.45 (+1.37) 58.30 (+1.32) 17.70 (+3.53) 42.19 (+1.27) 56.39 (+1.26) 30.34 (+2.31)

QDrop 51.42 55.45 10.28 39.01 54.38 23.59
CL-Calib 53.63 (+3.21) 56.78 (+1.33) 15.48 (+4.20) 42.00 (+0.99) 56.65 (+2.27) 28.89 (+5.30)

4.3 FURTHER ANALYSIS

Ablative Studies. We conduct a series of ablation studies of CL-Calib on the most challenging
W2A2 settings with MobileNetV2 and MNasx2 architectures. By adjusting the coefficient λ in
the loss function Lcalib (Eq.9), we examine the influence of CL-Calib loss in calibration. The
results, illustrated in Figs.5c and 5d, show a trend where increasing λ improves the performance, thus
validating the effectiveness of our proposed method. In all our experiments, we use the PQ-Quant [6]
codebase. Setting λ = 0 is our baseline, which corresponds to PD-Quant.

Serving as an Add-on Module. We implement CL-Calib on the SoTA PTQ methods, such
as QDrop [10], and PD-Quant [6] with extreme W2A2 PTQ setting. The results are presented in
Fig. 5a,5b, and Tab. 2. We can witness that CL-Calib can improve the performances of all the
methods. This is a piece of evidence that our method can serve as an add-on module.

Hyper-parameters and Relative Module Selection. In addition to ablation studies, we conduct
experiments to select the important hyper-parameters and modules. We investigate two hyper-
parameter, the co-efficient τ to adjust the temperature in the CL-Calib loss in Eq. 8, the number of
negative samples M , the architecture of embedding network g in critic function, and the similarity
metric for contrastive learning. The results are in the Appendix (A.4).

Representation Ability. We examined the representation capability of the quantized activations
through t-SNE visualization [34]. The results, shown in Fig. 4, indicate that the activations calibrated
by CL-Calib exhibit superior representation capacity.
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Figure 6: Training curves of quan-
tization loss Lquant.

Regularization: Mitigating Overfitting. We scrutinize the evo-
lution of the quantization loss, Lquant, as given in Eq.8 and Eq.9
during training. The term Lquant in Eq.9 can represent any quantiza-
tion loss, which is easily overfitted due to the limited calibration data.
By manipulating the coefficient λ in Eq.9, we can examine Lquant in
isolation. The training curves are depicted in Fig.6. Upon enabling
the CL-Calib loss LCL-Calib (by setting λ = 3.2), we notice a
reduction in Lquant compared to when our designed CL-Calib is
not used (also see Tab. 7 in Appendix). This decrease is accompa-
nied by an improvement in the corresponding test performance (see
Tab. 2). Hence, we can deduce that CL-Calib module functions as a regularization term.

5 RELATED WORK

Quantization stands as one of the most potent techniques for compressing neural networks. It
can be broadly categorized into two primary methods: Quantization-Aware Training (QAT) and
Post-Training Quantization (PTQ). QAT [35, 36] considers the quantization in the network training
phase, while PTQ [4] quantizes the network after training. Due to its lower time consumption
and computational resource requirements, PTQ is extensively employed in network deployment.
Most of the work of PTQ involves learning the quantization parameters for weights and activations
in each layer. In order to calculate the activations in the network, a small number of calibration
samples should be used as input in PTQ. The selected quantization parameters are dependent with the
selection of these calibration samples. [37, 5, 26] demonstrate the effect of the number of calibration
samples. Activation quantization is essentially a compression problem with a strong emphasis on
maximizing the preservation of information contained in the activation. Admittedly, heuristically
designed distance metrics have achieved promising performance. However, we argue that previous
works neglect the well-defined distributional metric in information theory, which is necessary for
success measurement.

Contrastive Learning and Mutual Information Maximization. Recently, contrastive learning is
proven to be an effective approach to MI maximization, and many methods based on contrastive
loss for self-supervised learning are proposed, such as Deep InfoMax [19], Contrastive Predictive
Coding [16], MemoryBank [15], Augmented Multiscale DIM [20], MoCo [21] and SimSaim [18].
These methods are generally rooted in NCE [17] and InfoNCE [19] which can serve as optimizing the
lower bound of mutual information [38]. In the meantime, [22] and [39] generalize the contrastive idea
into the content of knowledge distillation (KD) to pull-and-push the representations of teacher and
student. Intuitively, the core principle of contrastive learning revolves around drawing representations
from positive pairs closer, while pushing representations from negative pairs further apart in a
contrastive space. One of the main challenges in employing contrastive loss is defining these negative
and positive pairs.

Our approach for PTQ calibration harnesses the core concept of existing contrastive learning methods,
notably contrastive-based network compression methods such as CRD [22], WCoRD [39], and
MIM-BNN [23]. However, our methodology differs from these methods in several key ways: (i) The
targeted mutual information (MI) we focus on and the numerical problem we formulate are entirely
distinct; (ii) Our approach can naturally circumvent the cost of the MemoryBank [15] associated
with the exponential number of negative pairs in related works, thanks to the limited calibration data
size in our task; (iii) The discriminator functions we use are distinct. By leveraging the inherent
characteristics of layer-wise quantization, where pre-trained full-precision network is available, we
design a discriminator network specifically for PTQ, as discussed in Sec.3.1 and Appendix.4.

6 CONCLUSION

We argue that previous PTQ calibration works neglect the well-defined distributional metric in
information theory, which is necessary for success measurement. To address this, we introduce
a contrastive learning (CL) framework for PTQ calibration, focusing on maximizing the mutual
information between pre- and post-quantization activations. This approach, which utilizes a self-
supervised proxy task for optimizing quantization parameters, effectively retains more information
in the quantized activations, enhancing the performance of the quantized model. Importantly, our
method avoids common collusion, thanks to an ingeniously constructed critic function, ensuring
effectiveness even under conditions of extremely limited calibration data.
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