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Abstract

We study the problem of unsupervised object segmentation, with the aim of
discovering whole objects—including both distinctive and less salient parts, rather
than just visually striking fragments. Existing unsupervised methods often identify
only distinctive parts (e.g., head but not torso), resulting in incomplete objects. Our
key insight is that whole objects can emerge from the interplay of similarity among
parts and contrast with surrounding context, both within and across images. This
contrastive and contextual grouping process enables the discovery of heterogeneous
object parts as unified wholes, without any predefined notion of object structure.

To this end, we propose Contrastive Contextual Grouping (CCG), a three-step
framework for unsupervised whole object segmentation: 1) identifying semantically
similar yet visually diverse image pairs, 2) performing co-segmentation using joint
graph cuts with pairwise attraction and repulsion, and 3) distilling the results
into a single-image segmentation model. Our approach achieves state-of-the-art
results across four benchmarks: unsupervised saliency detection, unsupervised
object discovery, unsupervised video object segmentation, and unsupervised
nuclei segmentation. Remarkably, in some settings it even rivals or exceeds the
performance of a supervised foundation model, SAM2, at whole object segmentation
given box prompts.

1 Introduction

We consider the task of segmenting whole objects from a collection of unlabeled images, without
external supervision. Unlike prior approaches that often highlight the most visually distinctive parts,
our goal is to recover whole objects, including less salient regions that are equally essential for
coherent perception.

This problem is crucial for three key reasons. 1) Pixel-level segmentation annotations remain costly
and labor intensive, making unsupervised methods highly desirable in practice. 2) It offers insights
into the fundamental processes by which infants and other cognitive systems learn to perceive and
conceptualize objects from unstructured sensory input. 3) Many downstream applications, such
as salient object detection, unsupervised object discovery, and video object segmentation, rely on
identifying complete object masks rather than fragmented parts, making accurate whole-object
segmentation especially valuable.
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Figure 1: Unsupervised whole object segmentation is extremely challenging and our CCG
method excels. Col.1) Can we discover and segment whole objects in object-centric images? Col.2)
Even the latest, largest, extensively supervised model, SAM2 [35], with /e right bounding box
prompt can only delineate visually salient parts (dog’s brown fur, peacock’s green train). Col.3)
Unsupervised methods such as TokenCut [56] rely on features unsupervisedly learned to optimize
certain image-level criteria, discovering only statistically distinctive parts (face/head). Col.4) Our
insight: Objects emerge as wholes through not only intrinsic part similarity, but also extrinsic context
contrast; our CCG discovers distinctive and unremarkable parts in a whole without supervision.

Despite progress, whole object segmentation is still challenging, even for supervised foundation
models [17, 35, 37]. For example, SAM2 [35] is trained on massive collections of annotated,
high-resolution images. Yet, even with perfect, tight object bounding box prompts, SAM?2 often
delineates only visually salient parts (e.g., a dog’s brown fur, a peacock’s green train) rather than the
entire object (e.g., the whole dog, the whole peacock).

Unsupervised object segmentation in general has been widely explored, ranging from low-level
salient cues to high-level statistical clustering. Key developments include objectness [2], category-
independent object proposals [8], exemplar-based recognition through associations [26], multiscale
combinatorial grouping [3, 33], object discovery via matching [38, 50], unsupervised feature learning
[14, 16], slot attention [22, 39]. Some approaches leverage motion cues in unlabeled videos [64, 60, 21],
assuming pre-trained optical flow detectors or piece-wise constant object motion models.

Unsupervised whole object segmentation has been explored earlier using matting or boundary cues
[46, 25] and, more recently, through feature similarity or attention maps [56, 28, 68, 45, 67] from
self-supervised models like DINO [5]. However, because these features are optimized for image-level
objectives, existing methods, e.g., TokenCut [56], tend to highlight only statistically distinctive parts,
rather than capturing the object as a whole.

Our novel approach to whole object discovery shifts the focus from what the object is to how it
contrasts with its context. The key insight is that an object, even when composed of distinctive
parts, can emerge as a cohesive whole through both intrinsic similarity among its parts and extrinsic
contrast with its surroundings. This contextual relationship is crucial for binding diverse object parts

image pair

Figure 2: Our CCG benefits from co-segmenting semantically similar yet visually distinct image
pairs, identified without supervision. CCG-1 (2) denotes single(two)-image (co-)segmentation
results. Contexts and contrasts from paired images significantly enhance whole object discovery.
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into a unified entity in a bottom-up, data-driven manner [1]. In Fig. 1, while the green peacock train
and blue peacock head have different textures, their colors starkly contrast with the gray background.
Echoing the adage “The enemy of my enemy is my friend”, the two distinctive parts become allies
through their shared contrast with the background, allowing the peacock to emerge as a unified whole.

For richer grouping relationships, we introduce a co-segmentation setting using semantically similar
yet visually different image pairs (Fig.2). These pairs can be derived from unlabeled data, such as
images or videos of the same scene, or by clustering self-supervised ViT features [5, 31, 6] that capture
semantic similarities. By leveraging co-segmentation, we gain additional contrastive and contextual
grouping cues across image pairs, enabling more robust and accurate whole object segmentation.

We present an unsupervised whole-object segmentation algorithm based on Contrastive Contextual
Grouping. Our CCG operates in three steps: 1) Identify semantically similar yet visually distinctive
image pairs for co-segmentation. Identical images reduce the task to single-image segmentation, while
unrelated pairs hinder co-segmentation. 2) Perform co-segmentation via joint graph partitioning,
where patches are nodes and edges encode two types of pairwise relationships: feature similarity and
dissimilarity. The objective is not only to discover friends through similarity, but also to discover
allies through shared dissimilarity, enabling robust whole-object discovery. 3) Distill co-segmentation
results into a single-image segmentation model, with a ViT backbone and lightweight segmentation
head, enabling efficient inference on individual images without requiring paired inputs. CCG achieves
state-of-the-art performance on unsupervised saliency detection, object discovery, video object
segmentation, and nuclei segmentation.

Our contributions. 1) We tackle the problem of unsupervised whole object segmentation, addressing
the underexplored challenge of discovering both salient/characteristic and unremarkable parts in
cohesive wholes. 2) We propose a novel, fully unsupervised framework for bottom-up whole-object
discovery, driven by data rather than labels. It operates via dual forces: grouping by similarity and
segregation by dissimilarity, enhanced by co-segmentation, feature learning, and model distillation.
3) We achieve consistent, significant gains over prior unsupervised methods across four benchmarks,
In some cases, CCG even outperforms the supervised foundation model SAM?2 in segmenting whole
objects given box prompts.

2 Related Work

Unsupervised Object Discovery. Most works leverage self-supervised features from visual trans-
formers [5, 6, 4]. TokenCut [56] constructs a weighted graph using feature similarities (attraction)
and performs graph cuts to separate objects from backgrounds. Unlike TokenCut, we introduce
pairwise attraction and repulsion in a joint weighted graph for co-segmentation, enabling whole
object localization and segmentation. SelfMask [43] clusters multiple self-supervised features to
extract object masks, while LOST [44] localizes object seeds and expands them to similar patches.
FreeSOLO [54] generates FreeMask predictions from feature similarities, and FOUND [45] uses
heuristics to search for background seeds. HEAP [67] employs contrastive learning for clustered
feature embeddings. PEEKABOO [68] localizes objects by hiding parts of images. However, these
methods are limited to discovering descriptive parts of objects. In contrast, our CCG uses pairwise
attraction and repulsion in co-segmentation to segment whole objects.

Unsupervised Video Object Segmentation. [63] proposes an adversarial-based method to predict
object masks from images and optical flow maps. [23] adopts co-attention layers based on siamese
networks for segmentation, requiring expensive training resources. [58] uses optical flow and
contrastive motion clustering to segment moving objects in videos. However, these methods rely
on externally supervised motion estimation networks [49, 47]. VideoCutLER [55] segments video
objects via graph cuts on attractions and refines masks through training. While AMD [21] jointly
learns segmentation and motion estimation end-to-end, its segment-wise constant motion assumption
is too simplistic to yield fine segmentations with details and complete parts. In contrast, our CCG ,
trained on unlabeled videos, delivers more accurate whole-object segmentation without a pre-trained
optical flow detector.

Segmentation by Graph Cuts. Normalized cuts [41] frames segmentation as a graph partitioning
problem, optimizing similarity within partitions. [29] derives partitions using stacked eigenvectors
of the graph Laplacian matrix. [66] applies graph cuts to affinities of key, query, and value features
of ViTs, revealing visual semantics and spatial locations of segments. Earlier work [65] introduces
the role of repulsion for single-image segmentation based on fixed low-level features. [24] conduct



segmentation using graph neural networks. In contrast, CCG is the first to address unsupervised whole
object segmentation using data-driven learned features in a co-segmentation and model distillation
framework.

Co-Segmentation. [13] leverages color histogram similarities to segment common objects from
similar image pairs. [20] employs a Siamese network to segment shared objects across image pairs.
[15] introduces a unified ViT framework for joint co-segmentation and co-detection. However,
existing co-segmentation methods lack contextual relationship analysis and do not address whole
object segmentation. In contrast, our approach incorporates attraction and repulsion across a related
image pair, enabling whole object segmentation through contrastive contextual grouping.

3 Contrastive Contextual Grouping

We aim to discover and segment whole objects without supervision, based on intrinsic similarity
between parts and extrinsic contrast with their surroundings.
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Figure 3: Overview of our three-step CCG algorithm for unsupervised whole object discovery.
1) Identify semantically similar yet visually different image pairs. For unlabeled videos, they are
simply consecutive video frames, whereas for unlabeled images, they are k-nearest neighbors in some
unsupervisedly learned feature space. 2) Co-segmentation based on pairwise similarity (attraction)
and dissimilarity (repulsion) of image patch features extracted from a self-supervised ViT encoder. 3)
Distill co-segmentation results to a single-image model with a ViT encoder and a segmentation head,
trained with cross-entropy (CE) and contrastive (CR) losses.

Our CCG has three steps (Fig 3): 1) identifying semantically similar yet visually different image pairs,
2) performing co-segmentation through joint graph cuts with pairwise attraction and repulsion, and 3)
distilling the results into a single-image segmentation model.

Primer: Graph Cuts with Attraction and Repulsion. We apply prior work [65] to a ViT patch
graph, where each node represents a square image patch used in ViT, and the edge between nodes ¢, j
is attached with an attraction weight A;; and a repulsion weight R;;, both derived from the cosine
similarity S;; between their ViT patch features F;, F;:S;; = % The larger S;;, the larger the
attraction A;; and the smaller the repulsion R;;. A and R are defined as Gaussian functions of S
(Fig.A1). Object segmentation is then formulated as a two-way node partitioning problem. Let V
denote the set of all patch nodes, and V1, V5 two disjoint subsets: V; UV, =V, V; NV, = . We
seek an optimal partitioning with dual forces: Group by similarity and segregate by dissimilarity.
Given attraction A and repulsion R, we maximize the following with hyperparameter w € [0, 1]:

within-group A between-group R
= w .
total degrees of A, R total degree of A, R
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single image patches A TokenCut

Figure 4: Pop out whole objects by contrastive contextual grouping of patches within a single
image. Patches are color coded. Middle column) By attraction A alone (values shaded in red,
outlined in white boxes), object parts are too weakly similar to be grouped as one; TokenCut [56] can
thus only segment out the most distinctive part: lamp shade. Right column) By repulsion R (values
shaded in blue, outlined in magenta boxes) in addition, lamp shade, lamp base are both dissimilar to
the background and need to be separated from it; our CCG can thus segment out the whole lamp and
a similar item.

image pair patches joint A and R (two images) CCG-2

Figure 5: Pop out whole objects more accurately with co-segmentation. Image pairs are obtained
by unsupervised clustering, or simply videos of the same scene. A joint graph is constructed using
patches from both images. Patches are color-coded. To visualize the effects of attraction and repulsion,
we sort patches by foreground then background. Strong foreground-background repulsion (values
shaded in blue, outlined in magenta boxes) across these two images, strong attraction within foreground
and background respectively, help our CCG discover the whole lamp set and the whole vaze together.

w weighs the relative importance between attraction and repulsion. [65] shows that:

T
Py Wt Wp,
max  {ar(p 2
tzl p{ Dp;’
W =A-R+Dg, D=D,+ Dg, A3

where p; is a binary partition indicator for V;, D 4(Dpg) is a diagonal degree matrix with each
diagonal entry indicating total A(R) weights a patch node has. The optimum in the relaxed continous
domain is the second largest eigenvector £ of the following eigensystem:

D 'Wz = )\z. 4

See Supplementary for more technical details. Our CCG uses both A and R, whereas TokenCut [56]
uses only A, a special case of ours when w=0.

Bipartitioning imposes an important bottleneck: Each region must commit to one of two camps,
limiting grouping variability. 1) Strict attraction-based bipartitioning precludes indirect grouping,
which is essential for assembling whole objects composed of diverse parts. 2) Repulsion enables such
indirect grouping by aligning parts not because they are similar to each other, but because they are
dissimilar to the same background - realizing "The enemy of my enemy is my friend’. Fig. 4 shows
that attraction alone may isolate a single homogeneous region, but it is repulsion that allows visually
distinct parts to emerge together as a coherent whole, without any preconception of object structure.



Step 1. Identify Related Image Pairs. We adopt an image co-segmentation setting to facilitate
whole object discovery. Ideally, image pairs should be semantically similar yet visually distinct to
enhance within-group similarity and between-group dissimilarity, facilitating clearer figure-ground
segregation (Fig.2). Such pairs can be found in unlabeled data, e.g., from videos of the same scene or
by clustering self-supervised ViT features[5, 31, 6] that capture semantic similarity. Examples of
k-nearest neighbors from DINO as well as pre-trained CLIP features are shown in Fig. A2.

Step 2. Co-Segmentation by Attraction and Repulsion. We construct a joint graph with patches
from both images as nodes, compute attraction and repulsion as edge weights, and perform graph
cuts accordingly. The joint partitioning finds not only two regions within each image, but also region
correspondence across images. We follow TokenCut and select the foreground as the region with the
maximum absolute value of the eigenvector components. Note that if the two images are identical,
then the two-image co-segmentation based on attraction and repulsion within and across images is
reduced to the single-image segmentation based on within-image attraction and repulsion only. For
clarity, we denote the two-image and one-image cases as CCG-2 and CCG-1 respectively. Fig. 5
shows that co-segmentation not only brings out two related whole objects, but also enhances the
whole object segmentation within individual images. Compared to the partial lamp set discovered by
CCG-1 in Fig. 4, the entire lamp set is now segmented out by CCG-2 .

Step 3. Distill to A Single-Image Segmentation Model. We distill co-segmentation results into a
single-image segmentation model with a ViT encoder (shared with DINO) and a lightweight head
composed of a 1x1 convolution followed by softmax. The model is trained using a combination of
cross-entropy (CE) loss and contrastive loss [59, 48, 40, 53].

The CE loss refines ViT features using the whole object masks: For pixel ¢ in the image, given the
predicted probability map ¢ and the binary mask y from co-segmentation, the total pixel-wise CE

loss is
Lop=—Y_ yilogi + (1 —yi)log(l — §). 5)
i
The contrastive loss aims to sharpen the mask by reducing the feature distance within each region
and increasing the feature distance between regions. Given features f; and f; extracted from the
distillation ViT encoder, the contrastive loss is formulated as

fifj
1 exp(£4L)
Locr=—75 E log T (6)
firfq\’
Pl e e exp(7)

where P is the set of positive (foreground-forground) pixel pairs, (%) is the set of negative (foreground-
background) pixel pairs, and 7 is a temperature parameter. Fig. 3 shows the entire workflow. While
we can close the loop by replacing the initial ViT encoder with the distillation ViT encoder, we find
such iterations unnecessary, as the model converges fast and brings little further gain.

4 Experiments

Our CCG aims to discover and segment whole objects without any supervision. In our framework,
CCG-1 denotes the segmentation results for an individual image, whereas CCG-2 represents the
segmentation outcomes obtained from image pairs (in the co-segmentation setting). We evaluate its
performance and benefits in four tasks: 1) unsupervised saliency detection, 2) unsupervised object
discovery, 3) unsupervised video object segmentation, and 4) unsupervised unclei segmentation.

Implementation Details. Our ViT encoder follows the same architecture as DINO ViT-S/8 during
the distillation stage. The segmentation head consists of a single conv 1 x 1 layer. We train the ViT
encoder using the AdamW optimizer with a learning rate of 0.001, while the segmentation head is
optimized with AdamW at a learning rate of 0.05. Training is conducted over 300 epochs with a batch
size of 16, utilizing four A40 NVIDIA GPUs. The repulsion weight w is set to 0.2. For video frame
pair selection, we use a frame interval of 10 to generate reference image pairs for co-segmentation,
such as [(00.jpg, 10.jpg), (01.jpg, 11.jpg), (02.jpg, 12.jpg), - - - 1. See more details in Supplementary.

4.1 Unsupervised Saliency Detection

Datasets & Eval Metrics. We consider three datasets: ECSSD [42] containing 1000 images (train:
700, val: 150, test: 150), DUT-OMRON [62] including 5186 images (train: 3630, val: 778, test:



Table 1: CCG outperforms existing methods for unsupervised saliency detection task. In
the w/o. training setting, CCG outperforms the SoTA method TokenCut across all three datasets
(performance gap in blue). In the w/. training setting, with initial object masks by attraction and
repulsion, CCG surpasses the SoTA method HEAP (performance gap in green).

Method Training?  ViT ECSSD ‘ DUTS ‘ DUT-OMRON

maxFps ToU Acc. | maxFg ToU Acc. | maxFg ToU Acc.
FUIS [27] X - 71.3 91.5 - 52.8 89.3 - 50.9 883
LOST [44] X S/16 758 65.4 89.5 61.1 51.8 87.1 473 41.0 79.7
DSS [28] X - - 733 - - 51.4 - - 56.7 -
TokenCut [56] X S/16  80.3 71.2 91.8 67.2 57.6 90.3 60.0 533 88.0
CCG-1 X S/16  827(+24) 728(+0.6) 93.1(+1.3) | 69.5(+2.3) 60.2(+2.6) 92.8(+2.5) | 62.6(+2.6) 55.3(+2.0) 90.7(+2.7)
CCG-2 X S/16  83.1(+2.8) 73.2(+2.0) 94.7(+2.9) | 69.3(+2.1) 60.5(+2.9) 93.2(+2.9) | 63.3(+3.3) 56.4(+3.1) 90.6(+2.6)
SelfMask [43] v S/8 - 78.1 94.4 - 62.6 923 - 58.2 90.1
FOUND [45] v S/8 955 80.7 94.9 715 64.5 93.8 66.3 57.8 91.2
PEEKABOO [68] v S/8 953 79.8 94.6 86.0 64.3 93.9 80.4 575 915
HEAP [67] v S/8  93.0 81.1 94.5 75.7 64.4 94.0 69.0 59.6 92.0
CCG-1 v S/8  94.1(+1.1) 83.6(+2.5) 95.2(+0.7) | 78.0(+2.3) 65.9(+1.5) 94.6(+0.6) | 70.7(+1.7) 60.8(+1.2) 93.5(+1.5)
CCG-2 v S/8  94.5(+1.5) 83.9(+2.8) 95.8(+1.3) | 78.2(+2.5) 66.5(+2.1) 94.4(+0.4) | 71.2(+2.2) 61.3(+1.7) 93.8(+1.8)

778), and DUTS [52] with 1580 images (train: 7373, val: 1580, test: 1580). We adopt three standard
metrics: mean intersection-over-union (IoU) with a threshold set at 0.5, pixel accuracy (Acc), and the
maximal F3 score (max Fjg), where B2 is set to 0.3, in accordance with [56], [45], and [67].

Baselines. In the setting of w/o. training, we compare CCG-1 and CCG-2 directly — without
distillation — against non-training baseline methods including FUIS [27], LOST [44], DSS [28], and
TokenCut [56]. We also compare CCG-1 with SAM2 [35] on DUTS given bounding boxes as the
prompts. In the setting of w/. training, we apply distillation to the results from both CCG-1 and
CCG-2, and benchmark these against methods that require network training, namely SelfMask [43],
FOUND [45], PEEKABOO [68], and HEAP [67].

Results. Table | shows that in the w/o. training setting, both CCG-1 and CCG-2 outperform
TokenCut using the same ViT-S/16 architecture. While TokenCut — employs graph cut using only
attraction — segments merely discriminative object parts, CCG leverages a weighted graph that
combines attraction and repulsion to capture complete objects. This indicates that the combined use
of attraction and repulsion promotes the segmentation of whole objects from unlabeled images. In the
w/. training setting, CCG with distillation achieves higher scores than the current state-of-the-art
model HEAP using the same ViT-S/8 architecture, confirming that distillation with initial object
masks by attraction and repulsion greatly refines whole object segmentation and builds new SoTA
on saliency detection(Fig. A4). CCG-2 outperforms CCG-1 overall, highlighting the benefits of
co-segmentation: similar image pairs bring stronger contextual information for unsupervised whole
object segmentation.

We further compare CCG-1 with SAM2 [35] on DUTS in a zero-shot setting. Since SAM2 requires
prompts for segmentation, we begin by providing the ground-truth bounding boxes as prompts.
However, using ground-truth boxes undermines the purpose of saliency detection, so we gradually
enlarge the box prompts until they cover the entire image. To eliminate the effect of object size,
we only evaluate images with medium-sized ground-truth boxes (diagonal ratio between 50~60%),
where the ratio is defined as the diagonal length of the box over that of the image. For each box
prompt, we feed the corresponding region to CCG-1 for fair comparison. As shown in Fig. 6, even
with ground-truth boxes, SAM2 often fails to segment whole objects. As the box expands from
tightly enclosing the object to covering the full image, SAM2 struggles to consistently identify the
salient object. We attribute this to increasing heterogeneity within the prompted region. We measure
heterogeneity as the standard deviation of the normalized /5 distance between each patch feature
and the mean feature within the box. As shown in Table 2, the heterogeneity of the boxed region
grows with the box size, indicating that more complex regions hinder SAM?2’s ability to segment
whole objects. In contrast, our method remains robust by leveraging both patch-level similarity and
dissimilarity cues to discover complete objects even in heterogeneous images.

4.2 Unsupervised Object Discovery
Datasets & Eval Metric. We use three widely recognized benchmarks: VOCO07 [9] containing 5011

images (train: 3507, val: 752, test: 752), VOC12 [10] that includes 11540 images in total (train: 8078,
val: 1731, test: 1731), and COCO20K [51] consisting of 19,817 images (train: 13873, val: 2972, test:



Bbox ratio 50~60% 60~70% 70~80% 80~90% 90~100%
SAM2 mloU 84.0 76.0 46.3 15.3 1.70
CCG-1 mloU 59.3 64.3 67.0 67.8 67.2
Heterogeneity | 0.151 0.172 0.192 0.205 0.212

Table 2: Mean IoU of SAM2 v.s. CCG-1 on selected DUTS images given different sizes of box
prompts. Increasing the box size significantly degrades SAM2’s performance, while CCG-1 remains

consistently strong.

Ground
truth

Bbox ratio

50~60%

60~70%

70~80%

80~90%

90~100%

Figure 6: As the bounding box expands, SAM2 often fails to capture the salient object and produces
noticeable artifacts, whereas our unsupervised CCG-1 consistently segments whole objects when
given only a single box-covered region each time as input.

Table 3: Both CCG-1 and CCG-2 outper-
form existing methods on unsupervised object
discovery in both w/o. training (performance
gap in blue) and w/. training settings (perfor-
mance gap in green).

Table 4: CCG is a strong unsupervised video
object segmenter. In w/o. training setting, CCG
outperforms TokenCut (performance gap in blue).
In w/. training setting, CCG-1 and CCG-2 surpass
VideoCutLER which relies solely on attraction for
object discovery (performance gap in green). They

Method Taining?_viT_voco7 __voci2___cocozok also achieve competitive results compared with mod-

DINO-seg [5] X S/16 4538 462 420 i i

o LY s 462 20 els leveraging optical flows.

DSS [28] x s/16 627 66.4 522 - Use Optical

TokenCut [56] x S/16  68.8 72.1 588 Method Training? Flo\?v? DAVIS FBMS SegTV2

CCG-1 X S/16 714 (+26) T38(17) 603 (+15) -

CCG-2 x S/16 723(+35) T3.7(+1.6) 617 (+2.9) TokenCut [56] X X 64.3 602 59.6
CCG-1 X X 664 (21) 62.5(+23) 61.2(+1.6)

SelfMask [43] v s/8 723 753 627 CCG-2 x x 67.9 (+43.6) 64.1(+39) 62.1 (+2.5)

FOUND [45] v s/8 725 76.1 62.9

PEEKABOO [68] v s/8 727 75.9 64.0 CIS [63] v v 71.5 63.6 62.0

HEAP [67] v s/8 132 77.1 634 CMC [58] v v 754 66.8 62.6

CCG-1 7 S/8 764 (32 19827 6561270 AMD [21] v X 757 287 29

CCG-2 v S/8  T17(+45) 80.8(+37) 66.2(+258) VideoCutLER [55] v x 68.4 64.6 62.5
CCG-1 v X TI8 (+3.4) 664 (+1.8) 64.5(+2.0)
CCG-2 v X 724 (+4.0)  67.9 (+33)  66.1 (+3.6)

2972). Following the evaluation protocol [57, 7], results are reported using the correct localization
(CorLoc) metric, which measures the percentage of images where objects are correctly localized.

Baselines. In the w/o. learning, both CCG-1 and CCG-2 are tested without distillation and compared
against non-training approaches such as DINO-seg [5], DSS [28], LOST [44], and TokenCut [56]. In
the w/. learning, we access the results of distillation from CCG-1 and CCG-2 against the training-
dependent methods including SelfMask [43], FOUND [45], PEEKABOO [68], and HEAP [67].



frames TokenCut FOUND CCG-2

Figure 8: CCG outperforms TokenCut and
Figure 7: Our CCG surpasses the state-of-the- FOUND in segmenting the racing car as a whole
art unsupervised nuclei segmentation method from these unlabeled video frames. Both Token-
UNSEG [18]. CCG using attraction and re- Cutand FOUND only use attractions and fail to pop
pulsion shows better nuclei segmentation than out the vehicle from the background, whereas CCG
UNSEG as a Baysina-based method that predicts using co-segmentation on video frames segments
prior distribution of nuclei. the whole car body from the background.

Results. Table 3 shows that, in a w/o. training setting, CCG-1 outperforms TokenCut (using
ViT-S/16) by using both attraction and repulsion forces. CCG-2 further improves performance over
CCG-1, highlighting the advantage of co-segmentation for unsupervised object discovery. In wy/.
training setting, both CCG-1 and CCG-2 present higher scores than the current SoTA model HEAP
(using ViT-S/8).

4.3 Unsupervised Video Object Segmentation

Datasets & Eval Metric. We utilize there datasets for evaluation: DAVIS [32] including 50 videos in
total (train: 30, val: 10, test: 10), FBMS [30] that has 59 videos (train: 25, test: 30), and SegTV2
[19] containing 14 videos (train: 6, test: 7). We merge the annotations of all moving objects into a
single mask for both the FBMS and SegTV2 datasets following [56, 61]. We also adopt the object
centric CO3D dataset [36]. The performance is assessed using the Jaccard index (J), which quantifies
the intersection over union (IoU) between the predicted segmentation masks and the ground-truth.

Baselines. CCG is evaluated against several unsupervised video object segmentation methods, many
of which rely on optical flow during training. These include AMD [21], CIS [63], CMC [58], and
VideoCutLER [55]. Notably, VideoCutLER predicts object masks using only feature similarity
(attraction). TokenCut, though training-free, still requires optical flow as input.

Results. Table 4 shows that, in the w/o learning setting, CCG-1 with attraction and repulsion within a
single frame, outperforms TokenCut. CCG-2 further boosts performance by incorporating attraction
and repulsion across adjacent frames. This demonstrates that CCG is an effective zero-shot segmenter
from unlabeled video, without relying on optical flow. Visualizations are shown in Fig.8.

4.4 Unsupervised Nuclei Segmentation

We apply CCG to unsupervised nuclei segmentation on the PanNuke dataset [11], which contains
7,904 H&E-stained images (2,657 train / 2,524 val / 2,732 test), each sized 256 x256. We compare
against the SOTA UNSEG [18], which uses Bayesian inference to model nuclei priors for segmentation.
Performance is evaluated using pixel accuracy, mean IoU, and F; score (Table A3). Even without
distillation, both CCG-1 and CCG-2 outperform UNSEG by over 20%, demonstrating that CCG
generalizes well from natural to medical images (Fig. 7), including nuclei segmentation.

5 Performance Analysis and Ablation

Repulsion Weight. We analyze the effect of w. Fig.A3 shows an ablation on unsupervised saliency
detection (ECSSD). When w =0 (red line), CCG reduces to TokenCut[56]. Optimal performance -



measured by pixel accuracy, mean IoU, and maximal Fjg - occurs near w=0.2. We adopt this setting
for all subsequent experiments, removing the need for per-task tuning.

Image Pair Discovery. We explore discovering similar image pairs from unlabeled data using
k-nearest neighbors on DINO and CLIP features. DINO is a self-supervised ViT model trained
without external labels. Results are shown in Table Al. To minimize dependence on additional
models, we use DINO features for all main experiments. We also ablate CLIP and ResNet-50
(ImageNet pre-trained) features. On ECSSD, CLIP achieves the best performance, likely due to its
supervised training on large-scale labeled data.

Video Frame Pair Discovery. CCG utilizes a pair of frames captured from the same video clip. These
two frames are possibly located at different timestamps in the video. We analyze the effect of varying
frame intervals on unsupervised video object segmentation, as shown in Fig. A5 in the supplementary.
When the video frame interval is set to 0, CCG-2 is reduced to CCG-1 as the two reference images
are the same. The video frame intervals between 8 to 18 yield the best results. Consequently, we set
the frame interval to 10 for all unsupervised video object segmentation experiments.

Segmentation Head. We investigate the impact of distillation with different # of conv layers in the
segmentation head. Table A2 presents the results of various head designs. Performance improves
when using a 2xconv(1,1) configuration but degrades with a 3xconv(1,1) setup, suggesting a
trade-off between model complexity and effectiveness.

Eigenvectors. Fig. A6 shows that the eigenvectors of CCG-2 pop out the whole body of the dogs,
while TokenCut’s eigenvectors can only segment out the dog heads.

6 Summary and Limitation

We formulate unsupervised whole object segmentation as graph bi-partitioning using both attraction
and repulsion. By maximizing within-group attraction and between-group contrast, our method
segments entire objects with both distinctive and unremarkable parts, and outperforms prior methods
on object discovery, saliency detection, and video segmentation. This simple approach draws
inspiration from principles of early perceptual organization—grouping by similarity and contrast-and
offers insights into how complex visual scenes can be parsed without supervision.

Currently, our CCG framework performs co-segmentation on image pairs. Future work could
explore large-scale graph partitioning with attraction and repulsion to enable co-segmentation across
thousands of images efficiently. Moreover, our current formulation addresses binary segmentation;
extending it to multi-way segmentation tasks, such as semantic or panoptic segmentation, would
further enhance its applicability and impact.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", it is perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist',
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]

Justification: It accurately reflects our contribution to unsupervised whole object segmenta-
tion, using attraction and repulsion as binding power.

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims made
in the paper.
* The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We disucsse the limitation that our framework requires paired images. Nev-
erthless, this limiatation can be properly handeled in real-applications.

Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have introduced clear and substential assumptions and proofs in our
methodology part.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We have detailed contents for reproducibility at the supplementary part.

Guidelines:
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all

submissions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [NA]

Justification: The datasets used in this paper are all publicly available. We plan to release
the code after the paper being reviewed.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the details about settings are included in the experiment section in our
paper.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The reported error bars are also included in the supplementary part (Fig. AS).
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]
Justification: Can be found in the implementation part in the supplementary section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research conducted conforms in every respect with the NeurIPS code of
ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work could help improve how machines perceive and interpret entire
object structures, potentially leading to more accurate and reliable visual perception systems.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: This research has very little chance to be misused.
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Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: These are all properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: they are well documented.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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15.

16.

Answer:

Justification: This paper is not related to crowdsourcing experiments nor research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Haven’t found any potential risks.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLI)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Unsupervised Whole Objectness by Contrastive Contextual Grouping

-1 0.8 0.6 -0.4 0.2 0 0.2 0.4 0.6 0.8 s

Figure A1: We define attraction A and repulsion R as the Gaussian functions of pairwise feature
similarity S. The larger (smaller) the similarity, the larger the attraction (repulsion). Here o, =0.4.
o,=0.3.

Attraction and Repulsion. Given the similarity matrix S, attraction and repulsion matrices A and R
are defined as Gaussian functions of S (Fig.A1). To adjust the relative importance between attraction
and repulsion, we introduce a repulsion weight factor w, where w € [0, 1]. We take w = 0.2 and the
ablation study for the repulsion weight w is shown in Fig. A3.

Segmentation by Only Attraction. Previous methods [56, 28] formulate unsupervised object
discovery as a graph partitioning problem and use normalized cut [41] to divide the graph into two

parts. Let C4(V1, V) as total connections of attraction from V; to Va: Zievl eV, A(i, 7). The
normalized cut is equivalent to maximizing the attraction within partitioned groups by
Ca(V,,V,)
max 7
€a= Z V) @

The features from self-supervised Visual Transformers present strong feature attraction in discrimina-
tive parts of objects. TokenCut [56] utilizes attraction for graph cut which can only segments out
characteristic local regions, not whole objects. An example of illustrating how TokenCut segment
object parts is in Fig. 4.

Segmentation by Attraction and Repulsion. Instead of using normalized cut by using only attraction,
we investigate whether attraction and repulsion can jointly contribute to pop out whole objects. Given
attraction A and repulsion R, we follow [65] and conduct a binary segmentation by using a unified
grouping criterion

maxé within-group A between-group R
X =
AR total degree of A&R  total degree of A&R
CA Vu7 A\ )
= + 8
ZCA (Vy, V) + Cgr(V,,V) ®)

CR (Vua V\Vu)
Ca(Vy, V) + Cr(V,, V)’
where C'r(V1, Va) represents total connections of repulsion from V; to V. It’s easy to discover that

& AR is equivalent to £ 4 when the strength of repulsion R is not considered for grouping (we set up
wy = 0). Let D 4, Dp, represent the diagonal degree matrix of A, R:

D, =diag(sum(A,dim = 1)),
Dp = diag(sum(R,dim = 1)).

©))
According to [65], the joint attraction and repulsion criterion is equivalent to

2 7
w
maxCan(p Zpu D, (10)
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Table Al: Discovering im- Table A2: The ablationstudy Taple A3: CCG demonstrates ex-
age pairs using CLIP and pre- to evaluate the impact on the - ceptjonal performance in unsuper-
trained ResNet-50, both su- distillation process by utiliz- yjsed unclei segmentation on Pan-
pervised methods, yields bet- ing additional Conv layers in  Nyke dataset. We surpass the state-
ter performance than DINO, the segmentation head. Our ¢ the-art method, UNSEG, by at
which is trained in a self- implementation uses asingle 1ea5 20% without requiring any train-

supervised manner. Conv layer in all tasks. ing nor annotations.
feature maxFg IoU Acc. seg. head maxFz IoU Acc. accuracy mloU F, score
DINO [5] 83.1 732 947 1 x Conv(1,1) 945 839 958 UNSEG [18] | 43.6 41.4 482
ResNet-50 [12] 834 742 956 2 x Conv(1,1) 952 844 963 CCG-1 583 (+147) 545(+13.0) 57.9(+9.7)
CLIP [34] 838 738 958 3xConv(l,1) 923 815 927 CCG2 OL1+175) 569 (+155 586 (+104)

where p,, is a binary membership vector for V,,. The real valued solution to this partition problem is
finding the second largest eigenvector z* of the eigensystem

D 'Wz =)z (11)

Attraction and Repulsion within a Single Image. Given an unlabeled image =, we assume it
contains at least one object, and segment the whole objects by attraction and repulsion from z.

Attraction and Repulsion across Image Pairs. So far we consider attraction and repulsion within
a single image. It is straightforward to extend it to a co-segmentation setting, where two or more
related images need to be jointly segmented.

A.2 Implementation Details

We choose ViT-S/16 as the architecture for evaluation with the baselines in w/o. training setting
and ViT-S/8 to compare with the baselines in w/. training setting. To find semantically similar
but visually distinct images as image pairs, we extract the features from DINO (ViT-S/8) and run
k-nearest neighbors. It takes less than 1 hour to run k-nearest neighbors on 100,000 images as a
preprocessing step. To find video frame pairs, we use a frame interval of 10 to create reference
image pairs for co-segmentation: [(00.jpg, 10.jpg), (01.jpg, 11.jpg), (02.jpg, 12.jpg), - - - ]. Our ViT
encoder at the distillation stage takes the same architecture as DINO ViT-S/8. The segmentation
head contains a single conv 1 x 1 layer. During the distillation, our ViT encoder is trained using
AdamW optimizer with a learning rate of 0.001, and our segmentation head trained using AdamW
optimizer with a learning rate of 0.05. We set the batch size to 16 and have 300 training epochs. The
repulsion weight w is set to 0.2. The segmentation head contains a single conv 1 x 1 layer. During
the distillation process, we set the batch size to 16 and have 300 training epochs. The training is run
on 4 A40 NVIDIA GPUs. The repulsion weight w is set to 0.2.

A.3 Ablation study

Video Frame Pair Discovery. CCG employs a pair of frames taken from the same video clip, which
may be captured at different timestamps. We examine how varying frame intervals affect unsupervised
video object segmentation, as illustrated in Fig. AS in the supplementary material. When the frame
interval is set to 0, CCG-2 becomes equivalent to CCG-1 , as the two reference images are identical.
The best results are obtained with video frame intervals ranging from 8 to 18. Therefore, we set the
frame interval to 10 for all unsupervised video object segmentation experiments.

Eigenvectors. As shown in Fig. A6, the eigenvectors of CCG-2 highlight the entire body of the dogs,
whereas TokenCut’s eigenvectors are only able to segment the dog heads.
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Figure A2: Identifying image pairs from unlabeled images using CLIP image embeddings or self-
supervised ViT features from DINO.
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Figure A3: The unsupervised saliency detection performance of CCG on ECSSD dataset with
different values of repulsion weight w. CGR is the same as TokenCut when w = 0 because the impact
of repulsion is set to zero in grouping.
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Figure A4: Qualitative results of CCG outperforming both TokenCut and FOUND on unsupervised
saliency detection.
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Figure A5: The performance of CCG-2 with video frames at different video frame intervals for
unsupervised video object segmentation. CCG-2 is the equivalent to CCG-1 when the video frame
interval is 0.
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Figure A6: The eigenvectors of CCG-2 using attraction and repulsion across reference images pop
out the whole body of the dogs while the eigenvectors of TokenCut utilizing attraction pop out only
the head part of the dogs.
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