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Abstract
Large Language Models (LLMs) are increas-001
ingly vital tools for academic research. A002
core ability for these tools is to identify claims003
and validate them against supporting evidence,004
and there is yet to be an integrated bench-005
mark to evaluate the claim-evidence reason-006
ing capabilities. To address this gap, we in-007
troduce CLAIM-BENCH1, a new benchmark008
designed to jointly evaluate three critical skills009
in claim-evidence reasoning: claim extraction,010
evidence extraction, and claim-evidence link011
validation. CLAIM-BENCH contains over 300012
manually annotated claim-evidence pairs from013
AI research papers. We evaluate six LLMs014
with three prompting strategies using CLAIM-015
BENCH. We find that closed-source models016
like GPT-4 and Claude consistently outperform017
open-source counterparts, though even the best018
models reach a peak F1-score of only 0.59 on019
claim identification. This difficulty stems pri-020
marily from resolving long-range dependen-021
cies, as models struggle to connect claims022
with evidence dispersed throughout a document.023
Consequently, we show that iterative prompting024
strategies, which decompose the task, can boost025
the number of retrieved claim-evidence pairs026
by over 4x compared to the baseline single-027
pass prompt, substantially improving recall but028
at a significant computational cost. CLAIM-029
BENCH establishes a much-needed standard030
for assessing deep scientific comprehension in031
LLMs, providing both a diagnostic framework032
to understand current limitations and a path to-033
ward building more reliable, deep-reasoning034
systems.035

1 Introduction036

Large Language Models (LLMs) have become a037

pivotal tool in academic research, demonstrating038

impressive capabilities such as automating compre-039

hensive literature reviews, facilitating innovative040

1To facilitate future research and standardize evaluation in
this area, we release CLAIM-BENCH at

the CLAIM_BENCH GitHub repository.

Claim: Page 1

"Experiments on two machine translation tasks show these

models to be superior in quality "

Two Tasks Superior Quality

German: +2.0 BLEU French: 41.0 BLEU
supports

Evidences: Page 8

On the WMT 2014 English-to-German translation task, the big transformer
model outperforms the best previously reported models by more than
2.0 BLEU , establishing a new state-of-the-art BLEU score of 28.4.

On the WMT 2014 English-to-French translation task, our big model
achieves a BLEU score of 41.0 , outperforming all previously published
single models, at less than 1/4 the training cost.

Figure 1: Example of a claim and its supporting evi-
dences from Vaswani et al. (2017).

idea generation, and aiding experimental design. 041

These advancements promise significant improve- 042

ments in research productivity, creativity, and ef- 043

ficiency, fueling excitement about the transforma- 044

tive potential of AI-driven methodologies in sci- 045

ence. Researchers have increasingly assigned crit- 046

ical tasks to these models—from content summa- 047

rization (Agarwal et al., 2025) to hypothesis gener- 048

ation (Vladika and Matthes, 2023). Recently, agen- 049

tic frameworks use LLMs for automated peer re- 050

view (Checco et al., 2021; Agarwal et al., 2025; Lu 051

et al., 2024; Jin et al., 2024; Sun et al., 2024b). Be- 052

hind these tasks, a fundamental question emerges: 053

to what extent do these LLMs truly understand sci- 054

entific papers beyond surface-level pattern recog- 055

nition? Despite their widespread use and promis- 056

ing outcomes, there remains uncertainty about the 057

depth and accuracy of their reasoning capabilities 058

in the complex context of scientific papers. 059

Scientific papers are long documents with in- 060

tricate relationships. They are structured around 061

claims and are supported by evidence. The ability 062

to accurately identify and reason about these claim- 063

evidence pairs is essential for validating scientific 064
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findings and ensuring research integrity, making065

it a critical test of LLMs’ comprehension depth.066

Unlike surface-level tasks such as summarization,067

question answering, claim-evidence identification068

requires global reasoning across paper sections,069

synthesis of dispersed information, and a nuanced070

understanding of logical dependencies. The ability071

to reason about research claims and evidences has072

been an active research area.073

Existing benchmarks evaluate the fact-checking074

capabilities in various settings. For example,075

SCIFACT (Wadden et al., 2020) validates expert-076

written scientific claims using the abstracts of re-077

search papers. We defer to the review of Vladika078

and Matthes (2023). More recent works considered079

the claim identification and verifications within080

publications (Lu et al., 2023; Wei et al., 2023), the081

check-worthiness of claims (Liu et al., 2025), and082

the retrieval of evidence (Deng et al., 2025). While083

these benchmarks involve claims and evidences,084

they do not measure a finer-grained verification085

task: whether the evidence presented in a full scien-086

tific paper supports its claims. This claim-evidence087

reasoning capability is precisely what we target.088

In this paper, we present CLAIM-BENCH. This089

benchmark consists of a new dataset with over 300090

claim-evidence pairs, expert-annotated from full-091

length AI research papers. It is specifically de-092

signed to test the challenging task of long-range093

scientific argument tracing, where claims must be094

validated against evidence dispersed throughout a095

document.096

By evaluating six state-of-the-art LLMs on097

CLAIM-BENCH, we find that larger models (e.g.,098

GPT-4-Turbo, Claude 3.5) maintain high recall on099

lengthy documents with iterative prompting, while100

smaller models (e.g., LLaMA, Ministral) see signif-101

icant performance drops under single-pass strate-102

gies. These findings highlight crucial areas for103

enhancing long-context comprehension and inform104

the development of reliable AI tools for scientific105

research. CLAIM-BENCH thus sets a new stan-106

dard for evaluating deep scientific comprehension107

in LLMs.108

2 Related Work109

Claim Extraction and Verification Prior work110

on scientific claim analysis has largely focused on111

isolated sub-tasks like citation-reference validation112

(Zhang and Abernethy, 2024), rather than end-to-113

end claim-evidence reasoning within a full doc-114

ument. The influential SCIFACT, SciFact-Open 115

benchmarks (Wadden et al., 2020, 2022) test the 116

verification of external claims. Li et al. (2021) 117

focuses on evidence extraction tied to specific dis- 118

course elements. Works that engage with full-text 119

articles often stop short of the complete reason- 120

ing task. Blake (2010), Achakulvisut et al. (2020), 121

and Wei et al. (2023) developed methods for claim 122

identification within publications but didn’t oper- 123

ationalize the crucial step of linking claims to dis- 124

persed evidence. Similarly, Claimify (Metropoli- 125

tansky and Larson, 2025) addresses the generation 126

of high-quality claims in isolation, without tracing 127

them back to supporting evidence within a source 128

document . In contrast, CLAIM-BENCH requires 129

this full, integrated reasoning process on complete 130

papers. 131

AI for Science LLMs have significantly ad- 132

vanced scientific workflows, facilitating tasks such 133

as peer review. Building on early work in AI- 134

assisted peer review (Checco et al., 2021), recent 135

tools like ReviewerGPT (Liu and Shah, 2023) and 136

ReviewFlow (Sun et al., 2024a) have streamlined 137

peer review processes, while AGENTREVIEW (Jin 138

et al., 2024) simulates collaborative review systems 139

to improve research evaluation workflows. 140

Benchmarks Long-context benchmarks, such as 141

SCBENCH (Li et al., 2025a), MMLongBench-Doc 142

(Ma et al., 2024), and LongGenBench (Wu et al., 143

2025), have assessed LLMs’ ability to process ex- 144

tended inputs and maintain coherence, focusing on 145

tasks like document summarization and long-form 146

generation. Recent works, including AI Scientist 147

(Lu et al., 2024), LitLLM (Agarwal et al., 2025), 148

and ChatCite (Li et al., 2025b) benchmarked LLMs 149

on tasks such as literature review and hypothe- 150

sis generation, while ScienceAgentBench (Chen 151

et al., 2025) and SCBENCH (Li et al., 2025a) 152

probe multi-step reasoning and long-context under- 153

standing. Specialized benchmarks like U-MATH 154

(Chernyshev et al., 2025) and Leave No Document 155

Behind (Godbole et al., 2024) examine domain- 156

specific reasoning and multi-document synthesis 157

but address structured and localized relationships. 158

The LCFO benchmark (Costa-jussà et al., 2024a) 159

targets summary expansion with varying granular- 160

ities of content compression, revealing limits in 161

semantic retention. The Y-NQ dataset (Costa-jussà 162

et al., 2024b) exposes disparities in open-book com- 163

prehension across low- & high-resource languages, 164

hinting at deeper weaknesses in cross-lingual and 165
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low-resource long-context understanding. Data166

Interpreter (Hong et al., 2024) showcases long-167

term data analysis workflows with LLM agents,168

but primarily focuses on task planning and execu-169

tion rather than deep textual reasoning. Work in170

neuroscience, for example, shows LLMs surpass-171

ing expert predictions of experimental outcomes172

(Luo et al., 2025), yet such success doesn’t imply173

reasoning comprehension. Our work focuses on174

research papers with more complex and dispersed175

relationships, such as claims supported by evidence176

across multiple sections. CLAIM-BENCH evalu-177

ates how LLMs synthesize these intricate connec-178

tions, testing their global reasoning and coherence,179

reflecting the unique demands of scientific texts.180

This gap is underscored by research from adjacent181

domains. For instance, works calling for crucial182

ethical considerations, such as the need for trans-183

parency and accountability in AI-driven research184

(Lissack and Meagher, 2024), or expanding evalua-185

tion to include multimodal data (Song et al., 2024),186

also highlight the absence of a targeted benchmark187

for claim-evidence validation across long, complex188

scientific texts—a gap CLAIM-BENCH aims to189

fill.190

Reasoning Collaborative reasoning frameworks191

offer a complementary perspective, with multi-192

agent systems like Two Heads Are Better Than One193

(Su et al., 2025) and iterative feedback mechanisms194

such as CycleResearcher (Weng et al., 2025) show-195

ing promise in enhancing reasoning. While these196

approaches address some limitations of single-pass197

systems, their primary focus remains on generating198

content, not validating complex logical relation-199

ships. Similarly, tools for hypothesis testing like200

AIGS (Liu et al., 2024b) and LLM-Assisted Hy-201

pothesis Generation (Vladika and Matthes, 2023),202

and graph-based methods for structured creativity203

(Leng et al., 2024), fall short of validating inter-204

linked arguments at scale.205

3 Methodology206

3.1 Dataset207

Dataset Curation The dataset for this study was208

curated by 4 PhD students with research experience.209

Each annotator had at least one first-author confer-210

ence publication, ensuring familiarity with scien-211

tific writing standards. Following specific guide-212

lines (Appendix B.1), annotators selected papers213

and identified their core scientific claims. The se-214

lection criteria for papers were designed to focus215

the benchmark on text-based reasoning: we chose 216

recent (2024), non-math-intensive articles under 217

20 pages to ensure a diverse set of current AI/ML 218

topics while avoiding model memorization and bot- 219

tlenecks from symbolic reasoning.

Statistic Value

Dataset Overview
Total Annotations 346
Unique Papers 100
Unique Claims 331
Unique Evidence Passages 335
Duplicate Claims 15

Per-Paper Statistics
Claims per Paper (Avg/Med/Range) 3.33 / 3 / 1–8
Evidence per Paper (Avg/Med/Range) 3.67 / 3 / 1–9

Content Length (Words)
Claim Length (Avg/Med/Range) 22 / 20 / 8–43
Evidence Length (Avg/Med/Range) 28 / 25 / 10–40

Table 1: Dataset Summary Statistics

220

Annotation Tool To facilitate easier annotations, 221

we developed a PDF annotation tool, it lets users 222

load a paper, drag a pointer over any sentence(s) 223

to mark it as a claim, then click-add evidence ad- 224

ditional spans as linked evidence for that claim; 225

each claim–evidence pair is stored in a one-to-many 226

structure and exported as JSON (Appendix B.4). 227

Annotation Quality Check After compiling the 228

initial annotations (100 papers), these were set 229

aside before evaluating the models to ensure an 230

unbiased assessment of their capabilities. To en- 231

hance the reliability of our dataset as ground truth, 232

we conducted a validation phase where a different 233

set of annotators re-annotated a subset of 30 papers 234

and found moderate to substantial inter-annotator 235

agreement (details in Appendix B.3), confirming 236

that CLAIM-BENCH is a reliable benchmark. 237

3.2 Evaluation Metrics 238

We employ four metrics to evaluate the LLM perfor- 239

mance: three established metrics in information re- 240

trieval, precision, recall, F1-score, and a novel met- 241

ric, sentence_gap, to evaluate LLM performance in 242

claim-evidence retrieval tasks and the effectiveness 243

of the prompting techniques. 244

Precision measures the accuracy of the model’s 245

predictions, reflecting its ability to avoid generat- 246

ing spurious claims or evidence from the scientific 247

texts. Recall quantifies the model’s ability to iden- 248

tify all relevant spans from the human-annotated 249

ground truth, measuring its comprehensiveness in 250
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Single-Pass

@Research Paper Æ
LLM

� Claims
✓ Evidence

⋆ Conclusions

single
prompt

Three-Pass

@Research Paper Æ
LLM

� Claims
Æ
LLM

✓ Evidence
Æ
LLM

⋆ Conclusions

claims
prompt

evidence
prompt

conclusion
prompt

One-by-One Pass

@Research Paper Æ
LLM

� Claims

claims
prompt

� Claim 1
Æ
LLM

✓ Evidence. 1 _ Claim-Evi 1
...

...
...

...
� Claim n

Æ
LLM

✓ Evidence. n _ Claim-Evi n

evidence
prompt

evidence
prompt

Æ
LLM

⋆ Conc. 1
...

...
Æ
LLM

⋆ Conc. n

conclusion
prompt

conclusion
prompt

Phase 1: Extract All Claims

Phase 2: Extract Evidence & Form C-E Pairs Phase 3: Generate Conclusions

Figure 2: Three methods to prompt LLMs to analyze the papers. Single-Pass: Full paper processing with one
prompt. Three-Pass: Sequential claim → evidence → conclusion extraction. One-by-One Pass: Individual
evidence retrieval per claim.

response to our prompts. The F1-score, as the har-251

monic mean of precision and recall, provides a sin-252

gle, balanced metric to compare the overall efficacy253

of the different LLMs and prompting strategies we254

test. The sentence_gap metric measures the av-255

erage sentence-level distance between a retrieved256

claim and each of its associated retrieved evidence.257

sentence_gap =
1

|M|
∑

(p,g)∈M

∣∣s(p)− s(g)
∣∣, (1)258

where M is the set of matched evidence pairs (us-259

ing Intersection over Union matching rule). s(·)260

returns the sentence index of a span inside the doc-261

ument. The sentence_gap metric therefore captures262

how far a model must search across the paper to263

link a claim with the supporting evidences. It is264

particularly valuable for quantifying the models’265

ability to handle textual relationships over extended266

contexts.267

Additionally, we consider secondary metrics that268

focus on operational aspects of model performance:269

the time to generate outputs and how each model’s270

recall changes as input length (token count) in-271

creases. These metrics are crucial for understand-272

ing efficiency and scalability. They help compare 273

how models manage computational resources and 274

handle large input sizes under varying conditions. 275

4 Experimental Setup 276

We evaluate six state-of-the-art LLMs, chosen 277

to span both licensing regimes and architec- 278

tural families while sharing a ≥128K-token con- 279

text window. Open-source include Ministral-8B 280

(Mistral AI, 2024), Phi-3.5-MoE (Abdin et al., 281

2024), and LLaMA-70B (Wang et al., 2025) and 282

Closed-source includes GPT-4 (OpenAI, 2024), 283

Gemini-Exp_1114 (Gemini Team, 2024), and 284

Claude 3.5 Sonnet (Anthropic, 2025). 285

4.1 Analysis Methods 286

Figure 2 shows three distinct prompting methods to 287

assess and enhance model performance on claim- 288

evidence identification tasks. 289

Single-Pass As a baseline, we present the models 290

with a research paper, instructing (Appendix A.1) 291

them to identify claims, evidences, and conclusions 292

in a single comprehensive prompt. 293
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Three-Pass Building on the “divide & conquer”294

strategy from prior research (Zhang et al., 2024),295

we then deconstruct the task into sequential stages.296

In the first stage, the model identifies claims using297

a dedicated prompt, these claims are supplied to298

the next stage, where separate prompts elicit corre-299

sponding evidences. Finally, we combine the iden-300

tified claims & evidences, using another prompt to301

extract conclusions (Appendix A.2).302

One-by-One Pass We adopt a more granular ap-303

proach where each claim is processed individually304

to retrieve evidence. This means for n claims, the305

model runs n times to gather evidence for each, and306

similarly for conclusions. Although this approach307

provides detailed analysis, it significantly increases308

the demand on computational resources and time309

(Appendix A.3). These methods combine care-310

ful prompting with our annotated claim–evidence311

dataset, allowing us to benchmark each model’s ex-312

traction accuracy and probe how different prompt313

strategies improve performance.314

5 Results315

The following section details the experimental re-316

sults, highlighting comparative model performance317

and strategic impacts.318

5.1 Precision vs Recall319

As shown in Figure 3, models exhibit a clear320

precision-recall trade-off: settings that achieve321

higher recall often incur reduced precision. For in-322

stance, Claude and LLaMA achieve high recall but323

at the cost of extracting numerous false positives,324

which is evident from their large maximum linking325

distances (Figure 8), exceeding 2,200 sentences in326

some cases. Although valuable, such long-range327

links raise the risk of false claim–evidence pairs.328

Conversely, models like GPT prioritize precision,329

maintaining moderate linking distances (around330

658–708 sentences) with fewer spurious matches,331

though this approach slightly limits recall. Minis-332

tral offers a balanced precision-recall profile, char-333

acterized by consistent, shorter linking distances.334

Comparing the precision-recall tradeoff trends335

between open- and closed-source models, we see336

that closed-source models balance precision and337

recall better. Overall, GPT often balances high pre-338

cision and moderate recall; Claude achieves higher339

recall rates but exhibits noticeable trade-offs in pre-340

cision. Gemini remains stable across strategies.341

Among open-source models, LLaMA came close342

to matching closed-source recall but with some out- 343

liers, also shows variability in precision; Ministral 344

is moderate in both coverage & precision; Phi ex- 345

hibits the widest swings, at times matching larger 346

models but also dropping in accuracy. 347

5.2 Smaller vs Larger Models 348

Larger models, such as GPT-4-Turbo, Claude, 349

Gemini, and LLaMA, generally exhibit strong 350

recall in identifying claims, with GPT-4-Turbo 351

achieving high precision (0.68) and recall (0.81), 352

demonstrating effective balance at different strate- 353

gies. Claude also shows strong recall (0.83), al- 354

beit with a moderate precision drop (0.61). Also, 355

LLaMA achieves similar recall (0.76) but compara- 356

tive precision (0.60), indicating a tendency to iden- 357

tify extensive and highly precise connections, con- 358

sidering the best cases of each model. 359

Smaller models, such as Ministral and Phi, typi- 360

cally exhibit lower recall and precision. Ministral 361

shows modest recall (0.60) with precision around 362

0.38, reflecting a conservative approach to claim- 363

evidence linking. Phi demonstrates similar preci- 364

sion (approximately 0.39) but notably higher recall 365

(around 0.7) in the best cases. These observations 366

highlight a clear trade-off: larger models generally 367

identify broader and more nuanced claim–evidence 368

relationships but often at the cost of precision, 369

whereas smaller models maintain more consistent 370

precision with significantly reduced recall. Similar 371

pattern holds in evidence extraction as well. 372

5.3 Claims vs Evidence Extraction 373

Model Best C Performances Best E Performances
F1 P R F1 P R

GPT-4-Turbo 0.56 0.66 0.57 0.47 0.34 0.69
Claude 3.5 0.59 0.62 0.60 0.42 0.33 0.66
Gemini-Exp_1114 0.54 0.48 0.64 0.40 0.30 0.52
LLaMA-70B 0.58 0.60 0.56 0.45 0.42 0.49
Ministral-8B 0.48 0.39 0.61 0.39 0.31 0.52
Phi-3.5-MoE 0.50 0.40 0.72 0.35 0.25 0.63

Table 2: The highest performance (across all strategies)
for Claim (C) and Evidence (E) extraction. Metrics
reported are F1, Precision (P), and Recall (R).

Analyzing claim versus evidence extraction sep- 374

arately reveals distinct performances among LLMs 375

(see Table 2). Across all models, precision is con- 376

sistently higher for claims than for evidence, in- 377

dicating the models more readily detect explicit 378

claims compared to the contextually dispersed evi- 379

dence. Also, the evidence extraction of all models 380

yields higher recall than precision. In addition to 381
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Figure 3: Precision vs. Recall for claim (solid markers) and evidence (transparent markers) identification across
models and strategies (shapes: Single-Pass •, Three-Pass ▲, One-by-One ■). Models show higher precision for
claims, higher recall for evidence, with most results below F1 = 0.7.

Figure 4: Sentence distance distribution (box plots) between claims and linked evidence vs. Human baseline
(leftmost). LLMs, especially with iterative strategies, link over longer distances than humans, showing capability
but potential noise.

the common trends, the models exhibit distinct382

patterns. For instance, Claude and LLaMA demon-383

strate high recall in evidence extraction but with384

substantial variability in linking distances (Claude:385

mean 119.4 sentences, SD = 183.5; LLaMA: mean 386

95.1 sentences, SD = 184.9), suggesting increased 387

noise and inconsistent performance. Conversely, 388

Ministral maintains lower linking distances (mean 389
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75.9 sentences, SD = 89.4), signifying a more cau-390

tious and controlled approach.391

5.4 Impact of Prompting Strategy392

The Single-pass strategy is highly efficient but has393

limited coverage, e.g., GPT-4 produces 152 pairs394

with a 98.5 average sentence_gap, while Ministral395

generates 166 pairs (average gap: 64.2). Mean-396

while, the Three-pass strategy enhances recall and397

coverage at moderate computational cost. Claude398

yields 174 pairs (average gap: 122.2), and Phi cap-399

tures 279 pairs, albeit with a significant SD (107.2)400

in sentence_gap. Finally, the One-by-One strategy401

maximizes recall but increases computational de-402

mand significantly. Claude and LLaMA produce403

the highest counts (639 and 659 pairs, respectively),404

with substantial gaps (Claude: 119.4, LLaMA:405

95.1) and high SD (Claude: 183.5, LLaMA: 185.0).406

Phi also achieves substantial coverage (347 pairs)407

with a notable SD (114.8).408

5.5 Impact of Token Length on Recall409

We observed how the documents’ token length af-410

fected the models’ recall performances. In long411

documents, we expected performance drops, but412

these observed drops are tied to the prompting strat-413

egy. With the Single-pass strategy, the recall perfor-414

mances dropped as the document length increased.415

With the iterative prompting strategies (Three-pass416

or One-by-One), the performance drops are less417

significant, indicating that the iterative prompting418

imposes less “processing load” onto the LLMs. Ad-419

ditionally, the recall drops differ by the sizes of420

the models. Relatively smaller models (LLaMA421

70B and Ministral 8B) showed more notable de-422

clines, especially with Single-pass, whereas the423

larger models (Claude and GPT-4) maintained rel-424

atively high recalls, underlining the advantage of425

their long context capabilities (Appendix C).426

Claude and LLaMA frequently produce the high-427

est pair counts (up to 639 and 659), reflecting broad428

coverage. This can coincide with their large context429

window sizes—helpful for capturing distant rela-430

tionships—yet also introduces potential noise. GPT431

and Gemini keep moderate distances, suggesting432

they discovered fewer links. Ministral remains con-433

servative with fewer pairs with shorter distances,434

while Phi’s extreme variance indicates inconsistent435

linking across long contexts. We include the details436

in Figure 8 (in Appendix C).437

5.6 Types of Claims and Evidences 438

To further understand the nature of the claim- 439

evidence reasoning task and the models’ behav- 440

ior, we categorize the claims and the evidences 441

identified by both humans and LLMs. The catego- 442

rization, developed by synthesizing and extending 443

established types from the scientific validation lit- 444

erature, provides a qualitative lens for our analysis. 445

Full descriptions are in Appendix C.1, and the re- 446

sults are in Table 3 and Table 5. 447

Many models exhibited a strong bias for “com- 448

parative” content over other types. For example, 449

Claude identified 37.3% of claims as comparative, 450

exceeding the human baseline of 23.6%. Rather 451

than being “surface-level”, we believe this occurs 452

because comparative claims contain explicit key- 453

words (e.g., “outperforms”) that are easy for mod- 454

els to detect. This suggests that iterative prompting 455

strategies, which break the task down, are crucial 456

for calibrating models to look beyond these lexical 457

signals and identify a more balanced set of claims. 458

Models had different priorities than humans 459

when identifying important claims. GPT and Gem- 460

ini aligned with humans by prioritizing method- 461

ological claims (e.g., GPT: 32.4% vs. human: 462

42.1%). In contrast, Claude and LLaMA favored 463

claims about empirical results and comparisons. 464

Models consistently struggled with claims re- 465

quiring abstract or deep reasoning. They under- 466

represented theoretical claims (e.g., Claude: 2.5% 467

vs. human: 7.5%) significantly undervalued expert 468

evidence (we define expert evidence as the authors’ 469

synthesis or interpretation). Models identified the 470

“expert evidences” less than 3% of the time (vs. 471

13.9% for humans), suggesting they can extract 472

isolated facts but fail at the higher-order task of 473

connecting data to an author’s conclusions, a core 474

component of deep scientific comprehension. 475

6 Discussion 476

The insights from CLAIM-BENCH emphasize crit- 477

ical directions for future research and practical 478

applications leveraging the capabilities of LLMs 479

in scientific claim-evidence reasoning. Improv- 480

ing LLMs’ ability to accurately validate claim- 481

evidence pairs could enhance their practical use 482

in designing experiments and generating scientif- 483

ically valid hypotheses. Furthermore, improved 484

claim identification and validation methods provide 485

a foundation for developing sophisticated claim 486

quality scoring tools that can greatly enhance peer- 487
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Meth Emp Comp Theo Caus Meth Emp Comp Theo Caus

Human 42.1 (1) 24.2 (2) 23.6 (3) 7.5 (4) 2.5 (5)
Claude Llama
1 19.7 (3) 34.5 (2) 37.3 (1) 2.5 (5) 6.0 (4) 1 35.5 (1) 26.4 (2) 26.4 (2) 7.8 (4) 3.9 (5)
3 18.6 (3) 37.5 (1) 34.5 (2) 5.0 (4) 4.4 (5) 3 28.9 (2) 30.7 (1) 26.5 (3) 8.0 (4) 5.9 (5)
O 20.9 (3) 33.8 (2) 34.2 (1) 4.8 (5) 6.2 (4) O 25.2 (3) 33.4 (1) 26.8 (2) 8.6 (4) 6.0 (5)
GPT Ministral
1 32.4 (1) 24.1 (3) 30.6 (2) 3.7 (5) 9.3 (4) 1 33.2 (1) 24.7 (3) 28.4 (2) 12.0 (4) 1.7 (5)
3 31.4 (1) 30.4 (2) 24.1 (3) 9.8 (4) 4.3 (5) 3 31.0 (1) 26.5 (2) 19.5 (3) 15.6 (4) 7.5 (5)
O 29.5 (1) 28.7 (2) 25.9 (3) 7.5 (5) 8.4 (4) O 33.0 (1) 26.2 (3) 26.7 (2) 12.0 (4) 2.2 (5)
Gemini Phi
1 33.5 (1) 29.3 (2) 25.1 (3) 8.5 (4) 3.6 (5) 1 30.6 (2) 31.2 (1) 27.3 (3) 7.3 (4) 3.6 (5)
3 30.6 (1) 29.5 (2) 29.0 (3) 8.2 (4) 2.7 (5) 3 33.3 (2) 34.2 (1) 16.3 (3) 10.8 (4) 5.5 (5)
O 37.2 (1) 31.1 (2) 17.4 (3) 12.3 (4) 1.9 (5) O 36.7 (1) 17.1 (3) 35.9 (2) 6.5 (4) 3.9 (5)

Table 3: The percentage and rank (in parentheses) of five categories of claims identified by the models employing the
strategies, compared to the ground truth identified by humans. Categories: Meth=Methodological, Emp=Empirical,
Comp=Comparative, Theo=Theoretical, Caus=Causal. Strategies: 1=single pass, 3=3-pass, O=one-by-one.

review processes. The capability to systemati-488

cally link and integrate evidence across multiple489

scientific papers could lead to powerful retrieval-490

augmented laboratory assistants and cross-paper491

evidence graphs, accelerating knowledge discovery.492

These advancements would not only strengthen493

the robustness of scientific validations but also fa-494

cilitate the creation of more sophisticated scien-495

tific QA systems, thus laying foundational bench-496

marks for future scientific text generation and eval-497

uation methods. This research thus serves as a498

pivotal foundation for transformative applications499

in scientific inquiry and discourse. A closer look500

at the models’ errors reveals two primary failure501

modes. The first is over-generation of plausible502

but incorrect links, prevalent in high-recall mod-503

els like LLaMA and Claude. These models often504

identify claim-like and evidence-like sentences in505

isolation but fail to validate the precise logical con-506

nection between them, resulting in low precision.507

The second failure mode is missed context due to508

long-range dependencies. This is evident when a509

claim made in the introduction is supported by a510

specific result in a table within the results section.511

Models, especially smaller ones like Ministral or512

any model using a single-pass prompt, frequently513

fail to bridge this large sentence_gap, leading to514

false negatives. These failures underscore that the515

primary challenge is not just text extraction, but516

robust, long-distance logical reasoning.517

7 Conclusion518

Motivated by the limited evaluation in prior litera-519

ture of LLMs’ abilities in scientific reasoning, we520

introduced CLAIM-BENCH, a novel benchmark 521

specifically designed to evaluate LLMs’ capabili- 522

ties in identifying and validating claim-evidence 523

relationships within scientific texts. We system- 524

atically explored diverse LLM architectures and 525

prompting strategies. Our results demonstrate 526

significant limitations in LLMs’ comprehension, 527

specifically in their precision and recall balance 528

when processing complex scientific documents. 529

Notably, models showed higher precision in extract- 530

ing explicit claims, whereas extracting dispersed 531

evidence proved challenging, yielding higher recall 532

but lower precision and increased sentence gaps. 533

Our qualitative analysis further reveals systematic 534

biases and error patterns in current LLM capabili- 535

ties, underscoring CLAIM-BENCH’s critical role 536

in advancing rigorous scientific validation tasks. 537

Moreover, our comparative analysis across three 538

strategies revealed substantial trade-offs between 539

computational efficiency, precision, and coverage. 540

Closed-source models generally displayed more 541

stable performances, while open-source models 542

offered broad yet inconsistent coverage. CLAIM- 543

BENCH provides a framework for the assessment 544

of LLMs in complex scientific contexts, and our 545

study provides useful material and insights for con- 546

tinuing the advancement in LLMs’ high-level com- 547

prehension and scientific reasoning capabilities. 548

8 Limitations 549

While CLAIM-BENCH provides comprehensive 550

insights into the capabilities of LLMs in scientific 551

claim-evidence reasoning. Despite these insights, 552

CLAIM-BENCH has several limitations worth not- 553

8



ing. First, the benchmark primarily focuses on554

recent papers from select domains, which are after555

the LLMs’ knowledge cutoff but might limit the556

generalizability. Second, the evaluation relies on557

existing LLM architectures. While we leave the558

exploration of the impact of model architecture de-559

velopment to future works, CLAIM-BENCH could560

be a useful material that supports future projects561

that develop novel LLM architectures that have562

enhanced long-context language understanding ca-563

pabilities and scientific reasoning capabilities.564
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A.1 Single-Pass Prompt815

Comprehensive Evaluation Prompt

Analyze the research paper and provide a comprehensive evaluation following these guide-
lines:

1. Identify ALL claims in the paper where each claim:

• Makes a specific, verifiable assertion
• Is supported by concrete evidence
• Represents findings, contributions, or methodological advantages
• Can be from any section except abstract

2. For each identified claim:

• Extract ALL supporting or contradicting evidence (experimental results, data, or method-
ology)

• Evaluate the evidence strength and limitations
• Assess how well conclusions align with evidence

Return ONLY the following JSON structure:

{
"analysis": [

{
"claim_id": number,
"claim": {

"text": "statement of the claim",
"type": "methodology/result/contribution/performance",
"location": "section/paragraph",
"exact_quote": "verbatim text from paper"

},
"evidence": [

{
"evidence_text": "specific experimental result/data",
"strength": "strong/moderate/weak",
"limitations": "specific limitations",
"location": "section/paragraph",
"exact_quote": "verbatim text from paper"

}
],
"evaluation": {

"conclusion_justified": true/false,
"robustness": "high/medium/low",
"justification": "explanation of evidence-conclusion alignment",
"key_limitations": "critical limitations affecting validity",
"confidence_level": "high/medium/low"

}
}

]
}

Ensure:

• ALL substantive claims are captured

• Evaluations are objective and well-reasoned

• All locations and quotes are precise

• Multiple pieces of evidence per claim are included when present
816
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A.2 Three-Pass Prompt 817

Claims Extraction Prompt

Paper text: {text}
Task: Identify all statements in the text that meet the following criteria for a claim:

1. Makes a specific, testable assertion about results, methods, or contributions.

2. Represents a novel finding, improvement, or advancement.

3. Presents a clear position or conclusion.

Requirements:

• Include both major and minor claims.

• Don’t miss any claims.

• Present each claim as a separate item.

Return ONLY the following JSON structure:
{

"claims": [
{

"claim_id": 1,
"claim_text": "statement of the claim",
"location": "section/paragraph where this claim appears",
"claim_type": "Nature of the claim",
"exact_quote": "complete verbatim text containing the claim"

}
]

}

818

Evidence Identification Prompt

Paper text: {text}
For these claims: {claims_text}
Please identify relevant evidence that:

1. Directly supports or contradicts the claim’s specific assertion.

2. Is presented with experimental results, data, or concrete examples.

3. Can be traced to specific methods, results, or discussion sections.

4. Is not from the abstract or introduction.

Return ONLY the following JSON:
{

"evidence_sets": [
{

"claim_id": number,
"evidence": [

{
"evidence_id": number,
"evidence_text": "specific evidence",
"strength": "strong/moderate/weak",
"limitations": "key limitations",
"location": "section/paragraph",
"exact_quote": "verbatim text"

819
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}
]

}
]

}

820

Conclusion Evaluation Prompt

Analyze these claims and their evidence: {analysis_text}
For each claim-evidence pair, evaluate:

1. Whether the evidence justifies the claim.

2. The overall strength of support.

3. Any important limitations.

Return ONLY the following JSON:
{

"conclusions": [
{

"claim_id": number,
"conclusion_justified": true/false,
"robustness": "high/medium/low",
"key_limitations": "specific limitations",
"confidence_level": "high/medium/low"

}
]

}

821

A.3 One-by-One Prompt822

Claims Extraction Prompt

Analyze this research paper and extract ALL possible claims made by the authors. Paper text:
{text}
Your task is to identify all statements in the text that meet the following criteria for a claim:

1. Makes a specific, testable assertion about results, methods, or contributions.

2. Represents a novel finding, improvement, or advancement.

3. Presents a clear position or conclusion.

Make sure to:

• Include both major and minor claims.

• Don’t miss any claims.

• Present each claim as a separate item.

Return ONLY the following JSON structure:

{
"claims": [

{

823
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"claim_id": 1,
"claim_text": "statement of the claim",
"location": "section/paragraph where this claim appears",
"claim_type": "Nature of the claim",
"exact_quote": "complete verbatim text containing the claim"

}
]

}

824

Evidence Analysis Prompt

Paper text: {text}
For the following claim from the paper: "{claim[’claim_text’]}"
Please identify relevant evidence that:

1. Directly supports or contradicts the claim’s specific assertion.

2. Is presented with experimental results, data, or methodology.

3. Can be traced to specific methods, results, or discussion sections.

4. Is not from the abstract or introduction.

If NO evidence is found for the given Claim, return:

{
"claim_id": {claim['claim_id']},
"evidence": [],
"no_evidence_reason": "Explain why no evidence was found (e.g., 'Claim is unsupported', '

↪→ Claim is theoretical without empirical evidence', etc.)"
}

ELSE: Return ONLY the following JSON structure:

{
"claim_id": {claim['claim_id']},
"evidence": [

{
"evidence_id": 1,
"evidence_text": "specific experimental result/data point",
"evidence_type": "primary/secondary",
"strength": "strong/moderate/weak",
"limitations": "stated limitations or assumptions",
"location": "specific section & paragraph",
"exact_quote": "verbatim text from paper"

}
]

}

825

Conclusion Analysis Prompt

Paper text: {text}
Analyze the following claim and its supporting evidence: {single_claim_analysis}
Provide a comprehensive conclusion analysis following these guidelines:

1. Evidence Assessment:

• Evaluate the strength and quality of ALL evidence presented.
• Consider both supporting and contradicting evidence.
• Assess the methodology and reliability of evidence.

826
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2. Conclusion Analysis:

• Determine what the authors concluded about this specific claim.
• Evaluate if the conclusion is justified by the evidence.
• Consider the relationship between evidence quality and conclusion strength.

3. Robustness Evaluation:

• Assess how well the evidence supports the conclusion.
• Consider methodological strengths and weaknesses.
• Evaluate the consistency of evidence.

4. Limitations Analysis:

• Identify specific limitations in both evidence and conclusion.
• Consider gaps in methodology or data.
• Note any potential biases or confounding factors.

Return ONLY the following JSON structure:

{
"conclusions": [

{
"claim_id": {claim_id},
"author_conclusion": "detailed description of authors' conclusion based on evidence

↪→ ",
"conclusion_justified": true/false,
"justification_explanation": "detailed explanation of why conclusion is/isn't

↪→ justified",
"robustness_analysis": "comprehensive analysis of evidence strength and reliability

↪→ ",
"limitations": "specific limitations and caveats",
"location": "section/paragraph where conclusion appears",
"evidence_alignment": "analysis of how well evidence aligns with conclusion",
"confidence_level": "high/medium/low based on evidence quality"

}
]

}

827
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B Additional Details on Annotation 828

B.1 Paper Selection 829

• Select one recent research paper in the field of artificial intelligence or machine learning. 830

• Prioritize papers published in 2024 to ensure relevance to current developments. 831

• When possible, select a paper with fewer than 20 pages to facilitate thorough annotation. 832

• Avoid papers with heavily mathematical content to ensure accessibility. 833

• Complete all annotation tasks independently, without employing large language models for assistance 834

at any stage of the process. 835

B.2 Annotator Guidelines 836

Task Description 837

Your task is to identify all statements in the text that qualify as claims under the following criteria: 838

1. Specificity: The statement makes a specific, testable assertion about results, methods, or contribu- 839

tions. 840

2. Novelty: The statement represents a novel finding, improvement, or advancement. 841

3. Clarity: The statement presents a clear position or conclusion. 842

Requirements 843

• Include both major and minor claims. 844

• Ensure no claim is overlooked. 845

• Present each claim as a separate item. 846

Evidence Identification 847

For each identified claim, find and document relevant evidence that: 848

1. Relevance: Directly supports or contradicts the claim’s specific assertion. 849

2. Concrete Support: Is presented with experimental results, data, or concrete examples. 850

3. Traceability: Can be traced to specific methods, results, or discussion sections in the text. 851

4. Exclusions: Evidence must not be derived from the abstract or introduction sections of the text. 852

Conclusion Analysis 853

• Justification: Evaluate whether the conclusions drawn in the text are justified by the evidence 854

provided. 855

Annotators followed explicit guidelines for identifying claims and evidence. Claims were annotated 856

based on being novel, specific, and clearly stated scientific assertions, while evidence included supporting 857

sentences explicitly linked to these claims. Annotators were instructed to select the minimal text span that 858

fully conveyed the claim or evidence, avoiding unnecessary contextual sentences. 859
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B.3 Inter-Annotator Agreement Methodology860

To evaluate CLAIM-BENCH annotation reliability, we calculated Inter-Annotator Agreement on a subset861

of 30 papers, each annotated by two different annotators. For claims and evidence, we computed the862

F1-score treating each annotator alternately as ground truth to ensure symmetry. F1-score was chosen for863

its relevance to information extraction tasks, balancing precision and recall.864

Additionally, we automated Cohen’s κ computation using an LLM assistant (Gemini 2.5) on the865

30-paper subset. For each paper, the LLM assistant performed four steps clearly defined below: (i)866

Extracted raw annotation files, (ii) Built binary vectors indicating claim/evidence presence per sentence (1867

for presence, 0 otherwise), (iii) Populated the 2×2 contingency table (elements a, b, c, d) where:868

• a: sentences marked by both annotators,869

• b: sentences marked only by annotator 1,870

• c: sentences marked only by annotator 2,871

• d: sentences not marked by either annotator,872

(iv) Computed Cohen’s κ as:873

Po =
a+ d

N
, Pe =

(a+ b)(a+ c) + (c+ d)(b+ d)

N2
, κ =

Po − Pe

1− Pe
874

The automated procedure was validated manually on a sample of 10 papers, confirming arithmetic875

accuracy. The results yielded κ = 0.66 (substantial agreement) for claims and κ = 0.30 (fair agreement)876

for evidence. The lower agreement for evidence was anticipated, given sparse and dispersed evidence877

sentences (<0.3% of total text). Minor boundary discrepancies or multiple valid evidence spans legitimately878

lowered agreement. Nonetheless, these scores affirm CLAIM-BENCH’s robustness as a challenging yet879

reliable benchmark.880

Cohen’s κ Agreement Prompt

Paper filename: {pdf_name} Total sentences in paper: {total_sentences}

You are given two raw annotation lists for claim identification—one from Annotator 1 and one
from Annotator 2. Follow the steps below exactly to compute Cohen’s κ:

1. Vector Construction Build two binary vectors of length N = {total_sentences}:

• 1 if the sentence was marked as a claim by the annotator.
• 0 if the sentence was not marked as a claim.

2. Contingency Table Using the two vectors, populate the 2× 2 table:

Ann 2 = 1 Ann 2 = 0

Ann 1 = 1 a b
Ann 1 = 0 c d

3. Compute κ

Po =
a+ d

N

Pe =
(a+ b

N

)(a+ c

N

)
+

(c+ d

N

)(b+ d

N

)
κ =

Po − Pe

1− Pe881
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4. Return only the JSON below:

{
"kappa_claims": 0.00

}

Raw Annotations – Annotator 1: {raw_annotations1}

Raw Annotations – Annotator 2: {raw_annotations2}
882

Example Output: Cohen’s κ Calculation

We compute Cohen’s κ for claim identification on a paper with N = 667 sentences.

Annotation statistics

• Annotator 1 marked 5 sentences as claims.

• Annotator 2 marked 6 sentences as claims.

• Overlap (both claim = 1): 4 sentences.

Contingency table

Ann 2 = 1 Ann 2 = 0 Row Tot.
Ann 1 = 1 4 1 5
Ann 1 = 0 2 660 662

Col. Tot. 6 661 667

Calculations

Po =
a+ d

N
=

4 + 660

667
≈ 0.9955,

Pe =
(a+ b

N

)(a+ c

N

)
+

(c+ d

N

)(b+ d

N

)
=

(
5

667

)(
6

667

)
+
(
662
667

)(
661
667

)
≈ 0.98375,

κ =
Po − Pe

1− Pe
=

0.99550− 0.98375

1− 0.98375
≈ 0.7231.

Result JSON
{

"kappa_claim": 0.7231
}

883
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B.4 Annotation Tool884

Figure 5: The custom annotation tool interface used for CLAIM-BENCH dataset creation, enabling direct PDF text
selection and structured labeling (e.g., “Add as Claim” button) of claim-evidence pairs.

B.5 Dataset Statistics885

Table 4: Detailed Summary Statistics for the Dataset

Statistic Value Statistic Value

Overall Dataset Statistics

Total Annotations 346 Avg Claims per Paper 3.33
Unique Papers 100 Median Claims per Paper 3
Unique Claims 331 Min / Max Claims per Paper 1 / 8

Unique Evidence Passages 335 Avg Evidence per Paper 3.67
Duplicate Claims (Total) 15 Median Evidence per Paper 3

Min / Max Evidence per Paper 1 / 9

Content Characteristics (Length in Words)

Avg Claim Length 22 Avg Evidence Length 28
Median Claim Length 20 Median Evidence Length 25
Min / Max Claim Length 8 / 43 Min / Max Evidence Length 10 / 40
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(a) LLAMA Recall (b) Ministral Recall

(c) Claude Recall (d) GPT-4 Recall

Figure 6: Mean recall by document size groups (small, medium, large) for different models and prompting strategies,
illustrating performance trends across increasing token counts.

C Impact of Documents’ Token Length 886

Figure 6 plots mean recall for three prompting strategies—Three-Pass, One-by-One, and Single-Pass— 887

across three document-length buckets (< 15 k, 15–20 k, ≥ 20 k tokens). A closer reading of the bars 888

yields three key observations: 889

1. Performance drops are tied to the strategy more than the model size. 890

• For every model, the Single-Pass run shows the steepest decline as documents grow. 891

• Example: LLaMA’s recall plunges from about 0.60 in small papers to roughly 0.40 in ≥20 892

k-token papers under Single-Pass. 893

2. Once an iterative strategy is used, the size-related gap all but disappears. 894

• Iterative prompting (Three-Pass or One-by-One) largely neutralises length effects—even for the 895

smaller models. 896

• LLaMA 70B: In One-by-One mode the large-document group matches or exceeds the small- 897

document group (≈ 0.78 vs ≈ 0.76). 898

• Ministral 8B: Three-Pass recall stays virtually flat (∼ 0.72–0.75) across all three size buckets; 899

the length penalty only appears in Single-Pass. 900

3. Larger models still benefit, but their advantage is greatest with fine-grained prompts. 901

• Claude 3.5 Sonnet: Recall rises with document size under Three-Pass (≈ 0.72 → 0.85), and 902

remains ≥ 0.75 in One-by-One. 903

• GPT-4-Turbo: One-by-One keeps recall at or above 0.80 for medium- and large-size papers; the 904

drop to ∼ 0.66 for large papers occurs only in Three-Pass, not in Single-Pass. 905
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The figure 6 shows that prompt granularity is the dominant lever for long-context recall. Single-pass906

prompting amplifies context-window limits—especially in smaller models—but iterative, claim-level907

prompting (Three-Pass and One-by-One) recovers performance, sometimes even improving it as the text908

grows. Larger models are naturally more stable, yet they, too, realise their full potential only when given909

finer-grained, multi-step instructions.910

C.1 Qualitative Analysis Metrics Selection911

We selected our claim and evidence categories based on synthesizing and extending established types912

from prominent scientific validation literature.2 This categorization draws on prior works, notably Clini-913

Fact (Zhang et al., 2025), CliVER (Liu et al., 2024a), SCITAB (Lu et al., 2023), and SciClaimHunt (Kumar914

et al., 2025), ensuring comprehensive coverage and alignment with established standards in scientific915

claim and evidence categorization. The chosen categories reflect prevalent argumentative structures and916

evidential forms across multiple domains, enhancing the applicability and robustness of CLAIM-BENCH.917

Methodological claims highlight innovation and technique advancements, while empirical claims cover918

observational and experimental findings central to scientific research. Comparative claims are integral to919

evaluating methodological or result-oriented superiority, whereas theoretical and causal claims capture920

conceptual advancements and explanatory relationships, respectively.921

For evidence, we included experimental and observational evidence to reflect controlled and real-world922

conditions prevalent in scientific studies. Comparative evidence provides direct performance or outcome923

comparisons, essential for validation. Statistical evidence captures rigorous quantitative analysis, crucial924

for establishing scientific credibility, and expert evidence incorporates authoritative insights, emphasizing925

domain expertise.926

Claim Categories:927

Methodological claims highlight innovation in techniques or frameworks.928

Example: "We propose a novel attention mechanism, sparse-attention, which reduces computa-929

tional complexity."930

Empirical claims cover observational and experimental findings central to scientific research.931

Example: "Our study of 1,000 patients revealed that Drug X lowers blood pressure by an average of932

10 mmHg."933

Comparative claims are integral to evaluating methodological or result-oriented superiority.934

Example: "The BERT-large model achieves a 5% higher accuracy on the SQuAD 2.0 dataset935

compared to RoBERTa-large."936

Theoretical and Causal claims capture conceptual advancements and explanatory relationships, respec-937

tively.938

Example: "Increased screen time before bed directly causes a measurable delay in sleep onset in939

adolescents."940

Evidence Categories:941

Experimental evidence is derived from controlled studies where researchers actively manipulate variables942

to test a hypothesis.943

Example: "The treatment group showed a 95% reduction in infection rates compared to the placebo944

group under controlled lab conditions."945

Observational evidence comes from studies where subjects are observed in their natural setting without946

researcher intervention.947

te Example: "A cohort study of 5,000 individuals found a positive correlation between high-fiber948

diets and reduced risk of heart disease."949

2The categorization of the outputs themselves was automated using the claude-3-5-sonnet-20241022 model to ensure
consistency.
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Comparative evidence provides direct performance or outcome comparisons, essential for validation. 950

Example: "Table 3 shows our algorithm processed the dataset in 5.2 seconds, while the baseline took 951

11.8 seconds." 952

Statistical evidence captures rigorous quantitative analysis crucial for establishing scientific credibility. 953

Example: "A p-value of < 0.001 indicates that the observed difference in crop yield is statistically 954

significant." 955

Expert evidence incorporates authoritative insights or the authors’ synthesis of findings. 956

Example: "Based on these findings, we conclude that the geological formations are consistent with 957

those found in other volcanic regions." 958

C.2 Evidence Qualitative Analysis 959

Table 5: Evidence Categorization: Percentage (and Rank) across Models and Strategies

Model and Strategy Experimental Observational Comparative Statistical Expert

Human Annotations 23.7 (2) 16.3 (4) 20.8 (3) 25.3 (1) 13.9 (5)

Claude Models
Claude Single Pass 20.3 (3) 10.9 (4) 34.2 (1) 32.1 (2) 2.5 (5)
Claude 3-Pass 26.8 (2) 13.0 (4) 35.4 (1) 23.6 (3) 1.2 (5)
Claude One-by-One Pass 33.9 (1) 11.4 (4) 29.4 (2) 22.3 (3) 3.1 (5)

GPT Models
GPT 3-Pass 27.5 (2) 21.5 (3) 28.6 (1) 18.1 (4) 4.4 (5)
GPT All at Once 23.7 (3) 12.2 (4) 33.2 (1) 27.6 (2) 3.3 (5)
GPT One-by-One Pass 39.1 (1) 11.7 (4) 27.7 (2) 17.7 (3) 3.9 (5)

Gemini Models
Gemini 3-Pass 23.7 (2) 17.3 (4) 31.0 (1) 19.4 (3) 8.6 (5)
Gemini One-by-One Pass 28.3 (1) 27.3 (2) 21.9 (3) 16.0 (4) 6.5 (5)
Gemini Single Pass 27.1 (2) 14.7 (4) 29.1 (1) 22.2 (3) 7.0 (5)

Llama Models
Llama 3-Pass 26.3 (2) 16.8 (4) 29.9 (1) 22.3 (3) 4.8 (5)
Llama One-by-One Pass 31.3 (1) 16.0 (4) 25.7 (2) 20.7 (3) 6.2 (5)
Llama Single Pass 27.7 (2) 12.1 (4) 28.5 (1) 27.4 (3) 4.2 (5)

Ministral Models
Ministral 3-Pass 22.9 (2) 31.1 (1) 19.7 (3) 14.2 (4) 12.2 (5)
Ministral One-by-One Pass 13.8 (3) 13.0 (4) 32.5 (2) 34.4 (1) 6.2 (5)
Ministral Single Pass 21.5 (3) 22.9 (2) 21.3 (4) 23.1 (1) 11.3 (5)

Phi Models
Phi 3-Pass 32.1 (1) 21.7 (3) 23.8 (2) 14.1 (4) 8.2 (5)
Phi One-by-One Pass 27.6 (2) 15.8 (4) 30.0 (1) 20.7 (3) 5.9 (5)
Phi Single Pass 27.2 (2) 17.8 (4) 30.8 (1) 21.2 (3) 3.0 (5)
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C.3 Execution Time Analysis960
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Note: Plot capped at 1600 seconds. 117 extreme outliers were filtered.

Figure 7: Execution time comparison (box plots): Single-Pass (■) is fastest, One-by-One (■) is slowest. Models
vary greatly in speed (e.g., Claude consistently fast; LLaMA/Phi often requiring >1000s).

Execution times differ across models and strategies. GPT is highly efficient in the Single-Pass (under961

200s) and moderate in one-by-one approaches (∼500s). Gemini exhibits intermediate execution times962

across all strategies, notably higher for the three-pass (∼600s). Claude consistently achieves the fastest963

execution, staying under 200 seconds. LLaMA shows extensive variability, especially with one-by-one964

strategies frequently exceeding 1,200 seconds, reflecting significant computational demands. Ministral965

shows relatively balanced execution times, with three-pass and one-by-one strategies averaging around966

600–900 seconds. Phi demonstrates the highest computational intensity, especially in one-by-one strate-967

gies, often surpassing 1,200 seconds, highlighting the considerable resource investment required for968

thorough analyses. The execution times recorded for Gemini exhibit some variability, which may partially969

stem from fluctuations in API response latency during our experiments, combined with the necessary970

sleep() intervals implemented for rate limiting.971

C.4 Sentence Distance Detailed Analysis972
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Figure 8: Aggregated statistics of the sentence_gap metric Count, Max, Mean, and Variance (Var)—for each model
under the three prompting strategies (Three-Pass, One-pass, and One-by-One). Larger counts and wider gaps (e.g.,
Claude and LLaMA exceeding 2,200-sentence links in One-by-One) reflect broader retrieval, whereas smaller
models such as Ministral keep distances short and variance low. “N/A” indicates the model-strategy combination
was not executed.

25


	Introduction
	Related Work
	Methodology
	Dataset
	Evaluation Metrics

	Experimental Setup
	Analysis Methods

	Results
	Precision vs Recall
	 Smaller vs Larger Models
	Claims vs Evidence Extraction
	Impact of Prompting Strategy
	Impact of Token Length on Recall 
	Types of Claims and Evidences

	Discussion
	Conclusion
	Limitations
	Prompt Templates
	Single-Pass Prompt
	Three-Pass Prompt
	One-by-One Prompt

	Additional Details on Annotation
	Paper Selection 
	Annotator Guidelines
	Inter-Annotator Agreement Methodology
	Annotation Tool
	Dataset Statistics

	Impact of Documents' Token Length
	Qualitative Analysis Metrics Selection
	Evidence Qualitative Analysis
	Execution Time Analysis
	Sentence Distance Detailed Analysis


