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Abstract

Large Language Models (LLMs) have achieved001
significant advancements, however, the com-002
mon learning paradigm treats LLMs as passive003
information repositories, neglecting their po-004
tential for active learning and alignment. Some005
approaches train LLMs using their own gener-006
ated synthetic data, exploring the possibility of007
active alignment. However, there is still a huge008
gap between these one-time alignment methods009
and the continuous automatic alignment of hu-010
mans. In this paper, we introduce I-SHEEP, an011
Iterative Self-EnHancEmEnt Paradigm. This012
human-like paradigm enables LLMs to iter-013
atively self-improve even in low-resource014
scenarios. Compared to the one-time align-015
ment method Dromedary (Sun et al., 2023b),016
which refers to the first iteration in this pa-017
per, I-SHEEP can significantly enhance ca-018
pacities on both Qwen and Llama models. I-019
SHEEP achieves a maximum relative improve-020
ment of 78.2% in the Alpaca Eval, 24.0% in the021
MT Bench, and an absolute increase of 8.88%022
in the IFEval accuracy over subsequent itera-023
tions in Qwen-1.5 72B model. Additionally,024
I-SHEEP surpasses the base model in various025
standard benchmark generation tasks, achiev-026
ing an average improvement of 24.77% in code027
generation tasks, 12.04% in TrivialQA, and028
20.29% in SQuAD. We also provide new in-029
sights based on the experiment results. Our030
code, datasets, and models are available at031
https://anonymous.4open.science/r/SHEEP/.032

1 Introduction033

Early studies improve model performance using034

human-labeled data, but the high cost of labeling035

limits scalability (Zhou et al., 2024; Zheng et al.,036

2024b). Some methods use powerful models to037

synthesize data, thereby improving student mod-038

els (Taori et al., 2023; Xu et al., 2024b). How-039

ever, these methods face performance ceilings and040

indirectly depend on strong models’ reliance on041

human-labeled signals (Li et al., 2023b). Addition- 042

ally, they often treat models as passive information 043

repositories, overlooking the models’ ability to ac- 044

tively align. Other methods focus on the active 045

alignment capabilities of LLMs, enhancing them 046

through self-generated data. Nevertheless, these 047

approaches typically rely on substantial external 048

signals or tools, such as raw text (Li et al., 2023b), 049

retrieval-augmented generation (RAG) (Asai et al., 050

2023), feedback from strong models (Lee et al., 051

2024), and high-quality questions (Huang et al., 052

2022), to achieve self-improvement. 053

Recently, some approaches explore the active 054

alignment capabilities of LLMs in low-resource 055

scenarios, aiming for models to self-improve with 056

minimal reliance on external signals (Wang et al., 057

2022b; Sun et al., 2023b,a). For example, Self- 058

Instruct (Wang et al., 2022b) prompts the model 059

to generate instructions using a seed dataset con- 060

taining only 175 human-labeled instruction pairs, 061

achieving self-alignment. Dromedary (Sun et al., 062

2023b) uses 16 manually crafted principles to guide 063

LLMs in generating instruction pair data, enhanc- 064

ing the quality of synthesized data. However, 065

these methods are typically one-time alignment ap- 066

proaches, showing significant gaps compared to the 067

continuous and automatic alignment that humans 068

perform in varying environments. In this paper, we 069

explore leveraging the model’s internal metacogni- 070

tive self-assessment to enable multi-round iterative 071

self-improvement in low-resource settings, similar 072

to human processes. 073

Educational research suggests that metacogni- 074

tive self-assessment plays a vital role in continuous 075

alignment, helping students reflect on their knowl- 076

edge and skills, manage cognitive resources, and 077

improve their performance (Yan et al., 2023). In- 078

spired by this perspective, we introduce I-SHEEP, 079

a human-like paradigm that enables LLMs to iter- 080

atively self-improve in low-resource settings. As 081

shown in Figure 1, I-SHEEP begins with seed data 082
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Instruction: Convert the following 
sentence into the future perfect tense.
Input: I will finish my homework
Output: By this time tomorrow, I will 
have finished my homework.
... ...
Instruction: Generate the next 10 
numbers in the Fibonacci sequence.
Input: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55
Output: 55 Self-Assess

Training

Self-Synthesize
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Instruction: Convert the following 
sentence into the future perfect tense.
Input: I will finish my homework
Output: By this time tomorrow, I will 
have finished my homework.
Score: 10
... ...
Instruction: Generate the next 10 
numbers in the Fibonacci sequence.
Input: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55
Output: 55
Score: 2

Instruction: Convert the following 
sentence into the future perfect tense.
Input: I will finish my homework
Output: By this time tomorrow, I will have 
finished my homework.
Score: 10
... ...
Instruction: Answer the following question:
Input: What is the capital of France?
Output: Paris
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Figure 1: Pipeline of I-SHEEP. The I-SHEEP framework takes the base model and small seed dataset as input, aligns
the base model iteratively from scratch independently, and finally obtains the self-enhanced models and high-quality
synthetic datasets. The I-SHEEP framework consists of four main components: the self-synthesize process generates
instruction-pair data, the self-assessment assesses the quality of the resulting data, the filtering component filters out
low-quality data based on self-assessment, and the training component integrates the high-quality data into the base
model.

and leverages the understanding and generation ca-083

pabilities of LLMs to create additional instruction084

pairs. We then perform self-assessment, allowing085

LLMs to monitor and assess their learning process.086

By filtering out incorrect cognitions and retaining087

accurate ones, LLMs can self-improve by aligning088

themselves with these correct cognitions. Through089

an iterative process, LLMs can continuously self-090

align, relying solely on their internal knowledge.091

The main contributions can be summarized as092

follows: (1) We introduce I-SHEEP, which aims093

to explore the potential of LLMs to iteratively094

self-improve in low-resource scenarios. I-SHEEP095

incorporates metacognitive self-assessment to mon-096

itor and manage the learning process of LLMs,097

enabling iterative self-improvement. (2) We ana-098

lyze the factors that influence the continuous im-099

provement potential of LLMs. Our experiments100

show that the self-improvement ability of LLMs101

is influenced by their inherent capabilities and102

metacognitive levels, and varies with model size103

and metacognitive capacity. (3) We validate the ef-104

fectiveness and efficiency of the I-SHEEP frame-105

work through experiments. Even in low-resource106

scenarios, I-SHEEP significantly improves the per-107

formance of LLMs on various chat benchmarks and108

standard benchmarks through multiple iterations.109

2 Related Work 110

2.1 Automatic Data Selection 111

Zhou et al.; Bai et al. emphasize that dataset 112

quality outweighs quantity during the instruction 113

fine-tuning stage. As a result, some studies on 114

instruction data selection have emerged, focusing 115

on identifying high-quality subsets from candidate 116

datasets(Li et al., 2023a; Du et al., 2023; Liu et al., 117

2023; Li et al., 2024; Ge et al., 2024; Xia et al., 118

2024). These methods aim to improve the model 119

performance, accelerate the training process, and 120

facilitate data-efficient alignment. Li et al. intro- 121

duce an Instruction-Following Difficulty (IFD) met- 122

ric and use it to select the top 5% of data for fine- 123

tuning models. The filtering phase in the I-SHEEP 124

framework does not rely on predefined metrics, 125

external models, or human assistance, and is or- 126

thogonal to existing selection methods. 127

2.2 Synthetic Data for Improving Model 128

Generating synthetic data refers to using the pow- 129

erful generative capabilities of LLMs to create new 130

data that simulates potential real-world scenarios, 131

reducing the need for costly manual labeling. Some 132

methods use the model’s self-generated data to im- 133

prove itself (Wang et al., 2022b; Sun et al., 2023b,a; 134
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Yehudai et al., 2024). Other methods leverage135

powerful closed models to generate synthetic data,136

enhancing the capabilities of open-source models137

(Taori et al., 2023; Chiang et al., 2023; Xu et al.,138

2023a; Yu et al., 2023; Wei et al., 2023). In ad-139

dition to generating complete instruction-output140

pairs, some methods collect existing raw data and141

synthesize corresponding questions or answers to142

create supervised data for improving the model143

(Huang et al., 2022; Li et al., 2023b; Zheng et al.,144

2024b; Mitra et al., 2024; Wang et al., 2022a; Asai145

et al., 2023). Some methods begin with instruction-146

output pairs, generating feedback or refining an-147

swers to improve data quality and enhance the148

model’s reasoning capabilities.(Lu et al., 2023; Li149

and He, 2024; Gou et al., 2023). The I-SHEEP150

framework evolves from the aforementioned static,151

one-time improvement paradigm to a dynamic, con-152

tinuous self-enhancement process.153

2.3 Iterative Enhancement for LLMs154

There are several approaches to iterative enhance-155

ment that rely on the help of strong models or exter-156

nal tools (Chen et al., 2024, 2023; Lu et al., 2023;157

Gao et al., 2023; Lee et al., 2024). IterAlign (Chen158

et al., 2024) employs strong models like GPT-4 and159

Claude2 to detect and correct errors in responses160

from base LLMs and give the corresponding con-161

stitution for improving the safety of LLMs. These162

methods in iterative enhancement typically depend163

on strong models or external tools to guarantee164

ongoing model optimization and avoid model col-165

lapse. In addition, some methods explore itera-166

tive enhancement in the RLHF phase to continu-167

ously align the model with human preference (Yuan168

et al., 2024; Liu et al., 2024; Pang et al., 2024; Xu169

et al., 2024a, 2023b; Wu et al., 2024; Wang et al.,170

2024). These iterative RLHF methods start with the171

aligned model, while we focus on the base model172

continuous self-alignment from scratch.173

3 Methodology174

3.1 Self-Driven Data Synthesis175

Self Instruct (Wang et al., 2022b) leverages an off-176

the-shelf large language model (LLM) for the gen-177

eration of synthetic data. The approach starts with178

a small set of 175 prompts, known as the seed task179

pool, leveraging the model’s powerful understand-180

ing and generative capabilities to generate a broader181

range of prompts and responses. This section elab-182

orates on the Self-Driven Data Synthesis process183

from two perspectives: Instruction generation and 184

response generation. For ease and consistency in 185

data creation, we utilize a standardized instruction 186

format introduced by Alpaca (Taori et al., 2023), 187

enabling the direct generation of instructions along 188

with their corresponding potential inputs. 189

Instruction generation. Having some prompts
from the seed dataset Ds and the meta-prompt
pmeta from Alpaca (Taori et al., 2023). The pro-
cess that model M generating new prompt set P
through In-Context Learning (ICL) can be modeled
as:

pi = argmaxp(pi|{d}, pmeta; θ)

pi denotes a new prompt generated by model M , 190

{d} represents a subset sampled from the seed 191

dataset Ds for in-context learning (ICL). The sym- 192

bol θ stands for the parameter of model M . 193

Response generation. After obtaining the set of 194

prompts P , we use the model M to generate corre- 195

sponding responsesR via a zero-shot approach. 196

3.2 Self-Assessment and Data Filtering 197

To ensure that the data used for self-enhancement 198

maintains a high-quality standard, a two-stage pro- 199

cess comprising self-assessment and data filtering 200

is implemented. 201

Self-Assessment. We pair the generated prompt 202

set P and response set R to form the instruction- 203

output pair data Draw. Given the capacity limita- 204

tions of models, ensuring the quality of synthetic 205

pairs can be challenging, making it essential to 206

assess the quality of the generated data. Manual 207

assessment is often impractical, therefore, we intro- 208

duce an automated assessment method that relies 209

solely on the model. Specifically, the model au- 210

tonomously evaluates each generated response for 211

its quality and adherence to the instructions. Each 212

entry is scored based on predefined criteria, which 213

quantitatively reflect the compliance and quality of 214

the response. 215

Data Filtering. After the self-assessment, the 216

subsequent data filtering phase discards entries that 217

do not meet the specified quality threshold. This 218

step guarantees that only entries of the highest qual- 219

ity are retained in the dataset, thereby enhancing 220

the overall reliability and utility of the generated 221

data. Initially, we apply heuristic rule-based filter- 222

ing to the generated data during data generation, 223

following the Self-Instruct (Wang et al., 2022b). 224

Additionally, after data generation, we filter the 225

instruction-output pairs based on the assessment 226
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scores from the self-assessment phrase. A thresh-227

old C is applied to filter Draw based on assessment228

scores, yielding a high-quality dataset D.229

3.3 Iterative Model Enhancements230

The Iterative Self-Enhancement algorithm aims to231

incrementally enhance a language model by gener-232

ating and utilizing high-quality synthetic datasets.233

As shown in Algorithm 1, starting with an initial234

model M base and a small seed task set Ds, the al-235

gorithm iterates over a specified number of steps236

T and a filtering threshold C. At each iteration t,237

the algorithm performs several functions: it gen-238

erates a new set of prompts, Pt, using a prompt239

generation process that leverages the current model240

M t and the seed data Ds. It then produces cor-241

responding responses, Rt, forming a raw dataset,242

Dt
raw = {Pt,Rt}. This dataset undergoes a self-243

assessment process to evaluate the quality of re-244

sponses, after which it is filtered using the thresh-245

old C to retain only high-quality data, resulting in246

Dt. The model M t is then trained on Dt to align it247

closely with the refined data, enhancing its perfor-248

mance iteratively by supervised fine-tuning (SFT)249

approach. This process continues until it concludes250

at step T , ultimately producing a stronger language251

model MT and a refined synthetic dataset DT .252

4 Experiments253

4.1 Evaluation254

4.1.1 Chat Evaluation255

We evaluate the instruction-following ability and256

response quality of aligned models with three chat257

benchmarks, AlpacaEval(Dubois et al., 2023), MT-258

Bench(Zheng et al., 2024a), and IFEval(Zhou et al.,259

2023), due to their comprehensiveness, fine gran-260

ularity, and reproducibility. Both AlpacaEval and261

MT-Bench rely on GPT as an evaluator. IFEval pro-262

vides four types of accuracy scores: prompt-level263

strict-accuracy, inst-level strict-accuracy, prompt-264

level loose-accuracy, and inst-level loose-accuracy.265

4.1.2 OpenCompass Evaluation266

We use the OpenCompass evaluation platform267

(Contributors, 2023), a comprehensive one-stop268

platform for LLM evaluation. The evaluation269

includes standard benchmarks such as BoolQ270

(Clark et al., 2019), PIQA (Bisk et al., 2019),271

SIQA (Sap et al., 2019), HellaSwag (Zellers et al.,272

2019), WinoGrande (Sakaguchi et al., 2019), ARC-273

c (Clark et al., 2018), OpenBookQA-Fact (Mi-274

Algorithm 1 Iterative Self-Enhancement Algo-
rithm
Input: Initial seed task set Ds, Base model M base

Hyper-parameter: Iteration steps T , Filtering
threshold C, Data size I
Output: Enhanced LLMs MT , High-quality
datasets DT

1: Initialize M0 ←M base

2: for t = 0 to T do
3: Pt ← generate_prompts(Ds, pmeta, M t)
4: Rt ← generate_responses(Pt, M t)
5: Dt

raw ← {(Pt,Rt)}
6: St ← self_assessment(Dt

raw, M t)
7: Dt ← filtering(Dt

raw, St, C)
8: M t+1 ← SFT(M base, Dt)
9: end for

10: return M t, Dt

haylov et al., 2018), CommonsenseQA (Contribu- 275

tors, 2023), and MMLU (Hendrycks et al., 2020). It 276

also includes code generation benchmarks such as 277

HumanEval (Chen et al., 2021) and MBPP (Austin 278

et al., 2021), word knowledge benchmark TriviaQA 279

(Joshi et al., 2017), and reading comprehension 280

benchmark SQuAD2.0 (Rajpurkar et al., 2018). 281

Full results on these benchmarks are available in 282

Appendix C. 283

4.2 Main Settings 284

We conduct experiments on the Qwen-1.5 (Team, 285

2024) and Llama-3 (Dubey et al., 2024) models 286

to validate the effectiveness and generalization of 287

I-SHEEP. Additionally, we explore the impact of 288

different model sizes on I-SHEEP by conducting 289

experiments on Qwen-1.5 1.8B, 4B, 7B, 14B, 32B, 290

and 72B models, providing a detailed analysis 291

based on the experimental results. In each iter- 292

ation, the dataset for training is generated by the 293

model from the last iteration. The case study of the 294

generated data and the overall quality analysis can 295

be found in Appendix B and Appendix F, respec- 296

tively. We utilized LLaMA-Factory (Zheng et al., 297

2024c) for LoRA fine-tuning, with specific param- 298

eters detailed in Appendix E. Under the configu- 299

ration of using VLLM for inference (Kwon et al., 300

2023), the maximum duration of each iteration is 301

about 4 hours on NVIDIA A800-SXM4-80GB×8, 302

equivalent to one iteration time for Qwen-1.5 72B. 303

4



4.3 Self-Assessment and Filter Settings304

During the self-assessment phase, we propose three305

variants, simple standard prompt, combined stan-306

dard prompt, and ICL prompt, to evaluate data307

quality. Detailed prompt contents can be found in308

Appendix A.309

In the filtering phase, there are six settings, sim-310

ple standard prompt based filtering, combined stan-311

dard prompt based filtering, ICL prompt filtering,312

PerPLexity (PPL) filtering, density filtering, and313

the combination of density and PPL filtering. In314

addition to the first three filtering settings based315

on scores obtained in the Self-Assessment phase,316

we also explore data filtering methods that do not317

rely on external tools or models. For example, PPL318

filtering uses the PPL value computed by the model319

itself to evaluate the quality of instruction-output320

pairs, thereby eliminating low-quality data. We fil-321

ter out data points with PPL greater than 50. Den-322

sity filtering extracts vector representations from323

the model’s final layer and performs K Nearest324

Neighbors (KNN) clustering, sampling from each325

cluster to ensure dataset diversity. We set 3000 as326

the clustering number K. The combination of den-327

sity and PPL filtering setting first clusters the data328

and then selects samples with lower PPL values329

from each cluster, ensuring the filtered dataset’s330

quality and diversity.331

4.4 Baseline332

We use the base model, Self Instruct (Wang et al.,333

2022b), and Dromedary (Sun et al., 2023b) as base-334

lines to explore the continuous and automatic en-335

hancement of the human-like framework, I-SHEEP.336

Self Instruct is a one-time alignment approach337

where LLMs are trained directly on data they gen-338

erate, without a self-assessment phase. Similarly,339

Dromedary is a one-time alignment process where340

the model generates responses following specific341

principles, which are then engraved into the model.342

This approach is similar to the first iteration setting343

described in this paper.344

4.5 Iterative Settings and Ablation Settings345

Iterative Settings. We investigate the impact of I-346

SHEEP on efficiency across different iterative self-347

enhancement settings, including using data gener-348

ated by the last iteration model to train the base349

model, using data generated by the last iteration350

model to train the last iteration model, and using351

data generated by all previous iterations to train352

the base model. Additionally, we directly generate 353

20K and 30K data points for comparative experi- 354

ments to eliminate the influence of data size in the 355

iterative settings mentioned above. Notably, in the 356

first iteration, all settings are identical, where the 357

base model generates 10k data, filters it, and uses it 358

to fine-tune itself, akin to the Dromedary(Sun et al., 359

2023b). 360

Ablation Settings. we adjust high-dimensional 361

variables such as the threshold C in the self- 362

assessment phase, data size I in the generation 363

phase, and iteration steps T in the iterative training 364

phase to validate their impact on I-SHEEP. Further- 365

more, we conduct ablation experiments with differ- 366

ent levels of metacognitive self-assessment, includ- 367

ing no self-assessment, assessing only response 368

quality, assessing only instruction-following de- 369

gree, and assessing both response quality and 370

instruction-following degree. 371

5 Results 372

5.1 Main Results 373

Table 1 shows the experimental performance of 374

various model sizes across different iteration steps. 375

There are some new findings: (1) I-SHEEP ex- 376

hibits efficacy across various model sizes, with 377

particularly notable improvements in 72B. I- 378

SHEEP achieves a maximum relative improvement 379

of 78.2% in the Alpaca Eval, 24.0% in the MT 380

Bench, and an absolute increase of 8.88% in the 381

IFEval prompt-level strict accuracy over subse- 382

quent iterations in Qwen-1.5 72B model. Addition- 383

ally, I-SHEEP surpasses the base model in various 384

standard benchmark generation tasks, achieving 385

an average improvement of 24.77% in code gener- 386

ation tasks, 12.04% in Trivial QA, and 20.29% 387

in SQuAD. we find that the scores for the sec- 388

ond round of dialogues drop significantly after the 389

fourth iteration. This decline is likely due to our 390

generated data consisting solely of single-round di- 391

alogues, which do not improve and may even harm 392

the scores for the second round of dialogues. More 393

analysis can be found in the Appendix D. (2) The 394

potential for improvement varies with different 395

model sizes. The 1.8B, 4B, 7B, and 14B models 396

exhibit improvements over two iterations, 32B and 397

72B model can improve three and five iterations, 398

respectively, according to the IFEval benchmark. 399
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Setting Chat Benchmark Standard Benchmark

Alpaca
Eval

MT
Bench

IFEval Code Knowledge Reading Comprehension

P-level
S-accuracy

I-level
S-accuracy

P-level
L-accuracy

I-level
l-accuracy

Human
Eval/Plus

MBPP
Trivia
QA

SQuAD 2.0

1.8B

base – – – – – – 6.71/6.10 16.40 31.18 30.02
iter1 1.51 3.76 15.53 25.30 17.74 28.06 11.59/9.15 16.80 19.38 13.16
iter2 1.54 3.53 16.27 27.10 19.22 31.41 15.24/12.20 17.40 16.88 14.57
iter3 2.30 3.16 13.68 24.46 15.34 27.22 14.02/10.98 17.80 12.49 13.91

4B

base – – – – – – 10.98/8.54 28.00 40.95 27.96
iter1 2.61 4.97 19.41 29.98 24.03 34.77 30.49/26.83 34.00 38.94 24.90
iter2 2.96 4.79 19.78 32.61 23.84 36.81 31.10/27.44 35.20 37.20 24.63
iter3 3.78 4.99 18.85 31.41 22.18 35.37 32.93/28.66 35.80 35.37 31.67

7B

base – – – – – – 10.98/8.54 36.60 51.00 33.14
iter1 5.19 5.08 28.47 39.93 31.05 43.41 45.73/39.63 41.20 45.81 26.36
iter2 5.37 5.13 30.13 40.89 33.09 43.88 47.56/42.68 41.00 42.83 28.36
iter3 5.22 4.97 29.21 40.29 30.68 43.05 45.12/40.24 40.60 40.53 33.76

14B

base – – – – – – 17.68/15.85 41.40 57.72 20.37
iter1 4.77 5.68 28.84 41.13 33.46 46.40 45.73/40.85 49.00 56.81 30.52
iter2 6.27 5.97 30.87 42.93 33.46 46.40 48.78/42.07 45.60 54.45 38.57
iter3 7.30 5.48 30.13 43.05 33.27 46.04 50.00/43.29 45.20 55.30 43.42

32B

base – – – – – – 22.56/21.34 47.40 65.88 29.56
iter1 8.27 5.56 33.46 45.32 37.52 50.12 58.54/51.83 44.20 60.81 41.34
iter2 8.26 5.68 36.04 47.60 39.56 51.92 56.71/50.61 41.80 59.43 42.15
iter3 9.30 5.69 36.41 47.96 38.82 51.56 56.71/51.83 42.20 59.73 44.04
iter4 8.64 5.62 33.83 46.88 38.45 51.56 56.10/50.61 40.60 58.95 47.07

72B

iter1 6.64 ↑5.19 6.43 ↑1.54 35.67 ↑8.88 49.16 ↑6.72 40.48 ↑7.02 53.96 ↑4.79 50.61/45.12 ↑6.10/8.54 51.20 ↑4.80 60.81 ↑9.62 50.68 ↑17.27
iter2 9.06 7.90 37.34 51.32 40.85 54.56 56.71/49.39 51.80 61.55 52.27
iter3 10.51 7.97 41.22 54.32 44.18 57.19 56.10/50.61 52.60 62.00 61.42
iter4 11.22 5.45 42.14 54.56 46.21 58.63 51.83/47.56 56.00 70.43 64.55
iter5 11.83 5.62 44.55 55.88 47.50 58.75 56.71/53.66 55.60 70.11 67.95
iter6 11.60 5.75 42.33 53.84 45.10 56.95 51.22/48.17 55.20 70.01 67.82

Base Model – – – – – – 21.34/20.12 ↑35.37/33.54 50.20 ↑5.80 58.07 ↑12.36 47.66 ↑20.29
Self Instruct 5.26 ↑6.57 7.82 ↑0.15 33.64 ↑10.91 47.60 ↑8.28 39.56 ↑7.94 53.00 ↑5.75 53.05/46.95 ↑3.66/6.71 48.40 ↑7.60 71.25 ↓-0.82 51.90 ↑16.05

Table 1: Main results: experimental performance of various model sizes across different iteration steps. We stop
the iteration when the performance improvement in subsequent iterations stagnates or diminishes. The red settings
represent the baseline for our experiments on Qwen-1.5 72B. The Self Instruct (Wang et al., 2022b) setting involves
training the model using generated data without filtering. The iter1 setting indicates training the model using filtered
data, which is selected based on prompts, similar to the Dromedary approach (Sun et al., 2023b). Bold results
indicate the best results and ↑green values represent the maximal improvement over the baseline in subsequent
iterations.
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(a) Performance in the first three iterations with different thresh-
olds.

10 20 30 40 50
data size

0.34

0.36

0.38

0.40

0.42

Ac
cu

ra
cy

Prompt Level Strict Accuracy

10 20 30 40 50
data size

0.48

0.49

0.50

0.51

0.52

0.53

0.54

Ac
cu

ra
cy

Instance Level Strict Accuracy

10 20 30 40 50
data size

0.40

0.41

0.42

0.43

0.44

0.45

Ac
cu

ra
cy

Prompt Level Loose Accuracy

10 20 30 40 50
data size

0.53

0.54

0.55

0.56

0.57

Ac
cu

ra
cy

Instance Level Loose Accuracy

Iteration 1 Iteration 2 Iteration 3

(b) Performance in the first three iterations with different data
sizes.

Figure 2: Ablation performance for the first three iterations across different thresholds and data sizes. In subfigure
2a, the threshold -1 means that the generated data is not filtered by heuristic rules. The threshold 0 represents that
the I-SHEEP process does not use the self-assessment phase. Other thresholds represent filtering low-quality data
using the threshold, which refers to the score from the self-assessment phase. In subfigure 2b, the values on the
horizontal axis represent the amount of data generated (in thousands).

6



Setting Chat Benchmark

Alpaca
Eval

MT
Bench

IFEval

P-level
S-accuracy

I-level
S-accuracy

P-level
L-accuracy

I-level
L-accuracy

iter1(Dromedary) 6.64 6.43 35.67 49.16 40.48 53.96

Direct
20k 7.18 7.87 39.37 50.72 43.25 54.56
30k 6.53 7.75 38.08 50.24 43.07 54.92

Total_base
iter2 7.25 7.94 39.00 50.72 45.47 56.47
iter3 7.51 7.94 37.52 48.32 41.59 52.76

One_last
iter2 7.76 7.76 38.45 50.48 41.96 54.92
iter3 8.45 7.82 38.63 51.80 42.70 56.12

One_base iter2 9.06 7.90 37.34 51.32 40.85 54.56
iter3 10.51 7.97 41.22 54.32 44.18 57.19

Table 2: The performance of various iteration settings at
different iteration steps. One_base and One_last means
using data from the last iteration to train the base and
the last iteration model respectively. Total_base means
using data from all previous iterations to train the base
model. Direct represents using data generated by the
base model to train itself.

5.2 Iterative Setting Results400

Table 2 presents the chat benchmark performance401

for the Qwen-1.5 72B model across various iter-402

ation settings. More benchmark results are avail-403

able in Appendix C. Our findings are as follows:404

(1) Training the base model with data from405

the last iteration model is effective for iterative406

self-enhancement. At the third iteration in the407

One_base Setting, training the base model with the408

last iteration data achieves the highest performance409

on the chat benchmark. The notable performance410

improvement under this setting suggests that the411

model has the potential for further enhancement (re-412

fer to Table 1 72B results). Therefore, we chose the413

One_base setting for all subsequent experiments.414

(2) The data size is not the main factor influenc-415

ing iterative improvement. Training the base416

model with the last iteration data at the 3rd iter-417

ation outperforms training the base model with a418

combination of all data from previous iterations.419

5.3 Threshold Ablation420

As shown in Figure 2a, as the threshold increases,421

the performance of I-SHEEP at the 3rd iteration422

shows an upward trend. The threshold 8 is se-423

lected to ensure the possibility of further iterative424

improvement, given the significant performance425

increase in iteration 2 and iteration 3, and the good426

performance at iteration 3 with a threshold of 8.427

Choosing a threshold of 8 is not necessarily the428

optimal experimental setting, as thresholds of 6, 7,429

8, and 9 are all possible.430

Setting Chat Benchmark

IFEval

P-level
S-accuracy

I-level
S-accuracy

P-level
L-accuracy

I-level
L-accuracy

Density
iter1 34.20 46.76 39.56 51.80
iter2 37.34 49.76 41.22 53.72
iter3 37.52 49.52 39.56 51.56

PPL
iter1 36.60 49.16 41.77 54.08
iter2 36.04 46.64 39.92 50.84
iter3 33.27 45.92 36.41 49.52

Density
and PPL

iter1 37.52 49.64 42.51 54.68
iter2 40.48 52.16 44.73 56.24
iter3 38.82 50.48 41.96 53.60

Simple
Standard
Prompt

iter1 35.30 48.20 42.33 54.68
iter2 36.23 49.28 40.67 53.60
iter3 42.14 54.08 45.10 56.83

Combined
Standard
Prompt

iter1 35.67 49.16 40.48 53.96
iter2 37.34 51.32 40.85 54.56
iter3 41.22 54.32 44.18 57.19

ICL
Prompt

iter1 38.82 49.40 43.99 55.04
iter2 37.34 50.84 43.25 56.47
iter3 41.22 53.72 43.99 36.12

Table 3: Experimental results using different filtering
methods that rely solely on the model. PPL filtering
involves removing data points with high PPL values.
Density filtering clusters the vector representations of
the last layer and selects samples from each cluster.
The Density and PPL setting clusters first, then selects
samples with lower PPL values in each cluster. Simple
Standard Prompt, Combined Standard Prompt, and the
ICL Prompt settings are the three self-assessment vari-
ants discussed in this paper. Please refer to the appendix
for detailed prompt content. Bold results indicate the
best results, and blue results indicate the second-best
results in each column.

5.4 Data Size Ablation 431

Figure 2b shows a stable improvement in the first 432

three iterations across different data sizes (10k, 20k, 433

30k, 40k, 50k), demonstrating the robustness of 434

the I-SHEEP framework with respect to data size. 435

When the data size is 10k, the model performs well 436

in the 3rd iteration, meanwhile, there are significant 437

improvements between the first iterations. Consid- 438

ering the above factors and resource savings, we 439

chose 10k as the final data size setting. 440

5.5 Metacognitive Self-Assessment Analysis 441

5.5.1 Self-Assessment Robustness Analysis 442

Table 3 shows the performance of various self- 443

assessment degrees in the first three iterations. See 444

the Appendix C for more benchmark results. The 445

following findings can be drawn from the table: (1) 446

Using explicit self-assessment prompt is better 447

than using simple model internal states. On all 448

four IFEval accuracies, the highest values are ob- 449
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tained in the setting where the model is explicitly450

prompted for self-assessment. (2) The I-SHEEP451

framework is robust to prompt. Although the cri-452

teria differ between simple and combined standard453

prompt settings, their performance is quite similar.454

Even without designing a prompt, using just a few455

examples for ICL can achieve comparable results.456

Setting IFEval

P-level
S-accuracy

I-level
S-accuracy

P-level
L-accuracy

I-level
L-accuracy

no_prompt_iter1 35.67 47.60 41.04 52.88
no_prompt_iter2 36.97 48.80 40.30 51.80
no_prompt_iter3 37.52 48.92 39.37 50.72

quality_iter1 37.34 48.20 42.51 52.64
quality_iter2 36.04 49.04 40.67 53.00
quality_iter3 37.71 51.44 41.96 54.92

following_iter1 35.49 47.72 38.82 51.68
following_iter2 40.48 52.76 43.62 56.35
following_iter3 39.93 51.68 43.25 55.52

both_iter1 35.30 48.20 42.33 54.68
both_iter2 36.23 49.28 40.67 53.60
both_iter3 41.14 54.08 45.10 56.83

Table 4: Experimental results across various self-
assessment levels. The no_prompt setting means no
metacognitive self-assessment. The quality setting as-
sesses only the output quality. The following setting
measures instruction adherence, and the both setting
assesses both response quality and the degree of instruc-
tion adherence simultaneously. Bold results indicate
the best results, and blue results indicate the second-
best results in each column.

5.5.2 Self-Assessment Level Analysis.457

As shown in Table 4, we explore the efficiency of I-458

SHEEP across various self-assessment levels. Our459

findings include the following key points: (1) The460

higher the level of self-assessment, the greater461

the improvement in the efficiency and potential462

of the I-SHEEP framework. Assessing both qual-463

ity and instruction-following degree achieves the464

best performance at 3rd iteration, compared to the465

other settings. (2) Evaluating the degree of in-466

struction adherence of data pairs is better than467

only evaluating the quality of output. Compared468

to the quality experimental group, the following469

experimental group achieved an overall victory at470

2nd iteration on the IFEval benchmark.471

5.6 Generalization of I-SHEEP472

we conduct experiments on the llama 3 70B model473

to verify that the I-SHEEP framework is also ef-474

fective for other models. Table 5 shows that llama475

3 is also stably and iteratively enhanced through476

the I-SHEEP framework. Moreover, the significant477

Setting IFEval

P-level
S-accuracy

I-level
S-accuracy

P-level
L-accuracy

I-level
L-accuracy

llama3_iter1 9.43 19.06 10.35 21.70
llama3_iter2 9.61 ↑0.18 21.34 ↑2.28 11.28 ↑0.93 23.74 ↑2.04
llama3_iter3 12.38 ↑2.95 20.98 ↑1.92 14.42 ↑4.07 23.86 ↑2.16

Table 5: Performance in the first three iterations of
llama3. ↑Green values are the improvements over the
first iteration.

improvement between the 2nd iteration and the 3rd 478

iteration indicates that llama3 has the potential for 479

further enhancement. 480

6 Conclusion 481

In this paper, we emphasize and formally introduce 482

a challenging task, continuous self-alignment with 483

nothing, which aims to explore how to achieve and 484

to what extent self-alignment can be realized. We 485

present I-SHEEP, a framework that enables con- 486

tinuous iterative improvement of models without 487

relying on external data, tools, or models. I-SHEEP 488

leverages the inherent generation and comprehen- 489

sion capabilities of models, it uses the self-driven 490

data synthesis process for data generation and the 491

self-assessment process for assessing data qual- 492

ity. Based on these assessment scores, high-quality 493

data is filtered and used to train the model itself. 494

Our experiments demonstrate that models can con- 495

tinuously and iteratively improve using I-SHEEP, 496

with varying potential for improvement depending 497

on the model size and the level of metacognitive 498

self-assessment. Additionally, we conducted exten- 499

sive ablation studies to verify the impact of filtering 500

thresholds, filtering methods, and data size on the 501

performance of I-SHEEP. 502

7 Limitations 503

While the I-SHEEP framework can enhance model 504

performance, the extent of final improvement after 505

the RLHF phase remains uncertain. The complete 506

self-improvement process (SFT+RLHF) needs fur- 507

ther investigation, which we leave to future work. 508

Additionally, there are increasing ethical concerns 509

about using synthetic data, as it may intensify bi- 510

ases and harmful content in model responses. Al- 511

though this paper employs strict filtering for gen- 512

erated data to reduce incorrect cognition, it cannot 513

eliminate them. 514
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A Self-Assessment Prompt Content 980

Prompt Setting 1 (Simple Standard)

Prompt for Assessing Quality:
Here are the instruction and the response. Instruction: {instruction} Response: {output_data}.\n Please rate the
response above on a scale from 1 for poor response (The response is incorrect.) to 10 for good response (correct) based
on its quality, using the format '<score>||<explanation>'. As a strict scoring expert, your score is:

Prompt for Assessing Instruction-Following:
Here are the instruction and the response. Instruction: {instruction} Response: {output_data}.\n Please rate the
response from 1 (The response does not comply with the instruction.) to 10 (The response adheres to the instruction.)
based on its adherence to instructions, using the format '<score>||<explanation>'. As a strict scoring expert, your score is:

981

Prompt Setting 2 (Combined Standard)

Prompt for Assessing Quality:
Here are the instruction and the response. Instruction: {instruction} Response: {output_data}.\n Please rate the
response above on a scale from 1 for poor response (The response is incorrect, lengthy, unclear, redundant in format and
content.) to 10 for good response (correct, succinct, clear and nonredundant) based on its quality, using the format
'<score>||<explanation>'. As a strict scoring expert, your score is:

Prompt for Assessing Instruction-Following:
Here are the instruction and the response. Instruction: {instruction} Response: {output_data}.\n Please rate the
response from 1 (The response continues to generate the instruction content. the response does not meet the format
required by the instruction. the instruction is unclear and ambiguous.) to 10 (The response directly answers the
instruction instead of continuing the instruction, adheres to the format required by the instruction, and the instruction is
clear and unambiguous.) based on its adherence to instructions, using the format '<score>||<explanation>'. As a strict
scoring expert, your score is:

982

ICL Prompt Setting

Example 1
Instruction1: Select the oldest person from the list. George Washington, Confucius, Michael Jordan, Michelangelo
Output_data1: Confucious
Score1: 6
Explanation1: The response is correct, but the response does not provide further explanation

Example 2
Instruction2: Read this sentence and come up with an appropriate response. That’s really pretty.
Output_data2: Matterhorn is the highest mountain in the world.
Score2:1
Explanation2: The response is neither correct nor adheres to the instruction.

Example 3
Instruction3: Generate a slogan for the given product. Product: Athletic shoes
Output_data3: Sole to soul: Power your active lifestyle with our athletic shoes.
Score3: 10
Explanation3: The response is correct, organized, and instruction-following.

ICL Prompt
Instruction: {Instruction1} Response: {Output_data1}. Assess the above instruction-response pair:
<{Score1}>||<{Explanation1}>\n Instruction: {Instruction2} Response: {Output_data2}. Assess the above
instruction-response pair: <{Score2}>||<{Explanation2}>\n Instruction: {Instruction3} Response:
{Output_data3}. Assess the above instruction-response pair: <{Score3}>||<{Explanation3}>\n Instruction:
{Instruction} Response: {Output_data}. Assess the instruction-response pair: "

983

In this section, we provide a detailed overview of the different prompts used during the self-assessment 984

phase. The simple standard prompt setting involves setting the simple evaluation standard for poor and 985

good responses to assess the instruction-output pair data. The combined standard prompt setting indicates 986

that we combine several evaluation standards to assess data quality. The ICL prompt setting demonstrates 987

that even without meticulously designed standards, using just a few examples can achieve similar results. 988
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B Case Study989

Poor quality and not instruction-following

"instruction": "Imagine you’re talking to a doctor. You can ask them to show you
a radiograph of your knees. Tell them, ’Show me my knees!’",
"input": "",
"output": "Next, say ’Show me my elbows.’ It’s difficult to see your own elbows
in radiographs.\nBack to the main lesson page.",
"quality_score": 1,
"following_score": 1

"instruction": "Please fill in the blank with a good response.",
"input": "_______ is better than ______.",
"output": "One",
"quality_score": 2,
"following_score": 1

Good quality but not instruction-following

"instruction": "What are the main strengths and weaknesses of this technology?",
"input": "Technology: Self-driving cars",
"output": "I believe that self-driving cars can help to prevent some of the human
error that leads to accidents and fatalities on the road. However, self-driving
cars can also be used for other purposes such as transporting goods or even
transportation of people. Self-driving cars also have the potential to reduce
traffic congestion and environmental pollution.\n\nSome of the main strengths
of self-driving cars are that they can save a lot of time by eliminating the
need for a person to drive. It will allow people to spend more time doing other
things, such as working or reading. In addition, it will allow people to go
to places where there is not enough parking space, which will reduce traffic
on roads and make it easier to travel.\n\nHowever, self-driving cars have a
number of weaknesses as well. The technology behind self-driving cars is still
in its infancy and many questions remain about how it will work in practice. For
example, the systems are not perfect, which means that accidents can happen. In
addition, there are many ethical and legal questions that need to be answered
before self-driving cars can be used in public.\n\nSelf-driving cars are not
perfect, and there are still many questions that need to be answered about how
they will work in practice. However, self-driving cars have the potential to
reduce traffic congestion and environmental pollution and could even make our
roads safer.",
"quality_score": 10,
"following_score": 2

"instruction": "Create a new formula for generating a unique ID.",
"input": "",
"output": "import uuid\n\n def generate_unique_id():\n unique_id = uuid.uuid4()\n
return str(unique_id)",
"quality_score": 8,
"following_score": 5

Poor quality but instruction-following

"instruction": "Put parentheses around the following expression so that it
evaluates to 15.",
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"input": "5 + 3 * 2",
"output": "(15.5 + 3) * 2",
"quality_score": 2,
"following_score": 9

"instruction": "Remove the spaces from this text.",
"input": "Here is a text with spaces.",
"output": "Here is a text with spaces.\n\nHereisa textwithspaces.",
"quality_score": 1,
"following_score": 10

"instruction": "You will be given a task to generate a creative response to the
given prompt. A creative response is something that is interesting and novel.",
"input": "A group of friends want to have a fun night in.",
"output": "They could play board games or watch a movie.",
"quality_score": 4,
"following_score": 8

Good quality and instruction-following

"instruction": "Explain the following joke.",
"input": "Why do programmers prefer dark mode? Because light attracts bugs.",
"output": "The joke is a play on words. ’Bugs’ is a term used in programming to
refer to errors or problems in the code, but it is also a term for insects. So,
the punchline is a pun that means that programmers prefer dark mode because it
does not attract actual insects, which could be a distraction while working.",
"quality_score": 10,
"following_score": 10

"instruction": "Explain the grammar knowledge for the given sentence.",
"input": "An ancient vase stands on a brown table.",
"output": "Task: Explain the grammar knowledge for the given
sentence.\n\nSentence: An ancient vase stands on a brown table.\n\nGuidelines:\n-
Identify the subject, verb, and object.\n- Identify the nouns,
adjectives, and prepositions.\n- Provide an explanation for the sentence
structure.\n\nExplanation:\nThe subject of the sentence is ’an ancient vase.’
The verb is ’stands,’ and the object is ’on a brown table.’\n\n- Nouns: ’vase,’
’table’\n- Adjectives: ’ancient,’ ’brown’\n- Prepositions: ’on’\n\nThe sentence
follows the basic subject-verb-object structure, where the subject (an ancient
vase) performs the action (stands) on the object (a brown table). The adjectives
’ancient’ and ’brown’ provide additional information about the nouns they modify,
while the preposition ’on’ shows the relationship between the vase and the
table.",
"quality_score": 10,
"following_score": 10

Table 6: Examples from the generated instruction-output pair data. These samples are categorized into four groups
based on self-assessment scores: poor quality and not instruction-following, good quality but not instruction-
following, poor quality but instruction-following, and good quality and instruction-following.
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C More Benchmark Results Evaluated by Opencompass990

In this section, we present more benchmark results evaluated using the Opencompass platform. For aligned991

models, we use the prompts from SFT training to ensure consistency between training and inference. The992

prompts used are as follows:993

Llama3:
<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>\n\n

Qwen:
<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n
<|im_start|>user\n{prompt}<|im_end|>\n
<|im_start|>assistant\n

994

dataset version metric mode Qwen
base model

1st
iteration

2nd
one_base

3rd
one_base

Standard Benchmarks

BoolQ 314797 accuracy ppl 89.45 89.24 89.30 89.54
piqa 0cfff2 accuracy ppl 83.35 83.24 83.24 83.08
siqa e8d8c5 accuracy ppl 77.89 78.35 78.40 78.51
GPQA_diamond 152005 accuracy gen 25.25 27.78 26.77 27.78
hellaswag a6e128 accuracy ppl 83.45 83.39 83.46 83.46
winogrande 55a66e accuracy ppl 75.30 75.14 74.82 74.66
ARC-e 2ef631 accuracy ppl 96.12 96.12 96.30 96.12
ARC-c 2ef631 accuracy ppl 91.86 92.20 91.53 90.85
openbookqa_fact 6aac9e accuracy ppl 94.40 94.80 95.00 95.60
commonsense_qa e51e32 accuracy ppl 77.23 77.56 77.97 77.89
mmlu - naive_average ppl 77.02 76.85 76.95 77.03

Code Generation

openai_humaneval 812847 pass@1 gen 21.34 50.61 56.71 56.10
mbpp d1bbee score gen 50.20 51.20 51.80 52.60

World Knowledge

nq 632c4e score gen 19.11 26.54 27.31 28.14
triviaqa f9d2af score gen 58.07 60.81 61.55 62.00

Reading Comprehension

squad2.0 817436 score gen 47.66 50.68 52.27 61.42

Table 7: Additional benchmark results for the one_base iterative setting in Table 2
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dataset version metric mode Qwen
base model

1st
iteration

2nd
one_last

3rd
one_last

Standard Benchmarks

BoolQ 314797 accuracy ppl 89.45 89.24 89.30 89.20
piqa 0cfff2 accuracy ppl 83.35 83.24 83.13 82.92
siqa e8d8c5 accuracy ppl 77.89 78.35 78.25 78.56
GPQA_diamond 152005 accuracy gen 25.25 27.78 27.27 28.28
hellaswag a6e128 accuracy ppl 83.45 83.39 83.39 83.37
winogrande 55a66e accuracy ppl 75.30 75.14 75.37 75.14
ARC-e 2ef631 accuracy ppl 96.12 96.12 96.30 96.30
ARC-c 2ef631 accuracy ppl 91.86 92.20 92.20 91.86
openbookqa_fact 6aac9e accuracy ppl 94.40 94.80 95.00 95.60
commonsense_qa e51e32 accuracy ppl 77.23 77.56 78.05 77.89
mmlu - naive_average ppl 77.02 76.85 76.86 76.95

Code Generation

openai_humaneval 812847 pass@1 gen 21.34 50.61 56.71 56.10
mbpp d1bbee score gen 50.20 51.20 51.80 52.60

World Knowledge

nq 632c4e score gen 19.11 26.54 27.31 28.14
triviaqa f9d2af score gen 58.07 60.81 61.55 62.00

Reading Comprehension

squad2.0 817436 score gen 47.66 50.68 52.27 61.42

Table 8: Additional benchmark results for the one_last iterative setting in Table 2

17



dataset version metric mode Qwen
base model

1st
iteration

2nd
total_base

3rd
total_base

Standard Benchmarks

BoolQ 314797 accuracy ppl 89.45 89.24 89.17 89.27
piqa 0cfff2 accuracy ppl 83.35 83.24 83.19 83.19
siqa e8d8c5 accuracy ppl 77.89 78.35 78.20 78.25
GPQA_diamond 152005 accuracy gen 25.25 27.78 27.27 26.26
hellaswag a6e128 accuracy ppl 83.45 83.39 83.43 83.47
winogrande 55a66e accuracy ppl 75.30 75.14 75.14 75.22
ARC-e 2ef631 accuracy ppl 96.12 96.12 96.30 96.30
ARC-c 2ef631 accuracy ppl 91.86 92.20 91.86 91.86
openbookqa_fact 6aac9e accuracy ppl 94.40 94.80 95.20 95.00
commonsense_qa e51e32 accuracy ppl 77.23 77.56 77.81 77.81
mmlu - naive_average ppl 77.02 76.85 76.90 76.92

Code Generation

openai_humaneval 812847 pass@1 gen 21.34 50.61 56.71 56.10
mbpp d1bbee score gen 50.20 51.20 51.80 52.60

World Knowledge

nq 632c4e score gen 19.11 26.54 27.31 28.14
triviaqa f9d2af score gen 58.07 60.81 61.55 62.00

Reading Comprehension

squad2.0 817436 score gen 47.66 50.68 52.27 61.42

Table 9: Additional benchmark results for the total_base iterative setting in Table 2
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dataset version metric mode Qwen
base model

1st
iteration

direct
20K

direct
30K

Standard Benchmarks

BoolQ 314797 accuracy ppl 89.45 89.24 89.20 89.54
piqa 0cfff2 accuracy ppl 83.35 83.24 83.35 83.24
siqa e8d8c5 accuracy ppl 77.89 78.35 77.79 78.15
GPQA_diamond 152005 accuracy gen 25.25 27.78 26.77 25.76
hellaswag a6e128 accuracy ppl 83.45 83.39 83.43 83.44
winogrande 55a66e accuracy ppl 75.30 75.14 75.37 75.14
ARC-e 2ef631 accuracy ppl 96.12 96.12 96.47 96.30
ARC-c 2ef631 accuracy ppl 91.86 92.20 90.85 91.53
openbookqa_fact 6aac9e accuracy ppl 94.40 94.80 95.00 94.80
commonsense_qa e51e32 accuracy ppl 77.23 77.56 77.72 77.40
mmlu - naive_average ppl 77.02 76.85 76.96 76.97

Code Generation

openai_humaneval 812847 pass@1 gen 21.34 50.61 56.71 56.10
mbpp d1bbee score gen 50.20 51.20 51.80 52.60

World Knowledge

nq 632c4e score gen 19.11 26.54 27.31 28.14
triviaqa f9d2af score gen 58.07 60.81 61.55 62.00

Reading Comprehension

squad2.0 817436 score gen 47.66 50.68 52.27 61.42

Table 10: Additional benchmark results for the direct setting in Table 2

Setting Chat Benchmark Standard Benchmark

IFEval Code World Knowledge Reading Comprehension

Prompt-level
Strict-accuracy

Inst-level
Strict-accuracy

Prompt-level
Loose-accuracy

Inst-level
loose-accuracy

Human
Eval/Plus

MBPP
Trivia
QA

SQuAD 2.0

Density
iter1 34.20 46.76 39.56 51.80 53.66/46.34 50.60 70.95 53.50
iter2 37.34 49.76 41.22 53.72 51.83/44.51 53.40 70.78 60.58
iter3 37.52 49.52 39.56 51.56 54.88/47.56 55.20 69.97 59.54

PPL
iter1 36.60 49.16 41.77 54.08 52.44/46.95 50.00 71.34 50.40
iter2 36.04 46.64 39.92 50.84 56.71/50.00 52.20 70.27 48.11
iter3 33.27 45.92 36.41 49.52 55.49/50.61 53.20 70.37 41.82

Density
and PPL

iter1 37.52 49.64 42.51 54.68 52.44/46.95 50.60 71.29 57.08
iter2 40.48 52.16 44.73 56.24 55.49/48.17 54.40 70.87 62.06
iter3 38.82 50.48 41.96 53.60 58.54/53.05 55.40 70.40 63.51

Simple
Standard Prompt

iter1 35.30 48.20 42.33 54.68 53.66/46.34 51.20 71.39 51.51
iter2 36.23 49.28 40.67 53.60 56.71/50.00 55.60 71.17 57.64
iter3 42.14 54.08 45.10 56.83 59.76/53.05 57.60 70.40 63.47

Combined
Standard Prompt

iter1 35.67 49.16 40.48 53.96 50.61/45.12 51.20 60.81 50.68
iter2 37.34 51.32 40.85 54.56 56.71/49.39 51.80 61.55 52.27
iter3 41.22 54.32 44.18 57.19 56.10/50.61 52.60 62.00 61.42

ICL
Prompt

iter1 38.82 49.40 43.99 55.04 54.27/47.56 53.40 71.45 58.62
iter2 37.34 50.84 43.25 56.47 59.76/53.05 54.60 71.49 57.91
iter3 41.22 53.72 43.99 36.12 59.15/52.44 55.40 69.88 58.91

Table 11: More results using different filtering methods that rely solely on the model. PPL filtering involves
removing data points with high PPL values for output and instruction-output pairs. Density filtering clusters the
vector representations of the last layer and selects samples from each cluster. The Density and PPL setting clusters
first, then selects samples with lower PPL values in each cluster. Simple Standard Prompt, Combined Standard
Prompt, and the ICL Prompt settings are the three self-assessment variants discussed in this paper. Please refer to
the appendix for detailed prompt content.
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D MT-Bench995

single turn
score coding extraction humanities math reasoning role

play stem writing average

iter1 1st turn 7.76 5.50 6.35 9.65 5.85 7.60 7.55 9.55 10.00 6.432nd turn 5.11 2.30 4.80 7.70 3.60 5.30 7.90 4.30 5.00

iter2 1st turn 8.23 7.10 7.90 9.60 6.10 7.40 8.30 9.90 9.55 7.902nd turn 7.57 5.05 8.30 9.70 4.90 8.00 9.00 7.80 7.80

iter3 1st turn 8.34 6.50 7.80 9.65 7.00 7.20 8.80 10.00 9.80 7.972nd turn 7.60 5.80 7.60 9.40 5.00 7.50 9.30 8.50 7.70

iter4 1st turn 7.43 5.00 7.70 9.70 4.95 5.80 7.10 9.40 9.75 5.452nd turn 3.48 2.40 2.40 5.40 2.30 2.40 5.80 4.50 2.60

iter5 1st turn 7.49 5.30 7.70 9.50 4.90 5.60 7.80 9.40 9.70 5.622nd turn 3.76 3.60 2.50 5.20 1.50 3.60 4.80 4.40 4.50

iter6 1st turn 7.74 5.10 7.00 9.45 7.80 5.60 7.80 9.50 9.70 5.752nd turn 3.73 3.00 2.50 7.10 2.20 3.60 5.30 3.11 3.00

Table 12: The scores for the first and second turn of dialogue across different MT-Bench categories. There is a
significant decrease in the second turn scores after the third iteration.

E Lora Hyperparameters and LLaMA Factory Template996

We present the hyperparameters used for LoRA training and the templates used for SFT in the LLama-997

Factory framework as follows:998

Lora Hyper Parameters

deepspeed --num_gpus 8 ../../src/train_bash.py \
--deepspeed ../deepspeed/ds_z3_config.json \
--stage sft \
--do_train \
--dataset_dir ../../data \
--template qwen_like \
--finetuning_type lora \
--lora_target all \
--lora_rank 8 \
--lora_alpha 16 \
--lora_dropout 0.05 \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 8 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 2 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 2.0 \
--max_samples 3000 \
--val_size 0.1 \
--ddp_timeout 180000000 \
--plot_loss \
--bf16

999
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Llama-Factory Register Template

_register_template(
name="llama3_like",
format_user=StringFormatter(

slots=[
"<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>\n\n"

]
),
stop_words=["<|eot_id|>"],
# replace_eos=True,
# force_system=True,

)

_register_template(
name="qwen_like",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n
<|im_start|>assistant\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_separator=EmptyFormatter(slots=["\n"]),
default_system="You are a helpful assistant.",
# efficient_eos=True,
stop_words=["<|im_end|>", "<|endoftext|>"],
# replace_eos=True,

)
1000
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F Data quality analysis across various iterations1001
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Figure 3: The proportion of high-quality data to the total generated data across different iterations. High-quality
data refers to the data with scores greater than 8, which are used for training. The blue, yellow, and green curves
represent the consideration of output quality only, instruction adherence only, and both output quality and instruction
adherence, respectively.

Figure 4: The generated data projects onto the first two dimensions of the OpenHermes-2.5 using principal
component analysis (PCA). Black points represent OpenHermes data, while red points represent self-generated data
across various iterations in the I-SHEEP framework. The data generated through the I-SHEEP framework aligns
with the distribution of high-quality instruction-output pairs like those in OpenHermes.
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