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Figure 1. FastGrasp provides extensive realistic grasping of dexterous hands synchronized with human poses.

Abstract

Effectively modeling the interaction between human
hands and objects is challenging due to the complex phys-
ical constraints and the requirement for high generation
efficiency in applications. Prior approaches often employ
computationally intensive two-stage approaches, which first
generate an intermediate representation, such as contact
maps, followed by an iterative optimization procedure that
updates hand meshes to capture the hand-object rela-
tion. However, due to the high computation complex-
ity during the optimization stage, such strategies often
suffer from low efficiency in inference. To address this
limitation, this work introduces a novel diffusion-model-
based approach that generates the grasping pose in a
one-stage manner. This allows us to significantly im-
prove generation speed and the diversity of generated hand
poses. In particular, we develop a Latent Diffusion Model
with an Adaptation Module for object-conditioned hand
pose generation and a contact-aware loss to enforce the
physical constraints between hands and objects. Exten-
sive experiments demonstrate that our method achieves
faster inference, higher diversity, and superior pose qual-
ity than state-of-the-art approaches. Code is available at

*Corresponding authors.

https://github.com/wuxiaofeiOl/FastGrasp.

1. Introduction

The problem of modeling hand-object interactions [4, 6,
7, 11, 32, 46] has attracted increasing research interest re-
cently, with important applications in virtual reality [9],
human-computer interaction [12, 18], and imitation learn-
ing in robotics. A key task in hand-object interaction mod-
eling is to predict various ways a human hand can grasp a
given object. Unlike robot grasping with parallel jaw grip-
pers, the task of predicting human grasps is particularly
challenging due to two reasons: First, human hands have
more degrees of freedom, resulting in more intricate con-
tact patterns; Moreover, the generated grasp must be not
only physically plausible but also appear natural, reflecting
the typical ways that humans handle objects.

Previous methods for synthesizing human grasping pos-
tures often rely on a two-stage process [21-23, 31]. Such
a process typically first uses a generative model, e.g., Con-
ditional Variational AutoEncoder (CVAE) [42], to generate
a series of intermediate representations, including contact
maps [21] and/or parts maps [31], based on the point cloud
representation of interacting objects. The second stage
then uses those intermediate representations to estimate the
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hand parameters, aiming to produce a natural and physically
plausible hand pose. To achieve this, most methods formu-
late the estimation as an optimization problem and adopt
an iterative procedure to search the target hand pose. De-
spite their promising results, such two-stage methods often
suffer from two drawbacks: First, the iterative optimization
procedures are computationally intensive, leading to a low
inference efficiency and time-consuming generation; Sec-
ond, the quality of generated hand poses highly relies on the
intermediate representations from the first stage and prone
to accumulated errors.

To address those limitations, we propose an efficient one-
stage generation method, named FastGrasp, to directly gen-
erate grasping poses without producing intermediate repre-
sentations like contact maps, while maintaining the diver-
sity of generated poses. To achieve this, we leverage the
latent diffusion model framework [37] to learn a contact-
aware representation for hand poses in a latent space and
a diffusion-based generation process, capable of better en-
coding the physical constraints and capturing the object-
conditioned hand-pose distribution.

Specifically, FastGrasp first learns a low-dimensional la-
tent representation of hand pose parameters based on an Au-
toEncoder (AE) network. It then encodes the object with a
Point-Net and builds a diffusion model in the latent space
conditioned on the object representation. Subsequently, to
incorporate the physical constraints on hand-pose interac-
tion, FastGrasp introduces an adaptation module, which re-
fines the diffusion-generated latent representation based on
the object contact information. Finally, the contact-aware
hand-pose presentation is decoded into the MANO [40] pa-
rameters of the grasping hand pose with the AE decoder.

We validate our approach through extensive experiments
on three hand-object interaction benchmarks: HO-3D [15],
OaklInk [49], and Grab [44]. Experimental results demon-
strate that our method achieves low latency in inference and
generates higher-quality grasping poses with more plausible
physical interactions and higher diversity than recent state-
of-the-art approaches.

In summary, our contributions are as follows:

* We introduce FastGrasp, a diffusion-based one-stage
model for generating grasping hand pose without requir-
ing expensive iterative optimization.

* We propose an adaptation module to effectively incorpo-
rate physical constraints into a latent hand representation.

e QOur approach achieves fast inference and outperforms
previous state-of-the-art methods on a range of metrics.

2. Related Work
2.1. Hand-object Interaction

Generating whole-body interactions, such as approaching
and manipulating static [25, 48] and dynamic objects [13],

is a growing topic. The task of synthesizing humans inter-
acting with dynamic objects is explored using first-person
vision [29] in skeleton-based datasets. However, numerous
studies begin to explore hand-object interactions across di-
verse settings [1, 3, 5, 32]. Most current efforts focus on
synthesizing these interactions in the domains of computer
graphics [28, 35, 51], computer vision [14, 20, 24, 27, 50,
52, 53], and robotics [2, 10, 19]. To perform hand-object
pose estimation, Tekin et al. [45] proposes a 3D detection
framework that predicts hand-object poses using two out-
put grids without explicitly modeling their interaction. In
contrast, Hasson er al. [16] utilize hand-centric physical
constraints to model hand-object interactions and prevent
penetration. Recently, research shifts towards generating
plausible hand grasps for objects, with significant contri-
butions including: [8, 44]. GanHand [8] generates grasps
suitable for each object in a given RGB image by predict-
ing a grasp type from grasp taxonomy and its initial ori-
entation, then optimizing for better contact with the object.
GrabNet [44] represents 3D objects using Basis Point Set
to generate MANO [40] parameters. The predicted hand is
refined using an additional model to enhance contact accu-
racy. Our diffusion-model-based pipeline directly generates
the grasping pose for a given object point cloud, eliminating
the need for additional models.

2.2. Grasp Synthesis

Grasp synthesis receives extensive attention across robotic
hand manipulation, animation, digital human synthesis, and
physical motion control [33, 48]. In this work, we focus on
realistic human grasp synthesis [21-23, 31, 44], aiming to
generate authentic human grasps for diverse objects. The
key challenge is achieving physical plausibility and gener-
ation efficiency. Most existing approaches employ CVAE
to generate hand MANO parameters [21, 44, 49] or hand
joints [23]. Liu et al. [31] propose learning intermediate
representations followed by iterative optimization in two
stages. This method weakens the spatial information of
objects, causing intersection penetration and displacement,
and requires significant time for optimization in the sec-
ond stage. In contrast, we develop an one-stage generation
model that supervises the spatial geometry of objects and
adaptively learns the physical constraints of hand-object in-
teraction. Such model architecture effectively accelerates
generation speed and reduces hand-object penetration vol-
ume.

2.3. Denoising Diffusion Probabilistic Models

Denoising diffusion models [17, 30, 36, 41, 47] utilize a
stochastic diffusion process that incrementally introduces
noise into a sample from the data distribution, adhering to
thermodynamic principles. They then generate denoised
samples through a reverse iterative procedure. However,
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Figure 2. Model training architecture. We divide the training process into two parts. In the first part, we use a latent diffusion model to
generate grasping poses from object point clouds. However, the diffusion model struggles to directly learn the physical constraints between
the hand and object, leading to issues such as penetration and displacement. To address this, the second part involves training an Adaptation
Module to refine the grasping gestures by aligning them with the physical constraints of hand-object interactions, resulting in more natural
and feasible poses. In training stage one, only the solid arrow path is utilized. In stage two, both the solid and dotted arrow paths are used.

directly training DDPMs on high-resolution point clouds
and sampling from them is computationally intensive. La-
tent diffusion models address this issue by encoding high-
resolution images into a low-dimensional latent space [26,
34, 37] before training DDPMs. Our approach follows this
paradigm: we first train an autoencoder in the data space,
and then train a DDPM using the encoded samples. Addi-
tionally, we designe an Adaptation Module(AM) to adjust
the input to the decoder, incorporating hand-object physical
constraints into the diffusion model.

3. Fast Grasping Hand Pose Generation
3.1. Method Overview

Given an object, usually represented by a point cloud, our
purpose is to generate a human hand pose for grasping this
object. The generated grasping hand pose should be natu-
ral and physically correct, securely holding the object in a
physically plausible manner. Unlike the existing methods
that usually adopt a two-stage design with high computa-
tion cost, we propose FastGrasp, a fast grasping hand pose
generation pipeline without estimating intermediate repre-
sentations and iterative optimizations.

FastGrasp is a one-stage generation framework consist-
ing of two main modules for generating the grasping hand
pose. The first module is based on a latent diffusion model
to preserve the diversity of hand poses when intermedi-
ate representations like contact maps are absent. Given
the latent hand representation generated from the diffusion
model, we introduce an adaptation module to enforce the
physical constraints of hand-object interaction. This design
allows the model to directly learn the spatial relationship

between the hand and object point clouds without iterative
optimization, resulting in a fast generation of high-quality
hand poses.

To learn the entire model, we adopt a simple yet effective
two-step training strategy. The first step trains the latent
diffusion model, which generates an initial representation
of the hand poses. Next, we train the adaptation module
to refine the hand representation to strengthen the physical
constraints of the hand-object interaction. After training,
our generation requires only one pass of network inference,
thus significantly accelerating grasping hand generation.

Below we will first introduce the latent diffusion model
module in Sec. 3.2, followed by the adaptation module in
Sec. 3.3. Finally, the model inference pipeline will be de-
tailed in Sec. 3.4.

3.2. Latent Diffusion Model for Hand Pose

Latent Hand Representation. To build our Latent Diffu-
sion model [26] for hand pose, we first train an auto-encoder
that maps the input hand representation to a latent space.
This allows us to reduce the data dimensionality for the dif-
fusion process and improves the modeling efficiency. In
contrast to the original latent diffusion model, where the
input and output are exactly the same, we employ an asym-
metric design in the auto-encoder for the subsequent condi-
tional generation process.

Specifically, the input to our auto-encoder is the vertices
of the hand mesh, h, € R778%3, which is first processed by
a PointNet [38] and then fed into the encoder block. This
design maintains the spatial shape information of the input
hand in feature extraction, which can be more easily inte-
grated with the object representation in the later stage. The



obtained latent vector is converted to MANO [40] param-
eters representation h, € R®! instead of the vertices by
the decoder block. The MANO parameters have far less
freedom than those of vertices, thus improving the regu-
larization in learning the decoder. The hand mesh vertices
hy, € RT78%3 is finally reconstructed from h,, by a differ-
entiable MANO layer [40].

The training objective of the AutoEncoder combines a
hybrid reconstruction loss and a set of physical constraints.
The reconstruction loss measures the difference between the
reconstructed hand mesh and the ground truth, which in-
cludes two terms:

£recon = Alﬁparam + )\2£mesh (1)
Lparam = MSE(hy, h2) 2)
Lmesh = Chamfer-Dis(hy,, h2,) 3)

where L,qrqm indicates mean squared error loss between
predicted h, and GT hand MANO parameters h9t, Lomesh
measures chamfer distance between the predicted hand ver-
tices h,, and the GT hand vertices hf,f. A1 and Ao are the
weight balancing coefficients.

To learn a hand representation that adheres to physical
constraints, we also employ the following three loss func-
tions from [21]:

‘Cconsist = COHSiSt(hm, h%a Om) (4)
Lemap = Contact(hy,, 0, (5)
Lpenetr = Penetra(hy,, o) (6)

where o,, denotes the object mesh that we aim to grasp,
Lconsist aims to make the contact region of the predicted
hand mesh on the object consistent with that of the GT
hand mesh on the object. L4, ensures that the hand mesh
generated by the model maintains contact with the object.
Lpenetr prevents the hand mesh and objects from penetrat-
ing the physical volume. We refer the reader to the Supple-
mentary for details of those loss functions.

Our total loss function for training the auto-encoder (the
left part in Fig. 2) can be written as:

L :£7'econ + )\3£cmap + )\4['penet7' + )\5£consist (7)

where A3, Aq, A5 are weight parameters for balancing the
physical constraint loss terms. By integrating physical and
reconstruction losses, our model is able to learn the hand
mesh and the physical constraints involved in the interaction
between the hand and the object. This approach ensures that
our auto-encoder effectively encodes the hand vertices and
maintains the physical plausibility of the generated mesh.

Diffusion Model for Hand Representations. We adopt a
diffusion model to learn the distribution of the latent hand
representation produced by the auto-encoder. The model
gradually denoises a normally distributed random variable,
which corresponds to learning the reverse process of a fixed
Markov Chain [17, 39]. Here we train a denoising U-Net to
predict the added noises in the diffusion process, as shown
in the right part of Fig. 2.

Specifically, the input of the diffusion model consists of
three parts: 29,0, € RNox3 and t. z be the feature out-
put of the encoder £ when the input is h,,. The input object
point cloud oy, is used as the conditioning information for
our diffusion model. It is transformed into an embedding
using PointNet [38], facilitating controllable generation. ¢
denotes the time step in the diffusion model training pro-
cess. The loss function for training the diffusion network
can be written as:

Liow = Eeny.cxnon|le = oz, Plop) D3] ®

where € (2§, P(0,),t) denotes the conditional denoising U-
Net used for training, where ¢ ranges from 1 to 7', the input
zé is the zp mixed with ¢, the P denotes the PointNet [38].
Through training, the diffusion model learns to reconstruct
the hand mesh from Gaussian noise by denoising and de-
coding.

3.3. Physical Constraints Alignment

During the training of the diffusion model, directly incor-
porating physical loss and reconstruction loss lead to oscil-
lations and hampers convergence. We attribute this issue
to the diffusion model’s difficulty in simultaneously learn-
ing the distribution of the £ output and capturing the physi-
cal constraints between the hand and the object. Therefore,
the generated hand mesh and object may exhibit signifi-
cant physical penetration and displacement. To address this
problem, we decompose the entire training process into a
two-step optimization approach. This method not only sim-
plifies the model’s training complexity but also helps bet-
ter capture the physical constraint relationship between the
hand and the object.

Specifically, after training the diffusion model, we aim
to adjust the physical constraints of hand-object interac-
tions. To retain the knowledge from the previous diffusion
model, we introduce an adaptation module fq4,+ based on
a MLP. The diffusion model’s output z1, serves as the input
to the adaptation module. This module aligns the distribu-
tion learned by the diffusion model with the physical con-
straints of hand-object interactions. The specific formula is
as follows:

22 = fadapt(zl) )

where 2o € R™= | is the output of the adaptation module
when given z; as input.
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Figure 3. Model inference architecture. We start by inputting Gaussian noise and the object’s point cloud into the model. The diffusion
model then generates hand representations in latent space. The Adaptation Module refines these representations, which are then decoded
into MANO parameters. Finally, we construct the hand mesh using the MANO layer.

The goal of incorporating hand-object physical con-
straints is to ensure that the resulting hand mesh achieves
natural and realistic grasping postures. However, z; and 2z
do not accurately represent the quality of hand-object in-
teractions in real physical space. Therefore, we first recon-
struct z; and z, back to the MANO parameters h,,, and then
use the MANO Layer[40] fano to reconstruct the hand
mesh h,,,:

hp = D(Zl -+ ZQ) (10)

hm = fmano(hp) (11)

Next, we update the adaptation module using the loss func-
tion 7 to ensure that the physical constraints of hand-object
interactions are accurately aligned. This training method
addresses the challenge of directly learning physical con-
straints in diffusion models, resulting in more natural grasp-
ing poses and minimizing unnecessary physical penetration.

3.4. Inference

Fig. 3 illustrates the inference process of our method. Dur-
ing inference, the initial input consists of noise u sampled
from a Gaussian distribution and an object point cloud o,,.

First, we generate the prior z; for the hand mesh in the la-
tent space through an N-step denoising process [43]. Next,
the adaptation module integrates z; with the object point
cloud information to generate 2o, as shown in Eq. 9. Fi-
nally, z; and zo are combined, and the decoder converts
them into MANO parameters h,, which are then used by
the MANO layer [40] to produce the hand mesh h,,,. This
process can be described by the equations 10 and 11.

While using Diffusion Models (DDPM) for generating
grasp postures marks a significant advancement over the
previous two-stage model, there is still a need to enhance
generation speed to meet practical requirements. To ad-
dress this, we employ DDIM [43], which optimizes both
speed and quality by adjusting the step size during the de-
noising process. This approach enables the rapid generation
of grasping poses.

4. Experiment

In this section, we evaluate the effectiveness and efficiency
of the proposed framework for object-conditioned hand
pose generation. The structure is organized as follows.

We first introduce our benchmarking datasets (Sec. 4.1),
evaluation metrics (Sec. 4.2), and implementation details
(Sec. 4.3). Then, we conduct a model analysis to demon-
strate the efficacy of each component in the proposed frame-
work (Sec. 4.4). In what follows, we compare our method
with the recent state-of-the-art approaches (Sec. 8). Finally,
we assess the perceived quality and stability of the gener-
ated grasping poses through user studies (Sec. 4.6).

For experimental settings, we assess the model’s gen-
eralization to new objects using the out-of-domain dataset
[15]. We also evaluate the physical penetration and grasp
firmness of the generated poses with an in-domain setting
on the OakInk and GRAB datasets [44, 49].

4.1. Datasets

We conduct experiments using the Oaklnk [49],
GRAB [44], and HO-3D [I5] datasets, adhering to
the experimental protocols outlined in [23, 31, 49].
Specifically, in Sec. 4.5, We train the model separately
on the Oaklnk and GRAB datasets, and then evaluate its
generalization ability on the HO-3D dataset. In Sec. 4.5,
we perform both training and evaluation on the OakInk and
GRAB datasets.

The OakInk and GRAB datasets [44, 49] consist of hand-
object mesh pairs with hand models parameterized by the
MANO [40] model. The GRAB dataset includes real hu-
man grasps for 51 objects across 10 subjects, whereas the
OaklInk dataset features real human grasps for 1,700 objects
from 12 subjects. Following [21, 31, 44], we also evalu-
ate the model’s generalization ability by testing on out-of-
domain objects from the HO3D dataset.



Dataset Details Penetration .Simulation Con.tact Entropy 1 Cl.uster
Volume | Displacement |, Ratio 1 Size 1
Oaklnk [49] | Baseline CVAE model 13.08 1.78 98 2.81 1.12
Original diffusion model 18.34 1.45 98 291 5.24
Original diffusion model with physical loss 6.31 3.77 71 2.85 1.58
Our whole pipeline 4.37 145 94 2.92 4.96
GRAB [44] | Baseline CVAE model 12.33 1.94 98 2.62 0.87
Original diffusion model 15.46 1.80 96 2.87 3.06
Original diffusion model with physical loss 8.43 5.24 50 2.84 1.26
Our whole pipeline 1.25 1.67 100 2.93 1.87
HO-3D [15] | Baseline CVAE model 23.17 3.12 100 2.64 0.93
Original diffusion model 16.64 2.18 90 2.87 4.04
Original diffusion model with physical loss 12.73 3.87 62 2.87 1.37
Our whole pipeline 5.23 2.14 98 2.88 3.97

Table 1. Ablation study results on the GRAB, OakInk, HO-3D datasets [15, 44, 49]. The evaluation of the HO-3D is an out-of-domain

generalization test, where the model is trained using the GRAB dataset.
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Figure 4. Qualitative comparison between our method and Ours w/o Adaptation Module (AM). Starting from the same random Gaussian
noise, we visualize the generated grasps by our whole pipeline (first row) and ours w/o Adaptation Module. For each object, we show two
different views for visualization (two columns). This comparison demonstrates that our whole pipeline with AM notably reduces object

penetration and produces more realistic grasp poses.

4.2. Evaluation Metrics

Following the prior evaluation protocals [21-23, 31, 44, 48],
we evaluate the generated grasping poses using the follow-
ing criteria: (1) physical plausibility, (2) stability, (3) diver-
sity, (4) generation speed, and (5) perception score.
Physical Plausibility Assessment. We evaluate physical
plausibility by measuring hand-object mutual penetration
volume and contact ratio [21-23, 31]. The penetration vol-
ume is calculated by voxelizing the mesh into 1mm? cubes
and computing the overlapping voxels. The contact ratio
indicates the proportion of the grasps in contact with the
object.

Grasp Stability Assessment. Following [21,22, 31, 33,44,
48, 49], we use a simulator to position the object and the
generated grasps. We then measure the average displace-

ment of the object’s center of gravity due to gravity.
Diversity Assessment. We assess the diversity of generated
grasps following [23, 31]. First, we cluster the grasps into
20 clusters using K-means. Diversity is measured by com-
puting the entropy of cluster assignments and the average
cluster size, with higher entropy values and larger cluster
sizes indicating greater diversity. Consistent with previous
work, K-means clustering [23, 31] is applied to 3D hand
keypoints across all methods.

Generation Speed Assessment. We randomly select 128
objects from the dataset, generate grasping poses for each
object, and calculate the average time required to generate
a single pose on an NVIDIA A40 GPU.

Perceptual Score Assessment. We conduct a perceptual
study, as described in [21, 23], with human participants to
evaluate the naturalness of the generated grasps.



Method Penetration .Simulation Conltact Entropy 1 Clluster Inference
Volume | Displacement | Ratio 1 Size T Time |
GrabNet [44] 15.50 2.34 99 2.80 2.06 0.23s
GraspTTA [21] 7.37 5.34 76 2.70 1.43 6.90s
HALO [23] 25.84 3.02 97 2.81 4.87 10.42s
GF [22] 93.01 - 100 2.75 3.44 32.75s
ContactGen [31] 9.96 2.70 97 2.81 5.04 110.60s
Ours' 5.23 2.14 98 2.88 3.97 0.14s
ContactGen? 14.32 2.41 100 2.84 5.23 110.60s
Ours? 12.30 1.44 100 2.88 4.41 0.14s

Table 2. Comparison with previous methods on the HO-3D dataset [15], where Ours’ indicates our model is trained on the GRAB [44]
dataset following [22, 23, 31], and Ours® and ContactGen? suggests the corresponding models are trained on the OakInk [49] dataset. Our
model achieves state-of-the-art performance on this out-of-domain dataset, setting new benchmarks with faster inference speeds and the

best physical metrics for generated grasps.

4.3. Implementation Details

During training, we use the Adam optimizer, LR = le 4,
N, = 768, N, = 3000 and bath size = 256. During train-
ing the autoencoder, the loss weights are Ay = 0.1, Ay =
1,A3 = 1000, A\, = 10, A5 = 10. When training the dif-
fusion model, we freeze the auto-encoder and sample 3000
points from the object mesh o,,, as the input point cloud o,,.
When training the adaptation module, we use the same in-
put point cloud and the loss weights are AY = 100, \d =
0.1, A4 = 1000, \§ = 20, \¢ = 0.1.

4.4. Ablation Study

In this section, we conduct an ablation study to systemati-
cally evaluate the contribution of each module to the over-
all framework performance. This approach clarifies the role
and impact of each component before delving into a detailed
analysis of the experimental results.

Tab. | summarizes the results, showing that while
the CVAE model slightly outperforms the diffusion model
in penetration rate, it exhibits weaker generative perfor-
mance, as indicated by lower entropy and smaller cluster
sizes. Conversely, the diffusion model excels in entropy and
cluster size but struggles with higher penetration, suggest-
ing difficulties capturing the physical constraints of hand-
object interactions. Integrating a physical loss function di-
rectly into the diffusion model decreases performance by
increasing displacement and reducing grasp robustness, un-
derscoring the challenge of aligning hand representations
with physical constraints in latent space. Our Adaptation
Module approach effectively combines the diffusion model
with physical constraints, achieving reduced penetration
and displacement, and significantly improving the accuracy
of hand-object interactions.

Fig. 4 shows that our Adaptation Module method signif-
icantly enhances performance across all three datasets, re-
ducing penetration volume and improving generalization on
the out-of-domain HO-3D dataset. This improvement fur-

ther demonstrates the Adaptation Module’s ability to trans-
form distributions, aligning the generated hand latent vector
with natural human expectations.

4.5. Grasp Generation Performance

Out-of-Domain. We assess the generalization ability of our
model using the HO-3D dataset [15]. As demonstrated in
Tab. 2 and Fig. 5, our method achieves the fastest gener-
ation speed, superior physical constraints, and entropy. In
comparison, GrabNet [44] matches our method in genera-
tion speed but suffers from significant physical penetration.
ContactGen excels in cluster size but has the longest genera-
tion time, making it impractical for real-world applications.
Overall, our method outperforms previous approaches in
both physical generalization and generation speed. In-
Domain. Tab. 3 and Fig. 5 compare our method with Con-
tactGen [31] and GrabNet [44] on the Oaklnk dataset. Our
method excels in penetration, contact ratio, entropy, and
cluster size. Although displacement is slightly higher than
GrabNet, our method achieves significantly lower penetra-
tion volume, demonstrating a better balance between mini-
mizing physical intrusion and improving grasping effective-
ness.

Tab. 3 compares our method with ContactGen [31],
Halo [23], and GrabNet [44] on the GRAB dataset. Our
approach outperforms the others by achieving the lowest
penetration and displacement and the highest contact ratio.
Fig. 5 demonstrates that our method produces highly plau-
sible object grasping. Although ContactGen produces more
diverse grasps than our method in terms of cluster size, our
method archives better results with smaller penetration and
greater stability. By focusing on detailed geometric spa-
tial information, our model creates more precise grasping
poses. This precision increases entropy for objects with var-
ied geometries, leading to more diverse hand poses, while
similar object geometries result in more uniform grips and
lower cluster sizes.



Dataset Method Penetration -Simulation Coqtact Entropy 1 Cl.uster
Volume | Displacement | Ratio 1 Size T
OaklInk [49] GrabNet [49] 6.60 1.21 94 1.68 1.22
ContactGen* 4.85 2.01 94 2.88 4.07
Ours 4.37 1.45 94 2.92 4.96
GRAB [44] GrabNet [44] 1.72 3.65 96 2.72 1.93
HALO [23] 2.09 3.61 94 2.88 2.15
ContactGen [31] 2.16 2.72 96 2.88 4.11
Ours 1.25 1.67 100 2.93 1.87

Table 3. Quantitative comparison on the OakInk and GRAB dataset [44, 49], where * indicates the model is trained on the OakInk dataset
using the code released by the authors. Our method achieves the best performance on almost all evaluation metrics.
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Figure 5. Qualitative comparisons with state-of-the-art methods on GRAB, OaklInk, and HO-3D datasets. Each pair (two columns)
visualizes the generated grasps from two different views. Our method demonstrates a significant reduction in object penetration compared

to other methods.
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Figure 6. User study results. The numbers indicate the percentage
of users who rate the corresponding method as more realistic.

4.6. User Study

We conduct a user study to evaluate the perceived qual-
ity and stability of grasps generated by different methods.
We compare grasps generated by GrabNet [44], Contact-
Gen [31], and our method by evaluating 10 objects from the
GRAB [44], Oaklnk [49], and HO-3D [15] datasets. Each
object is tested with 3 grasps from each method. Ten par-
ticipants select the best grasp pose based on the naturalness
and stability of the grasp. Fig. 6 shows that our method re-
ceived the highest number of selections in the experiment,

indicating it generates the most natural and stable grasps.

5. Conclusion

In this paper, we introduce a one-stage framework for rapid
and realistic human grasp generation, eliminating the need
for iterative optimization processes common in previous
methods. We introduce an adaptation module that aligns the
generative model’s output with physical constraints, refin-
ing hand representations in the latent space to enhance the
accuracy and realism of generated grasps. Consequently,
our method accelerates grasp generation, improves physical
plausibility, and demonstrates robust generalization across
diverse test inputs.
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Figure 7. To assess the impact of a physically constrained loss function, we compare model performance with and without it. Each pair of
columns shows generated grasps from two distinct views. The first row uses only the reconstruction loss, while the second row presents
results from our proposed pipeline. Our method significantly reduces object penetration compared to using the reconstruction loss alone.
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Figure 8. To evaluate the necessity of hand vertices as inputs, we visualize the model’s output using both hand parameters and hand
vertices. Each pair of columns shows generated grasps from two different views. The first row presents results with hand parameter input,
while the second row displays results from our pipeline. Our method enhances performance by capturing hand joint details and improving

rotational accuracy, which reduces object penetration.

Oakink Simulation Penetration Penetration Contact
Displacement | Distance | Volume | Ratio T
No-physical-loss 1.91 0.93 4.76 96
Hand param 1.39 0.91 591 98
Ours 1.83 0.91 2.39 98

Table 4. We conducted ablation experiments to evaluate the impact
of the physical constraints loss function and hand vertices.

7. Overview of Material

The supplementary material comprehensively details our
experiments, results, and visualizations. Tab. 4 examines
the impact of physical constraints during autoencoder train-
ing and compares the effects of hand verts versus hand pa-
rameters as inputs. Sec. 8.3 offers additional visualizations
to enhance understanding of our model.

8. More Autoencoder Experimental Results

In training the autoencoder, we use hand vertices as input
and apply both reconstruction and physical loss functions.
Sec. 8.1 and Sec. 8.2 examine the effects of training the
model with hand vertices and reconstruction loss alone ver-

sus using MANO parameters with both reconstruction and
physical loss functions in Tab. 4.

8.1. Training Using Reconstruction Loss

The model is trained using hand vertices h, as input and
relies solely on the reconstruction loss function, without in-
corporating any physical loss function. As shown in Fig. 7,
experiments reveal that using only the reconstruction loss
often results in significant penetration and displacement is-
sues in hand-object interactions. However, as demonstrated
in Tab. 4, incorporating a physical constraint loss function
improves the model’s ability to capture these details, reduc-
ing physical collisions and enhancing grasp stability.

8.2. Training Using Mano Parameter

The model is trained using hand parameters h,, as input.
Our experiments indicate that using hand vertices instead
of MANO parameters results in less physical volume intru-
sion. As shown in Fig. 8 and Tab. 4, this is attributed to the
Hand vertices providing a more robust data representation
than MANO parameters, reducing the model’s sensitivity to
input variations and thus improving training effectiveness.



8.3. Autoencoder Visulization Result

To validate the effectiveness of our autoencoder model, we
provide extensive visualizations in Fig. 9 and 10.

Fig. 9 illustrates two grasping poses for randomly se-
lected test objects. This demonstrates that our model ad-
heres to physical constraints in hand-object interactions for
various grasps of the same object. Fig. 10 showcases grasp-
ing poses for objects with diverse geometric shapes from
the test set, highlighting our model’s ability to generate ef-
fective grasps across different objects consistently.



Figure 9. In the visualization results of the autoencoder, we selected two different grasping poses for each object, each shown from two
different perspectives.
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Figure 10. In the autoencoder visualization results, we randomly selected grasping poses, each shown from two different perspectives.
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